The role of GRHL2 and epigenetic remodeling in epithelial–mesenchymal plasticity in ovarian cancer cells

Cancer cells exhibit phenotypic plasticity during epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencin...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 2; no. 1; p. 272
Main Authors Chung, Vin Yee, Tan, Tuan Zea, Ye, Jieru, Huang, Rui-Lan, Lai, Hung-Cheng, Kappei, Dennis, Wollmann, Heike, Guccione, Ernesto, Huang, Ruby Yun-Ju
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.07.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer cells exhibit phenotypic plasticity during epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2. Vin Yee Chung et al. identify differentially methylated CpG sites in the promoters of epithelial genes and GRHL2 binding sites in ovarian cancer cells during the epithelial–mesenchymal transition. They find that GRHL2 knockdown or overexpression affects methylation, suggesting a role for this transcription factor in epigenetic remodeling.
AbstractList Cancer cells exhibit phenotypic plasticity during epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2.
Cancer cells exhibit phenotypic plasticity during epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2. Vin Yee Chung et al. identify differentially methylated CpG sites in the promoters of epithelial genes and GRHL2 binding sites in ovarian cancer cells during the epithelial–mesenchymal transition. They find that GRHL2 knockdown or overexpression affects methylation, suggesting a role for this transcription factor in epigenetic remodeling.
Cancer cells exhibit phenotypic plasticity during epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2.Vin Yee Chung et al. identify differentially methylated CpG sites in the promoters of epithelial genes and GRHL2 binding sites in ovarian cancer cells during the epithelial–mesenchymal transition. They find that GRHL2 knockdown or overexpression affects methylation, suggesting a role for this transcription factor in epigenetic remodeling.
Cancer cells exhibit phenotypic plasticity during epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2.Cancer cells exhibit phenotypic plasticity during epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2.
ArticleNumber 272
Author Kappei, Dennis
Wollmann, Heike
Huang, Ruby Yun-Ju
Chung, Vin Yee
Tan, Tuan Zea
Ye, Jieru
Lai, Hung-Cheng
Huang, Rui-Lan
Guccione, Ernesto
Author_xml – sequence: 1
  givenname: Vin Yee
  orcidid: 0000-0001-7011-2348
  surname: Chung
  fullname: Chung, Vin Yee
  organization: Cancer Science Institute of Singapore, National University of Singapore
– sequence: 2
  givenname: Tuan Zea
  orcidid: 0000-0001-6624-1593
  surname: Tan
  fullname: Tan, Tuan Zea
  organization: Cancer Science Institute of Singapore, National University of Singapore
– sequence: 3
  givenname: Jieru
  surname: Ye
  fullname: Ye, Jieru
  organization: Cancer Science Institute of Singapore, National University of Singapore
– sequence: 4
  givenname: Rui-Lan
  surname: Huang
  fullname: Huang, Rui-Lan
  organization: Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University
– sequence: 5
  givenname: Hung-Cheng
  surname: Lai
  fullname: Lai, Hung-Cheng
  organization: Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University
– sequence: 6
  givenname: Dennis
  orcidid: 0000-0002-3582-2253
  surname: Kappei
  fullname: Kappei, Dennis
  organization: Cancer Science Institute of Singapore, National University of Singapore, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
– sequence: 7
  givenname: Heike
  surname: Wollmann
  fullname: Wollmann, Heike
  organization: Institute of Molecular and Cell Biology, ASTAR
– sequence: 8
  givenname: Ernesto
  surname: Guccione
  fullname: Guccione, Ernesto
  organization: Institute of Molecular and Cell Biology, ASTAR
– sequence: 9
  givenname: Ruby Yun-Ju
  surname: Huang
  fullname: Huang, Ruby Yun-Ju
  email: csihyjr@nus.edu.sg, rubyhuang@ntu.edu.tw
  organization: Cancer Science Institute of Singapore, National University of Singapore, School of Medicine, College of Medicine, National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31372511$$D View this record in MEDLINE/PubMed
BookMark eNp9kdFqFDEYhYNUbK19AG8k4I03o0n-mczmRpCirbAgSL0O2cyf3ZRMsiazhb3rO_iGPokZttZa0Ksk5Dsn5895To5iikjIS87ecgaLd6UVjEHDuGpYx2QDT8iJAKUakK04erA_JmelXDNWSaUktM_IMXDoRcf5Cbm-2iDNKSBNjl58vVwKauJAcevXGHHylmYc04DBxzX1cb6YNvVkws_bHyMWjHazH02g22BKxf20n7F0Y7I3kVoTLWZqMYTygjx1JhQ8u1tPybdPH6_OL5vll4vP5x-Wje1ATg045XBQxgJzi24AubLtwKVUKAXvLW85OKEAhLWd44y7XvXSGTSst6vWIJyS9wff7W414mAxTtkEvc1-NHmvk_H675voN3qdbrSUneylqgZv7gxy-r7DMunRl3kEEzHtihZCLoBVECr6-hF6nXY51vG0gIWSfQ03U68eJrqP8ruGCvADYHMqJaO7RzjTc9v60LauHeq5bT2b9o809fPN5NM8lA__VYqDstRX4hrzn9D_Fv0CvsW_sQ
CitedBy_id crossref_primary_10_3390_cancers13205135
crossref_primary_10_1016_j_tox_2022_153154
crossref_primary_10_1093_mam_ozae049
crossref_primary_10_2217_epi_2022_0023
crossref_primary_10_1021_acsomega_2c07989
crossref_primary_10_1038_s41388_022_02359_x
crossref_primary_10_1016_j_tranon_2020_100845
crossref_primary_10_1186_s13036_023_00333_z
crossref_primary_10_3389_fmolb_2020_00036
crossref_primary_10_1186_s13048_023_01132_2
crossref_primary_10_3390_cancers12123674
crossref_primary_10_1016_j_isci_2023_106125
crossref_primary_10_1038_s41467_023_43456_z
crossref_primary_10_1016_j_isci_2024_109738
crossref_primary_10_1016_j_tranon_2020_100773
crossref_primary_10_3390_cells10123435
crossref_primary_10_3390_biom10111561
crossref_primary_10_3390_ijms25168972
crossref_primary_10_18632_oncotarget_27651
crossref_primary_10_1186_s12915_023_01633_y
crossref_primary_10_1016_j_semcancer_2023_09_007
crossref_primary_10_3390_ijms24108490
crossref_primary_10_3390_jcm10112403
crossref_primary_10_3390_ijms22147526
crossref_primary_10_1038_s42003_024_06441_w
crossref_primary_10_1007_s10528_021_10101_7
crossref_primary_10_3390_biom12010029
crossref_primary_10_1186_s13148_021_01105_6
crossref_primary_10_2217_epi_2023_0406
crossref_primary_10_1186_s13059_022_02687_x
crossref_primary_10_3390_cancers12051140
crossref_primary_10_1016_j_trsl_2020_12_003
crossref_primary_10_1186_s12964_022_01029_5
crossref_primary_10_3389_fmolb_2020_00213
crossref_primary_10_3390_cancers13040906
crossref_primary_10_3390_jcm10010060
crossref_primary_10_1515_oncologie_2023_0004
crossref_primary_10_1186_s12943_023_01793_z
crossref_primary_10_3389_fgene_2021_646179
crossref_primary_10_3390_cancers13215408
crossref_primary_10_15252_embj_2022112806
crossref_primary_10_1016_j_ceb_2024_102445
crossref_primary_10_1088_1478_3975_ac482c
crossref_primary_10_3389_fcell_2024_1259953
crossref_primary_10_3390_jcm8101542
crossref_primary_10_1038_s41419_024_07121_7
crossref_primary_10_3390_cells9030623
crossref_primary_10_3390_cancers16162906
crossref_primary_10_3390_genes11050556
crossref_primary_10_1007_s10555_021_10003_5
crossref_primary_10_1126_scisignal_adg4626
crossref_primary_10_3389_fcell_2023_1112069
crossref_primary_10_1016_j_adcanc_2022_100057
crossref_primary_10_3390_genes14091787
Cites_doi 10.1038/s41586-018-0040-3
10.1038/nm.3336
10.1002/cam4.347
10.1093/bioinformatics/bts635
10.4161/epi.23470
10.1158/0008-5472.CAN-09-3406
10.1038/nrc2131
10.1074/jbc.R113.512517
10.1016/j.tig.2010.11.002
10.1091/mbc.e13-11-0680
10.1038/s41588-018-0140-x
10.1091/mbc.e16-04-0249
10.1038/onc.2008.333
10.1016/j.cell.2016.06.028
10.18632/oncotarget.14206
10.1093/nar/gkx1092
10.1158/0008-5472.CAN-12-4082
10.1371/journal.pone.0126522
10.18632/oncotarget.8166
10.1158/0008-5472.CAN-14-3476
10.1073/pnas.92.16.7416
10.4161/15592294.2014.971608
10.1038/s41598-017-06920-7
10.1186/1471-2164-11-137
10.18632/oncotarget.11497
10.1038/ncomms3126
10.1007/s12032-014-0100-y
10.1016/S1470-2045(06)70939-1
10.1371/journal.pcbi.1003326
10.1172/JCI57349
10.1093/nar/gkw377
10.1128/MCB.00373-16
10.1242/dev.055483
10.1080/03602532.2018.1437446
10.1038/onc.2017.159
10.1038/nrm1835
10.1074/jbc.M110.103812
10.1038/srep19943
10.1038/cddis.2013.442
10.1002/jcp.21240
10.7554/eLife.13722
10.1242/jcs.120907
10.15252/emmm.201404208
10.1016/j.cell.2009.06.049
10.1073/pnas.1307589110
10.1038/cddis.2012.190
10.1371/journal.pone.0103988
10.1038/nsmb.2084
10.4161/cc.10.17.17188
10.1016/j.molcel.2010.05.004
10.1093/bioinformatics/btt087
10.1158/0008-5472.CAN-13-3659
10.1091/mbc.e12-02-0097
10.1128/MCB.00323-08
10.1186/gb-2013-14-12-r144
10.1158/1078-0432.CCR-11-2635-T
10.1016/j.stem.2018.06.005
10.1016/j.celrep.2018.10.096
10.1186/1471-2105-12-323
10.1016/j.stem.2017.09.006
10.1093/bioinformatics/bts196
10.18632/oncotarget.4300
10.7171/jbt.18-2902-002
10.3390/cancers9080101
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s42003-019-0506-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
ExternalDocumentID PMC6656769
31372511
10_1038_s42003_019_0506_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MOH | National Medical Research Council (NMRC)
  funderid: https://doi.org/10.13039/501100001349
– fundername: National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
  funderid: https://doi.org/10.13039/501100001381
– fundername: ;
GroupedDBID 0R~
53G
88I
AAJSJ
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
H13
NPM
3V.
7XB
8FE
8FH
8FK
AARCD
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c536t-3f9fed9ac30f85d36bc4d1669e6217c1413f29332cc5f101f7976faea07cb4ae3
IEDL.DBID C6C
ISSN 2399-3642
IngestDate Thu Aug 21 14:11:11 EDT 2025
Fri Jul 11 11:07:51 EDT 2025
Wed Aug 13 09:10:07 EDT 2025
Thu Apr 03 06:52:24 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Tue Jul 01 03:01:20 EDT 2025
Fri Feb 21 02:40:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epigenetics
Differentiation
Ovarian cancer
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-3f9fed9ac30f85d36bc4d1669e6217c1413f29332cc5f101f7976faea07cb4ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6624-1593
0000-0002-3582-2253
0000-0001-7011-2348
OpenAccessLink https://www.nature.com/articles/s42003-019-0506-3
PMID 31372511
PQID 2389677973
PQPubID 4669726
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6656769
proquest_miscellaneous_2268306933
proquest_journals_2389677973
pubmed_primary_31372511
crossref_primary_10_1038_s42003_019_0506_3
crossref_citationtrail_10_1038_s42003_019_0506_3
springer_journals_10_1038_s42003_019_0506_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-24
PublicationDateYYYYMMDD 2019-07-24
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Thiery, Sleeman (CR1) 2006; 7
Huang (CR7) 2013; 4
Cardenas, Zhao, Vieth, Nephew, Matei (CR45) 2016; 7
Cieply, Farris, Denvir, Ford, Frisch (CR33) 2013; 73
Tam, Weinberg (CR12) 2013; 19
Pistore (CR35) 2017; 36
Chen (CR38) 2018; 23
Bairoch (CR53) 2018; 29
Papp (CR55) 2018; 25
Boylan (CR29) 2017; 8
Grosse-Wilde (CR6) 2015; 10
McDonald, Wu, Timp, Doi, Feinberg (CR14) 2011; 18
Gebhard (CR30) 2010; 70
Pifer (CR42) 2016; 27
Gao (CR26) 2013; 110
Blattler, Farnham (CR24) 2013; 288
Pastushenko (CR2) 2018; 556
CR9
Seelan, Mukhopadhyay, Pisano, Greene (CR49) 2018; 50
Somarelli (CR52) 2016; 36
Werth (CR51) 2010; 137
Yoshiura (CR31) 1995; 92
Ruscetti, Quach, Dadashian, Mulholland, Wu (CR5) 2015; 75
Zhou, Huang (CR40) 2011; 27
Leng (CR64) 2013; 29
Wu (CR32) 2014; 31
Cardenas (CR15) 2014; 9
Li, Dewey (CR63) 2011; 12
Malouf (CR18) 2013; 14
Walter (CR34) 2012; 18
Domcke, Sinha, Levine, Sander, Schultz (CR54) 2013; 4
Tan (CR23) 2014; 6
Senga, Mostov, Mitaka, Miyajima, Tanimizu (CR28) 2012; 23
Zhang, Dong, Liu, Sakuragi, Guo (CR44) 2017; 7
Nieto, Huang, Jackson, Thiery (CR3) 2016; 166
Jordan, Johnson, Abell (CR4) 2011; 10
Tan, Agarwal, Kaye (CR19) 2006; 7
Dong (CR36) 2012; 122
Kuleshov (CR60) 2016; 44
Peinado, Olmeda, Cano (CR8) 2007; 7
Guillemot (CR27) 2014; 25
Cao (CR43) 2008; 27
Frisch, Schaller, Cieply (CR21) 2013; 126
Herranz (CR13) 2008; 28
Carmona (CR16) 2014; 74
Huang (CR22) 2015; 6
Sobecki (CR47) 2016; 5
Ahmed, Thompson, Quinn (CR20) 2007; 213
Jacobs (CR39) 2018; 50
Wang (CR46) 2009; 138
Fukagawa, Ishii, Miyazawa, Saitoh (CR37) 2015; 4
DeLuca (CR61) 2012; 28
Chung (CR10) 2016; 6
Chen (CR48) 2010; 285
Jolly (CR11) 2016; 7
Beaufort (CR56) 2014; 9
Chèneby, Gheorghe, Artufel, Mathelier, Ballester (CR25) 2018; 46
Bailey (CR59) 2013; 9
Ruike, Imanaka, Sato, Shimizu, Tsujimoto (CR17) 2010; 11
Chen (CR41) 2012; 3
Chen (CR57) 2013; 8
Pulecio, Verma, Mejía-Ramírez, Huangfu, Raya (CR50) 2017; 21
Dobin (CR62) 2013; 29
Heinz (CR58) 2010; 38
Y Ruike (506_CR17) 2010; 11
H Peinado (506_CR8) 2007; 7
JX Zhou (506_CR40) 2011; 27
J Jacobs (506_CR39) 2018; 50
YA Chen (506_CR57) 2013; 8
H Cardenas (506_CR45) 2016; 7
DS DeLuca (506_CR61) 2012; 28
W Chen (506_CR41) 2012; 3
C Dong (506_CR36) 2012; 122
MK Jolly (506_CR11) 2016; 7
A Dobin (506_CR62) 2013; 29
K Yoshiura (506_CR31) 1995; 92
J Chèneby (506_CR25) 2018; 46
J Pulecio (506_CR50) 2017; 21
B Li (506_CR63) 2011; 12
L Guillemot (506_CR27) 2014; 25
M Sobecki (506_CR47) 2016; 5
S Domcke (506_CR54) 2013; 4
SM Frisch (506_CR21) 2013; 126
M Werth (506_CR51) 2010; 137
A Bairoch (506_CR53) 2018; 29
S Heinz (506_CR58) 2010; 38
N Leng (506_CR64) 2013; 29
Q Zhang (506_CR44) 2017; 7
X Wu (506_CR32) 2014; 31
RS Seelan (506_CR49) 2018; 50
K Senga (506_CR28) 2012; 23
PM Pifer (506_CR42) 2016; 27
E Papp (506_CR55) 2018; 25
T Bailey (506_CR59) 2013; 9
KLM Boylan (506_CR29) 2017; 8
GG Malouf (506_CR18) 2013; 14
B Cieply (506_CR33) 2013; 73
H Cardenas (506_CR15) 2014; 9
Q Cao (506_CR43) 2008; 27
RYJ Huang (506_CR22) 2015; 6
WL Tam (506_CR12) 2013; 19
AF Chen (506_CR38) 2018; 23
NV Jordan (506_CR4) 2011; 10
Z Wang (506_CR46) 2009; 138
A Grosse-Wilde (506_CR6) 2015; 10
FJ Carmona (506_CR16) 2014; 74
VY Chung (506_CR10) 2016; 6
CM Beaufort (506_CR56) 2014; 9
M Ruscetti (506_CR5) 2015; 75
506_CR9
W Chen (506_CR48) 2010; 285
DSP Tan (506_CR19) 2006; 7
JA Somarelli (506_CR52) 2016; 36
TZ Tan (506_CR23) 2014; 6
N Ahmed (506_CR20) 2007; 213
C Pistore (506_CR35) 2017; 36
I Pastushenko (506_CR2) 2018; 556
C Gebhard (506_CR30) 2010; 70
X Gao (506_CR26) 2013; 110
RYJ Huang (506_CR7) 2013; 4
MA Nieto (506_CR3) 2016; 166
A Fukagawa (506_CR37) 2015; 4
MV Kuleshov (506_CR60) 2016; 44
JP Thiery (506_CR1) 2006; 7
N Herranz (506_CR13) 2008; 28
A Blattler (506_CR24) 2013; 288
K Walter (506_CR34) 2012; 18
OG McDonald (506_CR14) 2011; 18
References_xml – volume: 556
  start-page: 463
  year: 2018
  end-page: 468
  ident: CR2
  article-title: Identification of the tumour transition states occurring during EMT
  publication-title: Nature
  doi: 10.1038/s41586-018-0040-3
– volume: 19
  start-page: 1438
  year: 2013
  end-page: 1449
  ident: CR12
  article-title: The epigenetics of epithelial–mesenchymal plasticity in cancer
  publication-title: Nat. Med.
  doi: 10.1038/nm.3336
– volume: 4
  start-page: 125
  year: 2015
  end-page: 135
  ident: CR37
  article-title: δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells
  publication-title: Cancer Med.
  doi: 10.1002/cam4.347
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: CR62
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 8
  start-page: 203
  year: 2013
  end-page: 209
  ident: CR57
  article-title: Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray
  publication-title: Epigenetics
  doi: 10.4161/epi.23470
– volume: 70
  start-page: 1398
  year: 2010
  end-page: 1407
  ident: CR30
  article-title: General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3406
– volume: 7
  start-page: 415
  year: 2007
  end-page: 428
  ident: CR8
  article-title: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2131
– volume: 288
  start-page: 34287
  year: 2013
  end-page: 34294
  ident: CR24
  article-title: Cross-talk between site-specific transcription factors and DNA methylation states
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R113.512517
– volume: 27
  start-page: 55
  year: 2011
  end-page: 62
  ident: CR40
  article-title: Understanding gene circuits at cell-fate branch points for rational cell reprogramming
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2010.11.002
– volume: 25
  start-page: 1995
  year: 2014
  end-page: 2005
  ident: CR27
  article-title: MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-11-0680
– volume: 50
  start-page: 1011
  year: 2018
  end-page: 1020
  ident: CR39
  article-title: The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0140-x
– volume: 27
  start-page: 2479
  year: 2016
  end-page: 2492
  ident: CR42
  article-title: Grainyhead-like 2 inhibits the coactivatorp300, suppressing tubulogenesis and the epithelial–mesenchymal transition
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e16-04-0249
– volume: 27
  start-page: 7274
  year: 2008
  end-page: 7284
  ident: CR43
  article-title: Repression of E-cadherin by the polycomb group protein EZH2 in cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2008.333
– volume: 166
  start-page: 21
  year: 2016
  end-page: 45
  ident: CR3
  article-title: EMT: 2016
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.028
– volume: 8
  start-page: 9717
  year: 2017
  end-page: 9738
  ident: CR29
  article-title: The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14206
– volume: 46
  start-page: D267
  year: 2018
  end-page: D275
  ident: CR25
  article-title: ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1092
– volume: 73
  start-page: 6299
  year: 2013
  end-page: 6309
  ident: CR33
  article-title: Epithelial–mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4082
– volume: 10
  start-page: e0126522
  year: 2015
  ident: CR6
  article-title: Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126522
– volume: 7
  start-page: 27067
  year: 2016
  end-page: 27084
  ident: CR11
  article-title: Stability of the hybrid epithelial/mesenchymal phenotype
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8166
– volume: 75
  start-page: 2749
  year: 2015
  end-page: 2759
  ident: CR5
  article-title: Tracking and functional characterization of epithelial–mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3476
– volume: 92
  start-page: 7416
  year: 1995
  end-page: 7419
  ident: CR31
  article-title: Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.16.7416
– volume: 9
  start-page: 1461
  year: 2014
  end-page: 1472
  ident: CR15
  article-title: TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells
  publication-title: Epigenetics
  doi: 10.4161/15592294.2014.971608
– volume: 7
  year: 2017
  ident: CR44
  article-title: Enhancer of Zeste homolog 2 (EZH2) induces epithelial-mesenchymal transition in endometriosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06920-7
– volume: 11
  year: 2010
  ident: CR17
  article-title: Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-11-137
– volume: 7
  start-page: 84453
  year: 2016
  end-page: 84467
  ident: CR45
  article-title: EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11497
– ident: CR9
– volume: 4
  year: 2013
  ident: CR54
  article-title: Evaluating cell lines as tumour models by comparison of genomic profiles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3126
– volume: 31
  year: 2014
  ident: CR32
  article-title: Clinical importance and therapeutic implication of E-cadherin gene methylation in human ovarian cancer
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-014-0100-y
– volume: 7
  start-page: 925
  year: 2006
  end-page: 934
  ident: CR19
  article-title: Mechanisms of transcoelomic metastasis in ovarian cancer
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(06)70939-1
– volume: 6
  start-page: 22098
  year: 2015
  end-page: 22113
  ident: CR22
  article-title: Functional relevance of a six mesenchymal gene signature in epithelial–mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120)
  publication-title: Oncotarget
– volume: 9
  start-page: e1003326
  year: 2013
  ident: CR59
  article-title: Practical guidelines for the comprehensive analysis of ChIP-seq data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003326
– volume: 122
  start-page: 1469
  year: 2012
  end-page: 1486
  ident: CR36
  article-title: G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI57349
– volume: 44
  start-page: W90
  year: 2016
  end-page: W97
  ident: CR60
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 36
  start-page: 2503
  year: 2016
  end-page: 2513
  ident: CR52
  article-title: Mesenchymal–epithelial transition in sarcomas is controlled by the combinatorial expression of microRNA 200s and GRHL2
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00373-16
– volume: 137
  start-page: 3835
  year: 2010
  end-page: 3845
  ident: CR51
  article-title: The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex
  publication-title: Development
  doi: 10.1242/dev.055483
– volume: 50
  start-page: 193
  year: 2018
  end-page: 207
  ident: CR49
  article-title: Effects of 5-aza-2'-deoxycytidine (decitabine) on gene expression
  publication-title: Drug Metab. Rev.
  doi: 10.1080/03602532.2018.1437446
– volume: 36
  start-page: 5551
  year: 2017
  end-page: 5566
  ident: CR35
  article-title: DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2017.159
– volume: 7
  start-page: 131
  year: 2006
  end-page: 142
  ident: CR1
  article-title: Complex networks orchestrate epithelial–mesenchymal transitions
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm1835
– volume: 285
  start-page: 40852
  year: 2010
  end-page: 40863
  ident: CR48
  article-title: Grainyhead-like 2 enhances the human telomerase reverse transcriptase gene expression by inhibiting DNA methylation at the 5'-CpG island in normal human keratinocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.103812
– volume: 6
  year: 2016
  ident: CR10
  article-title: GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification
  publication-title: Sci. Rep.
  doi: 10.1038/srep19943
– volume: 4
  year: 2013
  ident: CR7
  article-title: An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530)
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.442
– volume: 213
  start-page: 581
  year: 2007
  end-page: 588
  ident: CR20
  article-title: Epithelial–mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.21240
– volume: 5
  start-page: e13722
  year: 2016
  ident: CR47
  article-title: The cell proliferation antigen Ki-67 organises heterochromatin
  publication-title: Elife
  doi: 10.7554/eLife.13722
– volume: 126
  start-page: 21
  year: 2013
  end-page: 29
  ident: CR21
  article-title: Mechanisms that link the oncogenic epithelial–mesenchymal transition to suppression of anoikis
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.120907
– volume: 6
  start-page: 1279
  year: 2014
  end-page: 1293
  ident: CR23
  article-title: Epithelial–mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201404208
– volume: 29
  start-page: 25
  year: 2018
  end-page: 38
  ident: CR53
  article-title: The Cellosaurus, a cell-line knowledge resource
  publication-title: J. Biomol. Tech.
– volume: 138
  start-page: 1019
  year: 2009
  end-page: 1031
  ident: CR46
  article-title: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.049
– volume: 110
  start-page: 9356
  year: 2013
  end-page: 9361
  ident: CR26
  article-title: Evidence for multiple roles for grainyhead-like 2 in the establishment and maintenance of human mucociliary airway epithelium [corrected]
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307589110
– volume: 3
  year: 2012
  ident: CR41
  article-title: Grainyhead-like 2 (GRHL2) inhibits keratinocyte differentiation through epigenetic mechanism
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2012.190
– volume: 9
  start-page: e103988
  year: 2014
  ident: CR56
  article-title: Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0103988
– volume: 18
  start-page: 867
  year: 2011
  end-page: 874
  ident: CR14
  article-title: Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2084
– volume: 10
  start-page: 2865
  year: 2011
  end-page: 2873
  ident: CR4
  article-title: Tracking the intermediate stages of epithelial–mesenchymal transition in epithelial stem cells and cancer
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.17.17188
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: CR58
  article-title: Simple combinations of lineage-determining transcription factors prime -regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 29
  start-page: 1035
  year: 2013
  end-page: 1043
  ident: CR64
  article-title: EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt087
– volume: 74
  start-page: 5608
  year: 2014
  end-page: 5619
  ident: CR16
  article-title: A comprehensive DNA methylation profile of epithelial-to-mesenchymal transition
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3659
– volume: 23
  start-page: 2845
  year: 2012
  end-page: 2855
  ident: CR28
  article-title: Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-02-0097
– volume: 28
  start-page: 4772
  year: 2008
  end-page: 4781
  ident: CR13
  article-title: Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00323-08
– volume: 14
  year: 2013
  ident: CR18
  article-title: Architecture of epigenetic reprogramming following Twist1-mediated epithelial–mesenchymal transition
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-12-r144
– volume: 18
  start-page: 2360
  year: 2012
  end-page: 2373
  ident: CR34
  article-title: DNA methylation profiling defines clinically relevant biological subsets of non-small cell lung cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-2635-T
– volume: 23
  start-page: 226
  year: 2018
  end-page: 238.e4
  ident: CR38
  article-title: GRHL2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naive pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.06.005
– volume: 25
  start-page: 2617
  year: 2018
  end-page: 2633
  ident: CR55
  article-title: Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.096
– volume: 12
  year: 2011
  ident: CR63
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-12-323
– volume: 21
  start-page: 431
  year: 2017
  end-page: 447
  ident: CR50
  article-title: CRISPR/Cas9-based engineering of the epigenome
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.09.006
– volume: 28
  start-page: 1530
  year: 2012
  end-page: 1532
  ident: CR61
  article-title: RNA-SeQC: RNA-seq metrics for quality control and process optimization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts196
– volume: 7
  year: 2017
  ident: 506_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06920-7
– volume: 556
  start-page: 463
  year: 2018
  ident: 506_CR2
  publication-title: Nature
  doi: 10.1038/s41586-018-0040-3
– volume: 19
  start-page: 1438
  year: 2013
  ident: 506_CR12
  publication-title: Nat. Med.
  doi: 10.1038/nm.3336
– volume: 10
  start-page: 2865
  year: 2011
  ident: 506_CR4
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.17.17188
– volume: 6
  year: 2016
  ident: 506_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/srep19943
– volume: 46
  start-page: D267
  year: 2018
  ident: 506_CR25
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1092
– volume: 7
  start-page: 84453
  year: 2016
  ident: 506_CR45
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11497
– volume: 6
  start-page: 22098
  year: 2015
  ident: 506_CR22
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4300
– volume: 8
  start-page: 203
  year: 2013
  ident: 506_CR57
  publication-title: Epigenetics
  doi: 10.4161/epi.23470
– volume: 4
  start-page: 125
  year: 2015
  ident: 506_CR37
  publication-title: Cancer Med.
  doi: 10.1002/cam4.347
– volume: 288
  start-page: 34287
  year: 2013
  ident: 506_CR24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R113.512517
– volume: 23
  start-page: 2845
  year: 2012
  ident: 506_CR28
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-02-0097
– volume: 9
  start-page: e103988
  year: 2014
  ident: 506_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0103988
– volume: 122
  start-page: 1469
  year: 2012
  ident: 506_CR36
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI57349
– volume: 285
  start-page: 40852
  year: 2010
  ident: 506_CR48
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.103812
– volume: 4
  year: 2013
  ident: 506_CR7
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.442
– volume: 29
  start-page: 15
  year: 2013
  ident: 506_CR62
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 73
  start-page: 6299
  year: 2013
  ident: 506_CR33
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4082
– volume: 70
  start-page: 1398
  year: 2010
  ident: 506_CR30
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3406
– volume: 92
  start-page: 7416
  year: 1995
  ident: 506_CR31
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.16.7416
– volume: 18
  start-page: 2360
  year: 2012
  ident: 506_CR34
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-2635-T
– volume: 74
  start-page: 5608
  year: 2014
  ident: 506_CR16
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3659
– volume: 36
  start-page: 2503
  year: 2016
  ident: 506_CR52
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00373-16
– volume: 4
  year: 2013
  ident: 506_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3126
– volume: 126
  start-page: 21
  year: 2013
  ident: 506_CR21
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.120907
– volume: 27
  start-page: 55
  year: 2011
  ident: 506_CR40
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2010.11.002
– volume: 9
  start-page: e1003326
  year: 2013
  ident: 506_CR59
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003326
– volume: 28
  start-page: 1530
  year: 2012
  ident: 506_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts196
– volume: 6
  start-page: 1279
  year: 2014
  ident: 506_CR23
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201404208
– volume: 23
  start-page: 226
  year: 2018
  ident: 506_CR38
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.06.005
– volume: 5
  start-page: e13722
  year: 2016
  ident: 506_CR47
  publication-title: Elife
  doi: 10.7554/eLife.13722
– volume: 14
  year: 2013
  ident: 506_CR18
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-12-r144
– volume: 213
  start-page: 581
  year: 2007
  ident: 506_CR20
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.21240
– volume: 38
  start-page: 576
  year: 2010
  ident: 506_CR58
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 7
  start-page: 415
  year: 2007
  ident: 506_CR8
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2131
– volume: 29
  start-page: 1035
  year: 2013
  ident: 506_CR64
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt087
– volume: 21
  start-page: 431
  year: 2017
  ident: 506_CR50
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.09.006
– volume: 44
  start-page: W90
  year: 2016
  ident: 506_CR60
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 18
  start-page: 867
  year: 2011
  ident: 506_CR14
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2084
– volume: 10
  start-page: e0126522
  year: 2015
  ident: 506_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126522
– volume: 25
  start-page: 2617
  year: 2018
  ident: 506_CR55
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.096
– volume: 9
  start-page: 1461
  year: 2014
  ident: 506_CR15
  publication-title: Epigenetics
  doi: 10.4161/15592294.2014.971608
– volume: 28
  start-page: 4772
  year: 2008
  ident: 506_CR13
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00323-08
– volume: 27
  start-page: 7274
  year: 2008
  ident: 506_CR43
  publication-title: Oncogene
  doi: 10.1038/onc.2008.333
– volume: 166
  start-page: 21
  year: 2016
  ident: 506_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.028
– volume: 50
  start-page: 193
  year: 2018
  ident: 506_CR49
  publication-title: Drug Metab. Rev.
  doi: 10.1080/03602532.2018.1437446
– volume: 25
  start-page: 1995
  year: 2014
  ident: 506_CR27
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-11-0680
– volume: 3
  year: 2012
  ident: 506_CR41
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2012.190
– volume: 8
  start-page: 9717
  year: 2017
  ident: 506_CR29
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14206
– volume: 29
  start-page: 25
  year: 2018
  ident: 506_CR53
  publication-title: J. Biomol. Tech.
  doi: 10.7171/jbt.18-2902-002
– volume: 36
  start-page: 5551
  year: 2017
  ident: 506_CR35
  publication-title: Oncogene
  doi: 10.1038/onc.2017.159
– volume: 7
  start-page: 27067
  year: 2016
  ident: 506_CR11
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8166
– ident: 506_CR9
  doi: 10.3390/cancers9080101
– volume: 7
  start-page: 925
  year: 2006
  ident: 506_CR19
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(06)70939-1
– volume: 75
  start-page: 2749
  year: 2015
  ident: 506_CR5
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3476
– volume: 31
  year: 2014
  ident: 506_CR32
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-014-0100-y
– volume: 110
  start-page: 9356
  year: 2013
  ident: 506_CR26
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307589110
– volume: 138
  start-page: 1019
  year: 2009
  ident: 506_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.049
– volume: 137
  start-page: 3835
  year: 2010
  ident: 506_CR51
  publication-title: Development
  doi: 10.1242/dev.055483
– volume: 7
  start-page: 131
  year: 2006
  ident: 506_CR1
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm1835
– volume: 27
  start-page: 2479
  year: 2016
  ident: 506_CR42
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e16-04-0249
– volume: 12
  year: 2011
  ident: 506_CR63
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-12-323
– volume: 50
  start-page: 1011
  year: 2018
  ident: 506_CR39
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0140-x
– volume: 11
  year: 2010
  ident: 506_CR17
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-11-137
SSID ssj0001999634
Score 2.3541455
Snippet Cancer cells exhibit phenotypic plasticity during epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET) involving intermediate...
Cancer cells exhibit phenotypic plasticity during epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) involving intermediate...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 272
SubjectTerms 45/91
631/136/142
631/208/176
631/67/1517/1709
Binding sites
Biology
Biomedical and Life Sciences
Cell Line, Tumor
CpG Islands
DNA Methylation
DNA sequencing
DNA-Binding Proteins - genetics
DNA-Binding Proteins - physiology
Epigenesis, Genetic - physiology
Epigenetics
Epithelial-Mesenchymal Transition - genetics
Epithelial-Mesenchymal Transition - physiology
Female
Gene expression
Gene Knockdown Techniques
Genomes
Histones - metabolism
Humans
Life Sciences
Mesenchyme
Ovarian cancer
Ovarian Neoplasms - pathology
Phenotypic plasticity
Promoters
Transcription Factors - genetics
Transcription Factors - physiology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dTxQxcIIQE18M4tcCmpr4pNlwt-22u09EDXgxSgyRhLdNO9sGDOyedwfJvfEf-If8Emf24y4nkefOttvOdL47A_A-c8Fx3bCYdG3LLcx87NCYOPWoOPVPqqbO7I8jPTpR307T087hNu3SKnue2DDqskb2ke-RaMm1MbmR--M_MXeN4uhq10LjEWwQC87I-Nr4fHD083jpZWF9Xqo-nCmzvalq0rEG_HYn5byvVYF0T8u8nyz5T8S0EUSHm_C00yDFpxblz2DNV1vwuO0pOX8OvwnxgnMGRR3E1-PR90TYqhR-zGU3-cWimPim_Q1NLs4rHiAd8ILI8O7m9pLfIuHZ_JIWGJNezSnXszmD1ddkVNtKIFPJRLC_f_oCTg4Pfn0ZxV1DhRhTqWexDHnwZW5RDkKWllI7VOVQ69xrskxwSAItkPiXCWIa6K4GOm4drLcDg05ZL1_CelVX_jUILF2pnMMkoFHeBWss8dwcU2XTnCaKYNCfaoFdtXFuenFRNFFvmRUtIgpCRMGIKGQEHxafjNtSGw8B7_aoKrpbNy2WNBLBu8Uw3Rc-FFv5-opgEp2RmUS7jOBVi9nFanIoDZtcEZgVnC8AuBb36kh1ftbU5NakFxudR_Cxp47lb_13E9sPb2IHniQNnZo4UbuwPptc-TekAs3c247O_wIeHQbB
  priority: 102
  providerName: ProQuest
Title The role of GRHL2 and epigenetic remodeling in epithelial–mesenchymal plasticity in ovarian cancer cells
URI https://link.springer.com/article/10.1038/s42003-019-0506-3
https://www.ncbi.nlm.nih.gov/pubmed/31372511
https://www.proquest.com/docview/2389677973
https://www.proquest.com/docview/2268306933
https://pubmed.ncbi.nlm.nih.gov/PMC6656769
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxEB5RUKVeKlr6s_xErtRTq1WTtdfePYYIiKIWVVAkbivbawsQbKIkIOXGO_CGPAkz3mxQGlGppz147LU9Y_uzPf4G4GtmvCHesBixtqYQZi42Vqk4dVaQ6x8XgWf217Hsn4nBeXq-Bp3mLUxw2g-UlmGabrzDfkxE8KJq05OblNy1XsEGMbeTUfdk7_lYhQA8F839Jc9Wcy6vQCuwctU78q8r0rDyHG7C2zlkZN26ku9gzVXv4XUdRHK2BVeoaUZOgmzo2dFJ_2fCdFUyNyKeTXqiyMYuxLvBwtllRQkI-q7R7h7vH27o8ZG9mN3gD0YIpMnHejojseEd7qJ1xSyZxZjRAf_kA5wdHvzp9eN5BIXYplxOY-5z78pcW972WVpyaawoO1LmTuJWxHZwBfO43vPE2tTj4PQK0YnXTreVNUI7_hHWq2HlPgOzpSmFMTbxVglnvFYaJ9ncpkKnORYUQbvp1cLO6cUpysV1Ea65eVbUiihQEQUpouARfFtkGdXcGv8S3m1UVcyH2aRAvJFLhZXG5C-LZBwg1Cm6csNblElkhvsibGUEn2rNLv7GO1zRHisCtaTzhQCRby-nVJcXgYRbIhBWMo_ge2Mdz9V6sRHb_yW9A2-SYLYqTsQurE_Ht24PIdDUtGCj2x2cDvC7f3D8-6QVBkErHCg8AcCcBpQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAguiDdbChgJLqBVk7XX3j0gxKMlpWmEqlbqbbG9ttqq3Q1JCsqN_8D_4EfxS5jZR6JQ0VvP9tprz-d5eMYzAC8S4w3lDQtR19ZUwsyFxioVxs4KCv3josozuzuU_QPx-TA-XIHf7VsYCqtseWLFqPPS0h35BoqWVCqVKv529C2kqlHkXW1LaNSw2HGzH2iyTd5sf0T6voyirc39D_2wqSoQ2pjLach96l2easu7PolzLo0VeU_K1ElUz20PubpHGcgja2OPgPU4p_Ta6a6yRmjHcdxrsCo4mjIdWH2_Ofyyt7jVIfuBi9Z9ypONiajCv7r0ViimOLNlAXhBq70YnPmPh7YSfFu34VajsbJ3NcTuwIor7sL1uobl7B6cINAYxSiy0rNPe_1BxHSRMzeiNJ_0QpKNXVVuBwdnxwU1oM55irD_8_PXGb19skezM5xghHo8hXhPZ9St_I5GvC6YJVSOGfkXJvfh4Eq2-gF0irJwj4DZ3OTCGBt5q4QzXiuNPD61sdBxigMF0G13NbNNdnMqsnGaVV52nmQ1ITIkREaEyHgAr-afjOrUHpd1Xm9JlTWnfJItMBnA83kznk_aFF248hz7RDJBswxXGcDDmrLz2XiPKzLxAlBLNJ93oNzfyy3F8VGVA1yiHq5kGsDrFh2L3_rvItYuX8QzuNHf3x1kg-3hzmO4GVWYVWEk1qEzHZ-7J6h-Tc3TBvMMvl71MfsL85RELA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VIhAXxJuFAkbiBFrYrF-7RxQIAUqFEJV6s2yvrRa1myhJkXLjP_AP-SXMeLOpQgQSZ4-fM7a_secB8Kxy0VHcsByxtqUUZiF3XutcBi_I9I-LFGf204EaH4oPR_JoB2TvC5OM9lNIy3RM99Zhr-YiWVEV5HIjyVzr5bSJl-Aywu2CdK6hGl48rRCI56L_w-TVdu3NW2gLWm5bSP7xTZpun9ENuL6Cjex1N9CbsBPaW3ClSyS5vA3fkNuMDAXZJLJ3X8b7JbNtw8KUYm2SmyKbhZTzBhtnJy0VIPA7Rdn79ePnGTkg-ePlGXYwRTBNdtaLJZFNvqMmbVvmSTRmjB7553fgcPT263Ccr7Io5F5ytch5rGNoaut5ESvZcOW8aAZK1UGhOuIHeItFvPN56b2MuEGjRoQSbbCF9k7YwO_Cbjtpw31gvnGNcM6X0WsRXLTa4kFbeymsrLGhDIp-VY1fhRinTBenJn1188p0jDDICEOMMDyD5-sq0y6-xr-I93pWmdVWmxvEHLXSOGgsfrouxk1Ci2LbMDlHmlJVqBvhLDO413F23RsfcE16VgZ6g-drAgrAvVnSnhynQNwKwbBWdQYveum4GNZfJ_Hgv6ifwNXPb0Zm__3Bx4dwrUwSrPNS7MHuYnYeHiEiWrjHSf5_A1KoBnE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+GRHL2+and+epigenetic+remodeling+in+epithelial-mesenchymal+plasticity+in+ovarian+cancer+cells&rft.jtitle=Communications+biology&rft.au=Chung%2C+Vin+Yee&rft.au=Tan%2C+Tuan+Zea&rft.au=Ye%2C+Jieru&rft.au=Huang%2C+Rui-Lan&rft.date=2019-07-24&rft.eissn=2399-3642&rft.volume=2&rft.spage=272&rft_id=info:doi/10.1038%2Fs42003-019-0506-3&rft_id=info%3Apmid%2F31372511&rft.externalDocID=31372511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon