Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells
Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hi...
Saved in:
Published in | Membranes (Basel) Vol. 11; no. 11; p. 826 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided. |
---|---|
AbstractList | Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided. Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided.Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided. |
Author | Zhang, Yufeng Liu, Xu Wang, Shimin Chen, Junyu Zhou, Jing Zhang, Rongji Tao, Xinyuan Zhang, Tinghe Cao, Jiamu |
AuthorAffiliation | 2 Harbin Institute of Technology, Harbin Inst Technol, Res Ctr Space Opt Engn, Harbin 150001, China 1 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China; cjy9291@126.com (J.C.); 15663592622@163.com (R.Z.); daxiongmao@hit.edu.cn (J.Z.); 18800421178@163.com (S.W.); liuxu21S0416@163.com (X.L.); nbiryhct@126.com (T.Z.); 1182100225@stu.hit.edu.cn (X.T.); yufeng_zhang@hit.edu.cn (Y.Z.) 3 Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China |
AuthorAffiliation_xml | – name: 2 Harbin Institute of Technology, Harbin Inst Technol, Res Ctr Space Opt Engn, Harbin 150001, China – name: 3 Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China – name: 1 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China; cjy9291@126.com (J.C.); 15663592622@163.com (R.Z.); daxiongmao@hit.edu.cn (J.Z.); 18800421178@163.com (S.W.); liuxu21S0416@163.com (X.L.); nbiryhct@126.com (T.Z.); 1182100225@stu.hit.edu.cn (X.T.); yufeng_zhang@hit.edu.cn (Y.Z.) |
Author_xml | – sequence: 1 givenname: Junyu surname: Chen fullname: Chen, Junyu – sequence: 2 givenname: Jiamu surname: Cao fullname: Cao, Jiamu – sequence: 3 givenname: Rongji surname: Zhang fullname: Zhang, Rongji – sequence: 4 givenname: Jing surname: Zhou fullname: Zhou, Jing – sequence: 5 givenname: Shimin surname: Wang fullname: Wang, Shimin – sequence: 6 givenname: Xu surname: Liu fullname: Liu, Xu – sequence: 7 givenname: Tinghe surname: Zhang fullname: Zhang, Tinghe – sequence: 8 givenname: Xinyuan surname: Tao fullname: Tao, Xinyuan – sequence: 9 givenname: Yufeng surname: Zhang fullname: Zhang, Yufeng |
BookMark | eNp9kk1v1DAQhiNUREvpD-AWiQuXUH_EsfeCBKsWKrWiBzhbE3uy9Sqxi-1U2v76endLRYvEXMYzft9Ho9G8rQ588FhV7yn5xPmCnE449RE8JlqCKNa9qo4YkbIhXIqDv96H1UlKa1KiI6Lj5E11yFvFGRHiqNpcBesGZyC74FMdfH0dwxSy86s63-C2yqW5DN7OJrs7lzd1GOrrMG569Pduchbuw4jNV0hod_0JY302osmxFBnrqz-D1s7X5zOO9RLHMb2rXg8wJjx5zMfVr_Ozn8vvzeWPbxfLL5eNEbzLDR8oFUoC7S1radsrLiy1rUTJhFK9IaIXhEplAYzlCgUI2S06Q0GJtkXFj6uLPdcGWOvb6CaIGx3A6V0jxJWGmJ0ZUTPbKlMQBIqVMgAqxcB6JYACACeF9XnPup37Ca1BnyOMz6DPf7y70atwp1VHlaSiAD4-AmL4PWPKenLJlHWU_YQ5adaRljC6YFvphxfSdZijL6vaqhhlC066oqJ7lYkhpYjD0zCU6O2d6H_upHjkC49xeXcAZWY3_sf5AFL6x1A |
CitedBy_id | crossref_primary_10_59761_RCR5121 crossref_primary_10_1021_acsomega_3c06587 crossref_primary_10_1002_celc_202400345 crossref_primary_10_1016_j_memsci_2022_121239 crossref_primary_10_1016_j_ijhydene_2022_11_213 crossref_primary_10_1016_j_jpowsour_2023_233081 crossref_primary_10_1021_acs_chemmater_3c01482 crossref_primary_10_3390_ijms23042238 crossref_primary_10_1016_j_ijhydene_2024_04_278 crossref_primary_10_1016_j_pmatsci_2024_101389 crossref_primary_10_1016_j_cej_2024_149930 crossref_primary_10_3390_molecules29020340 crossref_primary_10_1002_admi_202201601 crossref_primary_10_1007_s41918_023_00189_3 |
Cites_doi | 10.1016/j.cattod.2005.03.051 10.1039/C5TA01337B 10.1149/1.3203309 10.1016/0009-2614(95)00905-J 10.1016/j.polymer.2009.06.024 10.1007/s11581-017-2341-1 10.1016/j.memsci.2003.09.002 10.1016/j.jpowsour.2007.07.074 10.1021/acsami.9b13496 10.1002/anie.198202082 10.1016/j.apenergy.2018.02.102 10.1016/j.memsci.2004.12.048 10.1016/S0376-7388(00)00633-5 10.1016/j.memsci.2017.04.058 10.1016/j.jpowsour.2021.229550 10.1016/j.jpowsour.2005.11.056 10.1039/c3ta14631f 10.1039/C0JM02443K 10.1016/j.jpowsour.2019.227293 10.1002/pol.1976.170141120 10.1016/j.ijhydene.2010.12.101 10.1039/b505918f 10.1016/j.ijhydene.2017.04.092 10.1016/S0013-4686(99)00349-7 10.1039/c2jm32787b 10.1016/j.memsci.2018.05.006 10.1016/j.jpowsour.2011.08.049 10.1016/j.rser.2020.110660 10.1016/j.memsci.2010.04.010 10.1149/1.1836622 10.1016/j.jpowsour.2007.01.020 10.3390/nano8100775 10.1002/fuce.201800172 10.1016/S0167-2738(98)00466-4 10.1016/j.ijhydene.2016.07.009 10.1039/c1jm12169c 10.1016/B978-0-444-56353-8.00016-2 10.1016/j.elecom.2006.08.056 10.1016/j.progpolymsci.2008.12.003 10.1016/j.memsci.2011.11.005 10.1021/ja109810w 10.1016/j.ijhydene.2008.01.033 10.1038/35104599 10.1149/1945-7111/abe290 10.1016/j.ijhydene.2009.12.054 10.1016/j.jpowsour.2007.10.030 10.1016/j.ijhydene.2013.09.131 10.1016/j.jtice.2018.06.036 10.1016/j.jpowsour.2004.12.061 10.1002/er.7083 10.1002/fuce.200400020 10.1016/j.memsci.2020.117981 10.1016/j.jpowsour.2007.03.021 10.1149/1.1619984 10.1039/c2cs15269j 10.1149/1.2044337 10.1016/j.ijhydene.2010.05.017 10.1002/er.7178 10.1016/j.memsci.2009.01.045 10.1016/j.jpowsour.2015.01.010 10.1016/j.ijhydene.2009.11.027 10.1016/j.ijhydene.2020.02.193 10.1016/j.polymer.2015.03.040 10.1002/er.5250 10.1149/1.1874692 10.1021/cr200035s 10.1126/science.1168475 10.1021/ma9015664 10.1016/j.ijhydene.2011.08.044 10.1016/j.jpowsour.2018.04.009 10.1016/j.jpowsour.2014.01.104 10.1016/j.memsci.2005.10.005 10.1021/acsaem.0c01322 10.1002/er.1889 10.1016/j.jpowsour.2006.01.081 10.1002/advs.201600140 10.1016/j.jpowsour.2006.01.047 10.1016/S0167-2738(01)00915-8 10.1002/fuce.200400013 10.1016/j.memsci.2014.09.023 10.1016/j.nanoen.2016.04.026 10.1016/j.memsci.2009.09.026 10.1002/adma.200703159 10.1016/j.memsci.2019.117354 10.1002/mame.201600468 10.1016/j.ijhydene.2018.04.089 10.1016/j.ijhydene.2016.05.227 10.1016/j.jpowsour.2019.227620 10.1016/j.memsci.2012.04.013 10.1021/ma062186d 10.1039/c1jm11159k 10.1021/acsaem.9b01802 10.1016/j.jpowsour.2014.06.171 10.1039/c2jm35571j 10.1149/1.1630037 10.1021/jp047607c 10.1002/smll.200801742 10.1023/B:JOCC.0000014687.42317.b2 10.1016/j.energy.2021.121791 10.1016/j.memsci.2020.118436 10.1016/j.memsci.2015.09.001 10.1016/j.ijhydene.2017.11.029 10.1021/cm0310519 10.1016/j.memsci.2006.01.049 10.1038/nature11115 10.1016/j.ijhydene.2020.07.026 10.1016/j.eurpolymj.2010.03.005 10.1016/j.jpowsour.2012.11.126 10.1016/j.ssi.2007.01.014 10.1016/j.jpowsour.2014.09.128 10.1016/j.reactfunctpolym.2014.09.019 10.1016/j.memsci.2008.01.044 10.1016/S0378-7753(01)01069-2 10.1149/1.2754078 10.1016/j.jpowsour.2021.229732 10.1016/j.electacta.2010.12.069 10.1016/j.jpowsour.2012.07.112 10.1016/j.jpowsour.2006.05.034 10.1016/S0378-7753(02)00066-6 10.1016/j.memsci.2020.118981 10.1016/j.memsci.2007.09.045 10.1016/j.ijhydene.2021.07.116 10.1149/2.0561414jes 10.1007/s13233-012-0191-2 10.1039/C2TA00270A |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KB. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.3390/membranes11110826 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database (NC LIVE) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Engineering Database (NC LIVE) Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2077-0375 |
ExternalDocumentID | oai_doaj_org_article_2d48c8e50a54412aa175f2b85a1aaa30 PMC8618715 10_3390_membranes11110826 |
GroupedDBID | 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV ADMLS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION D1I EAD EAP EPL ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE I-F KB. KQ8 L6V LK8 M1P M48 M7P M7S MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS RPM TUS UKHRP 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-3f11587a1bd2414b835d1d47e72588bc05b50178daacd38e5a57696c1a8544e83 |
IEDL.DBID | M48 |
ISSN | 2077-0375 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Thu Aug 21 13:44:19 EDT 2025 Fri Jul 11 08:05:29 EDT 2025 Fri Jul 25 11:56:04 EDT 2025 Tue Jul 01 03:32:36 EDT 2025 Thu Apr 24 23:11:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-3f11587a1bd2414b835d1d47e72588bc05b50178daacd38e5a57696c1a8544e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/membranes11110826 |
PMID | 34832055 |
PQID | 2602129306 |
PQPubID | 2032363 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2d48c8e50a54412aa175f2b85a1aaa30 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618715 proquest_miscellaneous_2604021925 proquest_journals_2602129306 crossref_primary_10_3390_membranes11110826 crossref_citationtrail_10_3390_membranes11110826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211027 |
PublicationDateYYYYMMDD | 2021-10-27 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211027 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Membranes (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | He (ref_68) 2003; 226 Wise (ref_2) 2009; 324 Kreuer (ref_87) 1982; 21 Hu (ref_116) 2015; 496 Krishnan (ref_78) 2018; 560 Awang (ref_12) 2015; 86 Debe (ref_3) 2012; 486 Gu (ref_30) 2013; 38 Chu (ref_26) 2012; 22 Wang (ref_17) 2011; 56 Han (ref_28) 2011; 21 Aili (ref_111) 2015; 279 Feng (ref_122) 2010; 346 Meyers (ref_4) 2002; 109 Ahmed (ref_8) 2011; 35 Rajabi (ref_75) 2021; 46 Ubong (ref_19) 2009; 156 Lobato (ref_65) 2006; 280 Diaz (ref_22) 2012; 411–412 Silva (ref_117) 2005; 145 Han (ref_125) 2011; 196 Li (ref_70) 2003; 15 Peighambardoust (ref_48) 2010; 35 Chtioui (ref_53) 2004; 34 Zhang (ref_49) 2012; 112 Lee (ref_80) 2010; 357 Maity (ref_106) 2015; 66 Krishnan (ref_114) 2010; 46 Li (ref_15) 2003; 150 Shah (ref_41) 2007; 166 Berber (ref_79) 2019; 591 Mukhopadhyay (ref_62) 2020; 3 Cheng (ref_110) 2020; 450 Pan (ref_102) 2018; 24 Weber (ref_61) 2018; 20 Chen (ref_36) 2021; 491 Ma (ref_55) 2004; 151 Ahmad (ref_9) 2010; 35 Peron (ref_44) 2008; 314 Wycisk (ref_108) 2006; 163 Zhou (ref_13) 2021; 138 Liu (ref_91) 2021; 494 Li (ref_64) 2004; 4 Bouchet (ref_52) 1999; 118 Wang (ref_130) 2014; 257 Kerres (ref_60) 2004; 4 Mack (ref_81) 2014; 270 Kovar (ref_77) 1976; 14 Sun (ref_29) 2018; 549 Guo (ref_92) 2021; 168 Yu (ref_82) 2009; 42 Kim (ref_101) 2021; 46 Song (ref_95) 2016; 41 Zhang (ref_72) 2008; 308 Ahmad (ref_127) 2011; 36 Wang (ref_40) 2018; 216 Dresselhaus (ref_1) 2001; 414 Klaehn (ref_85) 2007; 40 Kim (ref_98) 2017; 536 Carollo (ref_16) 2006; 160 Haghighi (ref_126) 2011; 36 Li (ref_96) 2013; 1 Xu (ref_25) 2011; 21 Zhang (ref_7) 2006; 160 Seland (ref_71) 2006; 160 Sun (ref_94) 2017; 42 Liu (ref_83) 2013; 21 Bouchet (ref_50) 2001; 145 Karthikeyan (ref_88) 2005; 254 Chandan (ref_11) 2013; 231 Mamlouk (ref_20) 2010; 35 ref_57 Yusoff (ref_27) 2020; 45 Jiang (ref_38) 2012; 22 Wang (ref_89) 2018; 43 Wang (ref_105) 1996; 143 Xiao (ref_46) 2016; 24 Hedberg (ref_76) 1974; 12 Wang (ref_90) 2019; 11 Ye (ref_56) 2008; 178 Wycisk (ref_129) 2005; 152 Shabanikia (ref_86) 2014; 161 Mack (ref_23) 2015; 3 Silva (ref_120) 2005; 104 Mondal (ref_123) 2015; 474 Hao (ref_73) 2019; 95 Gwak (ref_21) 2018; 43 Gogel (ref_37) 2019; 19 Zhao (ref_112) 2015; 273 Liu (ref_42) 2007; 9 Jheng (ref_32) 2014; 2 Zhang (ref_10) 2012; 41 Sun (ref_93) 2017; 302 Deborah (ref_18) 2001; 185 Liu (ref_69) 2009; 332 Yu (ref_118) 2016; 101 Neyerlin (ref_43) 2008; 176 Qian (ref_109) 2009; 50 Wang (ref_24) 2020; 602 Agmon (ref_99) 1995; 244 Hooshyari (ref_63) 2020; 612 Lin (ref_84) 2012; 389 Dyer (ref_5) 2002; 106 Gao (ref_115) 2020; 44 He (ref_34) 2006; 277 Okamoto (ref_119) 2009; 5 Hughes (ref_54) 2004; 108 Barati (ref_31) 2021; 45 Zhang (ref_39) 2018; 389 Uregen (ref_58) 2017; 42 Wainright (ref_104) 1995; 142 Tung (ref_47) 2005; 15 ref_103 Gubler (ref_67) 2007; 154 Venugopalan (ref_74) 2020; 3 Ryu (ref_51) 2022; 128 Ghosh (ref_66) 2011; 21 Ainla (ref_35) 2007; 178 Ven (ref_97) 2013; 222 Shigematsu (ref_100) 2011; 133 Pasupathi (ref_124) 2008; 33 Li (ref_14) 2009; 34 Geng (ref_33) 2021; 620 Wang (ref_128) 2020; 167 Kumar (ref_121) 2020; 445 Li (ref_45) 2016; 3 Chuang (ref_113) 2007; 168 Kerres (ref_59) 2003; 6 Kawahara (ref_107) 2000; 45 ref_6 |
References_xml | – volume: 104 start-page: 205 year: 2005 ident: ref_120 article-title: Characterization and application of composite membranes in DMFC publication-title: Catal. Today doi: 10.1016/j.cattod.2005.03.051 – volume: 3 start-page: 10864 year: 2015 ident: ref_23 article-title: Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01337B – volume: 156 start-page: B1276 year: 2009 ident: ref_19 article-title: Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.3203309 – volume: 244 start-page: 456 year: 1995 ident: ref_99 article-title: The Grotthuss mechanism publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00905-J – volume: 50 start-page: 3911 year: 2009 ident: ref_109 article-title: Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells publication-title: Polymer doi: 10.1016/j.polymer.2009.06.024 – volume: 24 start-page: 1629 year: 2018 ident: ref_102 article-title: Preparation and properties of sulfonated polybenzimidazole-polyimide block copolymers as electrolyte membranes publication-title: Ionics doi: 10.1007/s11581-017-2341-1 – volume: 226 start-page: 169 year: 2003 ident: ref_68 article-title: Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2003.09.002 – volume: 178 start-page: 651 year: 2008 ident: ref_56 article-title: New membranes based on ionic liquids for PEM fuel cells at elevated temperatures publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.07.074 – volume: 11 start-page: 39979 year: 2019 ident: ref_90 article-title: Constructing Amino-Functionalized Flower-like Metal Organic Framework Nanofibers in Sulfonated Poly(ether sulfone) Proton Exchange Membrane for Simultaneously Enhancing Interface Compatibility and Proton Conduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13496 – volume: 21 start-page: 208 year: 1982 ident: ref_87 article-title: Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.198202082 – volume: 216 start-page: 243 year: 2018 ident: ref_40 article-title: Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.102 – volume: 254 start-page: 139 year: 2005 ident: ref_88 article-title: Polymer nanocomposite membranes for DMFC application publication-title: J. Membr. Sci doi: 10.1016/j.memsci.2004.12.048 – volume: 185 start-page: 41 year: 2001 ident: ref_18 article-title: Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00633-5 – volume: 536 start-page: 76 year: 2017 ident: ref_98 article-title: Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.04.058 – volume: 549 start-page: 660 year: 2018 ident: ref_29 article-title: Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline publication-title: J. Mater. Chem. – volume: 491 start-page: 229550 year: 2021 ident: ref_36 article-title: One step electrochemical exfoliation of natural graphite flakes into graphene oxide for polybenzimidazole composite membranes giving enhanced performance in high temperature fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229550 – volume: 163 start-page: 9 year: 2006 ident: ref_108 article-title: Direct methanol fuel cell membranes from Nafion–polybenzimidazole blends publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.11.056 – volume: 2 start-page: 4225 year: 2014 ident: ref_32 article-title: A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14631f – volume: 21 start-page: 2187 year: 2011 ident: ref_28 article-title: Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells publication-title: J. Mater. Chem. doi: 10.1039/C0JM02443K – volume: 445 start-page: 227293 year: 2020 ident: ref_121 article-title: Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227293 – volume: 14 start-page: 2807 year: 1976 ident: ref_77 article-title: Para-ordered polybenzimidazole publication-title: J. Polym. Sci. Polym. Chem. doi: 10.1002/pol.1976.170141120 – volume: 36 start-page: 3688 year: 2011 ident: ref_126 article-title: Direct methanol fuel cell performance of sulfonated poly (2,6-dimethyl-1,4-phenylene oxide)-polybenzimidazole blend proton exchange membranes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.101 – volume: 15 start-page: 3532 year: 2005 ident: ref_47 article-title: Synthesis and characterization of hydrated phosphor–silicate glass membrane prepared by an accelerated sol-gel process with water/vapor management publication-title: J. Mater. Chem. doi: 10.1039/b505918f – volume: 42 start-page: 14572 year: 2017 ident: ref_94 article-title: Construction of proton channels and reinforcement of physicochemical properties of oPBI/FeSPP/GF high temperature PEM via building hydrogen bonding network publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.092 – volume: 45 start-page: 1395 year: 2000 ident: ref_107 article-title: Synthesis and proton conductivity of thermally stable polymer electrolyte: Poly(benzimidazole) complexes with strong acid molecules publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(99)00349-7 – volume: 22 start-page: 18411 year: 2012 ident: ref_26 article-title: Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application publication-title: J. Mater. Chem. doi: 10.1039/c2jm32787b – volume: 12 start-page: 1823 year: 1974 ident: ref_76 article-title: New single-step process for polybenzimidazole synthesis publication-title: J. Polym. Sci. – volume: 560 start-page: 11 year: 2018 ident: ref_78 article-title: Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.05.006 – volume: 196 start-page: 9916 year: 2011 ident: ref_125 article-title: Sulfonated poly (ether ether ketone)/polybenzimidazole oligomer/epoxy resin composite membranes in situ polymerization for direct methanol fuel cell usages publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.049 – volume: 138 start-page: 110660 year: 2021 ident: ref_13 article-title: Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110660 – volume: 357 start-page: 130 year: 2010 ident: ref_80 article-title: Synthesis and characterization of acid-doped polybenzimidazole membranes by sol–gel and post-membrane casting method publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.04.010 – volume: 143 start-page: 1233 year: 1996 ident: ref_105 article-title: Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836622 – volume: 166 start-page: 1 year: 2007 ident: ref_41 article-title: A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.01.020 – ident: ref_57 doi: 10.3390/nano8100775 – volume: 19 start-page: 256 year: 2019 ident: ref_37 article-title: New Materials and Flow Field Design for Middle-Temperature Direct Methanol Fuel Cell with Low Cathode Pressure publication-title: Fuel Cells doi: 10.1002/fuce.201800172 – volume: 118 start-page: 287 year: 1999 ident: ref_52 article-title: Proton conduction in acid doped polybenzimidazole publication-title: Solid State Ion. doi: 10.1016/S0167-2738(98)00466-4 – volume: 42 start-page: 2636 year: 2017 ident: ref_58 article-title: Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.009 – volume: 21 start-page: 14897 year: 2011 ident: ref_66 article-title: Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell publication-title: J. Mater. Chem. doi: 10.1039/c1jm12169c – ident: ref_6 doi: 10.1016/B978-0-444-56353-8.00016-2 – volume: 6 start-page: 223 year: 2003 ident: ref_59 article-title: Development of new blend membranes for polymer electrolyte fuel cell applications publication-title: J. New Mater. Electrochem. Syst. – volume: 9 start-page: 135 year: 2007 ident: ref_42 article-title: Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.08.056 – volume: 34 start-page: 449 year: 2009 ident: ref_14 article-title: High temperature proton exchange membranes based on polybenzimidazoles for fuel cells publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2008.12.003 – volume: 389 start-page: 399 year: 2012 ident: ref_84 article-title: Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.005 – volume: 133 start-page: 2034 year: 2011 ident: ref_100 article-title: Wide control of proton conductivity in porous coordination polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109810w – volume: 33 start-page: 3132 year: 2008 ident: ref_124 article-title: High DMFC performance output using modified acid–base polymer blend publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.033 – volume: 414 start-page: 332 year: 2001 ident: ref_1 article-title: Alternative energy technologies publication-title: Nature doi: 10.1038/35104599 – volume: 168 start-page: 024510 year: 2021 ident: ref_92 article-title: Enhancing proton conductivity and durability of crosslinked PBI-Based high-temperature PEM: Effectively doping a novel cerium triphosphonic-isocyanurate publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abe290 – volume: 35 start-page: 2160 year: 2010 ident: ref_9 article-title: Overview of hybrid membranes for direct-methanol fuel-cell applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.12.054 – volume: 176 start-page: 112 year: 2008 ident: ref_43 article-title: Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.10.030 – volume: 38 start-page: 16410 year: 2013 ident: ref_30 article-title: Polybenzimidazole/zwitterion-coated polyamidoamine dendrimer composite membranes for direct methanol fuel cell applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.131 – volume: 95 start-page: 185 year: 2019 ident: ref_73 article-title: Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for ht-pemfc applications publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.06.036 – volume: 145 start-page: 485 year: 2005 ident: ref_117 article-title: Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.12.061 – volume: 45 start-page: 20057 year: 2021 ident: ref_31 article-title: Preparation, characterization and proton transport of new porous nanocomposite membranes based on polybenzimidazole, lignin and TiO2 nanoparticles for high temperature PEM fuel cells publication-title: Int. J. Energy Res. doi: 10.1002/er.7083 – volume: 4 start-page: 147 year: 2004 ident: ref_64 article-title: PBI-based Polymer Membranes for High Temperature Fuel Cells–Preparation, Characterization and Fuel Cell Demonstration publication-title: Fuel Cells doi: 10.1002/fuce.200400020 – volume: 602 start-page: 117981 year: 2020 ident: ref_24 article-title: Synthesis and preparation of branched block polybenzimidazole membranes with high proton conductivity and single-cell performance for use in high temperature proton exchange membrane fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.117981 – volume: 167 start-page: 104617 year: 2020 ident: ref_128 article-title: Preparation and Properties of Covalently Crosslinked Polybenzimidazole High Temperature Proton Exchange Membranes Doped with High Sulfonated Polyphosphazene publication-title: J. Electrochem. Soc. – volume: 168 start-page: 172 year: 2007 ident: ref_113 article-title: Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.03.021 – volume: 150 start-page: A1599 year: 2003 ident: ref_15 article-title: The CO poisoning effect in PEMFCs operational at temperatures up to 200 degrees C publication-title: J. Electrochem. Soc. doi: 10.1149/1.1619984 – volume: 101 start-page: 98554 year: 2016 ident: ref_118 article-title: Bottom-up design of a stable CO-tolerant platinum electrocatalyst with enhanced fuel cell performance in direct methanol fuel cells publication-title: RSC Adv. – volume: 41 start-page: 2382 year: 2012 ident: ref_10 article-title: Advances in the high performance polymer electrolyte membranes for fuel cells publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15269j – volume: 142 start-page: L121 year: 1995 ident: ref_104 article-title: Acid-doped Polybenzimidazoles-a New Polymer Electrolyte publication-title: J. Electrochem. Soc. doi: 10.1149/1.2044337 – volume: 35 start-page: 9349 year: 2010 ident: ref_48 article-title: Review of the proton exchange membranes for fuel cell applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.017 – ident: ref_103 doi: 10.1002/er.7178 – volume: 332 start-page: 121 year: 2009 ident: ref_69 article-title: Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.01.045 – volume: 279 start-page: 517 year: 2015 ident: ref_111 article-title: Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.010 – volume: 35 start-page: 784 year: 2010 ident: ref_20 article-title: The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.027 – volume: 46 start-page: 12254 year: 2021 ident: ref_101 article-title: Polybenzimidazole composite membranes containing imidazole functionalized graphene oxide showing high proton conductivity and improved physicochemical properties publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.193 – volume: 66 start-page: 76 year: 2015 ident: ref_106 article-title: Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica publication-title: Polymer doi: 10.1016/j.polymer.2015.03.040 – volume: 44 start-page: 4677 year: 2020 ident: ref_115 article-title: Alkali-doped hyperbranched cross-linked polybenzimidazoles containing benzyltrimethyl ammoniums with improved ionic conductivity as alkaline direct methanol fuel cell membranes publication-title: Energy Res. doi: 10.1002/er.5250 – volume: 152 start-page: A892 year: 2005 ident: ref_129 article-title: Sulfonated polyphosphazene-polybenzimidazole membranes for DMFCs publication-title: J. Electrochem. Soc. doi: 10.1149/1.1874692 – volume: 112 start-page: 2780 year: 2012 ident: ref_49 article-title: Recent development of polymer electrolyte membranes for fuel cells publication-title: Chem. Rev. doi: 10.1021/cr200035s – volume: 324 start-page: 1183 year: 2009 ident: ref_2 article-title: Implications of limiting CO2 concentrations for land use and energy publication-title: Science doi: 10.1126/science.1168475 – volume: 42 start-page: 8640 year: 2009 ident: ref_82 article-title: Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs publication-title: Marcomolecules doi: 10.1021/ma9015664 – volume: 36 start-page: 14668 year: 2011 ident: ref_127 article-title: A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.08.044 – volume: 389 start-page: 37 year: 2018 ident: ref_39 article-title: Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.009 – volume: 257 start-page: 254 year: 2014 ident: ref_130 article-title: Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.104 – volume: 277 start-page: 38 year: 2006 ident: ref_34 article-title: Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.10.005 – volume: 3 start-page: 7964 year: 2020 ident: ref_62 article-title: Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01322 – volume: 35 start-page: 1213 year: 2011 ident: ref_8 article-title: A review on methanol crossover in direct methanol fuel cells: Challenges and achievements publication-title: Int. J. Energy Res. doi: 10.1002/er.1889 – volume: 160 start-page: 175 year: 2006 ident: ref_16 article-title: Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.01.081 – volume: 3 start-page: 1600140 year: 2016 ident: ref_45 article-title: High-performance direct methanol fuel cells with precious-metal-free cathode publication-title: Adv. Sci. doi: 10.1002/advs.201600140 – volume: 160 start-page: 27 year: 2006 ident: ref_71 article-title: Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.01.047 – volume: 145 start-page: 69 year: 2001 ident: ref_50 article-title: A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole publication-title: Solid State Ion. doi: 10.1016/S0167-2738(01)00915-8 – volume: 4 start-page: 105 year: 2004 ident: ref_60 article-title: Crosslinked polyaryl blend membranes for polymer electrolyte fuel cells publication-title: Fuel Cells doi: 10.1002/fuce.200400013 – volume: 474 start-page: 140 year: 2015 ident: ref_123 article-title: Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: Effect of dip-coating of a blend of sulphonated PVdF-co-HFP and PBI publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.09.023 – volume: 24 start-page: 121 year: 2016 ident: ref_46 article-title: Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.04.026 – volume: 346 start-page: 105 year: 2010 ident: ref_122 article-title: Novel method for the preparation of ionically crosslinked sulfonated poly (arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.09.026 – volume: 20 start-page: 2595 year: 2018 ident: ref_61 article-title: Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)-Phosphoric Acid Adducts publication-title: Adv. Mater. doi: 10.1002/adma.200703159 – volume: 591 start-page: 117354 year: 2019 ident: ref_79 article-title: Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117354 – volume: 302 start-page: 1600468 year: 2017 ident: ref_93 article-title: Pre-Oxidized Acrylic Fiber Reinforced Ferric Sulfophenyl Phosphate-Doped Polybenzimidazole-Based High-Temperature Proton Exchange Membrane publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201600468 – volume: 43 start-page: 9994 year: 2018 ident: ref_89 article-title: Comprehensive performance enhancement of polybenzimidazole based high temperature proton exchange membranes by doping with a novel intercalated proton conductor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.089 – volume: 41 start-page: 12069 year: 2016 ident: ref_95 article-title: Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.227 – volume: 450 start-page: 227620 year: 2020 ident: ref_110 article-title: Significantly enhanced performance of direct methanol fuel cells at elevated temperatures publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227620 – volume: 411–412 start-page: 35 year: 2012 ident: ref_22 article-title: Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.04.013 – volume: 40 start-page: 7487 year: 2007 ident: ref_85 article-title: Soluble N-substituted organosilane polybenzimidazoles publication-title: Macromolecules doi: 10.1021/ma062186d – volume: 21 start-page: 11359 year: 2011 ident: ref_25 article-title: A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells publication-title: J. Mater. Chem. doi: 10.1039/c1jm11159k – volume: 3 start-page: 573 year: 2020 ident: ref_74 article-title: Stable and highly conductive polycation–polybenzimidazole membrane blends for intermediate temperature polymer electrolyte membrane fuel cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01802 – volume: 270 start-page: 627 year: 2014 ident: ref_81 article-title: Phosphoric acid distribution and its impact on the performance of polybenzimidazole membranes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.171 – volume: 22 start-page: 24862 year: 2012 ident: ref_38 article-title: Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells publication-title: J. Mater. Chem. doi: 10.1039/c2jm35571j – volume: 151 start-page: A8 year: 2004 ident: ref_55 article-title: Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1630037 – volume: 108 start-page: 13626 year: 2004 ident: ref_54 article-title: Probing Structure and Dynamics in Poly[2,2‘-(m-phenylene)-5,5‘-bibenzimidazole] Fuel Cells with Magic-Angle Spinning NMR publication-title: J. Phys. Chem. B doi: 10.1021/jp047607c – volume: 5 start-page: 735 year: 2009 ident: ref_119 article-title: Design of an Assembly of Poly(benzimidazole), Carbon Nanotubes, and Pt Nanoparticles for a Fuel-Cell Electrocatalyst with an Ideal Interfacial Nanostructure publication-title: Small doi: 10.1002/smll.200801742 – volume: 34 start-page: 43 year: 2004 ident: ref_53 article-title: Structure, thermal behavior and IR investigations of (C6H9N2)H2PO4 publication-title: J. Chem. Crystallogr. doi: 10.1023/B:JOCC.0000014687.42317.b2 – volume: 128 start-page: 121791 year: 2022 ident: ref_51 article-title: Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120–160 °C publication-title: Energy doi: 10.1016/j.energy.2021.121791 – volume: 612 start-page: 118436 year: 2020 ident: ref_63 article-title: High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118436 – volume: 496 start-page: 31 year: 2015 ident: ref_116 article-title: Zwitterion-coated graphene-oxide-doped composite membranes for proton exchange membrane applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.09.001 – volume: 43 start-page: 13999 year: 2018 ident: ref_21 article-title: Studies of the methanol crossover and cell performance behaviors of high temperature-direct methanol fuel cells (HT-DMFCs) publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.11.029 – volume: 15 start-page: 4896 year: 2003 ident: ref_70 article-title: Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating Above 100 °C publication-title: Chem. Mater. doi: 10.1021/cm0310519 – volume: 280 start-page: 351 year: 2006 ident: ref_65 article-title: Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.01.049 – volume: 486 start-page: 43 year: 2012 ident: ref_3 article-title: Electrocatalyst approaches and challenges for automotive fuel cells publication-title: Nature doi: 10.1038/nature11115 – volume: 45 start-page: 27510 year: 2020 ident: ref_27 article-title: Sulfonated graphene oxide as an inorganic filler in promoting the properties of a polybenzimidazole membrane as a high temperature proton exchange membrane publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.07.026 – volume: 46 start-page: 1633 year: 2010 ident: ref_114 article-title: Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2010.03.005 – volume: 231 start-page: 264 year: 2013 ident: ref_11 article-title: High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.126 – volume: 178 start-page: 581 year: 2007 ident: ref_35 article-title: Nafion –polybenzimidazole (PBI) composite membranes for DMFC applications publication-title: Solid State Ion. doi: 10.1016/j.ssi.2007.01.014 – volume: 273 start-page: 517 year: 2015 ident: ref_112 article-title: High-temperature passive direct methanol fuel cells operating with concentrated fuels publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.128 – volume: 86 start-page: 248 year: 2015 ident: ref_12 article-title: Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.09.019 – volume: 314 start-page: 247 year: 2008 ident: ref_44 article-title: Solution sulfonation of a novel polybenzimidazole, a proton electrolyte for fuel cell application publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.01.044 – volume: 106 start-page: 31 year: 2002 ident: ref_5 article-title: Fuel cells for portable applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)01069-2 – volume: 154 start-page: B981 year: 2007 ident: ref_67 article-title: Celtec-V: A polybenzimidazole-based membrane for the direct methanol fuel cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2754078 – volume: 494 start-page: 229732 year: 2021 ident: ref_91 article-title: Multifunctional poly (ionic liquid) s cross-linked polybenzimidazole membrane with excellent long-term stability for high temperature-proton exchange membranes fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229732 – volume: 56 start-page: 2842 year: 2011 ident: ref_17 article-title: Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.12.069 – volume: 222 start-page: 202 year: 2013 ident: ref_97 article-title: Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.112 – volume: 160 start-page: 872 year: 2006 ident: ref_7 article-title: High temperature PEM fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.05.034 – volume: 109 start-page: 76 year: 2002 ident: ref_4 article-title: Design considerations for miniaturized PEM fuel cells publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00066-6 – volume: 620 start-page: 118981 year: 2021 ident: ref_33 article-title: Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118981 – volume: 308 start-page: 66 year: 2008 ident: ref_72 article-title: Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.09.045 – volume: 46 start-page: 33241 year: 2021 ident: ref_75 article-title: Phosphoric acid doped polybenzimidazole based polymer electrolyte membrane and functionalized SBA-15 mesoporous for elevated temperature fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.116 – volume: 161 start-page: F1403 year: 2014 ident: ref_86 article-title: Effect of La2Ce2O7 on the physicochemical properties of phosphoric acid doped polybenzimidazole nanocomposite membranes for high temperature proton exchange membrane fuel cells applications publication-title: J. Electrochem. Soc. doi: 10.1149/2.0561414jes – volume: 21 start-page: 35 year: 2013 ident: ref_83 article-title: Fuel Cell Based on Novel Hyper-Branched Polybenzimidazole Membrane publication-title: Macromol. Res. doi: 10.1007/s13233-012-0191-2 – volume: 1 start-page: 1171 year: 2013 ident: ref_96 article-title: Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00270A |
SSID | ssj0000605630 |
Score | 2.3244374 |
SecondaryResourceType | review_article |
Snippet | Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density.... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 826 |
SubjectTerms | Alternative energy Carbon monoxide Catalysts Conductivity DMFC Electrodes Electrolytes Electrolytic cells Flux density Fuel cells Fuel technology Heat resistance High temperature Hydrogen Membranes Methanol PEMFC Permeability polybenzimidazole Polybenzimidazoles polymer electrolyte membrane Polymers proton conductivity proton exchange membrane Proton exchange membrane fuel cells Protons Review Thermal stability |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejp-4w1nZjWT9QoaeBqWR9WDm2oaEMWnpYoTejL28BRx5pckj_-j5JTogZtJcdLclY0pP0fj_r8XsIXVhpHXFjVUg-ZgWvrC6MsRQMIok33FLmUoDsvbx95D-fxNNOqq8YE5blgfPEXZaOK6u8IDpmyyq1Bn_XlEYJTbXWLLF18Hk7ZCqfwSQKX-VrTAa8_nLu50A_4fiIZwT4PTlwREmvfwAyhyGSOz5n-hl96sEivsqdPEAffDhEH3ckBI_Q-q5zMdon_3jDXcAPOcAu_MaA7eIToDs86UIUdk2ZInDX4IeuXRsfXmbzmdMvXeuLa3BnLpXP_QLf5Ow47Xrp8d1mTHgW8HTlWzzxbfv8BT1Ob35Nbos-nUJhBZPLgjWA_lSlqXHgtrkB7OWo45WvSqGUsUQYAftTOa2tYzDlGrjIWFqqFUy9V-wr2gtd8N8QhtLGSNY4YTX33BlGXUWpZ4Yw1RA1QmQzt7XttcZjyou2Bs4RzVH_Y44R-rF95W8W2nir8XU02LZh1MhOBbBy6n7l1O-tnBE62Zi77jfucw30rowQiMA3zrfVsOXiPQp0oVulNsC6ARqLEaoGy2TQoWFNmP1J4t1KUuCo4vv_GMEx2i9jiA240rI6QXvLxcqfAkZamrO0HV4BJ00Uiw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtemkPpU_qJi0q9FQwkayHtafSLNmGQkoODeRm9HK64JWSfRw2vz4j2buNKeRoWUaSR6Pvm9Ewg9BXK60jbqJKySes5LXVpTGWgkAk8YZbylwOkP0tzy75rytxNTjcVkNY5e5MzAe1izb5yI-Bd1cJm4j8fnNbpqpR6XZ1KKHxFD2jgDQppEvNfu59LDBeSn_VX2YysO6PF34BRigcIumkAPSTIzjKWftHVHMcKPkAeWav0MuBMuIfvYxfoyc-vEEvHiQSfIu259GlmJ_e_YZjwBd9mF24xsDw0hNwPDyNIaV3zfUicGzxRey2xoe7-WLu9F3sfHkCoOZy-8Iv8WlfI6fbrj0-360JzwOebXyHp77rVu_Q5ez0z_SsHIoqlFYwuS5ZCxxQ1ZoaB-DNDTAwRx2vfV0JpYwlwgjQUuW0to4pLzRYJBNpqVaCc6_Ye3QQYvAfEIbW1kjWOmE199wZRl1NqWeGMNUSVSCy-7eNHTKOp8IXXQOWRxJH8584CvRt_8lNn27jsc4nSWD7jilTdm6Iy-tmULymclxZWAbRqdpapTXwpbYySmiqtWakQEc7cTeD-q6af5utQF_2r0Hx0m0KTCFuch-wvYEgiwLVo20ymtD4TZj_zSm8laRgqYqPjw9-iJ5XKYQGoLKqj9DBernxn4ADrc3nvNHvAbNWDBU priority: 102 providerName: ProQuest |
Title | Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells |
URI | https://www.proquest.com/docview/2602129306 https://www.proquest.com/docview/2604021925 https://pubmed.ncbi.nlm.nih.gov/PMC8618715 https://doaj.org/article/2d48c8e50a54412aa175f2b85a1aaa30 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBb7gLI9lD5pttugQk8Ft5IlWcqhlCYkXQpZQmkgN6OXdwOO3WYT2Oyv78iPENOlh14M1gNbGo3m-6zxDELvbWIdcQMVJXzAIi6tjoyxFASSEG-4pcxVDrJXyeWcf1-IxRFq01s1E3j7ILUL-aTm6_zj3e_dF1D4z4FxAmX_tPIrYJawMwT1B5OWHKNTMEwyJDSYNmi_3phJiIZVn20-3PMMPWIcFjkJv_4dGKoqnn8HhHZdKA9s0uQpetKASfy1lv4zdOSL5-jxQYjBF2g3LV3wBqo_zOGywLPaAa-4xoD9wh2gPzwqixD4tcokgcsMz8p8Z3xxv1wtnb4vcx8Nwdy5qnzl13hcZ8_JdxuPp-3w8LLAk63P8cjn-e1LNJ-Mf44uoybdQmQFSzYRywAdKqmpcTB73AA2c9Rx6WUslDKWCCNAf5XT2jqmvNDAVQaJpVoJzr1ir9BJURb-NcJQmpmEZU5YzT13hlEnKfXMEKYyonqItHOb2iYWeUiJkafASYJk0r8k00Mf9l1-1YE4_tV4GAS2bxhiaFcF5fo6bVQyjR1XFoZBdMjDFmsNSCqLjRKaaq0Z6aGLVtxpuy5ToH9xgEgEnvFuXw0qGc5Z4BXKbdUGWDlAZ9FDsrNMOi_UrSmWN1Vwb5VQ4LDi_L97vkFncfC7Afsaywt0sllv_VsAThvTR8dyIeGqJt_66HQ4vpr96FcfIfqVovwBEJQiiw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgJLkhR4_gR7wEhunTZ0m7VQyv1FvxKWSkbl30IbX8Uv5FxHksjpN56XNvJxpnxzDf2ZD6E3hthbGIHMhZsQGOWGRVrbQgIRCROM0OorRNkj8X4jH0_5-db6E_3LUxIq-xsYm2orTdhj3wXcHcafFMiPl_-igNrVDhd7Sg0GrU4dOvfELItPh18Bfl-SNPR_ulwHLesArHhVCxjWgAIkpki2oL3YhogiCWWZS5LuZTaJFzzwFlvlTKWSscVQPKBMERJzpiTFO57B91lFDx5-DJ99G2zpwPzC-W2msNT6E92Z24GQS8YrWCZwNuKnvurWQJ60LafmHnN040eoYctRMVfGp16jLZc9QQ9uFa48ClaT7wNOUbNdh_2FT5p0vqqCwyIMvwCTImHvgrlZGt-CuwLfOLLtXbV1XQ2terKly7eAydq6_aZm-P9hpOnXC8dnnRzwtMKj1auxENXlotn6OxWXvdztF35yr1AGFoLLWhhuVHMMaspsRkhjuqEyiKREUq6d5ubtsJ5INooc4h0gjjy_8QRoY-bSy6b8h43Dd4LAtsMDJW56wY_v8jbhZ6nlkkD00hUYHdLlQJ8VqRackWUUjSJ0E4n7rw1F4v8n3JH6N2mGxZ6OL2BR_CregzE-gDIeYSynpr0HqjfU01_1iXDpSAQGfOXN__5W3RvfDo5yo8Ojg9foftpSN8BN51mO2h7OV-514C_lvpNrfQY_bjtVfYXnv5HqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFocAiwQXJiu3dtTcHhEiaqKU0ihCVejP7conk2CUPofSn8euY9SPUQuqtR6_Xj_XMznyzO54P4J2OtQnMQPgxG1CfJVr6SukQBRIHVjEdUlMlyE7jozP25Zyf78Gf9l8Yl1bZ2sTKUJtSuzXyPuLuyPmmIO5nTVrE7HDy6fKX7xik3E5rS6dRq8iJ3f7G8G318fgQZf0-iibj76Mjv2EY8DWn8dqnGQIikchQGfRkTCEcMaFhiU0iLoTSAVfc8dcbKbWhwnKJ8HwQ61AKzpgVFO97B_YTFxX1YH84ns6-7VZ4cLSu-Fa9lUrpIOgv7AJDYDRhzk6h7407zrDiDOgA3W6a5jW_N3kIDxrASj7XGvYI9mzxGO5fK2P4BLanpXEZR_XiHykLMquT_IoLgvjSHSHCJKOycMVlK7YKUmZkVuZbZYur-WJu5FWZW3-ILtVU7Qu7JOOaoSffri05bcdE5gWZbGxORjbPV0_h7FY--DPoFWVhnwPB1kzFNDNcS2aZUTQ0SRhaqgIqskB4ELTfNtVNvXNHu5GnGPc4caT_icODD7tLLutiHzd1HjqB7Tq6Ot1VQ7m8SJtpn0aGCY3DCKTjeoukRLSWRUpwGUopaeDBQSvutDEeq_Sfqnvwdncap73by8FXKDdVH4z8EZ5zD5KOmnReqHummP-sCoiLOMQ4mb-4-eFv4C7OsPTr8fTkJdyLXC4P-uwoOYDeermxrxCMrdXrRusJ_LjtifYXANdNOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifications+on+Promoting+the+Proton+Conductivity+of+Polybenzimidazole-Based+Polymer+Electrolyte+Membranes+in+Fuel+Cells&rft.jtitle=Membranes+%28Basel%29&rft.au=Chen%2C+Junyu&rft.au=Cao%2C+Jiamu&rft.au=Zhang%2C+Rongji&rft.au=Zhou%2C+Jing&rft.date=2021-10-27&rft.pub=MDPI&rft.eissn=2077-0375&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fmembranes11110826&rft_id=info%3Apmid%2F34832055&rft.externalDocID=PMC8618715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0375&client=summon |