Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells

Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hi...

Full description

Saved in:
Bibliographic Details
Published inMembranes (Basel) Vol. 11; no. 11; p. 826
Main Authors Chen, Junyu, Cao, Jiamu, Zhang, Rongji, Zhou, Jing, Wang, Shimin, Liu, Xu, Zhang, Tinghe, Tao, Xinyuan, Zhang, Yufeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.10.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided.
AbstractList Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided.
Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided.Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density. However, the low carbon monoxide (CO) tolerance of the Pt electrode catalyst in hydrogen-air PEMFCs and methanol permanent in DMFCs greatly hindered their extensive use. Applying polybenzimidazole (PBI) membranes can avoid these problems. The high thermal stability allows PBI membranes to work at elevated temperatures when the CO tolerance can be significantly improved; the excellent methanol resistance also makes it suitable for DMFCs. However, the poor proton conductivity of pristine PBI makes it hard to be directly applied in fuel cells. In the past decades, researchers have made great efforts to promote the proton conductivity of PBI membranes, and various effective modification methods have been proposed. To provide engineers and researchers with a basis to further promote the properties of fuel cells with PBI membranes, this paper reviews critical researches on the modification of PBI membranes in both hydrogen-air PEMFCs and DMFCs aiming at promoting the proton conductivity. The modification methods have been classified and the obtained properties have been included. A guide for designing modifications on PBI membranes for high-performance fuel cells is provided.
Author Zhang, Yufeng
Liu, Xu
Wang, Shimin
Chen, Junyu
Zhou, Jing
Zhang, Rongji
Tao, Xinyuan
Zhang, Tinghe
Cao, Jiamu
AuthorAffiliation 2 Harbin Institute of Technology, Harbin Inst Technol, Res Ctr Space Opt Engn, Harbin 150001, China
1 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China; cjy9291@126.com (J.C.); 15663592622@163.com (R.Z.); daxiongmao@hit.edu.cn (J.Z.); 18800421178@163.com (S.W.); liuxu21S0416@163.com (X.L.); nbiryhct@126.com (T.Z.); 1182100225@stu.hit.edu.cn (X.T.); yufeng_zhang@hit.edu.cn (Y.Z.)
3 Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China
AuthorAffiliation_xml – name: 2 Harbin Institute of Technology, Harbin Inst Technol, Res Ctr Space Opt Engn, Harbin 150001, China
– name: 3 Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China
– name: 1 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China; cjy9291@126.com (J.C.); 15663592622@163.com (R.Z.); daxiongmao@hit.edu.cn (J.Z.); 18800421178@163.com (S.W.); liuxu21S0416@163.com (X.L.); nbiryhct@126.com (T.Z.); 1182100225@stu.hit.edu.cn (X.T.); yufeng_zhang@hit.edu.cn (Y.Z.)
Author_xml – sequence: 1
  givenname: Junyu
  surname: Chen
  fullname: Chen, Junyu
– sequence: 2
  givenname: Jiamu
  surname: Cao
  fullname: Cao, Jiamu
– sequence: 3
  givenname: Rongji
  surname: Zhang
  fullname: Zhang, Rongji
– sequence: 4
  givenname: Jing
  surname: Zhou
  fullname: Zhou, Jing
– sequence: 5
  givenname: Shimin
  surname: Wang
  fullname: Wang, Shimin
– sequence: 6
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
– sequence: 7
  givenname: Tinghe
  surname: Zhang
  fullname: Zhang, Tinghe
– sequence: 8
  givenname: Xinyuan
  surname: Tao
  fullname: Tao, Xinyuan
– sequence: 9
  givenname: Yufeng
  surname: Zhang
  fullname: Zhang, Yufeng
BookMark eNp9kk1v1DAQhiNUREvpD-AWiQuXUH_EsfeCBKsWKrWiBzhbE3uy9Sqxi-1U2v76endLRYvEXMYzft9Ho9G8rQ588FhV7yn5xPmCnE449RE8JlqCKNa9qo4YkbIhXIqDv96H1UlKa1KiI6Lj5E11yFvFGRHiqNpcBesGZyC74FMdfH0dwxSy86s63-C2yqW5DN7OJrs7lzd1GOrrMG569Pduchbuw4jNV0hod_0JY302osmxFBnrqz-D1s7X5zOO9RLHMb2rXg8wJjx5zMfVr_Ozn8vvzeWPbxfLL5eNEbzLDR8oFUoC7S1radsrLiy1rUTJhFK9IaIXhEplAYzlCgUI2S06Q0GJtkXFj6uLPdcGWOvb6CaIGx3A6V0jxJWGmJ0ZUTPbKlMQBIqVMgAqxcB6JYACACeF9XnPup37Ca1BnyOMz6DPf7y70atwp1VHlaSiAD4-AmL4PWPKenLJlHWU_YQ5adaRljC6YFvphxfSdZijL6vaqhhlC066oqJ7lYkhpYjD0zCU6O2d6H_upHjkC49xeXcAZWY3_sf5AFL6x1A
CitedBy_id crossref_primary_10_59761_RCR5121
crossref_primary_10_1021_acsomega_3c06587
crossref_primary_10_1002_celc_202400345
crossref_primary_10_1016_j_memsci_2022_121239
crossref_primary_10_1016_j_ijhydene_2022_11_213
crossref_primary_10_1016_j_jpowsour_2023_233081
crossref_primary_10_1021_acs_chemmater_3c01482
crossref_primary_10_3390_ijms23042238
crossref_primary_10_1016_j_ijhydene_2024_04_278
crossref_primary_10_1016_j_pmatsci_2024_101389
crossref_primary_10_1016_j_cej_2024_149930
crossref_primary_10_3390_molecules29020340
crossref_primary_10_1002_admi_202201601
crossref_primary_10_1007_s41918_023_00189_3
Cites_doi 10.1016/j.cattod.2005.03.051
10.1039/C5TA01337B
10.1149/1.3203309
10.1016/0009-2614(95)00905-J
10.1016/j.polymer.2009.06.024
10.1007/s11581-017-2341-1
10.1016/j.memsci.2003.09.002
10.1016/j.jpowsour.2007.07.074
10.1021/acsami.9b13496
10.1002/anie.198202082
10.1016/j.apenergy.2018.02.102
10.1016/j.memsci.2004.12.048
10.1016/S0376-7388(00)00633-5
10.1016/j.memsci.2017.04.058
10.1016/j.jpowsour.2021.229550
10.1016/j.jpowsour.2005.11.056
10.1039/c3ta14631f
10.1039/C0JM02443K
10.1016/j.jpowsour.2019.227293
10.1002/pol.1976.170141120
10.1016/j.ijhydene.2010.12.101
10.1039/b505918f
10.1016/j.ijhydene.2017.04.092
10.1016/S0013-4686(99)00349-7
10.1039/c2jm32787b
10.1016/j.memsci.2018.05.006
10.1016/j.jpowsour.2011.08.049
10.1016/j.rser.2020.110660
10.1016/j.memsci.2010.04.010
10.1149/1.1836622
10.1016/j.jpowsour.2007.01.020
10.3390/nano8100775
10.1002/fuce.201800172
10.1016/S0167-2738(98)00466-4
10.1016/j.ijhydene.2016.07.009
10.1039/c1jm12169c
10.1016/B978-0-444-56353-8.00016-2
10.1016/j.elecom.2006.08.056
10.1016/j.progpolymsci.2008.12.003
10.1016/j.memsci.2011.11.005
10.1021/ja109810w
10.1016/j.ijhydene.2008.01.033
10.1038/35104599
10.1149/1945-7111/abe290
10.1016/j.ijhydene.2009.12.054
10.1016/j.jpowsour.2007.10.030
10.1016/j.ijhydene.2013.09.131
10.1016/j.jtice.2018.06.036
10.1016/j.jpowsour.2004.12.061
10.1002/er.7083
10.1002/fuce.200400020
10.1016/j.memsci.2020.117981
10.1016/j.jpowsour.2007.03.021
10.1149/1.1619984
10.1039/c2cs15269j
10.1149/1.2044337
10.1016/j.ijhydene.2010.05.017
10.1002/er.7178
10.1016/j.memsci.2009.01.045
10.1016/j.jpowsour.2015.01.010
10.1016/j.ijhydene.2009.11.027
10.1016/j.ijhydene.2020.02.193
10.1016/j.polymer.2015.03.040
10.1002/er.5250
10.1149/1.1874692
10.1021/cr200035s
10.1126/science.1168475
10.1021/ma9015664
10.1016/j.ijhydene.2011.08.044
10.1016/j.jpowsour.2018.04.009
10.1016/j.jpowsour.2014.01.104
10.1016/j.memsci.2005.10.005
10.1021/acsaem.0c01322
10.1002/er.1889
10.1016/j.jpowsour.2006.01.081
10.1002/advs.201600140
10.1016/j.jpowsour.2006.01.047
10.1016/S0167-2738(01)00915-8
10.1002/fuce.200400013
10.1016/j.memsci.2014.09.023
10.1016/j.nanoen.2016.04.026
10.1016/j.memsci.2009.09.026
10.1002/adma.200703159
10.1016/j.memsci.2019.117354
10.1002/mame.201600468
10.1016/j.ijhydene.2018.04.089
10.1016/j.ijhydene.2016.05.227
10.1016/j.jpowsour.2019.227620
10.1016/j.memsci.2012.04.013
10.1021/ma062186d
10.1039/c1jm11159k
10.1021/acsaem.9b01802
10.1016/j.jpowsour.2014.06.171
10.1039/c2jm35571j
10.1149/1.1630037
10.1021/jp047607c
10.1002/smll.200801742
10.1023/B:JOCC.0000014687.42317.b2
10.1016/j.energy.2021.121791
10.1016/j.memsci.2020.118436
10.1016/j.memsci.2015.09.001
10.1016/j.ijhydene.2017.11.029
10.1021/cm0310519
10.1016/j.memsci.2006.01.049
10.1038/nature11115
10.1016/j.ijhydene.2020.07.026
10.1016/j.eurpolymj.2010.03.005
10.1016/j.jpowsour.2012.11.126
10.1016/j.ssi.2007.01.014
10.1016/j.jpowsour.2014.09.128
10.1016/j.reactfunctpolym.2014.09.019
10.1016/j.memsci.2008.01.044
10.1016/S0378-7753(01)01069-2
10.1149/1.2754078
10.1016/j.jpowsour.2021.229732
10.1016/j.electacta.2010.12.069
10.1016/j.jpowsour.2012.07.112
10.1016/j.jpowsour.2006.05.034
10.1016/S0378-7753(02)00066-6
10.1016/j.memsci.2020.118981
10.1016/j.memsci.2007.09.045
10.1016/j.ijhydene.2021.07.116
10.1149/2.0561414jes
10.1007/s13233-012-0191-2
10.1039/C2TA00270A
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KB.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/membranes11110826
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Engineering Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2077-0375
ExternalDocumentID oai_doaj_org_article_2d48c8e50a54412aa175f2b85a1aaa30
PMC8618715
10_3390_membranes11110826
GroupedDBID 53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
D1I
EAD
EAP
EPL
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
I-F
KB.
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RPM
TUS
UKHRP
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-3f11587a1bd2414b835d1d47e72588bc05b50178daacd38e5a57696c1a8544e83
IEDL.DBID M48
ISSN 2077-0375
IngestDate Wed Aug 27 01:31:20 EDT 2025
Thu Aug 21 13:44:19 EDT 2025
Fri Jul 11 08:05:29 EDT 2025
Fri Jul 25 11:56:04 EDT 2025
Tue Jul 01 03:32:36 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-3f11587a1bd2414b835d1d47e72588bc05b50178daacd38e5a57696c1a8544e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/membranes11110826
PMID 34832055
PQID 2602129306
PQPubID 2032363
ParticipantIDs doaj_primary_oai_doaj_org_article_2d48c8e50a54412aa175f2b85a1aaa30
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618715
proquest_miscellaneous_2604021925
proquest_journals_2602129306
crossref_primary_10_3390_membranes11110826
crossref_citationtrail_10_3390_membranes11110826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211027
PublicationDateYYYYMMDD 2021-10-27
PublicationDate_xml – month: 10
  year: 2021
  text: 20211027
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Membranes (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References He (ref_68) 2003; 226
Wise (ref_2) 2009; 324
Kreuer (ref_87) 1982; 21
Hu (ref_116) 2015; 496
Krishnan (ref_78) 2018; 560
Awang (ref_12) 2015; 86
Debe (ref_3) 2012; 486
Gu (ref_30) 2013; 38
Chu (ref_26) 2012; 22
Wang (ref_17) 2011; 56
Han (ref_28) 2011; 21
Aili (ref_111) 2015; 279
Feng (ref_122) 2010; 346
Meyers (ref_4) 2002; 109
Ahmed (ref_8) 2011; 35
Rajabi (ref_75) 2021; 46
Ubong (ref_19) 2009; 156
Lobato (ref_65) 2006; 280
Diaz (ref_22) 2012; 411–412
Silva (ref_117) 2005; 145
Han (ref_125) 2011; 196
Li (ref_70) 2003; 15
Peighambardoust (ref_48) 2010; 35
Chtioui (ref_53) 2004; 34
Zhang (ref_49) 2012; 112
Lee (ref_80) 2010; 357
Maity (ref_106) 2015; 66
Krishnan (ref_114) 2010; 46
Li (ref_15) 2003; 150
Shah (ref_41) 2007; 166
Berber (ref_79) 2019; 591
Mukhopadhyay (ref_62) 2020; 3
Cheng (ref_110) 2020; 450
Pan (ref_102) 2018; 24
Weber (ref_61) 2018; 20
Chen (ref_36) 2021; 491
Ma (ref_55) 2004; 151
Ahmad (ref_9) 2010; 35
Peron (ref_44) 2008; 314
Wycisk (ref_108) 2006; 163
Zhou (ref_13) 2021; 138
Liu (ref_91) 2021; 494
Li (ref_64) 2004; 4
Bouchet (ref_52) 1999; 118
Wang (ref_130) 2014; 257
Kerres (ref_60) 2004; 4
Mack (ref_81) 2014; 270
Kovar (ref_77) 1976; 14
Sun (ref_29) 2018; 549
Guo (ref_92) 2021; 168
Yu (ref_82) 2009; 42
Kim (ref_101) 2021; 46
Song (ref_95) 2016; 41
Zhang (ref_72) 2008; 308
Ahmad (ref_127) 2011; 36
Wang (ref_40) 2018; 216
Dresselhaus (ref_1) 2001; 414
Klaehn (ref_85) 2007; 40
Kim (ref_98) 2017; 536
Carollo (ref_16) 2006; 160
Haghighi (ref_126) 2011; 36
Li (ref_96) 2013; 1
Xu (ref_25) 2011; 21
Zhang (ref_7) 2006; 160
Seland (ref_71) 2006; 160
Sun (ref_94) 2017; 42
Liu (ref_83) 2013; 21
Bouchet (ref_50) 2001; 145
Karthikeyan (ref_88) 2005; 254
Chandan (ref_11) 2013; 231
Mamlouk (ref_20) 2010; 35
ref_57
Yusoff (ref_27) 2020; 45
Jiang (ref_38) 2012; 22
Wang (ref_89) 2018; 43
Wang (ref_105) 1996; 143
Xiao (ref_46) 2016; 24
Hedberg (ref_76) 1974; 12
Wang (ref_90) 2019; 11
Ye (ref_56) 2008; 178
Wycisk (ref_129) 2005; 152
Shabanikia (ref_86) 2014; 161
Mack (ref_23) 2015; 3
Silva (ref_120) 2005; 104
Mondal (ref_123) 2015; 474
Hao (ref_73) 2019; 95
Gwak (ref_21) 2018; 43
Gogel (ref_37) 2019; 19
Zhao (ref_112) 2015; 273
Liu (ref_42) 2007; 9
Jheng (ref_32) 2014; 2
Zhang (ref_10) 2012; 41
Sun (ref_93) 2017; 302
Deborah (ref_18) 2001; 185
Liu (ref_69) 2009; 332
Yu (ref_118) 2016; 101
Neyerlin (ref_43) 2008; 176
Qian (ref_109) 2009; 50
Wang (ref_24) 2020; 602
Agmon (ref_99) 1995; 244
Hooshyari (ref_63) 2020; 612
Lin (ref_84) 2012; 389
Dyer (ref_5) 2002; 106
Gao (ref_115) 2020; 44
He (ref_34) 2006; 277
Okamoto (ref_119) 2009; 5
Hughes (ref_54) 2004; 108
Barati (ref_31) 2021; 45
Zhang (ref_39) 2018; 389
Uregen (ref_58) 2017; 42
Wainright (ref_104) 1995; 142
Tung (ref_47) 2005; 15
ref_103
Gubler (ref_67) 2007; 154
Venugopalan (ref_74) 2020; 3
Ryu (ref_51) 2022; 128
Ghosh (ref_66) 2011; 21
Ainla (ref_35) 2007; 178
Ven (ref_97) 2013; 222
Shigematsu (ref_100) 2011; 133
Pasupathi (ref_124) 2008; 33
Li (ref_14) 2009; 34
Geng (ref_33) 2021; 620
Wang (ref_128) 2020; 167
Kumar (ref_121) 2020; 445
Li (ref_45) 2016; 3
Chuang (ref_113) 2007; 168
Kerres (ref_59) 2003; 6
Kawahara (ref_107) 2000; 45
ref_6
References_xml – volume: 104
  start-page: 205
  year: 2005
  ident: ref_120
  article-title: Characterization and application of composite membranes in DMFC
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.03.051
– volume: 3
  start-page: 10864
  year: 2015
  ident: ref_23
  article-title: Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01337B
– volume: 156
  start-page: B1276
  year: 2009
  ident: ref_19
  article-title: Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3203309
– volume: 244
  start-page: 456
  year: 1995
  ident: ref_99
  article-title: The Grotthuss mechanism
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00905-J
– volume: 50
  start-page: 3911
  year: 2009
  ident: ref_109
  article-title: Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.06.024
– volume: 24
  start-page: 1629
  year: 2018
  ident: ref_102
  article-title: Preparation and properties of sulfonated polybenzimidazole-polyimide block copolymers as electrolyte membranes
  publication-title: Ionics
  doi: 10.1007/s11581-017-2341-1
– volume: 226
  start-page: 169
  year: 2003
  ident: ref_68
  article-title: Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2003.09.002
– volume: 178
  start-page: 651
  year: 2008
  ident: ref_56
  article-title: New membranes based on ionic liquids for PEM fuel cells at elevated temperatures
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.07.074
– volume: 11
  start-page: 39979
  year: 2019
  ident: ref_90
  article-title: Constructing Amino-Functionalized Flower-like Metal Organic Framework Nanofibers in Sulfonated Poly(ether sulfone) Proton Exchange Membrane for Simultaneously Enhancing Interface Compatibility and Proton Conduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13496
– volume: 21
  start-page: 208
  year: 1982
  ident: ref_87
  article-title: Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.198202082
– volume: 216
  start-page: 243
  year: 2018
  ident: ref_40
  article-title: Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.102
– volume: 254
  start-page: 139
  year: 2005
  ident: ref_88
  article-title: Polymer nanocomposite membranes for DMFC application
  publication-title: J. Membr. Sci
  doi: 10.1016/j.memsci.2004.12.048
– volume: 185
  start-page: 41
  year: 2001
  ident: ref_18
  article-title: Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00633-5
– volume: 536
  start-page: 76
  year: 2017
  ident: ref_98
  article-title: Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.04.058
– volume: 549
  start-page: 660
  year: 2018
  ident: ref_29
  article-title: Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline
  publication-title: J. Mater. Chem.
– volume: 491
  start-page: 229550
  year: 2021
  ident: ref_36
  article-title: One step electrochemical exfoliation of natural graphite flakes into graphene oxide for polybenzimidazole composite membranes giving enhanced performance in high temperature fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229550
– volume: 163
  start-page: 9
  year: 2006
  ident: ref_108
  article-title: Direct methanol fuel cell membranes from Nafion–polybenzimidazole blends
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.11.056
– volume: 2
  start-page: 4225
  year: 2014
  ident: ref_32
  article-title: A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14631f
– volume: 21
  start-page: 2187
  year: 2011
  ident: ref_28
  article-title: Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02443K
– volume: 445
  start-page: 227293
  year: 2020
  ident: ref_121
  article-title: Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227293
– volume: 14
  start-page: 2807
  year: 1976
  ident: ref_77
  article-title: Para-ordered polybenzimidazole
  publication-title: J. Polym. Sci. Polym. Chem.
  doi: 10.1002/pol.1976.170141120
– volume: 36
  start-page: 3688
  year: 2011
  ident: ref_126
  article-title: Direct methanol fuel cell performance of sulfonated poly (2,6-dimethyl-1,4-phenylene oxide)-polybenzimidazole blend proton exchange membranes
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.101
– volume: 15
  start-page: 3532
  year: 2005
  ident: ref_47
  article-title: Synthesis and characterization of hydrated phosphor–silicate glass membrane prepared by an accelerated sol-gel process with water/vapor management
  publication-title: J. Mater. Chem.
  doi: 10.1039/b505918f
– volume: 42
  start-page: 14572
  year: 2017
  ident: ref_94
  article-title: Construction of proton channels and reinforcement of physicochemical properties of oPBI/FeSPP/GF high temperature PEM via building hydrogen bonding network
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.092
– volume: 45
  start-page: 1395
  year: 2000
  ident: ref_107
  article-title: Synthesis and proton conductivity of thermally stable polymer electrolyte: Poly(benzimidazole) complexes with strong acid molecules
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00349-7
– volume: 22
  start-page: 18411
  year: 2012
  ident: ref_26
  article-title: Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32787b
– volume: 12
  start-page: 1823
  year: 1974
  ident: ref_76
  article-title: New single-step process for polybenzimidazole synthesis
  publication-title: J. Polym. Sci.
– volume: 560
  start-page: 11
  year: 2018
  ident: ref_78
  article-title: Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.05.006
– volume: 196
  start-page: 9916
  year: 2011
  ident: ref_125
  article-title: Sulfonated poly (ether ether ketone)/polybenzimidazole oligomer/epoxy resin composite membranes in situ polymerization for direct methanol fuel cell usages
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.049
– volume: 138
  start-page: 110660
  year: 2021
  ident: ref_13
  article-title: Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110660
– volume: 357
  start-page: 130
  year: 2010
  ident: ref_80
  article-title: Synthesis and characterization of acid-doped polybenzimidazole membranes by sol–gel and post-membrane casting method
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.04.010
– volume: 143
  start-page: 1233
  year: 1996
  ident: ref_105
  article-title: Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836622
– volume: 166
  start-page: 1
  year: 2007
  ident: ref_41
  article-title: A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.01.020
– ident: ref_57
  doi: 10.3390/nano8100775
– volume: 19
  start-page: 256
  year: 2019
  ident: ref_37
  article-title: New Materials and Flow Field Design for Middle-Temperature Direct Methanol Fuel Cell with Low Cathode Pressure
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201800172
– volume: 118
  start-page: 287
  year: 1999
  ident: ref_52
  article-title: Proton conduction in acid doped polybenzimidazole
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(98)00466-4
– volume: 42
  start-page: 2636
  year: 2017
  ident: ref_58
  article-title: Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.009
– volume: 21
  start-page: 14897
  year: 2011
  ident: ref_66
  article-title: Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12169c
– ident: ref_6
  doi: 10.1016/B978-0-444-56353-8.00016-2
– volume: 6
  start-page: 223
  year: 2003
  ident: ref_59
  article-title: Development of new blend membranes for polymer electrolyte fuel cell applications
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 9
  start-page: 135
  year: 2007
  ident: ref_42
  article-title: Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.08.056
– volume: 34
  start-page: 449
  year: 2009
  ident: ref_14
  article-title: High temperature proton exchange membranes based on polybenzimidazoles for fuel cells
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.12.003
– volume: 389
  start-page: 399
  year: 2012
  ident: ref_84
  article-title: Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.11.005
– volume: 133
  start-page: 2034
  year: 2011
  ident: ref_100
  article-title: Wide control of proton conductivity in porous coordination polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109810w
– volume: 33
  start-page: 3132
  year: 2008
  ident: ref_124
  article-title: High DMFC performance output using modified acid–base polymer blend
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.033
– volume: 414
  start-page: 332
  year: 2001
  ident: ref_1
  article-title: Alternative energy technologies
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 168
  start-page: 024510
  year: 2021
  ident: ref_92
  article-title: Enhancing proton conductivity and durability of crosslinked PBI-Based high-temperature PEM: Effectively doping a novel cerium triphosphonic-isocyanurate
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abe290
– volume: 35
  start-page: 2160
  year: 2010
  ident: ref_9
  article-title: Overview of hybrid membranes for direct-methanol fuel-cell applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.12.054
– volume: 176
  start-page: 112
  year: 2008
  ident: ref_43
  article-title: Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.10.030
– volume: 38
  start-page: 16410
  year: 2013
  ident: ref_30
  article-title: Polybenzimidazole/zwitterion-coated polyamidoamine dendrimer composite membranes for direct methanol fuel cell applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.131
– volume: 95
  start-page: 185
  year: 2019
  ident: ref_73
  article-title: Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for ht-pemfc applications
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.06.036
– volume: 145
  start-page: 485
  year: 2005
  ident: ref_117
  article-title: Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.12.061
– volume: 45
  start-page: 20057
  year: 2021
  ident: ref_31
  article-title: Preparation, characterization and proton transport of new porous nanocomposite membranes based on polybenzimidazole, lignin and TiO2 nanoparticles for high temperature PEM fuel cells
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7083
– volume: 4
  start-page: 147
  year: 2004
  ident: ref_64
  article-title: PBI-based Polymer Membranes for High Temperature Fuel Cells–Preparation, Characterization and Fuel Cell Demonstration
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200400020
– volume: 602
  start-page: 117981
  year: 2020
  ident: ref_24
  article-title: Synthesis and preparation of branched block polybenzimidazole membranes with high proton conductivity and single-cell performance for use in high temperature proton exchange membrane fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117981
– volume: 167
  start-page: 104617
  year: 2020
  ident: ref_128
  article-title: Preparation and Properties of Covalently Crosslinked Polybenzimidazole High Temperature Proton Exchange Membranes Doped with High Sulfonated Polyphosphazene
  publication-title: J. Electrochem. Soc.
– volume: 168
  start-page: 172
  year: 2007
  ident: ref_113
  article-title: Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.03.021
– volume: 150
  start-page: A1599
  year: 2003
  ident: ref_15
  article-title: The CO poisoning effect in PEMFCs operational at temperatures up to 200 degrees C
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1619984
– volume: 101
  start-page: 98554
  year: 2016
  ident: ref_118
  article-title: Bottom-up design of a stable CO-tolerant platinum electrocatalyst with enhanced fuel cell performance in direct methanol fuel cells
  publication-title: RSC Adv.
– volume: 41
  start-page: 2382
  year: 2012
  ident: ref_10
  article-title: Advances in the high performance polymer electrolyte membranes for fuel cells
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15269j
– volume: 142
  start-page: L121
  year: 1995
  ident: ref_104
  article-title: Acid-doped Polybenzimidazoles-a New Polymer Electrolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2044337
– volume: 35
  start-page: 9349
  year: 2010
  ident: ref_48
  article-title: Review of the proton exchange membranes for fuel cell applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.05.017
– ident: ref_103
  doi: 10.1002/er.7178
– volume: 332
  start-page: 121
  year: 2009
  ident: ref_69
  article-title: Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.01.045
– volume: 279
  start-page: 517
  year: 2015
  ident: ref_111
  article-title: Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.010
– volume: 35
  start-page: 784
  year: 2010
  ident: ref_20
  article-title: The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.027
– volume: 46
  start-page: 12254
  year: 2021
  ident: ref_101
  article-title: Polybenzimidazole composite membranes containing imidazole functionalized graphene oxide showing high proton conductivity and improved physicochemical properties
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.193
– volume: 66
  start-page: 76
  year: 2015
  ident: ref_106
  article-title: Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.03.040
– volume: 44
  start-page: 4677
  year: 2020
  ident: ref_115
  article-title: Alkali-doped hyperbranched cross-linked polybenzimidazoles containing benzyltrimethyl ammoniums with improved ionic conductivity as alkaline direct methanol fuel cell membranes
  publication-title: Energy Res.
  doi: 10.1002/er.5250
– volume: 152
  start-page: A892
  year: 2005
  ident: ref_129
  article-title: Sulfonated polyphosphazene-polybenzimidazole membranes for DMFCs
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1874692
– volume: 112
  start-page: 2780
  year: 2012
  ident: ref_49
  article-title: Recent development of polymer electrolyte membranes for fuel cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr200035s
– volume: 324
  start-page: 1183
  year: 2009
  ident: ref_2
  article-title: Implications of limiting CO2 concentrations for land use and energy
  publication-title: Science
  doi: 10.1126/science.1168475
– volume: 42
  start-page: 8640
  year: 2009
  ident: ref_82
  article-title: Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs
  publication-title: Marcomolecules
  doi: 10.1021/ma9015664
– volume: 36
  start-page: 14668
  year: 2011
  ident: ref_127
  article-title: A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.08.044
– volume: 389
  start-page: 37
  year: 2018
  ident: ref_39
  article-title: Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.009
– volume: 257
  start-page: 254
  year: 2014
  ident: ref_130
  article-title: Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.104
– volume: 277
  start-page: 38
  year: 2006
  ident: ref_34
  article-title: Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.10.005
– volume: 3
  start-page: 7964
  year: 2020
  ident: ref_62
  article-title: Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01322
– volume: 35
  start-page: 1213
  year: 2011
  ident: ref_8
  article-title: A review on methanol crossover in direct methanol fuel cells: Challenges and achievements
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1889
– volume: 160
  start-page: 175
  year: 2006
  ident: ref_16
  article-title: Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.01.081
– volume: 3
  start-page: 1600140
  year: 2016
  ident: ref_45
  article-title: High-performance direct methanol fuel cells with precious-metal-free cathode
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600140
– volume: 160
  start-page: 27
  year: 2006
  ident: ref_71
  article-title: Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.01.047
– volume: 145
  start-page: 69
  year: 2001
  ident: ref_50
  article-title: A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(01)00915-8
– volume: 4
  start-page: 105
  year: 2004
  ident: ref_60
  article-title: Crosslinked polyaryl blend membranes for polymer electrolyte fuel cells
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200400013
– volume: 474
  start-page: 140
  year: 2015
  ident: ref_123
  article-title: Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: Effect of dip-coating of a blend of sulphonated PVdF-co-HFP and PBI
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.09.023
– volume: 24
  start-page: 121
  year: 2016
  ident: ref_46
  article-title: Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.04.026
– volume: 346
  start-page: 105
  year: 2010
  ident: ref_122
  article-title: Novel method for the preparation of ionically crosslinked sulfonated poly (arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.09.026
– volume: 20
  start-page: 2595
  year: 2018
  ident: ref_61
  article-title: Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)-Phosphoric Acid Adducts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703159
– volume: 591
  start-page: 117354
  year: 2019
  ident: ref_79
  article-title: Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117354
– volume: 302
  start-page: 1600468
  year: 2017
  ident: ref_93
  article-title: Pre-Oxidized Acrylic Fiber Reinforced Ferric Sulfophenyl Phosphate-Doped Polybenzimidazole-Based High-Temperature Proton Exchange Membrane
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600468
– volume: 43
  start-page: 9994
  year: 2018
  ident: ref_89
  article-title: Comprehensive performance enhancement of polybenzimidazole based high temperature proton exchange membranes by doping with a novel intercalated proton conductor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.089
– volume: 41
  start-page: 12069
  year: 2016
  ident: ref_95
  article-title: Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.227
– volume: 450
  start-page: 227620
  year: 2020
  ident: ref_110
  article-title: Significantly enhanced performance of direct methanol fuel cells at elevated temperatures
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227620
– volume: 411–412
  start-page: 35
  year: 2012
  ident: ref_22
  article-title: Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.04.013
– volume: 40
  start-page: 7487
  year: 2007
  ident: ref_85
  article-title: Soluble N-substituted organosilane polybenzimidazoles
  publication-title: Macromolecules
  doi: 10.1021/ma062186d
– volume: 21
  start-page: 11359
  year: 2011
  ident: ref_25
  article-title: A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm11159k
– volume: 3
  start-page: 573
  year: 2020
  ident: ref_74
  article-title: Stable and highly conductive polycation–polybenzimidazole membrane blends for intermediate temperature polymer electrolyte membrane fuel cells
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01802
– volume: 270
  start-page: 627
  year: 2014
  ident: ref_81
  article-title: Phosphoric acid distribution and its impact on the performance of polybenzimidazole membranes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.171
– volume: 22
  start-page: 24862
  year: 2012
  ident: ref_38
  article-title: Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35571j
– volume: 151
  start-page: A8
  year: 2004
  ident: ref_55
  article-title: Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1630037
– volume: 108
  start-page: 13626
  year: 2004
  ident: ref_54
  article-title: Probing Structure and Dynamics in Poly[2,2‘-(m-phenylene)-5,5‘-bibenzimidazole] Fuel Cells with Magic-Angle Spinning NMR
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047607c
– volume: 5
  start-page: 735
  year: 2009
  ident: ref_119
  article-title: Design of an Assembly of Poly(benzimidazole), Carbon Nanotubes, and Pt Nanoparticles for a Fuel-Cell Electrocatalyst with an Ideal Interfacial Nanostructure
  publication-title: Small
  doi: 10.1002/smll.200801742
– volume: 34
  start-page: 43
  year: 2004
  ident: ref_53
  article-title: Structure, thermal behavior and IR investigations of (C6H9N2)H2PO4
  publication-title: J. Chem. Crystallogr.
  doi: 10.1023/B:JOCC.0000014687.42317.b2
– volume: 128
  start-page: 121791
  year: 2022
  ident: ref_51
  article-title: Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120–160 °C
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121791
– volume: 612
  start-page: 118436
  year: 2020
  ident: ref_63
  article-title: High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118436
– volume: 496
  start-page: 31
  year: 2015
  ident: ref_116
  article-title: Zwitterion-coated graphene-oxide-doped composite membranes for proton exchange membrane applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.09.001
– volume: 43
  start-page: 13999
  year: 2018
  ident: ref_21
  article-title: Studies of the methanol crossover and cell performance behaviors of high temperature-direct methanol fuel cells (HT-DMFCs)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.11.029
– volume: 15
  start-page: 4896
  year: 2003
  ident: ref_70
  article-title: Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating Above 100 °C
  publication-title: Chem. Mater.
  doi: 10.1021/cm0310519
– volume: 280
  start-page: 351
  year: 2006
  ident: ref_65
  article-title: Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.01.049
– volume: 486
  start-page: 43
  year: 2012
  ident: ref_3
  article-title: Electrocatalyst approaches and challenges for automotive fuel cells
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 45
  start-page: 27510
  year: 2020
  ident: ref_27
  article-title: Sulfonated graphene oxide as an inorganic filler in promoting the properties of a polybenzimidazole membrane as a high temperature proton exchange membrane
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.07.026
– volume: 46
  start-page: 1633
  year: 2010
  ident: ref_114
  article-title: Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2010.03.005
– volume: 231
  start-page: 264
  year: 2013
  ident: ref_11
  article-title: High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.126
– volume: 178
  start-page: 581
  year: 2007
  ident: ref_35
  article-title: Nafion –polybenzimidazole (PBI) composite membranes for DMFC applications
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2007.01.014
– volume: 273
  start-page: 517
  year: 2015
  ident: ref_112
  article-title: High-temperature passive direct methanol fuel cells operating with concentrated fuels
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.128
– volume: 86
  start-page: 248
  year: 2015
  ident: ref_12
  article-title: Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2014.09.019
– volume: 314
  start-page: 247
  year: 2008
  ident: ref_44
  article-title: Solution sulfonation of a novel polybenzimidazole, a proton electrolyte for fuel cell application
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.01.044
– volume: 106
  start-page: 31
  year: 2002
  ident: ref_5
  article-title: Fuel cells for portable applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)01069-2
– volume: 154
  start-page: B981
  year: 2007
  ident: ref_67
  article-title: Celtec-V: A polybenzimidazole-based membrane for the direct methanol fuel cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2754078
– volume: 494
  start-page: 229732
  year: 2021
  ident: ref_91
  article-title: Multifunctional poly (ionic liquid) s cross-linked polybenzimidazole membrane with excellent long-term stability for high temperature-proton exchange membranes fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229732
– volume: 56
  start-page: 2842
  year: 2011
  ident: ref_17
  article-title: Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.12.069
– volume: 222
  start-page: 202
  year: 2013
  ident: ref_97
  article-title: Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.112
– volume: 160
  start-page: 872
  year: 2006
  ident: ref_7
  article-title: High temperature PEM fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.05.034
– volume: 109
  start-page: 76
  year: 2002
  ident: ref_4
  article-title: Design considerations for miniaturized PEM fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00066-6
– volume: 620
  start-page: 118981
  year: 2021
  ident: ref_33
  article-title: Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118981
– volume: 308
  start-page: 66
  year: 2008
  ident: ref_72
  article-title: Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.09.045
– volume: 46
  start-page: 33241
  year: 2021
  ident: ref_75
  article-title: Phosphoric acid doped polybenzimidazole based polymer electrolyte membrane and functionalized SBA-15 mesoporous for elevated temperature fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.116
– volume: 161
  start-page: F1403
  year: 2014
  ident: ref_86
  article-title: Effect of La2Ce2O7 on the physicochemical properties of phosphoric acid doped polybenzimidazole nanocomposite membranes for high temperature proton exchange membrane fuel cells applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0561414jes
– volume: 21
  start-page: 35
  year: 2013
  ident: ref_83
  article-title: Fuel Cell Based on Novel Hyper-Branched Polybenzimidazole Membrane
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-012-0191-2
– volume: 1
  start-page: 1171
  year: 2013
  ident: ref_96
  article-title: Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA00270A
SSID ssj0000605630
Score 2.3244374
SecondaryResourceType review_article
Snippet Hydrogen-air proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are excellent fuel cells with high limits of energy density....
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 826
SubjectTerms Alternative energy
Carbon monoxide
Catalysts
Conductivity
DMFC
Electrodes
Electrolytes
Electrolytic cells
Flux density
Fuel cells
Fuel technology
Heat resistance
High temperature
Hydrogen
Membranes
Methanol
PEMFC
Permeability
polybenzimidazole
Polybenzimidazoles
polymer electrolyte membrane
Polymers
proton conductivity
proton exchange membrane
Proton exchange membrane fuel cells
Protons
Review
Thermal stability
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejp-4w1nZjWT9QoaeBqWR9WDm2oaEMWnpYoTejL28BRx5pckj_-j5JTogZtJcdLclY0pP0fj_r8XsIXVhpHXFjVUg-ZgWvrC6MsRQMIok33FLmUoDsvbx95D-fxNNOqq8YE5blgfPEXZaOK6u8IDpmyyq1Bn_XlEYJTbXWLLF18Hk7ZCqfwSQKX-VrTAa8_nLu50A_4fiIZwT4PTlwREmvfwAyhyGSOz5n-hl96sEivsqdPEAffDhEH3ckBI_Q-q5zMdon_3jDXcAPOcAu_MaA7eIToDs86UIUdk2ZInDX4IeuXRsfXmbzmdMvXeuLa3BnLpXP_QLf5Ow47Xrp8d1mTHgW8HTlWzzxbfv8BT1Ob35Nbos-nUJhBZPLgjWA_lSlqXHgtrkB7OWo45WvSqGUsUQYAftTOa2tYzDlGrjIWFqqFUy9V-wr2gtd8N8QhtLGSNY4YTX33BlGXUWpZ4Yw1RA1QmQzt7XttcZjyou2Bs4RzVH_Y44R-rF95W8W2nir8XU02LZh1MhOBbBy6n7l1O-tnBE62Zi77jfucw30rowQiMA3zrfVsOXiPQp0oVulNsC6ARqLEaoGy2TQoWFNmP1J4t1KUuCo4vv_GMEx2i9jiA240rI6QXvLxcqfAkZamrO0HV4BJ00Uiw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtemkPpU_qJi0q9FQwkayHtafSLNmGQkoODeRm9HK64JWSfRw2vz4j2buNKeRoWUaSR6Pvm9Ewg9BXK60jbqJKySes5LXVpTGWgkAk8YZbylwOkP0tzy75rytxNTjcVkNY5e5MzAe1izb5yI-Bd1cJm4j8fnNbpqpR6XZ1KKHxFD2jgDQppEvNfu59LDBeSn_VX2YysO6PF34BRigcIumkAPSTIzjKWftHVHMcKPkAeWav0MuBMuIfvYxfoyc-vEEvHiQSfIu259GlmJ_e_YZjwBd9mF24xsDw0hNwPDyNIaV3zfUicGzxRey2xoe7-WLu9F3sfHkCoOZy-8Iv8WlfI6fbrj0-360JzwOebXyHp77rVu_Q5ez0z_SsHIoqlFYwuS5ZCxxQ1ZoaB-DNDTAwRx2vfV0JpYwlwgjQUuW0to4pLzRYJBNpqVaCc6_Ye3QQYvAfEIbW1kjWOmE199wZRl1NqWeGMNUSVSCy-7eNHTKOp8IXXQOWRxJH8584CvRt_8lNn27jsc4nSWD7jilTdm6Iy-tmULymclxZWAbRqdpapTXwpbYySmiqtWakQEc7cTeD-q6af5utQF_2r0Hx0m0KTCFuch-wvYEgiwLVo20ymtD4TZj_zSm8laRgqYqPjw9-iJ5XKYQGoLKqj9DBernxn4ADrc3nvNHvAbNWDBU
  priority: 102
  providerName: ProQuest
Title Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells
URI https://www.proquest.com/docview/2602129306
https://www.proquest.com/docview/2604021925
https://pubmed.ncbi.nlm.nih.gov/PMC8618715
https://doaj.org/article/2d48c8e50a54412aa175f2b85a1aaa30
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBb7gLI9lD5pttugQk8Ft5IlWcqhlCYkXQpZQmkgN6OXdwOO3WYT2Oyv78iPENOlh14M1gNbGo3m-6zxDELvbWIdcQMVJXzAIi6tjoyxFASSEG-4pcxVDrJXyeWcf1-IxRFq01s1E3j7ILUL-aTm6_zj3e_dF1D4z4FxAmX_tPIrYJawMwT1B5OWHKNTMEwyJDSYNmi_3phJiIZVn20-3PMMPWIcFjkJv_4dGKoqnn8HhHZdKA9s0uQpetKASfy1lv4zdOSL5-jxQYjBF2g3LV3wBqo_zOGywLPaAa-4xoD9wh2gPzwqixD4tcokgcsMz8p8Z3xxv1wtnb4vcx8Nwdy5qnzl13hcZ8_JdxuPp-3w8LLAk63P8cjn-e1LNJ-Mf44uoybdQmQFSzYRywAdKqmpcTB73AA2c9Rx6WUslDKWCCNAf5XT2jqmvNDAVQaJpVoJzr1ir9BJURb-NcJQmpmEZU5YzT13hlEnKfXMEKYyonqItHOb2iYWeUiJkafASYJk0r8k00Mf9l1-1YE4_tV4GAS2bxhiaFcF5fo6bVQyjR1XFoZBdMjDFmsNSCqLjRKaaq0Z6aGLVtxpuy5ToH9xgEgEnvFuXw0qGc5Z4BXKbdUGWDlAZ9FDsrNMOi_UrSmWN1Vwb5VQ4LDi_L97vkFncfC7Afsaywt0sllv_VsAThvTR8dyIeGqJt_66HQ4vpr96FcfIfqVovwBEJQiiw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgJLkhR4_gR7wEhunTZ0m7VQyv1FvxKWSkbl30IbX8Uv5FxHksjpN56XNvJxpnxzDf2ZD6E3hthbGIHMhZsQGOWGRVrbQgIRCROM0OorRNkj8X4jH0_5-db6E_3LUxIq-xsYm2orTdhj3wXcHcafFMiPl_-igNrVDhd7Sg0GrU4dOvfELItPh18Bfl-SNPR_ulwHLesArHhVCxjWgAIkpki2oL3YhogiCWWZS5LuZTaJFzzwFlvlTKWSscVQPKBMERJzpiTFO57B91lFDx5-DJ99G2zpwPzC-W2msNT6E92Z24GQS8YrWCZwNuKnvurWQJ60LafmHnN040eoYctRMVfGp16jLZc9QQ9uFa48ClaT7wNOUbNdh_2FT5p0vqqCwyIMvwCTImHvgrlZGt-CuwLfOLLtXbV1XQ2terKly7eAydq6_aZm-P9hpOnXC8dnnRzwtMKj1auxENXlotn6OxWXvdztF35yr1AGFoLLWhhuVHMMaspsRkhjuqEyiKREUq6d5ubtsJ5INooc4h0gjjy_8QRoY-bSy6b8h43Dd4LAtsMDJW56wY_v8jbhZ6nlkkD00hUYHdLlQJ8VqRackWUUjSJ0E4n7rw1F4v8n3JH6N2mGxZ6OL2BR_CregzE-gDIeYSynpr0HqjfU01_1iXDpSAQGfOXN__5W3RvfDo5yo8Ojg9foftpSN8BN51mO2h7OV-514C_lvpNrfQY_bjtVfYXnv5HqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFocAiwQXJiu3dtTcHhEiaqKU0ihCVejP7conk2CUPofSn8euY9SPUQuqtR6_Xj_XMznyzO54P4J2OtQnMQPgxG1CfJVr6SukQBRIHVjEdUlMlyE7jozP25Zyf78Gf9l8Yl1bZ2sTKUJtSuzXyPuLuyPmmIO5nTVrE7HDy6fKX7xik3E5rS6dRq8iJ3f7G8G318fgQZf0-iibj76Mjv2EY8DWn8dqnGQIikchQGfRkTCEcMaFhiU0iLoTSAVfc8dcbKbWhwnKJ8HwQ61AKzpgVFO97B_YTFxX1YH84ns6-7VZ4cLSu-Fa9lUrpIOgv7AJDYDRhzk6h7407zrDiDOgA3W6a5jW_N3kIDxrASj7XGvYI9mzxGO5fK2P4BLanpXEZR_XiHykLMquT_IoLgvjSHSHCJKOycMVlK7YKUmZkVuZbZYur-WJu5FWZW3-ILtVU7Qu7JOOaoSffri05bcdE5gWZbGxORjbPV0_h7FY--DPoFWVhnwPB1kzFNDNcS2aZUTQ0SRhaqgIqskB4ELTfNtVNvXNHu5GnGPc4caT_icODD7tLLutiHzd1HjqB7Tq6Ot1VQ7m8SJtpn0aGCY3DCKTjeoukRLSWRUpwGUopaeDBQSvutDEeq_Sfqnvwdncap73by8FXKDdVH4z8EZ5zD5KOmnReqHummP-sCoiLOMQ4mb-4-eFv4C7OsPTr8fTkJdyLXC4P-uwoOYDeermxrxCMrdXrRusJ_LjtifYXANdNOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifications+on+Promoting+the+Proton+Conductivity+of+Polybenzimidazole-Based+Polymer+Electrolyte+Membranes+in+Fuel+Cells&rft.jtitle=Membranes+%28Basel%29&rft.au=Chen%2C+Junyu&rft.au=Cao%2C+Jiamu&rft.au=Zhang%2C+Rongji&rft.au=Zhou%2C+Jing&rft.date=2021-10-27&rft.pub=MDPI&rft.eissn=2077-0375&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fmembranes11110826&rft_id=info%3Apmid%2F34832055&rft.externalDocID=PMC8618715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0375&client=summon