Improved Cognitive Vigilance Assessment after Artifact Reduction with Wavelet Independent Component Analysis

Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 8; p. 3051
Main Authors Abu Farha, Nadia, Al-Shargie, Fares, Tariq, Usman, Al-Nashash, Hasan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22083051

Cover

Loading…
Abstract Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color–Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA.
AbstractList Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color–Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA.
Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color-Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA.Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color-Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA.
Audience Academic
Author Abu Farha, Nadia
Tariq, Usman
Al-Nashash, Hasan
Al-Shargie, Fares
AuthorAffiliation 2 Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
1 Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; nadiaabufarha@gmail.com (N.A.F.); fyahya@aus.edu (F.A.-S.); utariq@aus.edu (U.T.)
AuthorAffiliation_xml – name: 1 Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; nadiaabufarha@gmail.com (N.A.F.); fyahya@aus.edu (F.A.-S.); utariq@aus.edu (U.T.)
– name: 2 Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
Author_xml – sequence: 1
  givenname: Nadia
  surname: Abu Farha
  fullname: Abu Farha, Nadia
– sequence: 2
  givenname: Fares
  orcidid: 0000-0002-5792-8032
  surname: Al-Shargie
  fullname: Al-Shargie, Fares
– sequence: 3
  givenname: Usman
  orcidid: 0000-0002-8244-2165
  surname: Tariq
  fullname: Tariq, Usman
– sequence: 4
  givenname: Hasan
  orcidid: 0000-0002-9685-4937
  surname: Al-Nashash
  fullname: Al-Nashash, Hasan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35459033$$D View this record in MEDLINE/PubMed
BookMark eNptkttqGzEQhpeS0hzai75AWehNe-FER6_2pmBMD4ZAofRwKSTtyJHZXbmS7JK37zhOTJyWXXbE6Jtf-4_mvDoZ4whV9ZqSS85bcpUZI4oTSZ9VZ1QwMVGYOHm0Pq3Oc14Rwjjn6kV1yqWQLeH8rOoXwzrFLXT1PC7HUMIW6p9hGXozOqhnOUPOA4ylNr5AqmepBG9cqb9Bt3ElxLH-E8pN_ctsoYdSL8YO1oAfrJjHYY3_iavZaPrbHPLL6rk3fYZX9_Gi-vHp4_f5l8n118-L-ex64iSflgmXFITj4KhX4DvjnKWGsNbIxghvXaOsIBRaYZVpBYVOdIRR7iXvvOKe8ItqsdftolnpdQqDSbc6mqDvEjEttUEjrgfdgPL4Wt42SkggylJrRdM1zNvGKYtaH_Za640doHPoJ5n-SPR4Zww3ehm3etdf0jIUeHcvkOLvDeSih5Ad9NhhiJus2VQK1rSMNoi-fYKu4iZh8-4oTriUGA7U0qCBMPqI57qdqJ41ik4pkVOF1OV_KHw6GILDe_EB80cFbx4bPTh8mBUErvaASzHnBF67UMxuBlA59JoSvZtGfZhGrHj_pOJB9F_2L1cs3x8
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3216407
crossref_primary_10_3390_s22176698
crossref_primary_10_1007_s41870_023_01615_x
crossref_primary_10_1016_j_autcon_2024_105608
crossref_primary_10_3389_fnhum_2023_1251690
crossref_primary_10_1109_JSEN_2023_3237383
Cites_doi 10.20944/preprints202107.0255.v1
10.1109/51.376754
10.1518/001872008X312152
10.1016/S0304-3940(03)00033-8
10.1155/2008/519480
10.1016/j.neuroimage.2019.06.046
10.3389/fnhum.2019.00401
10.1109/ICABME53305.2021.9604870
10.1007/s11517-006-0051-3
10.1111/ejn.12810
10.3389/fninf.2011.00033
10.1111/psyp.12804
10.1111/j.1469-8986.2010.01061.x
10.1016/j.sigpro.2011.08.005
10.1109/IEMBS.2005.1615516
10.3390/s17030486
10.3390/brainsci9080178
10.3390/brainsci9120363
10.1016/j.jneumeth.2010.07.015
10.1111/j.1365-2869.2008.00676.x
10.1016/j.physbeh.2007.09.016
10.1109/IEMBS.2008.4650053
10.1109/IEMBS.2006.259614
10.1007/978-0-387-70971-0
10.1016/j.neucom.2012.02.041
10.1016/j.jneumeth.2006.05.033
10.1109/EMBC.2016.7591884
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2006.11.004
10.1016/j.ijpsycho.2010.03.007
10.14257/ijbsbt.2013.5.5.25
10.1109/TAMD.2015.2441960
10.1109/TBME.2013.2295173
10.1109/TCYB.2019.2939399
10.1088/1741-2560/12/4/046020
10.1007/s00521-007-0117-7
10.1007/s12061-015-9181-z
10.3390/s19050987
10.1016/j.ymssp.2015.03.009
10.3906/elk-1307-17
10.3390/s130506272
10.1109/ACCESS.2018.2792442
10.1016/S1364-6613(00)01813-1
10.5665/sleep.3850
10.1088/1741-2552/aa69d1
10.1016/j.sleep.2013.01.011
10.1109/ACCESS.2020.3004504
10.1016/S0165-0270(01)00366-1
10.1016/j.sigpro.2007.01.011
10.1109/ACCESS.2020.3032380
10.3389/fnhum.2016.00273
10.1155/2012/412512
10.4236/health.2016.82015
10.1016/j.clinph.2007.04.031
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22083051
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_7e8fe8fb397845e08b1bb47d72fb7c8b
PMC9033092
A781610568
35459033
10_3390_s22083051
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-351e4c3ec1f8efdaccb1a029a57a4fbc78b401e94b8a941ed4d0213f53df83f03
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:11:29 EDT 2025
Thu Aug 21 17:59:02 EDT 2025
Thu Sep 04 17:30:24 EDT 2025
Fri Jul 25 20:41:48 EDT 2025
Tue Jun 17 22:24:34 EDT 2025
Tue Jun 10 21:13:00 EDT 2025
Wed Feb 19 02:26:29 EST 2025
Tue Jul 01 02:41:51 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords vigilance assessment
dimensionality reduction
independent component analysis
thresholds
feature extraction
wavelet transform
noise
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-351e4c3ec1f8efdaccb1a029a57a4fbc78b401e94b8a941ed4d0213f53df83f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9685-4937
0000-0002-5792-8032
0000-0002-8244-2165
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22083051
PMID 35459033
PQID 2653035565
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_7e8fe8fb397845e08b1bb47d72fb7c8b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033092
proquest_miscellaneous_2654279217
proquest_journals_2653035565
gale_infotracmisc_A781610568
gale_infotracacademiconefile_A781610568
pubmed_primary_35459033
crossref_citationtrail_10_3390_s22083051
crossref_primary_10_3390_s22083051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Scott (ref_19) 2011; 5
Pontifex (ref_61) 2017; 54
Scouten (ref_16) 2017; 14
Mavros (ref_12) 2016; 9
Jap (ref_52) 2010; 76
Stone (ref_56) 2002; 6
Akin (ref_11) 2007; 17
Bang (ref_65) 2013; 13
Lepik (ref_40) 2007; 56
Zarjam (ref_14) 2015; 7
Pedroni (ref_30) 2019; 200
ref_51
Banerjee (ref_13) 2014; 41
Warm (ref_2) 2008; 50
ref_18
Castellanos (ref_39) 2006; 158
ref_15
Tremmel (ref_53) 2019; 13
Nolan (ref_24) 2010; 192
Kalayci (ref_27) 1995; 14
Shi (ref_54) 2012; 102
ref_60
Akay (ref_33) 1998; 1
Hamaneh (ref_55) 2013; 61
Pattyn (ref_6) 2008; 93
Mognon (ref_23) 2011; 48
Delorme (ref_62) 2010; 34
Strijkstra (ref_45) 2003; 340
ref_21
Aydemir (ref_36) 2016; 24
Sauter (ref_10) 2013; 14
Ren (ref_64) 2006; 44
ref_28
ref_26
Tong (ref_57) 2001; 108
Delorme (ref_22) 2004; 134
Hassanin (ref_43) 2020; 8
Jezek (ref_20) 2014; 8
Yu (ref_38) 2015; 12
Wright (ref_47) 2005; 76
Papadelis (ref_50) 2007; 118
McIntire (ref_1) 2013; 45
ref_31
Wang (ref_17) 2018; 6
Mullen (ref_25) 2015; 9
Akhtar (ref_59) 2012; 92
Brandt (ref_32) 2016; 8
Han (ref_63) 2015; 62
Leger (ref_46) 2009; 18
Alex (ref_29) 2020; 8
ref_44
Wallstrom (ref_58) 2004; 53
Tomar (ref_41) 2013; 5
ref_42
Davies (ref_34) 2007; 87
ref_3
Chen (ref_35) 2014; 2014
ref_48
ref_5
Bodala (ref_37) 2016; 10
ref_4
Henelius (ref_9) 2014; 37
Pal (ref_49) 2008; 2008
ref_7
Debie (ref_8) 2019; 51
References_xml – volume: 53
  start-page: 105
  year: 2004
  ident: ref_58
  article-title: Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods*1
  publication-title: Radiother. Oncol.
– ident: ref_4
  doi: 10.20944/preprints202107.0255.v1
– volume: 14
  start-page: 160
  year: 1995
  ident: ref_27
  article-title: Wavelet preprocessing for automated neural network detection of EEG spikes
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.376754
– volume: 76
  start-page: 847
  year: 2005
  ident: ref_47
  article-title: Avoiding involuntary sleep during civil air operations: Validation of a wrist-worn alertness device
  publication-title: Aviat. Space Environ. Med.
– ident: ref_26
– volume: 50
  start-page: 433
  year: 2008
  ident: ref_2
  article-title: Vigilance Requires Hard Mental Work and Is Stressful
  publication-title: Hum. Factors J. Hum. Factors Ergon. Soc.
  doi: 10.1518/001872008X312152
– volume: 340
  start-page: 17
  year: 2003
  ident: ref_45
  article-title: Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00033-8
– volume: 2008
  start-page: 519480
  year: 2008
  ident: ref_49
  article-title: EEG-Based Subject- and Session-independent Drowsiness Detection: An Detection: An Unsupervised Approach
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2008/519480
– volume: 200
  start-page: 460
  year: 2019
  ident: ref_30
  article-title: Automagic: Standardized preprocessing of big EEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.046
– volume: 13
  start-page: 401
  year: 2019
  ident: ref_53
  article-title: Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00401
– ident: ref_28
  doi: 10.1109/ICABME53305.2021.9604870
– volume: 44
  start-page: 371
  year: 2006
  ident: ref_64
  article-title: MUAP extraction and classification based on wavelet transform and ICA for EMG decomposition
  publication-title: Med Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0051-3
– volume: 56
  start-page: 28
  year: 2007
  ident: ref_40
  article-title: Application of the Haar wavelet transform to solving integral and differential equations
  publication-title: Proc. Est. Acad. Sci. Physics Math.
– volume: 41
  start-page: 818
  year: 2014
  ident: ref_13
  article-title: Interests shape how adolescents pay attention: The interaction of motivation and top-down attentional processes in biasing sensory activations to anticipated events
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12810
– volume: 9
  start-page: 16
  year: 2015
  ident: ref_25
  article-title: The PREP pipeline: Standardized preprocessing for large-scale EEG analysis
  publication-title: Front. Neuroinform.
– volume: 5
  start-page: 33
  year: 2011
  ident: ref_19
  article-title: Coins: An innovative informatics and neuroimaging tool suite built for large heterogeneous datasets
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2011.00033
– volume: 8
  start-page: 20
  year: 2014
  ident: ref_20
  article-title: Software and hardware infrastructure for research in electrophysiology
  publication-title: Front. Neuroinform.
– volume: 54
  start-page: 386
  year: 2017
  ident: ref_61
  article-title: Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12804
– volume: 48
  start-page: 229
  year: 2011
  ident: ref_23
  article-title: ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiol.
  doi: 10.1111/j.1469-8986.2010.01061.x
– volume: 92
  start-page: 401
  year: 2012
  ident: ref_59
  article-title: Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.08.005
– ident: ref_60
  doi: 10.1109/IEMBS.2005.1615516
– ident: ref_15
  doi: 10.3390/s17030486
– ident: ref_3
  doi: 10.3390/brainsci9080178
– ident: ref_31
  doi: 10.3390/brainsci9120363
– volume: 192
  start-page: 152
  year: 2010
  ident: ref_24
  article-title: FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 18
  start-page: 472
  year: 2009
  ident: ref_46
  article-title: Erratum: Effects of a combination of napping and bright light pulses on shift workers’ sleepiness at the wheel: A pilot study
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.2008.00676.x
– volume: 93
  start-page: 369
  year: 2008
  ident: ref_6
  article-title: Psychophysiological investigation of vigilance decrement: Boredom or cognitive fatigue?
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2007.09.016
– ident: ref_48
  doi: 10.1109/IEMBS.2008.4650053
– ident: ref_51
  doi: 10.1109/IEMBS.2006.259614
– ident: ref_42
  doi: 10.1007/978-0-387-70971-0
– volume: 102
  start-page: 135
  year: 2012
  ident: ref_54
  article-title: EEG-based vigilance estimation using extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.041
– volume: 158
  start-page: 300
  year: 2006
  ident: ref_39
  article-title: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.05.033
– ident: ref_5
  doi: 10.1109/EMBC.2016.7591884
– volume: 1
  start-page: 209
  year: 1998
  ident: ref_33
  article-title: Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications
  publication-title: Aviat. Sp. Environ. Med.
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_22
  article-title: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 34
  start-page: 1443
  year: 2010
  ident: ref_62
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.004
– volume: 76
  start-page: 169
  year: 2010
  ident: ref_52
  article-title: Inter-hemispheric electroencephalography coherence analysis: Assessing brain activity during monotonous driving
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2010.03.007
– volume: 5
  start-page: 241
  year: 2013
  ident: ref_41
  article-title: A survey on Data Mining approaches for Healthcare
  publication-title: Int. J. Bio-Sci. Bio-Technol.
  doi: 10.14257/ijbsbt.2013.5.5.25
– volume: 7
  start-page: 301
  year: 2015
  ident: ref_14
  article-title: Beyond Subjective Self-Rating: EEG Signal Classification of Cognitive Workload
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2441960
– volume: 61
  start-page: 1634
  year: 2013
  ident: ref_55
  article-title: Automated Removal of EKG Artifact from EEG Data Using Independent Component Analysis and Continuous Wavelet Transformation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2295173
– volume: 51
  start-page: 1542
  year: 2019
  ident: ref_8
  article-title: Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2939399
– volume: 12
  start-page: 046020
  year: 2015
  ident: ref_38
  article-title: Cognitive workload modulation through degraded visual stimuli: A single-trial EEG study
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046020
– volume: 17
  start-page: 227
  year: 2007
  ident: ref_11
  article-title: Estimating vigilance level by using EEG and EMG signals
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-007-0117-7
– volume: 9
  start-page: 191
  year: 2016
  ident: ref_12
  article-title: Geo-EEG: Towards the Use of EEG in the Study of Urban Behaviour
  publication-title: Appl. Spat. Anal. Policy
  doi: 10.1007/s12061-015-9181-z
– ident: ref_44
– ident: ref_18
  doi: 10.3390/s19050987
– volume: 62
  start-page: 91
  year: 2015
  ident: ref_63
  article-title: Feature extraction method of bearing AE signal based on improved FAST-ICA and wavelet packet energy
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.03.009
– volume: 45
  start-page: 354
  year: 2013
  ident: ref_1
  article-title: Detection of vigilance performance using eye blinks
  publication-title: Aviat. Sp. Environ. Med.
– ident: ref_21
– volume: 24
  start-page: 38
  year: 2016
  ident: ref_36
  article-title: Investigation of the most appropriate mother wavelet for characterizing imaginary EEG signals used in BCI systems
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1307-17
– volume: 13
  start-page: 6272
  year: 2013
  ident: ref_65
  article-title: Noise Reduction in Brainwaves by Using Both EEG Signals and Frontal Viewing Camera Images
  publication-title: Sensors
  doi: 10.3390/s130506272
– volume: 6
  start-page: 8258
  year: 2018
  ident: ref_17
  article-title: A New fMRI Informed Mixed-Norm Constrained Algorithm for EEG Source Localization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2792442
– volume: 6
  start-page: 59
  year: 2002
  ident: ref_56
  article-title: Independent component analysis: An introduction
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01813-1
– volume: 37
  start-page: 1257
  year: 2014
  ident: ref_9
  article-title: Heart Rate Variability for Evaluating Vigilant Attention in Partial Chronic Sleep Restriction
  publication-title: Sleep
  doi: 10.5665/sleep.3850
– volume: 14
  start-page: 046004
  year: 2017
  ident: ref_16
  article-title: Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa69d1
– volume: 14
  start-page: 542
  year: 2013
  ident: ref_10
  article-title: The assessment of vigilance: Normative data on the Siesta sustained attention test
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2013.01.011
– volume: 8
  start-page: 115941
  year: 2020
  ident: ref_43
  article-title: EEG-Based Semantic Vigilance Level Classification using Directed Connectivity Patterns and Graph Theory Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004504
– volume: 2014
  start-page: 807620
  year: 2014
  ident: ref_35
  article-title: Damage Detection on Sudden Stiffness Reduction Based on Discrete Wavelet Transform
  publication-title: Sci. World J.
– volume: 108
  start-page: 11
  year: 2001
  ident: ref_57
  article-title: Removal of ECG interference from the EEG recordings in small animals using independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(01)00366-1
– volume: 87
  start-page: 1819
  year: 2007
  ident: ref_34
  article-title: Source separation using single channel ICA
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2007.01.011
– volume: 8
  start-page: 191080
  year: 2020
  ident: ref_29
  article-title: Discrimination of Genuine and Acted Emotional Expressions Using EEG Signal and Machine Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3032380
– volume: 10
  start-page: 273
  year: 2016
  ident: ref_37
  article-title: EEG and Eye Tracking Demonstrate Vigilance Enhancement with Challenge Integration
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00273
– ident: ref_7
  doi: 10.1155/2012/412512
– volume: 8
  start-page: 125
  year: 2016
  ident: ref_32
  article-title: The Brunel Mood Scale Rating in Mental Health for Physically Active and Apparently Healthy Populations
  publication-title: Health
  doi: 10.4236/health.2016.82015
– volume: 118
  start-page: 1906
  year: 2007
  ident: ref_50
  article-title: Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.04.031
SSID ssj0023338
Score 2.409095
Snippet Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3051
SubjectTerms Accuracy
Air traffic control
Air traffic controllers
Algorithms
Analysis
Brain - physiology
Cognition
Color
dimensionality reduction
Discriminant analysis
Electroencephalography
Electroencephalography - methods
Experiments
Eye movements
feature extraction
Humans
Joint use
Noise
Noise control
Physiology
Signal Processing, Computer-Assisted
Support vector machines
thresholds
vigilance assessment
Wakefulness
Wavelet Analysis
wavelet transform
Wavelet transforms
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Skx7E-rm2liiCXpYmm-Qle3wWSxX0IFZ7C_nUB4-ttNv_vzPZD95SwYuwh2Uzu5tkZjIzYfIbQt6akHIIKtWBhVSDxZc1muFaxcRzq5l05ZDYl6-rs3P5-UJd7JT6wpywAR54mLhjnUyGy4PdNFIlZjz3Xuqom-x1MB5XX9ayKZgaQy0BkdeAIyQgqD--bhpwNZjiC-tTQPrvLsU7tmiZJ7ljeE4fkYejx0jXQ0_3yb3UPSYPdnAEn5DtsDWQIj2ZsoHoj82vzRZZStcz-CYtFcHLp_BAA_2GuK3IGYrbsfSnwyoUPf00l8btKa4Xlx3eTfAlT8n56cfvJ2f1WEahDkqseszVTzKIFHg2KUcXgueONa1T2snsgzYegqzUSm9cK3mKMoLhF1mJmI3ITDwjex386QWhnPscmHYxJ1D2lI1XqwRckK3xOqpckffT9NowYoxjqYuthVgDOWFnTlTkzUz6ZwDW-BvRB-TRTIBY2OUBSIgdJcT-S0Iq8g45bFFjoTPBjQcPYEiIfWXX2oDbC46gqcjhghI0LSybJxmxo6Zf22alwAtQ4BdX5PXcjG9i9lqXLm8KjUSgRq4r8nwQqXlIAlzYlglREb0QtsWYly3d5nfBAcfXWNu8_B-TdEDuN3iwo-QkHZK9_uomvQJ3q_dHRbNuAZ6tLMs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcoED4k1gQQYhwSXaOLZr54TKirIgwQGxsLcofi2VqnTZZv8_M86DRiCkHqJ6ktidtzv-BuCVcSE6p0LuChdy9PgyJzecKx94rHQhm3RI7POXxcmp_HSmzoYNt91QVjnaxGSo_dbRHvlRuVBobRXGH28vfuXUNYr-XR1aaFyHGxw9Dcm5WX2YEi6B-VePJiQwtT_alSUGHIXiMx-UoPr_Nsh7HmleLbnnflZ34PYQN7Jlz-i7cC209-DWHprgfdj0GwTBs-OxJoh9X5-vN8RYtpwgOFnqC54eRcca2FdCbyX-MNqUZT8a6kXRsY9Tg9yOkdXYtnQ1gpg8gNPV-2_HJ_nQTCF3Siw6qtgP0ongeDQh-sY5y5uirBqlGxmt08ZiqhUqaU1TSR689Oj-RVTCRyNiIR7CQYtvegyMcxtdoRsfA6p8iMaqRdDOyMpY7VXM4M3489ZuQBqnhhebGjMO4kQ9cSKDlxPpRQ-v8S-id8SjiYAQsdMX28vzelCwWgcT8WMxvjJShcJYbq3UXpfR4txsBq-JwzXpLU7GNcPxA1wSIWDVS20w-MVw0GRwOKNEfXPz4VFG6kHfd_Uf6czgxTRMd1INWxu2V4lGElwj1xk86kVqWpLAQLYqhMhAz4Rttub5SLv-mdDA6baiKp_8f1pP4WZJBzdSzdEhHHSXV-EZhlOdfZ505jcEuSM5
  priority: 102
  providerName: ProQuest
Title Improved Cognitive Vigilance Assessment after Artifact Reduction with Wavelet Independent Component Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/35459033
https://www.proquest.com/docview/2653035565
https://www.proquest.com/docview/2654279217
https://pubmed.ncbi.nlm.nih.gov/PMC9033092
https://doaj.org/article/7e8fe8fb397845e08b1bb47d72fb7c8b
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED-NTULjAfFNYFQGIcFLWD7s2HlAqJtWBtImNFHoWxQ79qhUpdBlEvz33DkfasSQqqiqL2mcO_t-5_h-B_BaGeuMETY0kbEhenwekhsORWVjl8uIlz5J7Ow8O53zzwux2IG-xmb3AK9uDO2ontR8s3r3-9efDzjg31PEiSH74VWSIJCIKJF6Dx1SRjHYGR9eJiQphmEtqdBYfB9upwgg8ihNR17Jk_f_O0Vv-ajx_skthzS7B3c7JMmmrervw46tH8CdLX7Bh7BqlwxsxY77XULs2_JyuSJVs-lAysl8pXB_KUp0YBfE50oaY7RMy76XVJ2iYZ-GkrkNo3lkXdO3ntbkEcxnJ1-PT8OuvEJoRJo1tIffcpNaEztlXVUao-MySvJSyJI7baTSGHzZnGtV5jy2Fa8QEKROpJVTqYvSx7Bb4z89BRbH2plIlpWzOAlYp7TIrDSK50rLSrgA3vaPtzAd9ziVwFgVGIOQUopBKQG8GkR_toQbNwkdkY4GAeLI9j-sN5dFN-QKaZXDj0bEpbiwkdKx1lxWMnEa700H8IY0XJBt4c2YsktIwC4RJ1YxlQrhMAJEFcDBSBJHoBk39zZS9AZcJJlAdCAQLwfwcmimM2lXW23X116GE4FjLAN40prU0KXeMgOQI2Mb9XncUi9_eH5wOi3Kk2f_veZz2E8oi8NvQDqA3WZzbV8gtmr0BG7JhcSjmn2cwN7RyfmXi4lfp5j4MfUXMUMo1w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1ie21c0BoKVS79HFALewtxI5dVlplSzcV4k_xG5nJqxuBuFXaw2o9SezM2zv-BuClts5bK11oI-tC9PgiJDccysLFPlWRyOtDYgeHo8mx-DSTsw343Z2FobLKzibWhrpYWtoj305GEq2txPjj3emPkLpG0b-rXQuNRiz23K-fmLKt3k4_IH9fJcnux6OdSdh2FQit5KOKStedsNzZ2Gvni9xaE-dRkuZS5cIbq7TBnMOlwug8FbErRIF-kHvJC6-5jzje9wpcFbQzjvqjZhcJHsd8r0Ev4jyNtldJggFOJOOBz6tbA_ztANY84LA6c83d7d6Cm22cysaNYN2GDVfegRtr6IV3YdFsSLiC7XQ1SOzL_GS-IEFi4x7yk9V9yOtb0TEK9pnQYkkeGG0Cs6859b6o2LRvyFsxslLLkr51oCn34PhSXvN92CzxSQ-BxbHxNlJ54R2aGOe1kSOnrBapNqqQPoA33evNbItsTg02FhlmOMSJrOdEAC960tMGzuNfRO-JRz0BIXDXPyzPTrJWoTPltMePwXhOC-kibWJjhCpU4g3OzQTwmjickZ3Aydi8Pe6ASyLErWysNAbbGH7qALYGlKjfdjjcyUjW2pdVdqENATzvh-lKqpkr3fK8phEEDxmrAB40ItUviWPgnEacB6AGwjZY83CknH-v0cfpsihNHv1_Ws_g2uToYD_bnx7uPYbrCR0aqeudtmCzOjt3TzCUq8zTWn8YfLtshf0D2JJhmA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QHyTMcAgELxETWK7dh4QKhvVymBCiLG-hdixt0pVO9ZMiH-Nv467fK0RiLdJfajqS2Lnvt3z7wBeaOu8tdKFNrIuRI8vQnLDoSxc7FMVibw6JPbpYLh3KD5M5XQDfrdnYaissrWJlaEulpb2yAfJUKK1lRh_DHxTFvF5d_z29EdIHaTon9a2nUYtIvvu109M31ZvJrvI65dJMn7_dWcvbDoMhFbyYUll7E5Y7mzstfNFbq2J8yhJc6ly4Y1V2mD-4VJhdJ6K2BWiQJ_IveSF19xHHO97Ba4qjlEV6pKaXiR7HHO_GsmI8zQarJIEg51Ixj3_V7UJ-NsZrHnDfqXmmusb34KbTczKRrWQ3YYNt7gDN9aQDO_CvN6ccAXbaeuR2LfZ8WxOQsVGHfwnq3qSV7eiIxXsCyHHkmww2hBmRzn1wSjZpGvOWzKyWMsFfWsBVO7B4aW85vuwucAnPQQWx8bbSOWFd2hunNdGDp2yWqTaqEL6AF63rzezDco5NduYZ5jtECeyjhMBPO9IT2toj38RvSMedQSExl39sDw7zhrlzpTTHj8GYzstpIu0iY0RqlCJNzg3E8Ar4nBGNgMnY_Pm6AMuidC3spHSGHhjKKoD2O5Roq7b_nArI1lja1bZhWYE8Kwbpiupfm7hlucVjSCoyFgF8KAWqW5JHIPoNOI8ANUTtt6a-yOL2UmFRE6XRWmy9f9pPYVrqKrZx8nB_iO4ntD5kar0aRs2y7Nz9xijutI8qdSHwffL1tc_Kapl1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Cognitive+Vigilance+Assessment+after+Artifact+Reduction+with+Wavelet+Independent+Component+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Abu+Farha%2C+Nadia&rft.au=Al-Shargie%2C+Fares&rft.au=Tariq%2C+Usman&rft.au=Al-Nashash%2C+Hasan&rft.date=2022-04-01&rft.eissn=1424-8220&rft.volume=22&rft.issue=8&rft_id=info:doi/10.3390%2Fs22083051&rft_id=info%3Apmid%2F35459033&rft.externalDocID=35459033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon