Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA
Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellat...
Saved in:
Published in | EURASIP journal on wireless communications and networking Vol. 2018; no. 1; pp. 133 - 54 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
29.05.2018
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on
fully
treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users.
In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA).
Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to
partially
decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction.
The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers). |
---|---|
AbstractList | Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on
fully
treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users.
In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA).
Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to
partially
decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction.
The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers). Abstract Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers). Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers). Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users. In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA). Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction. The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers). Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users.In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA).Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction.The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers). |
ArticleNumber | 133 |
Author | Li, Victor O.K. Mao, Yijie Clerckx, Bruno |
Author_xml | – sequence: 1 givenname: Yijie orcidid: 0000-0001-5077-2998 surname: Mao fullname: Mao, Yijie email: maoyijie@hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong – sequence: 2 givenname: Bruno surname: Clerckx fullname: Clerckx, Bruno organization: Department of Electrical and Electronic Engineering, Imperial College London – sequence: 3 givenname: Victor O.K. surname: Li fullname: Li, Victor O.K. organization: Department of Electrical and Electronic Engineering, The University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30996723$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kklv1TAUhSNURAf4AWxQJDYsCHiK47BAeipTpZZKDGvLcezgh2MH2wG1vx7npYW2EqxsX5_z6Vz7HhZ7zjtVFI8heAEhoy8jxBSzCkBWQQhI1dwrDiBlTQVJ2-7d2O8XhzFuAcCYtOhBsY9B29IG4YPi8pNIqoqTNSkZN5TjbJOZrCqFlCrGUvtQ9v6Xs8Z9L6Ufx9kZKZLxrowXMakxviq7YPohm5-Xg3IqCGsudyfh-tLPaVIhU8aF_vnN2WZX_nh-tnlY3NfCRvXoaj0qvr57--X4Q3V6_v7keHNayRrTVBHQtYy1GipB606yniEEhNBM9JoRqPumx0igWjYMdS3VhDAtMdSIdVQIQvFRcbJyey-2fApmFOGCe2H4ruDDwEVIRlrFaYuZJkx0tdIkUxjLz4opaXKFqg5l1uuVNc3dqHqpXMr93oLevnHmGx_8T04JZrQGGfDsChD8j1nFxEcTpbJWOOXnyBGCEKMG102WPr0j3fo5uPxUHAFCa0prtnT35GaiP1GuvzgLmlUgg48xKM2lSbsfzAGN5RDwZZj4Okw8DxNfhokvAeAd5zX8fx60emLWukGFv6H_bfoNU-TdRw |
CitedBy_id | crossref_primary_10_1109_TVT_2024_3492284 crossref_primary_10_1109_LNET_2024_3430313 crossref_primary_10_1109_TCOMM_2022_3194144 crossref_primary_10_1007_s11277_021_09100_z crossref_primary_10_1109_JPHOT_2022_3169233 crossref_primary_10_1109_IOTM_001_2300234 crossref_primary_10_1109_OJVT_2020_3044569 crossref_primary_10_1109_TCOMM_2022_3188020 crossref_primary_10_1109_LWC_2022_3196408 crossref_primary_10_1109_JIOT_2022_3152382 crossref_primary_10_1016_j_adhoc_2025_103802 crossref_primary_10_1109_COMST_2023_3294873 crossref_primary_10_1109_JSAC_2023_3242718 crossref_primary_10_1007_s11276_019_02126_z crossref_primary_10_1109_TWC_2024_3396437 crossref_primary_10_1109_TCOMM_2022_3179780 crossref_primary_10_1109_JSAC_2023_3240779 crossref_primary_10_1109_OJCOMS_2023_3336772 crossref_primary_10_1109_TIT_2021_3076888 crossref_primary_10_3390_app11209409 crossref_primary_10_1109_TWC_2024_3427708 crossref_primary_10_1109_TWC_2024_3432731 crossref_primary_10_1109_TVT_2022_3191085 crossref_primary_10_1109_TCOMM_2023_3277033 crossref_primary_10_1109_TVT_2021_3090083 crossref_primary_10_1109_TCOMM_2021_3067642 crossref_primary_10_1109_TIT_2021_3097209 crossref_primary_10_1109_TWC_2023_3327127 crossref_primary_10_1109_JSAC_2023_3240783 crossref_primary_10_1109_TWC_2023_3277334 crossref_primary_10_1109_JSAC_2023_3240786 crossref_primary_10_1109_LWC_2024_3421620 crossref_primary_10_1109_JIOT_2023_3279196 crossref_primary_10_1109_TCOMM_2019_2943168 crossref_primary_10_1109_TCOMM_2022_3190349 crossref_primary_10_1109_JIOT_2024_3420099 crossref_primary_10_1109_LCOMM_2019_2913424 crossref_primary_10_1109_JSAC_2023_3240787 crossref_primary_10_1109_JPHOT_2024_3388472 crossref_primary_10_1109_JSAC_2023_3240788 crossref_primary_10_1109_OJCOMS_2021_3092815 crossref_primary_10_1109_TVT_2024_3453253 crossref_primary_10_1109_LWC_2019_2927206 crossref_primary_10_1109_JSYST_2020_3032725 crossref_primary_10_1109_TVT_2024_3423002 crossref_primary_10_31857_S0033849424010016 crossref_primary_10_1109_TVT_2023_3253021 crossref_primary_10_1109_TWC_2024_3379433 crossref_primary_10_1109_TCOMM_2023_3321731 crossref_primary_10_1109_ACCESS_2020_3025635 crossref_primary_10_1109_TGCN_2024_3433507 crossref_primary_10_1109_TGCN_2024_3406803 crossref_primary_10_3390_jmse12091526 crossref_primary_10_1109_TWC_2024_3429229 crossref_primary_10_1109_TGCN_2024_3432656 crossref_primary_10_1109_LCOMM_2018_2883724 crossref_primary_10_1109_ACCESS_2019_2921626 crossref_primary_10_1109_TCOMM_2019_2942308 crossref_primary_10_1109_LWC_2023_3245631 crossref_primary_10_1109_JSAC_2022_3196320 crossref_primary_10_1109_JIOT_2024_3370161 crossref_primary_10_1109_LWC_2024_3430555 crossref_primary_10_1109_OJCOMS_2024_3459911 crossref_primary_10_1109_TWC_2022_3205508 crossref_primary_10_1109_TMC_2024_3483193 crossref_primary_10_1109_TWC_2023_3254538 crossref_primary_10_1109_LCOMM_2023_3329149 crossref_primary_10_1109_LWC_2023_3273225 crossref_primary_10_1109_LWC_2022_3208011 crossref_primary_10_1109_TWC_2022_3195532 crossref_primary_10_1109_TWC_2021_3133433 crossref_primary_10_1109_ACCESS_2019_2908893 crossref_primary_10_1109_TWC_2020_3002891 crossref_primary_10_1109_TBC_2024_3434731 crossref_primary_10_1109_LCOMM_2024_3457617 crossref_primary_10_1109_TCOMM_2024_3366391 crossref_primary_10_1109_JIOT_2023_3315372 crossref_primary_10_1109_TWC_2023_3273720 crossref_primary_10_1002_ett_3694 crossref_primary_10_1016_j_dcan_2023_09_002 crossref_primary_10_1109_LCOMM_2023_3328782 crossref_primary_10_1109_TCOMM_2020_2968896 crossref_primary_10_1109_TCOMM_2020_3023736 crossref_primary_10_1109_TVT_2023_3318646 crossref_primary_10_1109_TMLCN_2024_3513267 crossref_primary_10_1109_TVT_2019_2957994 crossref_primary_10_1109_TWC_2022_3218897 crossref_primary_10_1109_TVT_2024_3398057 crossref_primary_10_3390_math13010013 crossref_primary_10_1109_TCCN_2024_3350596 crossref_primary_10_1109_TCOMM_2024_3397799 crossref_primary_10_1109_TCCN_2024_3438359 crossref_primary_10_1109_JSTSP_2021_3110312 crossref_primary_10_1109_TWC_2022_3233483 crossref_primary_10_1109_LCOMM_2022_3195199 crossref_primary_10_1109_LWC_2022_3165711 crossref_primary_10_1109_OJCOMS_2021_3084799 crossref_primary_10_1109_TWC_2023_3263488 crossref_primary_10_1109_TCOMM_2022_3144487 crossref_primary_10_1109_TWC_2024_3431684 crossref_primary_10_1016_j_phycom_2024_102571 crossref_primary_10_1109_TCOMM_2021_3065145 crossref_primary_10_1109_LWC_2019_2954518 crossref_primary_10_1109_OJCOMS_2023_3240163 crossref_primary_10_1109_LWC_2023_3290372 crossref_primary_10_1109_LCOMM_2022_3192012 crossref_primary_10_1109_OJCOMS_2024_3392359 crossref_primary_10_1109_TWC_2021_3129881 crossref_primary_10_1109_JSAC_2020_3020679 crossref_primary_10_1109_OJCOMS_2023_3264465 crossref_primary_10_1109_OJCOMS_2022_3183950 crossref_primary_10_1109_TVT_2023_3259963 crossref_primary_10_1109_TSP_2022_3214376 crossref_primary_10_1109_TWC_2019_2905609 crossref_primary_10_1109_TWC_2024_3367891 crossref_primary_10_1109_TCOMM_2021_3138437 crossref_primary_10_1109_LCOMM_2022_3224499 crossref_primary_10_1109_JIOT_2024_3390212 crossref_primary_10_1109_TWC_2020_2978843 crossref_primary_10_1109_ACCESS_2020_3025156 crossref_primary_10_1109_LCOMM_2020_2969158 crossref_primary_10_1109_TBC_2022_3190990 crossref_primary_10_1109_TVT_2019_2947052 crossref_primary_10_1109_ACCESS_2024_3483688 crossref_primary_10_1109_JPROC_2024_3409428 crossref_primary_10_1109_TCOMM_2021_3074519 crossref_primary_10_1016_j_phycom_2025_102610 crossref_primary_10_1007_s11432_024_4224_6 crossref_primary_10_1109_TAES_2023_3276343 crossref_primary_10_1109_TVT_2022_3180747 crossref_primary_10_1109_TWC_2024_3410315 crossref_primary_10_1109_LCOMM_2022_3191737 crossref_primary_10_1109_OJVT_2020_3031656 crossref_primary_10_3390_electronics13050872 crossref_primary_10_1109_LCOMM_2024_3359064 crossref_primary_10_1109_ACCESS_2021_3095142 crossref_primary_10_1109_JIOT_2024_3418079 crossref_primary_10_1109_LCOMM_2022_3173894 crossref_primary_10_1109_ACCESS_2022_3182552 crossref_primary_10_1109_JSAC_2020_3000824 crossref_primary_10_1109_TCOMM_2021_3124945 crossref_primary_10_1109_JIOT_2023_3279093 crossref_primary_10_1109_TWC_2024_3395670 crossref_primary_10_1109_LWC_2023_3298793 crossref_primary_10_1109_TWC_2023_3298667 crossref_primary_10_1109_JSYST_2019_2923991 crossref_primary_10_1109_LCOMM_2023_3310937 crossref_primary_10_1016_j_egyr_2022_03_148 crossref_primary_10_1109_TVT_2022_3222633 crossref_primary_10_1109_TCOMM_2024_3383102 crossref_primary_10_1109_OJCOMS_2022_3175426 crossref_primary_10_1109_TMC_2024_3396389 crossref_primary_10_3390_s24175480 crossref_primary_10_1109_TCOMM_2023_3285290 crossref_primary_10_1109_TVT_2023_3330962 crossref_primary_10_1109_TWC_2023_3238808 crossref_primary_10_3390_sym14102103 crossref_primary_10_1109_LWC_2022_3221526 crossref_primary_10_1109_LCOMM_2022_3192041 crossref_primary_10_1109_TCOMM_2021_3091133 crossref_primary_10_1109_TVT_2023_3262943 crossref_primary_10_1109_TWC_2024_3404095 crossref_primary_10_1109_TWC_2023_3330373 crossref_primary_10_3390_drones7070429 crossref_primary_10_1109_TGCN_2022_3196048 crossref_primary_10_1109_OJCOMS_2023_3236786 crossref_primary_10_1016_j_phycom_2023_102192 crossref_primary_10_1109_LWC_2023_3329036 crossref_primary_10_1109_LWC_2021_3118441 crossref_primary_10_1109_TCOMM_2023_3270907 crossref_primary_10_1109_LCOMM_2023_3309818 crossref_primary_10_1109_OJVT_2020_3032844 crossref_primary_10_1109_TVT_2021_3102212 crossref_primary_10_1109_TWC_2022_3173463 crossref_primary_10_1109_TCOMM_2023_3235349 crossref_primary_10_1109_TWC_2024_3427675 crossref_primary_10_1109_TGCN_2022_3219111 crossref_primary_10_1109_OJVT_2023_3238034 crossref_primary_10_1109_JSAC_2023_3240704 crossref_primary_10_1109_TVT_2022_3229822 crossref_primary_10_1109_LCOMM_2024_3512621 crossref_primary_10_1109_JPROC_2024_3472501 crossref_primary_10_1109_LCOMM_2022_3226817 crossref_primary_10_1109_TWC_2022_3220785 crossref_primary_10_1109_TWC_2023_3262361 crossref_primary_10_1016_j_phycom_2025_102629 crossref_primary_10_1109_JSAC_2023_3240707 crossref_primary_10_1109_TCOMM_2021_3100610 crossref_primary_10_1109_TVT_2024_3354329 crossref_primary_10_1109_TGCN_2021_3079369 crossref_primary_10_1109_JSAC_2023_3240709 crossref_primary_10_1016_j_phycom_2025_102665 crossref_primary_10_1109_TCOMM_2023_3331021 crossref_primary_10_32604_cmes_2023_024078 crossref_primary_10_1109_TBC_2024_3475743 crossref_primary_10_1109_JSAC_2024_3460073 crossref_primary_10_1109_TCOMM_2022_3224388 crossref_primary_10_1109_TVT_2020_3037657 crossref_primary_10_1109_TVT_2021_3120093 crossref_primary_10_1109_TVT_2022_3192917 crossref_primary_10_1109_TWC_2024_3392929 crossref_primary_10_1109_TCOMM_2021_3098695 crossref_primary_10_1109_TVT_2024_3502792 crossref_primary_10_1109_OJCOMS_2025_3525954 crossref_primary_10_1109_LWC_2024_3517151 crossref_primary_10_1109_TCOMM_2023_3242670 crossref_primary_10_1109_LWC_2024_3448297 crossref_primary_10_1109_TBC_2021_3071061 crossref_primary_10_1109_TWC_2024_3489219 crossref_primary_10_1109_TVT_2023_3291869 crossref_primary_10_1109_TBC_2023_3275363 crossref_primary_10_1109_COMST_2022_3191937 crossref_primary_10_1186_s13673_020_00258_2 crossref_primary_10_1109_TNSE_2024_3357104 crossref_primary_10_1109_JIOT_2024_3452317 crossref_primary_10_1109_TWC_2023_3263116 crossref_primary_10_1109_TWC_2022_3216507 crossref_primary_10_1109_COMST_2023_3293231 crossref_primary_10_1109_JSAC_2022_3145909 crossref_primary_10_1109_TCOMM_2024_3418889 crossref_primary_10_1109_TVT_2024_3472290 crossref_primary_10_1109_TWC_2022_3166393 crossref_primary_10_1109_TWC_2020_3021725 crossref_primary_10_1109_TCOMM_2018_2879930 crossref_primary_10_3390_rs15225284 crossref_primary_10_1109_TWC_2024_3486673 crossref_primary_10_1109_ACCESS_2024_3481438 crossref_primary_10_1109_TWC_2021_3062613 crossref_primary_10_1109_TNSE_2023_3341582 crossref_primary_10_1109_TIFS_2021_3122989 crossref_primary_10_1109_LCOMM_2022_3160511 crossref_primary_10_1109_LWC_2023_3279860 crossref_primary_10_1109_TWC_2022_3223961 crossref_primary_10_1109_TVT_2024_3369066 crossref_primary_10_1109_ACCESS_2020_3011144 crossref_primary_10_1109_LWC_2024_3449694 crossref_primary_10_1109_TCOMM_2022_3211975 crossref_primary_10_1109_JSAC_2018_2872615 crossref_primary_10_1109_TBC_2023_3267239 crossref_primary_10_1109_TCOMM_2020_3037596 crossref_primary_10_3390_electronics12183815 crossref_primary_10_3390_electronics12112550 crossref_primary_10_1109_ACCESS_2020_3001277 crossref_primary_10_1109_MCOM_004_2100956 crossref_primary_10_1109_LSP_2019_2942994 crossref_primary_10_1109_TWC_2024_3378254 crossref_primary_10_1109_LWC_2024_3364094 crossref_primary_10_1016_j_ijleo_2022_168948 crossref_primary_10_1109_ACCESS_2021_3124812 crossref_primary_10_1109_TWC_2023_3326245 crossref_primary_10_1109_TWC_2023_3309028 crossref_primary_10_3389_frcmn_2021_716620 crossref_primary_10_1109_TIFS_2022_3149145 crossref_primary_10_1109_OJCOMS_2023_3339790 crossref_primary_10_1109_JSYST_2023_3254603 crossref_primary_10_1109_TSC_2024_3506473 crossref_primary_10_1109_JSAC_2023_3240714 crossref_primary_10_1109_JSYST_2022_3220249 crossref_primary_10_1109_JSAC_2023_3240716 crossref_primary_10_1109_JSAC_2023_3240711 crossref_primary_10_1109_TCOMM_2023_3325901 crossref_primary_10_1109_JPROC_2024_3417332 crossref_primary_10_1109_JSAC_2023_3240713 crossref_primary_10_1109_TWC_2021_3063283 crossref_primary_10_1109_JSAC_2022_3145818 crossref_primary_10_1109_TCOMM_2021_3085343 crossref_primary_10_1109_JSAC_2023_3240718 crossref_primary_10_1109_TVT_2021_3139315 crossref_primary_10_1109_JIOT_2024_3442209 crossref_primary_10_1109_TSP_2024_3368771 crossref_primary_10_1109_OJCOMS_2021_3070340 crossref_primary_10_1109_TWC_2022_3210338 crossref_primary_10_1109_TWC_2023_3295804 crossref_primary_10_1109_TWC_2022_3192980 crossref_primary_10_1109_ACCESS_2019_2916344 crossref_primary_10_1109_TCOMM_2020_3014153 crossref_primary_10_1109_LWC_2022_3232782 crossref_primary_10_1109_TMC_2020_3037374 crossref_primary_10_3389_frcmn_2021_716618 crossref_primary_10_1109_JIOT_2023_3334473 |
Cites_doi | 10.1109/TIT.2016.2586918 10.1109/TCOMM.2015.2394393 10.1109/TIT.1972.1054727 10.1109/LCOMM.2017.2724553 10.1109/TIT.2016.2619899 10.1109/LWC.2015.2426709 10.1109/TVT.2017.2691014 10.1109/T-WC.2008.070851 10.1109/TCOMM.2015.2453270 10.1109/TSP.2016.2603971 10.1109/JSAC.2017.2726008 10.1017/CBO9780511807213 10.1109/TIT.2017.2735422 10.1109/VTCSpring.2013.6692652 10.1109/JSAC.2017.2725879 10.1109/JSAC.2003.810346 10.1109/JSAC.2017.2726007 10.1109/MCOM.2013.6476877 10.1109/TIT.1981.1056307 10.1109/TIT.2008.2006447 10.1109/TWC.2017.2744629 10.1109/MCOM.2017.1500657CM 10.1109/TIT.2006.880064 10.1109/TVT.2016.2547998 10.1109/ACSSC.2016.7868988 10.1109/TWC.2017.2737009 10.1109/MCOM.2015.7263349 10.1109/TWC.2015.2475746 10.1109/PIMRC.2013.6666156 10.1109/TIT.2006.883550 10.1109/JCN.2017.000056 10.1109/MCOM.2010.5458368 10.1109/TCOMM.2016.2603991 10.1109/TIT.2012.2215953 10.1109/18.485709 10.1109/TCOMM.2016.2647699 10.1109/JSAC.2005.862421 10.1109/MCOM.2016.7470942 10.1109/TSP.2016.2591501 10.1109/MCOM.2017.1601065 10.1109/ISIT.2016.7541508 10.1109/LCOMM.2016.2615097 10.1109/TSP.2015.2480042 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2018 – notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2018). All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s13638-018-1104-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-1499 |
EndPage | 54 |
ExternalDocumentID | oai_doaj_org_article_6938f48ab5ef4fc3881043647ab56eb2 PMC6438650 30996723 10_1186_s13638_018_1104_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/N015312/1. – fundername: ; grantid: EP/N015312/1. |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT PHGZM PHGZT 2VQ AHSBF C1A H13 IL9 IPNFZ NPM O9- RIG 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-40b9889f1ea65bc8d8220aaf8adf841fd7d32a25c782b96f448fc31f28b6aa463 |
IEDL.DBID | BENPR |
ISSN | 1687-1499 1687-1472 |
IngestDate | Wed Aug 27 01:21:12 EDT 2025 Thu Aug 21 18:19:39 EDT 2025 Fri Jul 11 04:37:35 EDT 2025 Fri Jul 25 03:47:17 EDT 2025 Wed Feb 19 02:34:59 EST 2025 Thu Apr 24 22:51:24 EDT 2025 Tue Jul 01 00:40:53 EDT 2025 Fri Feb 21 02:35:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | NOMA Weighted sum rate RSMA SDMA Linear precoding Rate splitting Rate region MISO BC |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-40b9889f1ea65bc8d8220aaf8adf841fd7d32a25c782b96f448fc31f28b6aa463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5077-2998 |
OpenAccessLink | https://www.proquest.com/docview/2046566586?pq-origsite=%requestingapplication% |
PMID | 30996723 |
PQID | 2046566586 |
PQPubID | 237293 |
PageCount | 54 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6938f48ab5ef4fc3881043647ab56eb2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438650 proquest_miscellaneous_2211327357 proquest_journals_2046566586 pubmed_primary_30996723 crossref_citationtrail_10_1186_s13638_018_1104_7 crossref_primary_10_1186_s13638_018_1104_7 springer_journals_10_1186_s13638_018_1104_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-29 |
PublicationDateYYYYMMDD | 2018-05-29 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Germany – name: New York |
PublicationTitle | EURASIP journal on wireless communications and networking |
PublicationTitleAbbrev | J Wireless Com Network |
PublicationTitleAlternate | EURASIP J Wirel Commun Netw |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | CoverTBroadcast channelsIEEE Trans. Inf. Theory197218121439213110.1109/TIT.1972.10547270228.94008 HanTKobayashiKA new achievable rate region for the interference channelIEEE Trans. Inf. Theory1981271496060593610.1109/TIT.1981.10563070452.94006 PiovanoEClerckxBOptimal DoF region of the K-user MISO BC with partial CSITIEEE Commun. Lett201721112368237110.1109/LCOMM.2017.2724553 DaiLWangBYuanYHanSIC-lWangZNon-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trendsIEEE Commun. Mag2015539748110.1109/MCOM.2015.7263349 DingZLiuYChoiJSunQElkashlanMIC-lPoorHVApplication of non-orthogonal multiple access in LTE and 5G networksIEEE Commun. Mag201755218519110.1109/MCOM.2017.1500657CM AG Davoodi, SA Jafar, in 2016 IEEE International Symposium on Information Theory (ISIT). GDoF of the MISO BC: bridging the gap between finite precision CSIT and perfect CSIT (IEEE, 2016), pp. 1297–1301. DavoodiAGJafarSAAligned image sets under channel uncertainty: settling conjectures on the collapse of degrees of freedom under finite precision CSITIEEE Trans. Inf. Theory2016621056035618355241510.1109/TIT.2016.25869181359.94031 ShinWVaeziMLeeBLoveDJLeeJPoorHVNon-orthogonal multiple access in multi-cell networks: theory, performance, and practical challengesIEEE Commun. Mag2017551017618310.1109/MCOM.2017.1601065 E Piovano, H Joudeh, B Clerckx, in 2016 50th Asilomar Conference on Signals, Systems and Computers. Overloaded multiuser MISO transmission with imperfect CSIT (IEEE, 2016), pp. 34–38. 3GPP TR 36.859, Study on downlink multiuser superposition transmission (MUST) for LTE (Release 13) (3rd Generation Partnership Project (3GPP), 2015). http://www.3gpp.org/dynareport/36859.htm. JoudehHClerckxBRobust transmission in downlink multiuser MISO systems: a rate-splitting approachIEEE Trans. Signal Process2016642362276242356271810.1109/TSP.2016.2591501 ChristensenSSAgarwalRCarvalhoEDCioffiJMWeighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming designIEEE Trans. Wirel. Commun20087124792479910.1109/T-WC.2008.070851 RimoldiBUrbankeRA rate-splitting approach to the Gaussian multiple-access channelIEEE Trans. Inf. Theory199642236437510.1109/18.4857090856.94012 LimCYooTClerckxBLeeBShimBRecent trend of multiuser MIMO in LTE-advancedIEEE Commun. Mag201351312713510.1109/MCOM.2013.6476877 NguyenVDTuanHDDuongTQPoorHVShinOSPrecoder design for signal superposition in MIMO-NOMA multicell networksIEEE J. Sel. Areas Commun201735122681269510.1109/JSAC.2017.2726007 DaiMClerckxBGesbertDCaireGA rate splitting strategy for massive MIMO with imperfect CSITIEEE Trans. Wirel. Commun201615746114624 ChoiJOn generalized downlink beamforming with NOMAJ. Commun. Netw2017194319328 ZhangQLiQQinJRobust beamforming for nonorthogonal multiple-access systems in MISO channelsIEEE Trans. Veh. Technol20166512102311023610.1109/TVT.2016.2547998 ChenZDingZDaiXKaragiannidisGKOn the application of quasi-degradation to MISO-NOMA downlinkIEEE Trans. Signal Process2016642361746189356271410.1109/TSP.2016.2603971 SunQHanSIC-lPanZOn the ergodic capacity of MIMO NOMA systemsIEEE Wirel. Commun. Lett20154440540810.1109/LWC.2015.2426709 LiQLiGLeeWLeeM-iMazzareseDClerckxBLiZMIMO techniques in WiMAX and LTE: a feature overviewIEEE Commun. Mag2010485869210.1109/MCOM.2010.5458368 JoudehHClerckxBSum-rate maximization for linearly precoded downlink multiuser MISO systems with partial CSIT: a rate-splitting approachIEEE Trans. Commun201664114847486110.1109/TCOMM.2016.2603991 HaoCClerckxBMISO networks with imperfect CSIT: a topological rate-splitting approachIEEE Trans. Commun20176552164217910.1109/TCOMM.2016.2647699 TseDViswanathPFundamentals of wireless communication2005CambridgeCambridge University Press10.1017/CBO97805118072131099.94006 HanifMFDingZRatnarajahTKaragiannidisGKA minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systemsIEEE Trans. Signal Process20166417688343296310.1109/TSP.2015.2480042 YangSKobayashiMGesbertDYiXDegrees of freedom of time correlated MISO broadcast channel with delayed CSITIEEE Trans. Inf. Theory2013591315328300815010.1109/TIT.2012.22159531364.94482 EtkinRHTseDNCWangHGaussian interference channel capacity to within one bitIEEE Trans. Inf. Theory2008541255345562259052710.1109/TIT.2008.20064471247.94013 ViswanathanHVenkatesanSHuangHDownlink capacity evaluation of cellular networks with known-interference cancellationIEEE J. Sel. Areas Commun200321580281110.1109/JSAC.2003.810346 DingZAdachiFPoorHVThe application of MIMO to non-orthogonal multiple accessIEEE Trans. Wirel. Commun201615153755210.1109/TWC.2015.2475746 HaoCWuYClerckxBRate analysis of two-receiver MISO broadcast channel with finite rate feedback: a rate-splitting approachIEEE Trans. Commun20156393232324610.1109/TCOMM.2015.2453270 PapazafeiropoulosAClerckxBRatnarajahTRate-splitting to mitigate residual transceiver hardware impairments in massive MIMO systemsIEEE Trans. Veh. Technol20176698196821110.1109/TVT.2017.2691014 H Nikopour, H Baligh, in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Sparse code multiple access (IEEE, 2013), pp. 332–336. ShinWVaeziMLeeBLoveDJLeeJPoorHVCoordinated beamforming for multi-cell MIMO-NOMAIEEE Commun. Lett2017211848710.1109/LCOMM.2016.2615097 WeingartenHSteinbergYShamaiSSThe capacity region of the Gaussian multiple-input multiple-output broadcast channelIEEE Trans. Inf. Theory200652939363964229852610.1109/TIT.2006.8800641320.94044 HaoCRassouliBClerckxBAchievable DoF regions of MIMO networks with imperfect CSITIEEE Trans. Inf. Theory201763106587660610.1109/TIT.2017.2735422 DavoodiAGJafarSATransmitter cooperation under finite precision CSIT: a GDoF perspectiveIEEE Trans. Inf. Theory201763960206030368807410.1109/TIT.2016.26198991374.94516 JoudehHClerckxBRate-splitting for max-min fair multigroup multicast beamforming in overloaded systemsIEEE Trans. Wirel. Commun201716117276728910.1109/TWC.2017.2744629 ZengMYadavADobreOATsiropoulosGIPoorHVCapacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a clusterIEEE J. Sel. Areas Commun201735102413242410.1109/JSAC.2017.2725879 Y Saito, Y Kishiyama, A Benjebbour, T Nakamura, A Li, K Higuchi, in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring). Non-orthogonal multiple access (NOMA) for cellular future radio access (IEEE, 2013), pp. 1–5. YooTGoldsmithAOn the optimality of multiantenna broadcast scheduling using zero-forcing beamformingIEEE J. Sel. Areas Commun200624352854110.1109/JSAC.2005.862421 ClerckxBJoudehHHaoCDaiMRassouliBRate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolutionIEEE Commun. Mag20165459810510.1109/MCOM.2016.7470942 JindalNMIMO broadcast channels with finite-rate feedbackIEEE Trans. Inf. Theory2006521150455060230037110.1109/TIT.2006.8835501320.94051 ChoiJMinimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systemsIEEE Trans. Commun201563379180010.1109/TCOMM.2015.2394393 ClerckxBOestgesCMIMO wireless networks: channels, techniques and standards for multi-antenna, multi-user and multi-cell systems2013CambridgeAcademic Press DaiMClerckxBMultiuser millimeter wave beamforming strategies with quantized and statistical CSITIEEE Trans. Wirel. Commun201716117025703810.1109/TWC.2017.2737009 ZhengBWangXWenMChenFNOMA-based multi-pair two-way relay networks with rate splitting and group decodingIEEE J. Sel. Areas Commun201735102328234110.1109/JSAC.2017.2726008 Q Zhang (1104_CR17) 2016; 65 H Joudeh (1104_CR28) 2016; 64 H Joudeh (1104_CR32) 2016; 64 Z Ding (1104_CR20) 2016; 15 VD Nguyen (1104_CR23) 2017; 35 Q Sun (1104_CR16) 2015; 4 AG Davoodi (1104_CR37) 2017; 63 C Hao (1104_CR38) 2015; 63 M Dai (1104_CR40) 2017; 16 AG Davoodi (1104_CR26) 2016; 62 SS Christensen (1104_CR42) 2008; 7 B Rimoldi (1104_CR46) 1996; 42 B Clerckx (1104_CR10) 2013 N Jindal (1104_CR13) 2006; 52 M Zeng (1104_CR24) 2017; 35 1104_CR2 MF Hanif (1104_CR14) 2016; 64 1104_CR3 S Yang (1104_CR27) 2013; 59 H Viswanathan (1104_CR44) 2003; 21 C Hao (1104_CR31) 2017; 63 1104_CR1 H Joudeh (1104_CR34) 2017; 16 Z Ding (1104_CR5) 2017; 55 T Yoo (1104_CR11) 2006; 24 T Han (1104_CR25) 1981; 27 D Tse (1104_CR8) 2005 C Lim (1104_CR18) 2013; 51 J Choi (1104_CR15) 2015; 63 L Dai (1104_CR4) 2015; 53 T Cover (1104_CR7) 1972; 18 E Piovano (1104_CR29) 2017; 21 H Weingarten (1104_CR9) 2006; 52 B Zheng (1104_CR43) 2017; 35 J Choi (1104_CR21) 2017; 19 A Papazafeiropoulos (1104_CR41) 2017; 66 B Clerckx (1104_CR12) 2016; 54 M Dai (1104_CR39) 2016; 15 Q Li (1104_CR45) 2010; 48 RH Etkin (1104_CR35) 2008; 54 1104_CR36 Z Chen (1104_CR19) 2016; 64 C Hao (1104_CR30) 2017; 65 W Shin (1104_CR22) 2017; 21 1104_CR33 W Shin (1104_CR6) 2017; 55 |
References_xml | – reference: WeingartenHSteinbergYShamaiSSThe capacity region of the Gaussian multiple-input multiple-output broadcast channelIEEE Trans. Inf. Theory200652939363964229852610.1109/TIT.2006.8800641320.94044 – reference: LiQLiGLeeWLeeM-iMazzareseDClerckxBLiZMIMO techniques in WiMAX and LTE: a feature overviewIEEE Commun. Mag2010485869210.1109/MCOM.2010.5458368 – reference: PapazafeiropoulosAClerckxBRatnarajahTRate-splitting to mitigate residual transceiver hardware impairments in massive MIMO systemsIEEE Trans. Veh. Technol20176698196821110.1109/TVT.2017.2691014 – reference: ViswanathanHVenkatesanSHuangHDownlink capacity evaluation of cellular networks with known-interference cancellationIEEE J. Sel. Areas Commun200321580281110.1109/JSAC.2003.810346 – reference: HaoCClerckxBMISO networks with imperfect CSIT: a topological rate-splitting approachIEEE Trans. Commun20176552164217910.1109/TCOMM.2016.2647699 – reference: SunQHanSIC-lPanZOn the ergodic capacity of MIMO NOMA systemsIEEE Wirel. Commun. Lett20154440540810.1109/LWC.2015.2426709 – reference: HaoCRassouliBClerckxBAchievable DoF regions of MIMO networks with imperfect CSITIEEE Trans. Inf. Theory201763106587660610.1109/TIT.2017.2735422 – reference: DaiLWangBYuanYHanSIC-lWangZNon-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trendsIEEE Commun. Mag2015539748110.1109/MCOM.2015.7263349 – reference: HanTKobayashiKA new achievable rate region for the interference channelIEEE Trans. Inf. Theory1981271496060593610.1109/TIT.1981.10563070452.94006 – reference: JoudehHClerckxBRobust transmission in downlink multiuser MISO systems: a rate-splitting approachIEEE Trans. Signal Process2016642362276242356271810.1109/TSP.2016.2591501 – reference: 3GPP TR 36.859, Study on downlink multiuser superposition transmission (MUST) for LTE (Release 13) (3rd Generation Partnership Project (3GPP), 2015). http://www.3gpp.org/dynareport/36859.htm. – reference: ClerckxBOestgesCMIMO wireless networks: channels, techniques and standards for multi-antenna, multi-user and multi-cell systems2013CambridgeAcademic Press – reference: DaiMClerckxBMultiuser millimeter wave beamforming strategies with quantized and statistical CSITIEEE Trans. Wirel. Commun201716117025703810.1109/TWC.2017.2737009 – reference: ChoiJMinimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systemsIEEE Trans. Commun201563379180010.1109/TCOMM.2015.2394393 – reference: RimoldiBUrbankeRA rate-splitting approach to the Gaussian multiple-access channelIEEE Trans. Inf. Theory199642236437510.1109/18.4857090856.94012 – reference: ZengMYadavADobreOATsiropoulosGIPoorHVCapacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a clusterIEEE J. Sel. Areas Commun201735102413242410.1109/JSAC.2017.2725879 – reference: DaiMClerckxBGesbertDCaireGA rate splitting strategy for massive MIMO with imperfect CSITIEEE Trans. Wirel. Commun201615746114624 – reference: PiovanoEClerckxBOptimal DoF region of the K-user MISO BC with partial CSITIEEE Commun. Lett201721112368237110.1109/LCOMM.2017.2724553 – reference: DingZAdachiFPoorHVThe application of MIMO to non-orthogonal multiple accessIEEE Trans. Wirel. Commun201615153755210.1109/TWC.2015.2475746 – reference: ShinWVaeziMLeeBLoveDJLeeJPoorHVNon-orthogonal multiple access in multi-cell networks: theory, performance, and practical challengesIEEE Commun. Mag2017551017618310.1109/MCOM.2017.1601065 – reference: CoverTBroadcast channelsIEEE Trans. Inf. Theory197218121439213110.1109/TIT.1972.10547270228.94008 – reference: ClerckxBJoudehHHaoCDaiMRassouliBRate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolutionIEEE Commun. Mag20165459810510.1109/MCOM.2016.7470942 – reference: ZhangQLiQQinJRobust beamforming for nonorthogonal multiple-access systems in MISO channelsIEEE Trans. Veh. Technol20166512102311023610.1109/TVT.2016.2547998 – reference: ChenZDingZDaiXKaragiannidisGKOn the application of quasi-degradation to MISO-NOMA downlinkIEEE Trans. Signal Process2016642361746189356271410.1109/TSP.2016.2603971 – reference: ChristensenSSAgarwalRCarvalhoEDCioffiJMWeighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming designIEEE Trans. Wirel. Commun20087124792479910.1109/T-WC.2008.070851 – reference: JoudehHClerckxBSum-rate maximization for linearly precoded downlink multiuser MISO systems with partial CSIT: a rate-splitting approachIEEE Trans. Commun201664114847486110.1109/TCOMM.2016.2603991 – reference: Y Saito, Y Kishiyama, A Benjebbour, T Nakamura, A Li, K Higuchi, in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring). Non-orthogonal multiple access (NOMA) for cellular future radio access (IEEE, 2013), pp. 1–5. – reference: E Piovano, H Joudeh, B Clerckx, in 2016 50th Asilomar Conference on Signals, Systems and Computers. Overloaded multiuser MISO transmission with imperfect CSIT (IEEE, 2016), pp. 34–38. – reference: JindalNMIMO broadcast channels with finite-rate feedbackIEEE Trans. Inf. Theory2006521150455060230037110.1109/TIT.2006.8835501320.94051 – reference: ShinWVaeziMLeeBLoveDJLeeJPoorHVCoordinated beamforming for multi-cell MIMO-NOMAIEEE Commun. Lett2017211848710.1109/LCOMM.2016.2615097 – reference: EtkinRHTseDNCWangHGaussian interference channel capacity to within one bitIEEE Trans. Inf. Theory2008541255345562259052710.1109/TIT.2008.20064471247.94013 – reference: LimCYooTClerckxBLeeBShimBRecent trend of multiuser MIMO in LTE-advancedIEEE Commun. Mag201351312713510.1109/MCOM.2013.6476877 – reference: HanifMFDingZRatnarajahTKaragiannidisGKA minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systemsIEEE Trans. Signal Process20166417688343296310.1109/TSP.2015.2480042 – reference: TseDViswanathPFundamentals of wireless communication2005CambridgeCambridge University Press10.1017/CBO97805118072131099.94006 – reference: YooTGoldsmithAOn the optimality of multiantenna broadcast scheduling using zero-forcing beamformingIEEE J. Sel. Areas Commun200624352854110.1109/JSAC.2005.862421 – reference: HaoCWuYClerckxBRate analysis of two-receiver MISO broadcast channel with finite rate feedback: a rate-splitting approachIEEE Trans. Commun20156393232324610.1109/TCOMM.2015.2453270 – reference: JoudehHClerckxBRate-splitting for max-min fair multigroup multicast beamforming in overloaded systemsIEEE Trans. Wirel. Commun201716117276728910.1109/TWC.2017.2744629 – reference: NguyenVDTuanHDDuongTQPoorHVShinOSPrecoder design for signal superposition in MIMO-NOMA multicell networksIEEE J. Sel. Areas Commun201735122681269510.1109/JSAC.2017.2726007 – reference: ZhengBWangXWenMChenFNOMA-based multi-pair two-way relay networks with rate splitting and group decodingIEEE J. Sel. Areas Commun201735102328234110.1109/JSAC.2017.2726008 – reference: AG Davoodi, SA Jafar, in 2016 IEEE International Symposium on Information Theory (ISIT). GDoF of the MISO BC: bridging the gap between finite precision CSIT and perfect CSIT (IEEE, 2016), pp. 1297–1301. – reference: DavoodiAGJafarSATransmitter cooperation under finite precision CSIT: a GDoF perspectiveIEEE Trans. Inf. Theory201763960206030368807410.1109/TIT.2016.26198991374.94516 – reference: YangSKobayashiMGesbertDYiXDegrees of freedom of time correlated MISO broadcast channel with delayed CSITIEEE Trans. Inf. Theory2013591315328300815010.1109/TIT.2012.22159531364.94482 – reference: DingZLiuYChoiJSunQElkashlanMIC-lPoorHVApplication of non-orthogonal multiple access in LTE and 5G networksIEEE Commun. Mag201755218519110.1109/MCOM.2017.1500657CM – reference: ChoiJOn generalized downlink beamforming with NOMAJ. Commun. Netw2017194319328 – reference: H Nikopour, H Baligh, in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Sparse code multiple access (IEEE, 2013), pp. 332–336. – reference: DavoodiAGJafarSAAligned image sets under channel uncertainty: settling conjectures on the collapse of degrees of freedom under finite precision CSITIEEE Trans. Inf. Theory2016621056035618355241510.1109/TIT.2016.25869181359.94031 – volume: 62 start-page: 5603 issue: 10 year: 2016 ident: 1104_CR26 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2016.2586918 – volume: 63 start-page: 791 issue: 3 year: 2015 ident: 1104_CR15 publication-title: IEEE Trans. Commun doi: 10.1109/TCOMM.2015.2394393 – volume: 18 start-page: 2 issue: 1 year: 1972 ident: 1104_CR7 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1972.1054727 – volume: 21 start-page: 2368 issue: 11 year: 2017 ident: 1104_CR29 publication-title: IEEE Commun. Lett doi: 10.1109/LCOMM.2017.2724553 – volume: 63 start-page: 6020 issue: 9 year: 2017 ident: 1104_CR37 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2016.2619899 – volume: 4 start-page: 405 issue: 4 year: 2015 ident: 1104_CR16 publication-title: IEEE Wirel. Commun. Lett doi: 10.1109/LWC.2015.2426709 – volume: 15 start-page: 4611 issue: 7 year: 2016 ident: 1104_CR39 publication-title: IEEE Trans. Wirel. Commun – volume: 66 start-page: 8196 issue: 9 year: 2017 ident: 1104_CR41 publication-title: IEEE Trans. Veh. Technol doi: 10.1109/TVT.2017.2691014 – volume: 7 start-page: 4792 issue: 12 year: 2008 ident: 1104_CR42 publication-title: IEEE Trans. Wirel. Commun doi: 10.1109/T-WC.2008.070851 – volume: 63 start-page: 3232 issue: 9 year: 2015 ident: 1104_CR38 publication-title: IEEE Trans. Commun doi: 10.1109/TCOMM.2015.2453270 – volume: 64 start-page: 6174 issue: 23 year: 2016 ident: 1104_CR19 publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2016.2603971 – volume: 35 start-page: 2328 issue: 10 year: 2017 ident: 1104_CR43 publication-title: IEEE J. Sel. Areas Commun doi: 10.1109/JSAC.2017.2726008 – volume-title: Fundamentals of wireless communication year: 2005 ident: 1104_CR8 doi: 10.1017/CBO9780511807213 – volume: 63 start-page: 6587 issue: 10 year: 2017 ident: 1104_CR31 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2735422 – ident: 1104_CR1 doi: 10.1109/VTCSpring.2013.6692652 – volume: 35 start-page: 2413 issue: 10 year: 2017 ident: 1104_CR24 publication-title: IEEE J. Sel. Areas Commun doi: 10.1109/JSAC.2017.2725879 – volume: 21 start-page: 802 issue: 5 year: 2003 ident: 1104_CR44 publication-title: IEEE J. Sel. Areas Commun doi: 10.1109/JSAC.2003.810346 – volume: 35 start-page: 2681 issue: 12 year: 2017 ident: 1104_CR23 publication-title: IEEE J. Sel. Areas Commun doi: 10.1109/JSAC.2017.2726007 – volume: 51 start-page: 127 issue: 3 year: 2013 ident: 1104_CR18 publication-title: IEEE Commun. Mag doi: 10.1109/MCOM.2013.6476877 – volume: 27 start-page: 49 issue: 1 year: 1981 ident: 1104_CR25 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1981.1056307 – volume: 54 start-page: 5534 issue: 12 year: 2008 ident: 1104_CR35 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2008.2006447 – volume: 16 start-page: 7276 issue: 11 year: 2017 ident: 1104_CR34 publication-title: IEEE Trans. Wirel. Commun doi: 10.1109/TWC.2017.2744629 – volume: 55 start-page: 185 issue: 2 year: 2017 ident: 1104_CR5 publication-title: IEEE Commun. Mag doi: 10.1109/MCOM.2017.1500657CM – volume: 52 start-page: 3936 issue: 9 year: 2006 ident: 1104_CR9 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.880064 – volume: 65 start-page: 10231 issue: 12 year: 2016 ident: 1104_CR17 publication-title: IEEE Trans. Veh. Technol doi: 10.1109/TVT.2016.2547998 – ident: 1104_CR33 doi: 10.1109/ACSSC.2016.7868988 – volume: 16 start-page: 7025 issue: 11 year: 2017 ident: 1104_CR40 publication-title: IEEE Trans. Wirel. Commun doi: 10.1109/TWC.2017.2737009 – volume-title: MIMO wireless networks: channels, techniques and standards for multi-antenna, multi-user and multi-cell systems year: 2013 ident: 1104_CR10 – volume: 53 start-page: 74 issue: 9 year: 2015 ident: 1104_CR4 publication-title: IEEE Commun. Mag doi: 10.1109/MCOM.2015.7263349 – volume: 15 start-page: 537 issue: 1 year: 2016 ident: 1104_CR20 publication-title: IEEE Trans. Wirel. Commun doi: 10.1109/TWC.2015.2475746 – ident: 1104_CR3 doi: 10.1109/PIMRC.2013.6666156 – volume: 52 start-page: 5045 issue: 11 year: 2006 ident: 1104_CR13 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.883550 – volume: 19 start-page: 319 issue: 4 year: 2017 ident: 1104_CR21 publication-title: J. Commun. Netw doi: 10.1109/JCN.2017.000056 – volume: 48 start-page: 86 issue: 5 year: 2010 ident: 1104_CR45 publication-title: IEEE Commun. Mag doi: 10.1109/MCOM.2010.5458368 – volume: 64 start-page: 4847 issue: 11 year: 2016 ident: 1104_CR28 publication-title: IEEE Trans. Commun doi: 10.1109/TCOMM.2016.2603991 – volume: 59 start-page: 315 issue: 1 year: 2013 ident: 1104_CR27 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2012.2215953 – volume: 42 start-page: 364 issue: 2 year: 1996 ident: 1104_CR46 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.485709 – volume: 65 start-page: 2164 issue: 5 year: 2017 ident: 1104_CR30 publication-title: IEEE Trans. Commun doi: 10.1109/TCOMM.2016.2647699 – ident: 1104_CR2 – volume: 24 start-page: 528 issue: 3 year: 2006 ident: 1104_CR11 publication-title: IEEE J. Sel. Areas Commun doi: 10.1109/JSAC.2005.862421 – volume: 54 start-page: 98 issue: 5 year: 2016 ident: 1104_CR12 publication-title: IEEE Commun. Mag doi: 10.1109/MCOM.2016.7470942 – volume: 64 start-page: 6227 issue: 23 year: 2016 ident: 1104_CR32 publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2016.2591501 – volume: 55 start-page: 176 issue: 10 year: 2017 ident: 1104_CR6 publication-title: IEEE Commun. Mag doi: 10.1109/MCOM.2017.1601065 – ident: 1104_CR36 doi: 10.1109/ISIT.2016.7541508 – volume: 21 start-page: 84 issue: 1 year: 2017 ident: 1104_CR22 publication-title: IEEE Commun. Lett doi: 10.1109/LCOMM.2016.2615097 – volume: 64 start-page: 76 issue: 1 year: 2016 ident: 1104_CR14 publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2015.2480042 |
SSID | ssj0033492 |
Score | 2.6265314 |
Snippet | Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on
fully
treating any residual multi-user... Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on treating any residual multi-user... Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user... Abstract Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133 |
SubjectTerms | Communications Engineering Complexity Decoding Division Engineering Information Systems Applications (incl.Internet) Interference Linear precoding MISO BC Networks Noise NOMA Non-Orthogonal Multiple Access Techniques in Emerging Wireless Systems Nonorthogonal multiple access Quality of service Quality of service architectures Rate region RSMA SDMA Signal,Image and Speech Processing Splitting Superposition (mathematics) Wireless networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KTs2hNOnLTVJU6KmtiGXZspTb9hFCYFNoG8hN6GG1geIN3d1Lfn1Gkr3Z7fOSo_Uwg2YkfR-SvgF4xTvfsaA85ZYLijsEo1KVlnoeFBfOm5BEXKdn4uS8Pr1oLtZSfcU7YVkeOA_coVBchloa23ShDo5LyaJqet1iiUBaGFdf3PNGMpXXYB4194YzTCbF4ZxxjDOkzciYsDttN3ahJNb_J4T5-0XJX05L0yZ0_BAeDOiRTLLVO3Cv63dhe01T8BFcf0b0SOeILdONZjLeGCQmpUYkCFKJjwr5SEKJW38eQrKq8_yIpFdc2Pkt-ZZVqS-v05fpPZktF1f5sUH8-5cP00kqPvs0nTyG8-OPX9-f0CHBAnUNFwvkjlZJqQLrjGiskx7RQmlMkMYHWbPgW88rUzUOYYRVIiCVQw-wUEkrjKkFfwJb_azvngGxnrUOGyE88rVyChfZWkkmrIh5JKwtoBwHXLtBfTwmwfihEwuRQmcfafSRjj7SbQGvV12usvTGvxq_i15cNYyq2akAY0kPsaT_F0sF7I8xoIepPNdVGSXlEKiJAl6uqnESxpMV03ezJbZBGs0RCDZox9McMitLOGJw0Va8gHYjmDZM3azpL78noW9EixIRdAFvxrC7NeuvI_H8LkZiD-5XcbaUDa3UPmwtfi67A0RfC_siTbQbFuwsCA priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucABUZ6BtjISJ8AijhPH5rY8qgppiwRU6s3ys62EslWze-mvZ-wkSxcKUo9xxpGdmbG_0Xg-A7ziwQcWlafcckFxh2BUqtJSz6PiwnkTM4nr_FAcHNVfjpvjsY67n067TynJvFJnt5biXc842gqGvhj1YAxB29twp0mhe8rQphKHYfnliW5vTF9e221jA8o8_deBy7_PSP6RKM37z_4DuD8CRzIbNL0Nt0L3EO5doRN8BJffEDjSHmFlPsxMpsOCxORbEQniU-ITOT7OnrirlSFkIHTu35NcwIWd35KTgZD67DI_mc6TxWp5PtQZpK9__zSf5ebDr_PZYzja__zj4wEd71agruFiiWGjVVKqyIIRjXXSI1AojYnS-ChrFn3reWWqxiGCsEpEjOKi4yxW0gpjasGfwFa36MIzINaz1qEQIiNfK6dwfa2VZMKKdIWEtQWU0w_XbiQeT_df_NQ5AJFCDzrSqCOddKTbAl6vu5wPrBv_E_6QtLgWTITZuWFxcaJH_9NCcRlraWwTYo0zkZIl8v26xRYRbFXAzmQDevTiXldlYpNDjCYKeLl-jf6XkiqmC4sVymAEzREDNjiOp4PJrEfCEX6LtuIFtBvGtDHUzTfd2Wnm-EagKBE8F_BmMrvfw_rnn3h-I-kXcLdKblE2tFI7sLW8WIVdRFhLu5c96hc1XSAM priority: 102 providerName: Springer Nature |
Title | Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA |
URI | https://link.springer.com/article/10.1186/s13638-018-1104-7 https://www.ncbi.nlm.nih.gov/pubmed/30996723 https://www.proquest.com/docview/2046566586 https://www.proquest.com/docview/2211327357 https://pubmed.ncbi.nlm.nih.gov/PMC6438650 https://doaj.org/article/6938f48ab5ef4fc3881043647ab56eb2 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLbo9AIHxE5KqYzECYiIlzg2FzQdOlRIM6DCSL1FXuJSCSXTZubSX8-zk0w7LL1YiuNETvye_X1evofQa1a5injlUmaYSGGEIKlUmUkd84oJ67SPIq6zuThe8C-n-Wk_4db22yqHPjF21K6xYY4cSHpQ9oLxUnxcXqQhalRYXe1DaOygXeiCpRyh3cOj-beToS9mQXsvUC4BrkR4Qft1TSLF-5YwsD2g0sCigJOkxdbIFAX8_4U6_948-ccKahyYpg_Q_R5R4nFnAg_Rnap-hO7d0Bl8jK5OAFGmLeDNuMsZD7sIsY7hEjEAV-yCaj4QU2xvHhnBndJz-wHHk13w8Dt81ilVn1_FK1073KxXy-4AQnj790-zccyef52Nn6DF9OjH5Djtgy6kNmdiBXzSKCmVJ5UWubHSAYLItPZSOy858a5wjGqaW4AWRgkP9M5bRjyVRmjNBXuKRnVTV88RNo4UFgoBZHJcWQUdL1eSCCNCbAljEpQNP7y0vSJ5CIzxq4zMRIqya6MS2qgMbVQWCXqzeWTZyXHcVvgwtOKmYFDSjhnN5VnZO2YpFJOeS23yynP4EilJUOXnBeSIytAE7Q82UPbu3ZbXxpigV5vb4JhhtUXXVbOGMkCtGYDDHOrxrDOZTU0Y4HJRUJagYsuYtqq6fac-_xnFvwFBSkDVCXo7mN11tf77J_Zu_4gX6C4NfpDlKVX7aLS6XFcvAWutzAHa4dlnSOUU0s654GpCeUjF5CDOYUC6oOPfubEsPw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL0a4wH2gPheYICR4AWIVseJYyMhVBilY2uRYJP2Zuw4HpNQWpZWiP0ofiPXTtKtfOxtj3WcyMm9vvec2j4X4AkrbUmdtDEzjMeYIWgsZM_EljnJeGG1CyKuozEf7qcfDrKDFfjVnYXx2yq7mBgCtZ0U_j9yJOle2QvzJX89_R77qlF-dbUrodG4xU758wdStvrV9hba92mSDN7tvR3GbVWBuMgYnyFhMlII6WipeWYKYTFF9rR2QlsnUupsblmik6zA3Gkkd8hfXMGoS4ThWqec4XMvweWUYSb3J9MH77vIz7zSnyd4HCcuTfOkXUWlgm_WlKGnI3FHzoYMKM6X8mAoF_AvjPv3Vs0_1mtDGhxch2stfiX9xuFuwEpZ3YS1M6qGt-DkE-LXuEZ0G_ZUk27PItGhOCNBmEys1-hHGkyKswdUSKMrXb8k4RwZ3vyCHDa62Ecn4ZeuLJnMZ9PmuIN_-uetUT80jz-O-rdh_0KMcQdWq0lVrgMxluYFdkKAZlNZSAzzqRSUG-4rWRgTQa_74Kpo9c99GY5vKvAgwVVjI4U2Ut5GKo_g2eKWaSP-cV7nN96Ki45etzs0TI4PVRsGFJdMuFRok5UuxTcRgvoaAGmOLbw0SQQbnQ-oNpjU6tT1I3i8uIxhwK_t6KqczLEPEnmGUDTDcdxtXGYxEoYsgOcJiyBfcqaloS5fqY6-BqlxxKsCMXwEzzu3Ox3Wf7_EvfNf4hFcGe6NdtXu9njnPlxN_JzoZXEiN2B1djwvHyDKm5mHYWoR-HLRc_k3pXxjLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMBI8AJE1HHi2EgIdXTVxmiZBpP2Zuw43iZNaVlbIfbT-HUcO0m3ctnbHuM4kZ1z_WL7OwDPWWlL6qSNmWE8xghBYyG7JrbMScYLq10gcR2O-OZe-nE_21-BX-1ZGL-tsvWJwVHbceH_kSNI98xeGC_5G9dsi9jpD95Pvse-gpRfaW3LadQqsl3-_IHwbfpuq4-yfpEkg42vHzbjpsJAXGSMzxA8GSmEdLTUPDOFsBguu1o7oa0TKXU2tyzRSVZgHDWSO8QyrmDUJcJwrVPO8L1XYDX3qKgDq-sbo53dNg4wz_vn4R5HM6ZpnjRrqhRnMKUM9R5hPCI4xENxvhQVQ_GAf2W8f2_c_GP1NgTFwU240WSzpFer3y1YKavbcP0cx-EdON3FbDaeYq4bdliTdgcj0aFUI8GkmVjP2I-gmBTnj6uQmmV6-paEU2X48GtyULNkH52GK11ZMp7PJvXhB__2L_1hLzSPPg97d2HvUsRxDzrVuCofADGW5gV2wnTNprKQ6PRTKSg33Ne1MCaCbvvBVdGwofuiHMcqoCLBVS0jhTJSXkYqj-Dl4pFJTQVyUed1L8VFR8_iHRrGJweqcQqKSyZcKrTJSpfiTISgviJAmmMLL00SwVqrA6pxLVN1ZggRPFvcRqfgV3p0VY7n2AdhPcPENMNx3K9VZjEShpiA5wmLIF9SpqWhLt-pjg4D8ThmrwIz-ghetWp3Nqz_fomHF0_iKVxFO1aftkbbj-Ba4k2im8WJXIPO7GRePsaUb2aeNLZF4Ntlm_NvOsBowA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rate-splitting+multiple+access+for+downlink+communication+systems%3A+bridging%2C+generalizing%2C+and+outperforming+SDMA+and+NOMA&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Mao%2C+Yijie&rft.au=Clerckx%2C+Bruno&rft.au=Li%2C+Victor+O+K&rft.date=2018-05-29&rft.issn=1687-1472&rft.volume=2018&rft.issue=1&rft.spage=133&rft_id=info:doi/10.1186%2Fs13638-018-1104-7&rft_id=info%3Apmid%2F30996723&rft.externalDocID=30996723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |