Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA

Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellat...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on wireless communications and networking Vol. 2018; no. 1; pp. 133 - 54
Main Authors Mao, Yijie, Clerckx, Bruno, Li, Victor O.K.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 29.05.2018
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).
AbstractList Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).
Abstract Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).
Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).
Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).
Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users.In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA).Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction.The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).
ArticleNumber 133
Author Li, Victor O.K.
Mao, Yijie
Clerckx, Bruno
Author_xml – sequence: 1
  givenname: Yijie
  orcidid: 0000-0001-5077-2998
  surname: Mao
  fullname: Mao, Yijie
  email: maoyijie@hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong
– sequence: 2
  givenname: Bruno
  surname: Clerckx
  fullname: Clerckx, Bruno
  organization: Department of Electrical and Electronic Engineering, Imperial College London
– sequence: 3
  givenname: Victor O.K.
  surname: Li
  fullname: Li, Victor O.K.
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30996723$$D View this record in MEDLINE/PubMed
BookMark eNp9kklv1TAUhSNURAf4AWxQJDYsCHiK47BAeipTpZZKDGvLcezgh2MH2wG1vx7npYW2EqxsX5_z6Vz7HhZ7zjtVFI8heAEhoy8jxBSzCkBWQQhI1dwrDiBlTQVJ2-7d2O8XhzFuAcCYtOhBsY9B29IG4YPi8pNIqoqTNSkZN5TjbJOZrCqFlCrGUvtQ9v6Xs8Z9L6Ufx9kZKZLxrowXMakxviq7YPohm5-Xg3IqCGsudyfh-tLPaVIhU8aF_vnN2WZX_nh-tnlY3NfCRvXoaj0qvr57--X4Q3V6_v7keHNayRrTVBHQtYy1GipB606yniEEhNBM9JoRqPumx0igWjYMdS3VhDAtMdSIdVQIQvFRcbJyey-2fApmFOGCe2H4ruDDwEVIRlrFaYuZJkx0tdIkUxjLz4opaXKFqg5l1uuVNc3dqHqpXMr93oLevnHmGx_8T04JZrQGGfDsChD8j1nFxEcTpbJWOOXnyBGCEKMG102WPr0j3fo5uPxUHAFCa0prtnT35GaiP1GuvzgLmlUgg48xKM2lSbsfzAGN5RDwZZj4Okw8DxNfhokvAeAd5zX8fx60emLWukGFv6H_bfoNU-TdRw
CitedBy_id crossref_primary_10_1109_TVT_2024_3492284
crossref_primary_10_1109_LNET_2024_3430313
crossref_primary_10_1109_TCOMM_2022_3194144
crossref_primary_10_1007_s11277_021_09100_z
crossref_primary_10_1109_JPHOT_2022_3169233
crossref_primary_10_1109_IOTM_001_2300234
crossref_primary_10_1109_OJVT_2020_3044569
crossref_primary_10_1109_TCOMM_2022_3188020
crossref_primary_10_1109_LWC_2022_3196408
crossref_primary_10_1109_JIOT_2022_3152382
crossref_primary_10_1016_j_adhoc_2025_103802
crossref_primary_10_1109_COMST_2023_3294873
crossref_primary_10_1109_JSAC_2023_3242718
crossref_primary_10_1007_s11276_019_02126_z
crossref_primary_10_1109_TWC_2024_3396437
crossref_primary_10_1109_TCOMM_2022_3179780
crossref_primary_10_1109_JSAC_2023_3240779
crossref_primary_10_1109_OJCOMS_2023_3336772
crossref_primary_10_1109_TIT_2021_3076888
crossref_primary_10_3390_app11209409
crossref_primary_10_1109_TWC_2024_3427708
crossref_primary_10_1109_TWC_2024_3432731
crossref_primary_10_1109_TVT_2022_3191085
crossref_primary_10_1109_TCOMM_2023_3277033
crossref_primary_10_1109_TVT_2021_3090083
crossref_primary_10_1109_TCOMM_2021_3067642
crossref_primary_10_1109_TIT_2021_3097209
crossref_primary_10_1109_TWC_2023_3327127
crossref_primary_10_1109_JSAC_2023_3240783
crossref_primary_10_1109_TWC_2023_3277334
crossref_primary_10_1109_JSAC_2023_3240786
crossref_primary_10_1109_LWC_2024_3421620
crossref_primary_10_1109_JIOT_2023_3279196
crossref_primary_10_1109_TCOMM_2019_2943168
crossref_primary_10_1109_TCOMM_2022_3190349
crossref_primary_10_1109_JIOT_2024_3420099
crossref_primary_10_1109_LCOMM_2019_2913424
crossref_primary_10_1109_JSAC_2023_3240787
crossref_primary_10_1109_JPHOT_2024_3388472
crossref_primary_10_1109_JSAC_2023_3240788
crossref_primary_10_1109_OJCOMS_2021_3092815
crossref_primary_10_1109_TVT_2024_3453253
crossref_primary_10_1109_LWC_2019_2927206
crossref_primary_10_1109_JSYST_2020_3032725
crossref_primary_10_1109_TVT_2024_3423002
crossref_primary_10_31857_S0033849424010016
crossref_primary_10_1109_TVT_2023_3253021
crossref_primary_10_1109_TWC_2024_3379433
crossref_primary_10_1109_TCOMM_2023_3321731
crossref_primary_10_1109_ACCESS_2020_3025635
crossref_primary_10_1109_TGCN_2024_3433507
crossref_primary_10_1109_TGCN_2024_3406803
crossref_primary_10_3390_jmse12091526
crossref_primary_10_1109_TWC_2024_3429229
crossref_primary_10_1109_TGCN_2024_3432656
crossref_primary_10_1109_LCOMM_2018_2883724
crossref_primary_10_1109_ACCESS_2019_2921626
crossref_primary_10_1109_TCOMM_2019_2942308
crossref_primary_10_1109_LWC_2023_3245631
crossref_primary_10_1109_JSAC_2022_3196320
crossref_primary_10_1109_JIOT_2024_3370161
crossref_primary_10_1109_LWC_2024_3430555
crossref_primary_10_1109_OJCOMS_2024_3459911
crossref_primary_10_1109_TWC_2022_3205508
crossref_primary_10_1109_TMC_2024_3483193
crossref_primary_10_1109_TWC_2023_3254538
crossref_primary_10_1109_LCOMM_2023_3329149
crossref_primary_10_1109_LWC_2023_3273225
crossref_primary_10_1109_LWC_2022_3208011
crossref_primary_10_1109_TWC_2022_3195532
crossref_primary_10_1109_TWC_2021_3133433
crossref_primary_10_1109_ACCESS_2019_2908893
crossref_primary_10_1109_TWC_2020_3002891
crossref_primary_10_1109_TBC_2024_3434731
crossref_primary_10_1109_LCOMM_2024_3457617
crossref_primary_10_1109_TCOMM_2024_3366391
crossref_primary_10_1109_JIOT_2023_3315372
crossref_primary_10_1109_TWC_2023_3273720
crossref_primary_10_1002_ett_3694
crossref_primary_10_1016_j_dcan_2023_09_002
crossref_primary_10_1109_LCOMM_2023_3328782
crossref_primary_10_1109_TCOMM_2020_2968896
crossref_primary_10_1109_TCOMM_2020_3023736
crossref_primary_10_1109_TVT_2023_3318646
crossref_primary_10_1109_TMLCN_2024_3513267
crossref_primary_10_1109_TVT_2019_2957994
crossref_primary_10_1109_TWC_2022_3218897
crossref_primary_10_1109_TVT_2024_3398057
crossref_primary_10_3390_math13010013
crossref_primary_10_1109_TCCN_2024_3350596
crossref_primary_10_1109_TCOMM_2024_3397799
crossref_primary_10_1109_TCCN_2024_3438359
crossref_primary_10_1109_JSTSP_2021_3110312
crossref_primary_10_1109_TWC_2022_3233483
crossref_primary_10_1109_LCOMM_2022_3195199
crossref_primary_10_1109_LWC_2022_3165711
crossref_primary_10_1109_OJCOMS_2021_3084799
crossref_primary_10_1109_TWC_2023_3263488
crossref_primary_10_1109_TCOMM_2022_3144487
crossref_primary_10_1109_TWC_2024_3431684
crossref_primary_10_1016_j_phycom_2024_102571
crossref_primary_10_1109_TCOMM_2021_3065145
crossref_primary_10_1109_LWC_2019_2954518
crossref_primary_10_1109_OJCOMS_2023_3240163
crossref_primary_10_1109_LWC_2023_3290372
crossref_primary_10_1109_LCOMM_2022_3192012
crossref_primary_10_1109_OJCOMS_2024_3392359
crossref_primary_10_1109_TWC_2021_3129881
crossref_primary_10_1109_JSAC_2020_3020679
crossref_primary_10_1109_OJCOMS_2023_3264465
crossref_primary_10_1109_OJCOMS_2022_3183950
crossref_primary_10_1109_TVT_2023_3259963
crossref_primary_10_1109_TSP_2022_3214376
crossref_primary_10_1109_TWC_2019_2905609
crossref_primary_10_1109_TWC_2024_3367891
crossref_primary_10_1109_TCOMM_2021_3138437
crossref_primary_10_1109_LCOMM_2022_3224499
crossref_primary_10_1109_JIOT_2024_3390212
crossref_primary_10_1109_TWC_2020_2978843
crossref_primary_10_1109_ACCESS_2020_3025156
crossref_primary_10_1109_LCOMM_2020_2969158
crossref_primary_10_1109_TBC_2022_3190990
crossref_primary_10_1109_TVT_2019_2947052
crossref_primary_10_1109_ACCESS_2024_3483688
crossref_primary_10_1109_JPROC_2024_3409428
crossref_primary_10_1109_TCOMM_2021_3074519
crossref_primary_10_1016_j_phycom_2025_102610
crossref_primary_10_1007_s11432_024_4224_6
crossref_primary_10_1109_TAES_2023_3276343
crossref_primary_10_1109_TVT_2022_3180747
crossref_primary_10_1109_TWC_2024_3410315
crossref_primary_10_1109_LCOMM_2022_3191737
crossref_primary_10_1109_OJVT_2020_3031656
crossref_primary_10_3390_electronics13050872
crossref_primary_10_1109_LCOMM_2024_3359064
crossref_primary_10_1109_ACCESS_2021_3095142
crossref_primary_10_1109_JIOT_2024_3418079
crossref_primary_10_1109_LCOMM_2022_3173894
crossref_primary_10_1109_ACCESS_2022_3182552
crossref_primary_10_1109_JSAC_2020_3000824
crossref_primary_10_1109_TCOMM_2021_3124945
crossref_primary_10_1109_JIOT_2023_3279093
crossref_primary_10_1109_TWC_2024_3395670
crossref_primary_10_1109_LWC_2023_3298793
crossref_primary_10_1109_TWC_2023_3298667
crossref_primary_10_1109_JSYST_2019_2923991
crossref_primary_10_1109_LCOMM_2023_3310937
crossref_primary_10_1016_j_egyr_2022_03_148
crossref_primary_10_1109_TVT_2022_3222633
crossref_primary_10_1109_TCOMM_2024_3383102
crossref_primary_10_1109_OJCOMS_2022_3175426
crossref_primary_10_1109_TMC_2024_3396389
crossref_primary_10_3390_s24175480
crossref_primary_10_1109_TCOMM_2023_3285290
crossref_primary_10_1109_TVT_2023_3330962
crossref_primary_10_1109_TWC_2023_3238808
crossref_primary_10_3390_sym14102103
crossref_primary_10_1109_LWC_2022_3221526
crossref_primary_10_1109_LCOMM_2022_3192041
crossref_primary_10_1109_TCOMM_2021_3091133
crossref_primary_10_1109_TVT_2023_3262943
crossref_primary_10_1109_TWC_2024_3404095
crossref_primary_10_1109_TWC_2023_3330373
crossref_primary_10_3390_drones7070429
crossref_primary_10_1109_TGCN_2022_3196048
crossref_primary_10_1109_OJCOMS_2023_3236786
crossref_primary_10_1016_j_phycom_2023_102192
crossref_primary_10_1109_LWC_2023_3329036
crossref_primary_10_1109_LWC_2021_3118441
crossref_primary_10_1109_TCOMM_2023_3270907
crossref_primary_10_1109_LCOMM_2023_3309818
crossref_primary_10_1109_OJVT_2020_3032844
crossref_primary_10_1109_TVT_2021_3102212
crossref_primary_10_1109_TWC_2022_3173463
crossref_primary_10_1109_TCOMM_2023_3235349
crossref_primary_10_1109_TWC_2024_3427675
crossref_primary_10_1109_TGCN_2022_3219111
crossref_primary_10_1109_OJVT_2023_3238034
crossref_primary_10_1109_JSAC_2023_3240704
crossref_primary_10_1109_TVT_2022_3229822
crossref_primary_10_1109_LCOMM_2024_3512621
crossref_primary_10_1109_JPROC_2024_3472501
crossref_primary_10_1109_LCOMM_2022_3226817
crossref_primary_10_1109_TWC_2022_3220785
crossref_primary_10_1109_TWC_2023_3262361
crossref_primary_10_1016_j_phycom_2025_102629
crossref_primary_10_1109_JSAC_2023_3240707
crossref_primary_10_1109_TCOMM_2021_3100610
crossref_primary_10_1109_TVT_2024_3354329
crossref_primary_10_1109_TGCN_2021_3079369
crossref_primary_10_1109_JSAC_2023_3240709
crossref_primary_10_1016_j_phycom_2025_102665
crossref_primary_10_1109_TCOMM_2023_3331021
crossref_primary_10_32604_cmes_2023_024078
crossref_primary_10_1109_TBC_2024_3475743
crossref_primary_10_1109_JSAC_2024_3460073
crossref_primary_10_1109_TCOMM_2022_3224388
crossref_primary_10_1109_TVT_2020_3037657
crossref_primary_10_1109_TVT_2021_3120093
crossref_primary_10_1109_TVT_2022_3192917
crossref_primary_10_1109_TWC_2024_3392929
crossref_primary_10_1109_TCOMM_2021_3098695
crossref_primary_10_1109_TVT_2024_3502792
crossref_primary_10_1109_OJCOMS_2025_3525954
crossref_primary_10_1109_LWC_2024_3517151
crossref_primary_10_1109_TCOMM_2023_3242670
crossref_primary_10_1109_LWC_2024_3448297
crossref_primary_10_1109_TBC_2021_3071061
crossref_primary_10_1109_TWC_2024_3489219
crossref_primary_10_1109_TVT_2023_3291869
crossref_primary_10_1109_TBC_2023_3275363
crossref_primary_10_1109_COMST_2022_3191937
crossref_primary_10_1186_s13673_020_00258_2
crossref_primary_10_1109_TNSE_2024_3357104
crossref_primary_10_1109_JIOT_2024_3452317
crossref_primary_10_1109_TWC_2023_3263116
crossref_primary_10_1109_TWC_2022_3216507
crossref_primary_10_1109_COMST_2023_3293231
crossref_primary_10_1109_JSAC_2022_3145909
crossref_primary_10_1109_TCOMM_2024_3418889
crossref_primary_10_1109_TVT_2024_3472290
crossref_primary_10_1109_TWC_2022_3166393
crossref_primary_10_1109_TWC_2020_3021725
crossref_primary_10_1109_TCOMM_2018_2879930
crossref_primary_10_3390_rs15225284
crossref_primary_10_1109_TWC_2024_3486673
crossref_primary_10_1109_ACCESS_2024_3481438
crossref_primary_10_1109_TWC_2021_3062613
crossref_primary_10_1109_TNSE_2023_3341582
crossref_primary_10_1109_TIFS_2021_3122989
crossref_primary_10_1109_LCOMM_2022_3160511
crossref_primary_10_1109_LWC_2023_3279860
crossref_primary_10_1109_TWC_2022_3223961
crossref_primary_10_1109_TVT_2024_3369066
crossref_primary_10_1109_ACCESS_2020_3011144
crossref_primary_10_1109_LWC_2024_3449694
crossref_primary_10_1109_TCOMM_2022_3211975
crossref_primary_10_1109_JSAC_2018_2872615
crossref_primary_10_1109_TBC_2023_3267239
crossref_primary_10_1109_TCOMM_2020_3037596
crossref_primary_10_3390_electronics12183815
crossref_primary_10_3390_electronics12112550
crossref_primary_10_1109_ACCESS_2020_3001277
crossref_primary_10_1109_MCOM_004_2100956
crossref_primary_10_1109_LSP_2019_2942994
crossref_primary_10_1109_TWC_2024_3378254
crossref_primary_10_1109_LWC_2024_3364094
crossref_primary_10_1016_j_ijleo_2022_168948
crossref_primary_10_1109_ACCESS_2021_3124812
crossref_primary_10_1109_TWC_2023_3326245
crossref_primary_10_1109_TWC_2023_3309028
crossref_primary_10_3389_frcmn_2021_716620
crossref_primary_10_1109_TIFS_2022_3149145
crossref_primary_10_1109_OJCOMS_2023_3339790
crossref_primary_10_1109_JSYST_2023_3254603
crossref_primary_10_1109_TSC_2024_3506473
crossref_primary_10_1109_JSAC_2023_3240714
crossref_primary_10_1109_JSYST_2022_3220249
crossref_primary_10_1109_JSAC_2023_3240716
crossref_primary_10_1109_JSAC_2023_3240711
crossref_primary_10_1109_TCOMM_2023_3325901
crossref_primary_10_1109_JPROC_2024_3417332
crossref_primary_10_1109_JSAC_2023_3240713
crossref_primary_10_1109_TWC_2021_3063283
crossref_primary_10_1109_JSAC_2022_3145818
crossref_primary_10_1109_TCOMM_2021_3085343
crossref_primary_10_1109_JSAC_2023_3240718
crossref_primary_10_1109_TVT_2021_3139315
crossref_primary_10_1109_JIOT_2024_3442209
crossref_primary_10_1109_TSP_2024_3368771
crossref_primary_10_1109_OJCOMS_2021_3070340
crossref_primary_10_1109_TWC_2022_3210338
crossref_primary_10_1109_TWC_2023_3295804
crossref_primary_10_1109_TWC_2022_3192980
crossref_primary_10_1109_ACCESS_2019_2916344
crossref_primary_10_1109_TCOMM_2020_3014153
crossref_primary_10_1109_LWC_2022_3232782
crossref_primary_10_1109_TMC_2020_3037374
crossref_primary_10_3389_frcmn_2021_716618
crossref_primary_10_1109_JIOT_2023_3334473
Cites_doi 10.1109/TIT.2016.2586918
10.1109/TCOMM.2015.2394393
10.1109/TIT.1972.1054727
10.1109/LCOMM.2017.2724553
10.1109/TIT.2016.2619899
10.1109/LWC.2015.2426709
10.1109/TVT.2017.2691014
10.1109/T-WC.2008.070851
10.1109/TCOMM.2015.2453270
10.1109/TSP.2016.2603971
10.1109/JSAC.2017.2726008
10.1017/CBO9780511807213
10.1109/TIT.2017.2735422
10.1109/VTCSpring.2013.6692652
10.1109/JSAC.2017.2725879
10.1109/JSAC.2003.810346
10.1109/JSAC.2017.2726007
10.1109/MCOM.2013.6476877
10.1109/TIT.1981.1056307
10.1109/TIT.2008.2006447
10.1109/TWC.2017.2744629
10.1109/MCOM.2017.1500657CM
10.1109/TIT.2006.880064
10.1109/TVT.2016.2547998
10.1109/ACSSC.2016.7868988
10.1109/TWC.2017.2737009
10.1109/MCOM.2015.7263349
10.1109/TWC.2015.2475746
10.1109/PIMRC.2013.6666156
10.1109/TIT.2006.883550
10.1109/JCN.2017.000056
10.1109/MCOM.2010.5458368
10.1109/TCOMM.2016.2603991
10.1109/TIT.2012.2215953
10.1109/18.485709
10.1109/TCOMM.2016.2647699
10.1109/JSAC.2005.862421
10.1109/MCOM.2016.7470942
10.1109/TSP.2016.2591501
10.1109/MCOM.2017.1601065
10.1109/ISIT.2016.7541508
10.1109/LCOMM.2016.2615097
10.1109/TSP.2015.2480042
ContentType Journal Article
Copyright The Author(s) 2018
EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s13638-018-1104-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 54
ExternalDocumentID oai_doaj_org_article_6938f48ab5ef4fc3881043647ab56eb2
PMC6438650
30996723
10_1186_s13638_018_1104_7
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N015312/1.
– fundername: ;
  grantid: EP/N015312/1.
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EJD
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
2VQ
AHSBF
C1A
H13
IL9
IPNFZ
NPM
O9-
RIG
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-40b9889f1ea65bc8d8220aaf8adf841fd7d32a25c782b96f448fc31f28b6aa463
IEDL.DBID BENPR
ISSN 1687-1499
1687-1472
IngestDate Wed Aug 27 01:21:12 EDT 2025
Thu Aug 21 18:19:39 EDT 2025
Fri Jul 11 04:37:35 EDT 2025
Fri Jul 25 03:47:17 EDT 2025
Wed Feb 19 02:34:59 EST 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Jul 01 00:40:53 EDT 2025
Fri Feb 21 02:35:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NOMA
Weighted sum rate
RSMA
SDMA
Linear precoding
Rate splitting
Rate region
MISO BC
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-40b9889f1ea65bc8d8220aaf8adf841fd7d32a25c782b96f448fc31f28b6aa463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5077-2998
OpenAccessLink https://www.proquest.com/docview/2046566586?pq-origsite=%requestingapplication%
PMID 30996723
PQID 2046566586
PQPubID 237293
PageCount 54
ParticipantIDs doaj_primary_oai_doaj_org_article_6938f48ab5ef4fc3881043647ab56eb2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438650
proquest_miscellaneous_2211327357
proquest_journals_2046566586
pubmed_primary_30996723
crossref_citationtrail_10_1186_s13638_018_1104_7
crossref_primary_10_1186_s13638_018_1104_7
springer_journals_10_1186_s13638_018_1104_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-29
PublicationDateYYYYMMDD 2018-05-29
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-29
  day: 29
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationTitleAlternate EURASIP J Wirel Commun Netw
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References CoverTBroadcast channelsIEEE Trans. Inf. Theory197218121439213110.1109/TIT.1972.10547270228.94008
HanTKobayashiKA new achievable rate region for the interference channelIEEE Trans. Inf. Theory1981271496060593610.1109/TIT.1981.10563070452.94006
PiovanoEClerckxBOptimal DoF region of the K-user MISO BC with partial CSITIEEE Commun. Lett201721112368237110.1109/LCOMM.2017.2724553
DaiLWangBYuanYHanSIC-lWangZNon-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trendsIEEE Commun. Mag2015539748110.1109/MCOM.2015.7263349
DingZLiuYChoiJSunQElkashlanMIC-lPoorHVApplication of non-orthogonal multiple access in LTE and 5G networksIEEE Commun. Mag201755218519110.1109/MCOM.2017.1500657CM
AG Davoodi, SA Jafar, in 2016 IEEE International Symposium on Information Theory (ISIT). GDoF of the MISO BC: bridging the gap between finite precision CSIT and perfect CSIT (IEEE, 2016), pp. 1297–1301.
DavoodiAGJafarSAAligned image sets under channel uncertainty: settling conjectures on the collapse of degrees of freedom under finite precision CSITIEEE Trans. Inf. Theory2016621056035618355241510.1109/TIT.2016.25869181359.94031
ShinWVaeziMLeeBLoveDJLeeJPoorHVNon-orthogonal multiple access in multi-cell networks: theory, performance, and practical challengesIEEE Commun. Mag2017551017618310.1109/MCOM.2017.1601065
E Piovano, H Joudeh, B Clerckx, in 2016 50th Asilomar Conference on Signals, Systems and Computers. Overloaded multiuser MISO transmission with imperfect CSIT (IEEE, 2016), pp. 34–38.
3GPP TR 36.859, Study on downlink multiuser superposition transmission (MUST) for LTE (Release 13) (3rd Generation Partnership Project (3GPP), 2015). http://www.3gpp.org/dynareport/36859.htm.
JoudehHClerckxBRobust transmission in downlink multiuser MISO systems: a rate-splitting approachIEEE Trans. Signal Process2016642362276242356271810.1109/TSP.2016.2591501
ChristensenSSAgarwalRCarvalhoEDCioffiJMWeighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming designIEEE Trans. Wirel. Commun20087124792479910.1109/T-WC.2008.070851
RimoldiBUrbankeRA rate-splitting approach to the Gaussian multiple-access channelIEEE Trans. Inf. Theory199642236437510.1109/18.4857090856.94012
LimCYooTClerckxBLeeBShimBRecent trend of multiuser MIMO in LTE-advancedIEEE Commun. Mag201351312713510.1109/MCOM.2013.6476877
NguyenVDTuanHDDuongTQPoorHVShinOSPrecoder design for signal superposition in MIMO-NOMA multicell networksIEEE J. Sel. Areas Commun201735122681269510.1109/JSAC.2017.2726007
DaiMClerckxBGesbertDCaireGA rate splitting strategy for massive MIMO with imperfect CSITIEEE Trans. Wirel. Commun201615746114624
ChoiJOn generalized downlink beamforming with NOMAJ. Commun. Netw2017194319328
ZhangQLiQQinJRobust beamforming for nonorthogonal multiple-access systems in MISO channelsIEEE Trans. Veh. Technol20166512102311023610.1109/TVT.2016.2547998
ChenZDingZDaiXKaragiannidisGKOn the application of quasi-degradation to MISO-NOMA downlinkIEEE Trans. Signal Process2016642361746189356271410.1109/TSP.2016.2603971
SunQHanSIC-lPanZOn the ergodic capacity of MIMO NOMA systemsIEEE Wirel. Commun. Lett20154440540810.1109/LWC.2015.2426709
LiQLiGLeeWLeeM-iMazzareseDClerckxBLiZMIMO techniques in WiMAX and LTE: a feature overviewIEEE Commun. Mag2010485869210.1109/MCOM.2010.5458368
JoudehHClerckxBSum-rate maximization for linearly precoded downlink multiuser MISO systems with partial CSIT: a rate-splitting approachIEEE Trans. Commun201664114847486110.1109/TCOMM.2016.2603991
HaoCClerckxBMISO networks with imperfect CSIT: a topological rate-splitting approachIEEE Trans. Commun20176552164217910.1109/TCOMM.2016.2647699
TseDViswanathPFundamentals of wireless communication2005CambridgeCambridge University Press10.1017/CBO97805118072131099.94006
HanifMFDingZRatnarajahTKaragiannidisGKA minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systemsIEEE Trans. Signal Process20166417688343296310.1109/TSP.2015.2480042
YangSKobayashiMGesbertDYiXDegrees of freedom of time correlated MISO broadcast channel with delayed CSITIEEE Trans. Inf. Theory2013591315328300815010.1109/TIT.2012.22159531364.94482
EtkinRHTseDNCWangHGaussian interference channel capacity to within one bitIEEE Trans. Inf. Theory2008541255345562259052710.1109/TIT.2008.20064471247.94013
ViswanathanHVenkatesanSHuangHDownlink capacity evaluation of cellular networks with known-interference cancellationIEEE J. Sel. Areas Commun200321580281110.1109/JSAC.2003.810346
DingZAdachiFPoorHVThe application of MIMO to non-orthogonal multiple accessIEEE Trans. Wirel. Commun201615153755210.1109/TWC.2015.2475746
HaoCWuYClerckxBRate analysis of two-receiver MISO broadcast channel with finite rate feedback: a rate-splitting approachIEEE Trans. Commun20156393232324610.1109/TCOMM.2015.2453270
PapazafeiropoulosAClerckxBRatnarajahTRate-splitting to mitigate residual transceiver hardware impairments in massive MIMO systemsIEEE Trans. Veh. Technol20176698196821110.1109/TVT.2017.2691014
H Nikopour, H Baligh, in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Sparse code multiple access (IEEE, 2013), pp. 332–336.
ShinWVaeziMLeeBLoveDJLeeJPoorHVCoordinated beamforming for multi-cell MIMO-NOMAIEEE Commun. Lett2017211848710.1109/LCOMM.2016.2615097
WeingartenHSteinbergYShamaiSSThe capacity region of the Gaussian multiple-input multiple-output broadcast channelIEEE Trans. Inf. Theory200652939363964229852610.1109/TIT.2006.8800641320.94044
HaoCRassouliBClerckxBAchievable DoF regions of MIMO networks with imperfect CSITIEEE Trans. Inf. Theory201763106587660610.1109/TIT.2017.2735422
DavoodiAGJafarSATransmitter cooperation under finite precision CSIT: a GDoF perspectiveIEEE Trans. Inf. Theory201763960206030368807410.1109/TIT.2016.26198991374.94516
JoudehHClerckxBRate-splitting for max-min fair multigroup multicast beamforming in overloaded systemsIEEE Trans. Wirel. Commun201716117276728910.1109/TWC.2017.2744629
ZengMYadavADobreOATsiropoulosGIPoorHVCapacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a clusterIEEE J. Sel. Areas Commun201735102413242410.1109/JSAC.2017.2725879
Y Saito, Y Kishiyama, A Benjebbour, T Nakamura, A Li, K Higuchi, in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring). Non-orthogonal multiple access (NOMA) for cellular future radio access (IEEE, 2013), pp. 1–5.
YooTGoldsmithAOn the optimality of multiantenna broadcast scheduling using zero-forcing beamformingIEEE J. Sel. Areas Commun200624352854110.1109/JSAC.2005.862421
ClerckxBJoudehHHaoCDaiMRassouliBRate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolutionIEEE Commun. Mag20165459810510.1109/MCOM.2016.7470942
JindalNMIMO broadcast channels with finite-rate feedbackIEEE Trans. Inf. Theory2006521150455060230037110.1109/TIT.2006.8835501320.94051
ChoiJMinimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systemsIEEE Trans. Commun201563379180010.1109/TCOMM.2015.2394393
ClerckxBOestgesCMIMO wireless networks: channels, techniques and standards for multi-antenna, multi-user and multi-cell systems2013CambridgeAcademic Press
DaiMClerckxBMultiuser millimeter wave beamforming strategies with quantized and statistical CSITIEEE Trans. Wirel. Commun201716117025703810.1109/TWC.2017.2737009
ZhengBWangXWenMChenFNOMA-based multi-pair two-way relay networks with rate splitting and group decodingIEEE J. Sel. Areas Commun201735102328234110.1109/JSAC.2017.2726008
Q Zhang (1104_CR17) 2016; 65
H Joudeh (1104_CR28) 2016; 64
H Joudeh (1104_CR32) 2016; 64
Z Ding (1104_CR20) 2016; 15
VD Nguyen (1104_CR23) 2017; 35
Q Sun (1104_CR16) 2015; 4
AG Davoodi (1104_CR37) 2017; 63
C Hao (1104_CR38) 2015; 63
M Dai (1104_CR40) 2017; 16
AG Davoodi (1104_CR26) 2016; 62
SS Christensen (1104_CR42) 2008; 7
B Rimoldi (1104_CR46) 1996; 42
B Clerckx (1104_CR10) 2013
N Jindal (1104_CR13) 2006; 52
M Zeng (1104_CR24) 2017; 35
1104_CR2
MF Hanif (1104_CR14) 2016; 64
1104_CR3
S Yang (1104_CR27) 2013; 59
H Viswanathan (1104_CR44) 2003; 21
C Hao (1104_CR31) 2017; 63
1104_CR1
H Joudeh (1104_CR34) 2017; 16
Z Ding (1104_CR5) 2017; 55
T Yoo (1104_CR11) 2006; 24
T Han (1104_CR25) 1981; 27
D Tse (1104_CR8) 2005
C Lim (1104_CR18) 2013; 51
J Choi (1104_CR15) 2015; 63
L Dai (1104_CR4) 2015; 53
T Cover (1104_CR7) 1972; 18
E Piovano (1104_CR29) 2017; 21
H Weingarten (1104_CR9) 2006; 52
B Zheng (1104_CR43) 2017; 35
J Choi (1104_CR21) 2017; 19
A Papazafeiropoulos (1104_CR41) 2017; 66
B Clerckx (1104_CR12) 2016; 54
M Dai (1104_CR39) 2016; 15
Q Li (1104_CR45) 2010; 48
RH Etkin (1104_CR35) 2008; 54
1104_CR36
Z Chen (1104_CR19) 2016; 64
C Hao (1104_CR30) 2017; 65
W Shin (1104_CR22) 2017; 21
1104_CR33
W Shin (1104_CR6) 2017; 55
References_xml – reference: WeingartenHSteinbergYShamaiSSThe capacity region of the Gaussian multiple-input multiple-output broadcast channelIEEE Trans. Inf. Theory200652939363964229852610.1109/TIT.2006.8800641320.94044
– reference: LiQLiGLeeWLeeM-iMazzareseDClerckxBLiZMIMO techniques in WiMAX and LTE: a feature overviewIEEE Commun. Mag2010485869210.1109/MCOM.2010.5458368
– reference: PapazafeiropoulosAClerckxBRatnarajahTRate-splitting to mitigate residual transceiver hardware impairments in massive MIMO systemsIEEE Trans. Veh. Technol20176698196821110.1109/TVT.2017.2691014
– reference: ViswanathanHVenkatesanSHuangHDownlink capacity evaluation of cellular networks with known-interference cancellationIEEE J. Sel. Areas Commun200321580281110.1109/JSAC.2003.810346
– reference: HaoCClerckxBMISO networks with imperfect CSIT: a topological rate-splitting approachIEEE Trans. Commun20176552164217910.1109/TCOMM.2016.2647699
– reference: SunQHanSIC-lPanZOn the ergodic capacity of MIMO NOMA systemsIEEE Wirel. Commun. Lett20154440540810.1109/LWC.2015.2426709
– reference: HaoCRassouliBClerckxBAchievable DoF regions of MIMO networks with imperfect CSITIEEE Trans. Inf. Theory201763106587660610.1109/TIT.2017.2735422
– reference: DaiLWangBYuanYHanSIC-lWangZNon-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trendsIEEE Commun. Mag2015539748110.1109/MCOM.2015.7263349
– reference: HanTKobayashiKA new achievable rate region for the interference channelIEEE Trans. Inf. Theory1981271496060593610.1109/TIT.1981.10563070452.94006
– reference: JoudehHClerckxBRobust transmission in downlink multiuser MISO systems: a rate-splitting approachIEEE Trans. Signal Process2016642362276242356271810.1109/TSP.2016.2591501
– reference: 3GPP TR 36.859, Study on downlink multiuser superposition transmission (MUST) for LTE (Release 13) (3rd Generation Partnership Project (3GPP), 2015). http://www.3gpp.org/dynareport/36859.htm.
– reference: ClerckxBOestgesCMIMO wireless networks: channels, techniques and standards for multi-antenna, multi-user and multi-cell systems2013CambridgeAcademic Press
– reference: DaiMClerckxBMultiuser millimeter wave beamforming strategies with quantized and statistical CSITIEEE Trans. Wirel. Commun201716117025703810.1109/TWC.2017.2737009
– reference: ChoiJMinimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systemsIEEE Trans. Commun201563379180010.1109/TCOMM.2015.2394393
– reference: RimoldiBUrbankeRA rate-splitting approach to the Gaussian multiple-access channelIEEE Trans. Inf. Theory199642236437510.1109/18.4857090856.94012
– reference: ZengMYadavADobreOATsiropoulosGIPoorHVCapacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a clusterIEEE J. Sel. Areas Commun201735102413242410.1109/JSAC.2017.2725879
– reference: DaiMClerckxBGesbertDCaireGA rate splitting strategy for massive MIMO with imperfect CSITIEEE Trans. Wirel. Commun201615746114624
– reference: PiovanoEClerckxBOptimal DoF region of the K-user MISO BC with partial CSITIEEE Commun. Lett201721112368237110.1109/LCOMM.2017.2724553
– reference: DingZAdachiFPoorHVThe application of MIMO to non-orthogonal multiple accessIEEE Trans. Wirel. Commun201615153755210.1109/TWC.2015.2475746
– reference: ShinWVaeziMLeeBLoveDJLeeJPoorHVNon-orthogonal multiple access in multi-cell networks: theory, performance, and practical challengesIEEE Commun. Mag2017551017618310.1109/MCOM.2017.1601065
– reference: CoverTBroadcast channelsIEEE Trans. Inf. Theory197218121439213110.1109/TIT.1972.10547270228.94008
– reference: ClerckxBJoudehHHaoCDaiMRassouliBRate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolutionIEEE Commun. Mag20165459810510.1109/MCOM.2016.7470942
– reference: ZhangQLiQQinJRobust beamforming for nonorthogonal multiple-access systems in MISO channelsIEEE Trans. Veh. Technol20166512102311023610.1109/TVT.2016.2547998
– reference: ChenZDingZDaiXKaragiannidisGKOn the application of quasi-degradation to MISO-NOMA downlinkIEEE Trans. Signal Process2016642361746189356271410.1109/TSP.2016.2603971
– reference: ChristensenSSAgarwalRCarvalhoEDCioffiJMWeighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming designIEEE Trans. Wirel. Commun20087124792479910.1109/T-WC.2008.070851
– reference: JoudehHClerckxBSum-rate maximization for linearly precoded downlink multiuser MISO systems with partial CSIT: a rate-splitting approachIEEE Trans. Commun201664114847486110.1109/TCOMM.2016.2603991
– reference: Y Saito, Y Kishiyama, A Benjebbour, T Nakamura, A Li, K Higuchi, in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring). Non-orthogonal multiple access (NOMA) for cellular future radio access (IEEE, 2013), pp. 1–5.
– reference: E Piovano, H Joudeh, B Clerckx, in 2016 50th Asilomar Conference on Signals, Systems and Computers. Overloaded multiuser MISO transmission with imperfect CSIT (IEEE, 2016), pp. 34–38.
– reference: JindalNMIMO broadcast channels with finite-rate feedbackIEEE Trans. Inf. Theory2006521150455060230037110.1109/TIT.2006.8835501320.94051
– reference: ShinWVaeziMLeeBLoveDJLeeJPoorHVCoordinated beamforming for multi-cell MIMO-NOMAIEEE Commun. Lett2017211848710.1109/LCOMM.2016.2615097
– reference: EtkinRHTseDNCWangHGaussian interference channel capacity to within one bitIEEE Trans. Inf. Theory2008541255345562259052710.1109/TIT.2008.20064471247.94013
– reference: LimCYooTClerckxBLeeBShimBRecent trend of multiuser MIMO in LTE-advancedIEEE Commun. Mag201351312713510.1109/MCOM.2013.6476877
– reference: HanifMFDingZRatnarajahTKaragiannidisGKA minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systemsIEEE Trans. Signal Process20166417688343296310.1109/TSP.2015.2480042
– reference: TseDViswanathPFundamentals of wireless communication2005CambridgeCambridge University Press10.1017/CBO97805118072131099.94006
– reference: YooTGoldsmithAOn the optimality of multiantenna broadcast scheduling using zero-forcing beamformingIEEE J. Sel. Areas Commun200624352854110.1109/JSAC.2005.862421
– reference: HaoCWuYClerckxBRate analysis of two-receiver MISO broadcast channel with finite rate feedback: a rate-splitting approachIEEE Trans. Commun20156393232324610.1109/TCOMM.2015.2453270
– reference: JoudehHClerckxBRate-splitting for max-min fair multigroup multicast beamforming in overloaded systemsIEEE Trans. Wirel. Commun201716117276728910.1109/TWC.2017.2744629
– reference: NguyenVDTuanHDDuongTQPoorHVShinOSPrecoder design for signal superposition in MIMO-NOMA multicell networksIEEE J. Sel. Areas Commun201735122681269510.1109/JSAC.2017.2726007
– reference: ZhengBWangXWenMChenFNOMA-based multi-pair two-way relay networks with rate splitting and group decodingIEEE J. Sel. Areas Commun201735102328234110.1109/JSAC.2017.2726008
– reference: AG Davoodi, SA Jafar, in 2016 IEEE International Symposium on Information Theory (ISIT). GDoF of the MISO BC: bridging the gap between finite precision CSIT and perfect CSIT (IEEE, 2016), pp. 1297–1301.
– reference: DavoodiAGJafarSATransmitter cooperation under finite precision CSIT: a GDoF perspectiveIEEE Trans. Inf. Theory201763960206030368807410.1109/TIT.2016.26198991374.94516
– reference: YangSKobayashiMGesbertDYiXDegrees of freedom of time correlated MISO broadcast channel with delayed CSITIEEE Trans. Inf. Theory2013591315328300815010.1109/TIT.2012.22159531364.94482
– reference: DingZLiuYChoiJSunQElkashlanMIC-lPoorHVApplication of non-orthogonal multiple access in LTE and 5G networksIEEE Commun. Mag201755218519110.1109/MCOM.2017.1500657CM
– reference: ChoiJOn generalized downlink beamforming with NOMAJ. Commun. Netw2017194319328
– reference: H Nikopour, H Baligh, in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Sparse code multiple access (IEEE, 2013), pp. 332–336.
– reference: DavoodiAGJafarSAAligned image sets under channel uncertainty: settling conjectures on the collapse of degrees of freedom under finite precision CSITIEEE Trans. Inf. Theory2016621056035618355241510.1109/TIT.2016.25869181359.94031
– volume: 62
  start-page: 5603
  issue: 10
  year: 2016
  ident: 1104_CR26
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2586918
– volume: 63
  start-page: 791
  issue: 3
  year: 2015
  ident: 1104_CR15
  publication-title: IEEE Trans. Commun
  doi: 10.1109/TCOMM.2015.2394393
– volume: 18
  start-page: 2
  issue: 1
  year: 1972
  ident: 1104_CR7
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1972.1054727
– volume: 21
  start-page: 2368
  issue: 11
  year: 2017
  ident: 1104_CR29
  publication-title: IEEE Commun. Lett
  doi: 10.1109/LCOMM.2017.2724553
– volume: 63
  start-page: 6020
  issue: 9
  year: 2017
  ident: 1104_CR37
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2619899
– volume: 4
  start-page: 405
  issue: 4
  year: 2015
  ident: 1104_CR16
  publication-title: IEEE Wirel. Commun. Lett
  doi: 10.1109/LWC.2015.2426709
– volume: 15
  start-page: 4611
  issue: 7
  year: 2016
  ident: 1104_CR39
  publication-title: IEEE Trans. Wirel. Commun
– volume: 66
  start-page: 8196
  issue: 9
  year: 2017
  ident: 1104_CR41
  publication-title: IEEE Trans. Veh. Technol
  doi: 10.1109/TVT.2017.2691014
– volume: 7
  start-page: 4792
  issue: 12
  year: 2008
  ident: 1104_CR42
  publication-title: IEEE Trans. Wirel. Commun
  doi: 10.1109/T-WC.2008.070851
– volume: 63
  start-page: 3232
  issue: 9
  year: 2015
  ident: 1104_CR38
  publication-title: IEEE Trans. Commun
  doi: 10.1109/TCOMM.2015.2453270
– volume: 64
  start-page: 6174
  issue: 23
  year: 2016
  ident: 1104_CR19
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2016.2603971
– volume: 35
  start-page: 2328
  issue: 10
  year: 2017
  ident: 1104_CR43
  publication-title: IEEE J. Sel. Areas Commun
  doi: 10.1109/JSAC.2017.2726008
– volume-title: Fundamentals of wireless communication
  year: 2005
  ident: 1104_CR8
  doi: 10.1017/CBO9780511807213
– volume: 63
  start-page: 6587
  issue: 10
  year: 2017
  ident: 1104_CR31
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2735422
– ident: 1104_CR1
  doi: 10.1109/VTCSpring.2013.6692652
– volume: 35
  start-page: 2413
  issue: 10
  year: 2017
  ident: 1104_CR24
  publication-title: IEEE J. Sel. Areas Commun
  doi: 10.1109/JSAC.2017.2725879
– volume: 21
  start-page: 802
  issue: 5
  year: 2003
  ident: 1104_CR44
  publication-title: IEEE J. Sel. Areas Commun
  doi: 10.1109/JSAC.2003.810346
– volume: 35
  start-page: 2681
  issue: 12
  year: 2017
  ident: 1104_CR23
  publication-title: IEEE J. Sel. Areas Commun
  doi: 10.1109/JSAC.2017.2726007
– volume: 51
  start-page: 127
  issue: 3
  year: 2013
  ident: 1104_CR18
  publication-title: IEEE Commun. Mag
  doi: 10.1109/MCOM.2013.6476877
– volume: 27
  start-page: 49
  issue: 1
  year: 1981
  ident: 1104_CR25
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1981.1056307
– volume: 54
  start-page: 5534
  issue: 12
  year: 2008
  ident: 1104_CR35
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.2006447
– volume: 16
  start-page: 7276
  issue: 11
  year: 2017
  ident: 1104_CR34
  publication-title: IEEE Trans. Wirel. Commun
  doi: 10.1109/TWC.2017.2744629
– volume: 55
  start-page: 185
  issue: 2
  year: 2017
  ident: 1104_CR5
  publication-title: IEEE Commun. Mag
  doi: 10.1109/MCOM.2017.1500657CM
– volume: 52
  start-page: 3936
  issue: 9
  year: 2006
  ident: 1104_CR9
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.880064
– volume: 65
  start-page: 10231
  issue: 12
  year: 2016
  ident: 1104_CR17
  publication-title: IEEE Trans. Veh. Technol
  doi: 10.1109/TVT.2016.2547998
– ident: 1104_CR33
  doi: 10.1109/ACSSC.2016.7868988
– volume: 16
  start-page: 7025
  issue: 11
  year: 2017
  ident: 1104_CR40
  publication-title: IEEE Trans. Wirel. Commun
  doi: 10.1109/TWC.2017.2737009
– volume-title: MIMO wireless networks: channels, techniques and standards for multi-antenna, multi-user and multi-cell systems
  year: 2013
  ident: 1104_CR10
– volume: 53
  start-page: 74
  issue: 9
  year: 2015
  ident: 1104_CR4
  publication-title: IEEE Commun. Mag
  doi: 10.1109/MCOM.2015.7263349
– volume: 15
  start-page: 537
  issue: 1
  year: 2016
  ident: 1104_CR20
  publication-title: IEEE Trans. Wirel. Commun
  doi: 10.1109/TWC.2015.2475746
– ident: 1104_CR3
  doi: 10.1109/PIMRC.2013.6666156
– volume: 52
  start-page: 5045
  issue: 11
  year: 2006
  ident: 1104_CR13
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.883550
– volume: 19
  start-page: 319
  issue: 4
  year: 2017
  ident: 1104_CR21
  publication-title: J. Commun. Netw
  doi: 10.1109/JCN.2017.000056
– volume: 48
  start-page: 86
  issue: 5
  year: 2010
  ident: 1104_CR45
  publication-title: IEEE Commun. Mag
  doi: 10.1109/MCOM.2010.5458368
– volume: 64
  start-page: 4847
  issue: 11
  year: 2016
  ident: 1104_CR28
  publication-title: IEEE Trans. Commun
  doi: 10.1109/TCOMM.2016.2603991
– volume: 59
  start-page: 315
  issue: 1
  year: 2013
  ident: 1104_CR27
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2012.2215953
– volume: 42
  start-page: 364
  issue: 2
  year: 1996
  ident: 1104_CR46
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.485709
– volume: 65
  start-page: 2164
  issue: 5
  year: 2017
  ident: 1104_CR30
  publication-title: IEEE Trans. Commun
  doi: 10.1109/TCOMM.2016.2647699
– ident: 1104_CR2
– volume: 24
  start-page: 528
  issue: 3
  year: 2006
  ident: 1104_CR11
  publication-title: IEEE J. Sel. Areas Commun
  doi: 10.1109/JSAC.2005.862421
– volume: 54
  start-page: 98
  issue: 5
  year: 2016
  ident: 1104_CR12
  publication-title: IEEE Commun. Mag
  doi: 10.1109/MCOM.2016.7470942
– volume: 64
  start-page: 6227
  issue: 23
  year: 2016
  ident: 1104_CR32
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2016.2591501
– volume: 55
  start-page: 176
  issue: 10
  year: 2017
  ident: 1104_CR6
  publication-title: IEEE Commun. Mag
  doi: 10.1109/MCOM.2017.1601065
– ident: 1104_CR36
  doi: 10.1109/ISIT.2016.7541508
– volume: 21
  start-page: 84
  issue: 1
  year: 2017
  ident: 1104_CR22
  publication-title: IEEE Commun. Lett
  doi: 10.1109/LCOMM.2016.2615097
– volume: 64
  start-page: 76
  issue: 1
  year: 2016
  ident: 1104_CR14
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2015.2480042
SSID ssj0033492
Score 2.6265314
Snippet Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user...
Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on treating any residual multi-user...
Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user...
Abstract Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms Communications Engineering
Complexity
Decoding
Division
Engineering
Information Systems Applications (incl.Internet)
Interference
Linear precoding
MISO BC
Networks
Noise
NOMA
Non-Orthogonal Multiple Access Techniques in Emerging Wireless Systems
Nonorthogonal multiple access
Quality of service
Quality of service architectures
Rate region
RSMA
SDMA
Signal,Image and Speech Processing
Splitting
Superposition (mathematics)
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KTs2hNOnLTVJU6KmtiGXZspTb9hFCYFNoG8hN6GG1geIN3d1Lfn1Gkr3Z7fOSo_Uwg2YkfR-SvgF4xTvfsaA85ZYLijsEo1KVlnoeFBfOm5BEXKdn4uS8Pr1oLtZSfcU7YVkeOA_coVBchloa23ShDo5LyaJqet1iiUBaGFdf3PNGMpXXYB4194YzTCbF4ZxxjDOkzciYsDttN3ahJNb_J4T5-0XJX05L0yZ0_BAeDOiRTLLVO3Cv63dhe01T8BFcf0b0SOeILdONZjLeGCQmpUYkCFKJjwr5SEKJW38eQrKq8_yIpFdc2Pkt-ZZVqS-v05fpPZktF1f5sUH8-5cP00kqPvs0nTyG8-OPX9-f0CHBAnUNFwvkjlZJqQLrjGiskx7RQmlMkMYHWbPgW88rUzUOYYRVIiCVQw-wUEkrjKkFfwJb_azvngGxnrUOGyE88rVyChfZWkkmrIh5JKwtoBwHXLtBfTwmwfihEwuRQmcfafSRjj7SbQGvV12usvTGvxq_i15cNYyq2akAY0kPsaT_F0sF7I8xoIepPNdVGSXlEKiJAl6uqnESxpMV03ezJbZBGs0RCDZox9McMitLOGJw0Va8gHYjmDZM3azpL78noW9EixIRdAFvxrC7NeuvI_H8LkZiD-5XcbaUDa3UPmwtfi67A0RfC_siTbQbFuwsCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucABUZ6BtjISJ8AijhPH5rY8qgppiwRU6s3ys62EslWze-mvZ-wkSxcKUo9xxpGdmbG_0Xg-A7ziwQcWlafcckFxh2BUqtJSz6PiwnkTM4nr_FAcHNVfjpvjsY67n067TynJvFJnt5biXc842gqGvhj1YAxB29twp0mhe8rQphKHYfnliW5vTF9e221jA8o8_deBy7_PSP6RKM37z_4DuD8CRzIbNL0Nt0L3EO5doRN8BJffEDjSHmFlPsxMpsOCxORbEQniU-ITOT7OnrirlSFkIHTu35NcwIWd35KTgZD67DI_mc6TxWp5PtQZpK9__zSf5ebDr_PZYzja__zj4wEd71agruFiiWGjVVKqyIIRjXXSI1AojYnS-ChrFn3reWWqxiGCsEpEjOKi4yxW0gpjasGfwFa36MIzINaz1qEQIiNfK6dwfa2VZMKKdIWEtQWU0w_XbiQeT_df_NQ5AJFCDzrSqCOddKTbAl6vu5wPrBv_E_6QtLgWTITZuWFxcaJH_9NCcRlraWwTYo0zkZIl8v26xRYRbFXAzmQDevTiXldlYpNDjCYKeLl-jf6XkiqmC4sVymAEzREDNjiOp4PJrEfCEX6LtuIFtBvGtDHUzTfd2Wnm-EagKBE8F_BmMrvfw_rnn3h-I-kXcLdKblE2tFI7sLW8WIVdRFhLu5c96hc1XSAM
  priority: 102
  providerName: Springer Nature
Title Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA
URI https://link.springer.com/article/10.1186/s13638-018-1104-7
https://www.ncbi.nlm.nih.gov/pubmed/30996723
https://www.proquest.com/docview/2046566586
https://www.proquest.com/docview/2211327357
https://pubmed.ncbi.nlm.nih.gov/PMC6438650
https://doaj.org/article/6938f48ab5ef4fc3881043647ab56eb2
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLbo9AIHxE5KqYzECYiIlzg2FzQdOlRIM6DCSL1FXuJSCSXTZubSX8-zk0w7LL1YiuNETvye_X1evofQa1a5injlUmaYSGGEIKlUmUkd84oJ67SPIq6zuThe8C-n-Wk_4db22yqHPjF21K6xYY4cSHpQ9oLxUnxcXqQhalRYXe1DaOygXeiCpRyh3cOj-beToS9mQXsvUC4BrkR4Qft1TSLF-5YwsD2g0sCigJOkxdbIFAX8_4U6_948-ccKahyYpg_Q_R5R4nFnAg_Rnap-hO7d0Bl8jK5OAFGmLeDNuMsZD7sIsY7hEjEAV-yCaj4QU2xvHhnBndJz-wHHk13w8Dt81ilVn1_FK1073KxXy-4AQnj790-zccyef52Nn6DF9OjH5Djtgy6kNmdiBXzSKCmVJ5UWubHSAYLItPZSOy858a5wjGqaW4AWRgkP9M5bRjyVRmjNBXuKRnVTV88RNo4UFgoBZHJcWQUdL1eSCCNCbAljEpQNP7y0vSJ5CIzxq4zMRIqya6MS2qgMbVQWCXqzeWTZyXHcVvgwtOKmYFDSjhnN5VnZO2YpFJOeS23yynP4EilJUOXnBeSIytAE7Q82UPbu3ZbXxpigV5vb4JhhtUXXVbOGMkCtGYDDHOrxrDOZTU0Y4HJRUJagYsuYtqq6fac-_xnFvwFBSkDVCXo7mN11tf77J_Zu_4gX6C4NfpDlKVX7aLS6XFcvAWutzAHa4dlnSOUU0s654GpCeUjF5CDOYUC6oOPfubEsPw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL0a4wH2gPheYICR4AWIVseJYyMhVBilY2uRYJP2Zuw4HpNQWpZWiP0ofiPXTtKtfOxtj3WcyMm9vvec2j4X4AkrbUmdtDEzjMeYIWgsZM_EljnJeGG1CyKuozEf7qcfDrKDFfjVnYXx2yq7mBgCtZ0U_j9yJOle2QvzJX89_R77qlF-dbUrodG4xU758wdStvrV9hba92mSDN7tvR3GbVWBuMgYnyFhMlII6WipeWYKYTFF9rR2QlsnUupsblmik6zA3Gkkd8hfXMGoS4ThWqec4XMvweWUYSb3J9MH77vIz7zSnyd4HCcuTfOkXUWlgm_WlKGnI3FHzoYMKM6X8mAoF_AvjPv3Vs0_1mtDGhxch2stfiX9xuFuwEpZ3YS1M6qGt-DkE-LXuEZ0G_ZUk27PItGhOCNBmEys1-hHGkyKswdUSKMrXb8k4RwZ3vyCHDa62Ecn4ZeuLJnMZ9PmuIN_-uetUT80jz-O-rdh_0KMcQdWq0lVrgMxluYFdkKAZlNZSAzzqRSUG-4rWRgTQa_74Kpo9c99GY5vKvAgwVVjI4U2Ut5GKo_g2eKWaSP-cV7nN96Ki45etzs0TI4PVRsGFJdMuFRok5UuxTcRgvoaAGmOLbw0SQQbnQ-oNpjU6tT1I3i8uIxhwK_t6KqczLEPEnmGUDTDcdxtXGYxEoYsgOcJiyBfcqaloS5fqY6-BqlxxKsCMXwEzzu3Ox3Wf7_EvfNf4hFcGe6NdtXu9njnPlxN_JzoZXEiN2B1djwvHyDKm5mHYWoR-HLRc_k3pXxjLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMBI8AJE1HHi2EgIdXTVxmiZBpP2Zuw43iZNaVlbIfbT-HUcO0m3ctnbHuM4kZ1z_WL7OwDPWWlL6qSNmWE8xghBYyG7JrbMScYLq10gcR2O-OZe-nE_21-BX-1ZGL-tsvWJwVHbceH_kSNI98xeGC_5G9dsi9jpD95Pvse-gpRfaW3LadQqsl3-_IHwbfpuq4-yfpEkg42vHzbjpsJAXGSMzxA8GSmEdLTUPDOFsBguu1o7oa0TKXU2tyzRSVZgHDWSO8QyrmDUJcJwrVPO8L1XYDX3qKgDq-sbo53dNg4wz_vn4R5HM6ZpnjRrqhRnMKUM9R5hPCI4xENxvhQVQ_GAf2W8f2_c_GP1NgTFwU240WSzpFer3y1YKavbcP0cx-EdON3FbDaeYq4bdliTdgcj0aFUI8GkmVjP2I-gmBTnj6uQmmV6-paEU2X48GtyULNkH52GK11ZMp7PJvXhB__2L_1hLzSPPg97d2HvUsRxDzrVuCofADGW5gV2wnTNprKQ6PRTKSg33Ne1MCaCbvvBVdGwofuiHMcqoCLBVS0jhTJSXkYqj-Dl4pFJTQVyUed1L8VFR8_iHRrGJweqcQqKSyZcKrTJSpfiTISgviJAmmMLL00SwVqrA6pxLVN1ZggRPFvcRqfgV3p0VY7n2AdhPcPENMNx3K9VZjEShpiA5wmLIF9SpqWhLt-pjg4D8ThmrwIz-ghetWp3Nqz_fomHF0_iKVxFO1aftkbbj-Ba4k2im8WJXIPO7GRePsaUb2aeNLZF4Ntlm_NvOsBowA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rate-splitting+multiple+access+for+downlink+communication+systems%3A+bridging%2C+generalizing%2C+and+outperforming+SDMA+and+NOMA&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Mao%2C+Yijie&rft.au=Clerckx%2C+Bruno&rft.au=Li%2C+Victor+O+K&rft.date=2018-05-29&rft.issn=1687-1472&rft.volume=2018&rft.issue=1&rft.spage=133&rft_id=info:doi/10.1186%2Fs13638-018-1104-7&rft_id=info%3Apmid%2F30996723&rft.externalDocID=30996723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon