Improved Cognitive Vigilance Assessment after Artifact Reduction with Wavelet Independent Component Analysis
Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 8; p. 3051 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22083051 |
Cover
Loading…
Abstract | Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color–Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA. |
---|---|
AbstractList | Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color–Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA. Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color-Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA.Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or military surveillance require the operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective method and has been extensively used in the suppression of EEG artifacts. However, in vigilance assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts. In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact reduction, leading to improved vigilance level assessment results. We conducted an experiment in nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing a Stroop Color-Word Test for approximately 45 min. We then compared the performance of the ICA and wICA preprocessing methods using five classifiers. Our classification results showed that in terms of features extraction, the wICA method outperformed the existing ICA method. In the delta, theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method, whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement was observed in the beta band. In addition, we compared the topographical map to show the changes in power spectral density across the brain regions for the two vigilance states. The proposed method showed that the frontal and central regions were most sensitive to vigilance decrement. However, in this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA. |
Audience | Academic |
Author | Abu Farha, Nadia Tariq, Usman Al-Nashash, Hasan Al-Shargie, Fares |
AuthorAffiliation | 2 Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates 1 Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; nadiaabufarha@gmail.com (N.A.F.); fyahya@aus.edu (F.A.-S.); utariq@aus.edu (U.T.) |
AuthorAffiliation_xml | – name: 1 Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; nadiaabufarha@gmail.com (N.A.F.); fyahya@aus.edu (F.A.-S.); utariq@aus.edu (U.T.) – name: 2 Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates |
Author_xml | – sequence: 1 givenname: Nadia surname: Abu Farha fullname: Abu Farha, Nadia – sequence: 2 givenname: Fares orcidid: 0000-0002-5792-8032 surname: Al-Shargie fullname: Al-Shargie, Fares – sequence: 3 givenname: Usman orcidid: 0000-0002-8244-2165 surname: Tariq fullname: Tariq, Usman – sequence: 4 givenname: Hasan orcidid: 0000-0002-9685-4937 surname: Al-Nashash fullname: Al-Nashash, Hasan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35459033$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttqGzEQhpeS0hzai75AWehNe-FER6_2pmBMD4ZAofRwKSTtyJHZXbmS7JK37zhOTJyWXXbE6Jtf-4_mvDoZ4whV9ZqSS85bcpUZI4oTSZ9VZ1QwMVGYOHm0Pq3Oc14Rwjjn6kV1yqWQLeH8rOoXwzrFLXT1PC7HUMIW6p9hGXozOqhnOUPOA4ylNr5AqmepBG9cqb9Bt3ElxLH-E8pN_ctsoYdSL8YO1oAfrJjHYY3_iavZaPrbHPLL6rk3fYZX9_Gi-vHp4_f5l8n118-L-ex64iSflgmXFITj4KhX4DvjnKWGsNbIxghvXaOsIBRaYZVpBYVOdIRR7iXvvOKe8ItqsdftolnpdQqDSbc6mqDvEjEttUEjrgfdgPL4Wt42SkggylJrRdM1zNvGKYtaH_Za640doHPoJ5n-SPR4Zww3ehm3etdf0jIUeHcvkOLvDeSih5Ad9NhhiJus2VQK1rSMNoi-fYKu4iZh8-4oTriUGA7U0qCBMPqI57qdqJ41ik4pkVOF1OV_KHw6GILDe_EB80cFbx4bPTh8mBUErvaASzHnBF67UMxuBlA59JoSvZtGfZhGrHj_pOJB9F_2L1cs3x8 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3216407 crossref_primary_10_3390_s22176698 crossref_primary_10_1007_s41870_023_01615_x crossref_primary_10_1016_j_autcon_2024_105608 crossref_primary_10_3389_fnhum_2023_1251690 crossref_primary_10_1109_JSEN_2023_3237383 |
Cites_doi | 10.20944/preprints202107.0255.v1 10.1109/51.376754 10.1518/001872008X312152 10.1016/S0304-3940(03)00033-8 10.1155/2008/519480 10.1016/j.neuroimage.2019.06.046 10.3389/fnhum.2019.00401 10.1109/ICABME53305.2021.9604870 10.1007/s11517-006-0051-3 10.1111/ejn.12810 10.3389/fninf.2011.00033 10.1111/psyp.12804 10.1111/j.1469-8986.2010.01061.x 10.1016/j.sigpro.2011.08.005 10.1109/IEMBS.2005.1615516 10.3390/s17030486 10.3390/brainsci9080178 10.3390/brainsci9120363 10.1016/j.jneumeth.2010.07.015 10.1111/j.1365-2869.2008.00676.x 10.1016/j.physbeh.2007.09.016 10.1109/IEMBS.2008.4650053 10.1109/IEMBS.2006.259614 10.1007/978-0-387-70971-0 10.1016/j.neucom.2012.02.041 10.1016/j.jneumeth.2006.05.033 10.1109/EMBC.2016.7591884 10.1016/j.jneumeth.2003.10.009 10.1016/j.neuroimage.2006.11.004 10.1016/j.ijpsycho.2010.03.007 10.14257/ijbsbt.2013.5.5.25 10.1109/TAMD.2015.2441960 10.1109/TBME.2013.2295173 10.1109/TCYB.2019.2939399 10.1088/1741-2560/12/4/046020 10.1007/s00521-007-0117-7 10.1007/s12061-015-9181-z 10.3390/s19050987 10.1016/j.ymssp.2015.03.009 10.3906/elk-1307-17 10.3390/s130506272 10.1109/ACCESS.2018.2792442 10.1016/S1364-6613(00)01813-1 10.5665/sleep.3850 10.1088/1741-2552/aa69d1 10.1016/j.sleep.2013.01.011 10.1109/ACCESS.2020.3004504 10.1016/S0165-0270(01)00366-1 10.1016/j.sigpro.2007.01.011 10.1109/ACCESS.2020.3032380 10.3389/fnhum.2016.00273 10.1155/2012/412512 10.4236/health.2016.82015 10.1016/j.clinph.2007.04.031 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22083051 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_7e8fe8fb397845e08b1bb47d72fb7c8b PMC9033092 A781610568 35459033 10_3390_s22083051 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c536t-351e4c3ec1f8efdaccb1a029a57a4fbc78b401e94b8a941ed4d0213f53df83f03 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:11:29 EDT 2025 Thu Aug 21 17:59:02 EDT 2025 Thu Sep 04 17:30:24 EDT 2025 Fri Jul 25 20:41:48 EDT 2025 Tue Jun 17 22:24:34 EDT 2025 Tue Jun 10 21:13:00 EDT 2025 Wed Feb 19 02:26:29 EST 2025 Tue Jul 01 02:41:51 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | vigilance assessment dimensionality reduction independent component analysis thresholds feature extraction wavelet transform noise |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-351e4c3ec1f8efdaccb1a029a57a4fbc78b401e94b8a941ed4d0213f53df83f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9685-4937 0000-0002-5792-8032 0000-0002-8244-2165 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22083051 |
PMID | 35459033 |
PQID | 2653035565 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e8fe8fb397845e08b1bb47d72fb7c8b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033092 proquest_miscellaneous_2654279217 proquest_journals_2653035565 gale_infotracmisc_A781610568 gale_infotracacademiconefile_A781610568 pubmed_primary_35459033 crossref_citationtrail_10_3390_s22083051 crossref_primary_10_3390_s22083051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Scott (ref_19) 2011; 5 Pontifex (ref_61) 2017; 54 Scouten (ref_16) 2017; 14 Mavros (ref_12) 2016; 9 Jap (ref_52) 2010; 76 Stone (ref_56) 2002; 6 Akin (ref_11) 2007; 17 Bang (ref_65) 2013; 13 Lepik (ref_40) 2007; 56 Zarjam (ref_14) 2015; 7 Pedroni (ref_30) 2019; 200 ref_51 Banerjee (ref_13) 2014; 41 Warm (ref_2) 2008; 50 ref_18 Castellanos (ref_39) 2006; 158 ref_15 Tremmel (ref_53) 2019; 13 Nolan (ref_24) 2010; 192 Kalayci (ref_27) 1995; 14 Shi (ref_54) 2012; 102 ref_60 Akay (ref_33) 1998; 1 Hamaneh (ref_55) 2013; 61 Pattyn (ref_6) 2008; 93 Mognon (ref_23) 2011; 48 Delorme (ref_62) 2010; 34 Strijkstra (ref_45) 2003; 340 ref_21 Aydemir (ref_36) 2016; 24 Sauter (ref_10) 2013; 14 Ren (ref_64) 2006; 44 ref_28 ref_26 Tong (ref_57) 2001; 108 Delorme (ref_22) 2004; 134 Hassanin (ref_43) 2020; 8 Jezek (ref_20) 2014; 8 Yu (ref_38) 2015; 12 Wright (ref_47) 2005; 76 Papadelis (ref_50) 2007; 118 McIntire (ref_1) 2013; 45 ref_31 Wang (ref_17) 2018; 6 Mullen (ref_25) 2015; 9 Akhtar (ref_59) 2012; 92 Brandt (ref_32) 2016; 8 Han (ref_63) 2015; 62 Leger (ref_46) 2009; 18 Alex (ref_29) 2020; 8 ref_44 Wallstrom (ref_58) 2004; 53 Tomar (ref_41) 2013; 5 ref_42 Davies (ref_34) 2007; 87 ref_3 Chen (ref_35) 2014; 2014 ref_48 ref_5 Bodala (ref_37) 2016; 10 ref_4 Henelius (ref_9) 2014; 37 Pal (ref_49) 2008; 2008 ref_7 Debie (ref_8) 2019; 51 |
References_xml | – volume: 53 start-page: 105 year: 2004 ident: ref_58 article-title: Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods*1 publication-title: Radiother. Oncol. – ident: ref_4 doi: 10.20944/preprints202107.0255.v1 – volume: 14 start-page: 160 year: 1995 ident: ref_27 article-title: Wavelet preprocessing for automated neural network detection of EEG spikes publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.376754 – volume: 76 start-page: 847 year: 2005 ident: ref_47 article-title: Avoiding involuntary sleep during civil air operations: Validation of a wrist-worn alertness device publication-title: Aviat. Space Environ. Med. – ident: ref_26 – volume: 50 start-page: 433 year: 2008 ident: ref_2 article-title: Vigilance Requires Hard Mental Work and Is Stressful publication-title: Hum. Factors J. Hum. Factors Ergon. Soc. doi: 10.1518/001872008X312152 – volume: 340 start-page: 17 year: 2003 ident: ref_45 article-title: Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(03)00033-8 – volume: 2008 start-page: 519480 year: 2008 ident: ref_49 article-title: EEG-Based Subject- and Session-independent Drowsiness Detection: An Detection: An Unsupervised Approach publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2008/519480 – volume: 200 start-page: 460 year: 2019 ident: ref_30 article-title: Automagic: Standardized preprocessing of big EEG data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.06.046 – volume: 13 start-page: 401 year: 2019 ident: ref_53 article-title: Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2019.00401 – ident: ref_28 doi: 10.1109/ICABME53305.2021.9604870 – volume: 44 start-page: 371 year: 2006 ident: ref_64 article-title: MUAP extraction and classification based on wavelet transform and ICA for EMG decomposition publication-title: Med Biol. Eng. Comput. doi: 10.1007/s11517-006-0051-3 – volume: 56 start-page: 28 year: 2007 ident: ref_40 article-title: Application of the Haar wavelet transform to solving integral and differential equations publication-title: Proc. Est. Acad. Sci. Physics Math. – volume: 41 start-page: 818 year: 2014 ident: ref_13 article-title: Interests shape how adolescents pay attention: The interaction of motivation and top-down attentional processes in biasing sensory activations to anticipated events publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12810 – volume: 9 start-page: 16 year: 2015 ident: ref_25 article-title: The PREP pipeline: Standardized preprocessing for large-scale EEG analysis publication-title: Front. Neuroinform. – volume: 5 start-page: 33 year: 2011 ident: ref_19 article-title: Coins: An innovative informatics and neuroimaging tool suite built for large heterogeneous datasets publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00033 – volume: 8 start-page: 20 year: 2014 ident: ref_20 article-title: Software and hardware infrastructure for research in electrophysiology publication-title: Front. Neuroinform. – volume: 54 start-page: 386 year: 2017 ident: ref_61 article-title: Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts publication-title: Psychophysiology doi: 10.1111/psyp.12804 – volume: 48 start-page: 229 year: 2011 ident: ref_23 article-title: ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features publication-title: Psychophysiol. doi: 10.1111/j.1469-8986.2010.01061.x – volume: 92 start-page: 401 year: 2012 ident: ref_59 article-title: Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.08.005 – ident: ref_60 doi: 10.1109/IEMBS.2005.1615516 – ident: ref_15 doi: 10.3390/s17030486 – ident: ref_3 doi: 10.3390/brainsci9080178 – ident: ref_31 doi: 10.3390/brainsci9120363 – volume: 192 start-page: 152 year: 2010 ident: ref_24 article-title: FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.07.015 – volume: 18 start-page: 472 year: 2009 ident: ref_46 article-title: Erratum: Effects of a combination of napping and bright light pulses on shift workers’ sleepiness at the wheel: A pilot study publication-title: J. Sleep Res. doi: 10.1111/j.1365-2869.2008.00676.x – volume: 93 start-page: 369 year: 2008 ident: ref_6 article-title: Psychophysiological investigation of vigilance decrement: Boredom or cognitive fatigue? publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2007.09.016 – ident: ref_48 doi: 10.1109/IEMBS.2008.4650053 – ident: ref_51 doi: 10.1109/IEMBS.2006.259614 – ident: ref_42 doi: 10.1007/978-0-387-70971-0 – volume: 102 start-page: 135 year: 2012 ident: ref_54 article-title: EEG-based vigilance estimation using extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.041 – volume: 158 start-page: 300 year: 2006 ident: ref_39 article-title: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.05.033 – ident: ref_5 doi: 10.1109/EMBC.2016.7591884 – volume: 1 start-page: 209 year: 1998 ident: ref_33 article-title: Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications publication-title: Aviat. Sp. Environ. Med. – volume: 134 start-page: 9 year: 2004 ident: ref_22 article-title: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 34 start-page: 1443 year: 2010 ident: ref_62 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – volume: 76 start-page: 169 year: 2010 ident: ref_52 article-title: Inter-hemispheric electroencephalography coherence analysis: Assessing brain activity during monotonous driving publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2010.03.007 – volume: 5 start-page: 241 year: 2013 ident: ref_41 article-title: A survey on Data Mining approaches for Healthcare publication-title: Int. J. Bio-Sci. Bio-Technol. doi: 10.14257/ijbsbt.2013.5.5.25 – volume: 7 start-page: 301 year: 2015 ident: ref_14 article-title: Beyond Subjective Self-Rating: EEG Signal Classification of Cognitive Workload publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2441960 – volume: 61 start-page: 1634 year: 2013 ident: ref_55 article-title: Automated Removal of EKG Artifact from EEG Data Using Independent Component Analysis and Continuous Wavelet Transformation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2295173 – volume: 51 start-page: 1542 year: 2019 ident: ref_8 article-title: Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2939399 – volume: 12 start-page: 046020 year: 2015 ident: ref_38 article-title: Cognitive workload modulation through degraded visual stimuli: A single-trial EEG study publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046020 – volume: 17 start-page: 227 year: 2007 ident: ref_11 article-title: Estimating vigilance level by using EEG and EMG signals publication-title: Neural Comput. Appl. doi: 10.1007/s00521-007-0117-7 – volume: 9 start-page: 191 year: 2016 ident: ref_12 article-title: Geo-EEG: Towards the Use of EEG in the Study of Urban Behaviour publication-title: Appl. Spat. Anal. Policy doi: 10.1007/s12061-015-9181-z – ident: ref_44 – ident: ref_18 doi: 10.3390/s19050987 – volume: 62 start-page: 91 year: 2015 ident: ref_63 article-title: Feature extraction method of bearing AE signal based on improved FAST-ICA and wavelet packet energy publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.03.009 – volume: 45 start-page: 354 year: 2013 ident: ref_1 article-title: Detection of vigilance performance using eye blinks publication-title: Aviat. Sp. Environ. Med. – ident: ref_21 – volume: 24 start-page: 38 year: 2016 ident: ref_36 article-title: Investigation of the most appropriate mother wavelet for characterizing imaginary EEG signals used in BCI systems publication-title: Turkish J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1307-17 – volume: 13 start-page: 6272 year: 2013 ident: ref_65 article-title: Noise Reduction in Brainwaves by Using Both EEG Signals and Frontal Viewing Camera Images publication-title: Sensors doi: 10.3390/s130506272 – volume: 6 start-page: 8258 year: 2018 ident: ref_17 article-title: A New fMRI Informed Mixed-Norm Constrained Algorithm for EEG Source Localization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2792442 – volume: 6 start-page: 59 year: 2002 ident: ref_56 article-title: Independent component analysis: An introduction publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01813-1 – volume: 37 start-page: 1257 year: 2014 ident: ref_9 article-title: Heart Rate Variability for Evaluating Vigilant Attention in Partial Chronic Sleep Restriction publication-title: Sleep doi: 10.5665/sleep.3850 – volume: 14 start-page: 046004 year: 2017 ident: ref_16 article-title: Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa69d1 – volume: 14 start-page: 542 year: 2013 ident: ref_10 article-title: The assessment of vigilance: Normative data on the Siesta sustained attention test publication-title: Sleep Med. doi: 10.1016/j.sleep.2013.01.011 – volume: 8 start-page: 115941 year: 2020 ident: ref_43 article-title: EEG-Based Semantic Vigilance Level Classification using Directed Connectivity Patterns and Graph Theory Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004504 – volume: 2014 start-page: 807620 year: 2014 ident: ref_35 article-title: Damage Detection on Sudden Stiffness Reduction Based on Discrete Wavelet Transform publication-title: Sci. World J. – volume: 108 start-page: 11 year: 2001 ident: ref_57 article-title: Removal of ECG interference from the EEG recordings in small animals using independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(01)00366-1 – volume: 87 start-page: 1819 year: 2007 ident: ref_34 article-title: Source separation using single channel ICA publication-title: Signal Process. doi: 10.1016/j.sigpro.2007.01.011 – volume: 8 start-page: 191080 year: 2020 ident: ref_29 article-title: Discrimination of Genuine and Acted Emotional Expressions Using EEG Signal and Machine Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3032380 – volume: 10 start-page: 273 year: 2016 ident: ref_37 article-title: EEG and Eye Tracking Demonstrate Vigilance Enhancement with Challenge Integration publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00273 – ident: ref_7 doi: 10.1155/2012/412512 – volume: 8 start-page: 125 year: 2016 ident: ref_32 article-title: The Brunel Mood Scale Rating in Mental Health for Physically Active and Apparently Healthy Populations publication-title: Health doi: 10.4236/health.2016.82015 – volume: 118 start-page: 1906 year: 2007 ident: ref_50 article-title: Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.04.031 |
SSID | ssj0023338 |
Score | 2.409095 |
Snippet | Vigilance level assessment is of prime importance to avoid life-threatening human error. Critical working environments such as air traffic control, driving, or... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3051 |
SubjectTerms | Accuracy Air traffic control Air traffic controllers Algorithms Analysis Brain - physiology Cognition Color dimensionality reduction Discriminant analysis Electroencephalography Electroencephalography - methods Experiments Eye movements feature extraction Humans Joint use Noise Noise control Physiology Signal Processing, Computer-Assisted Support vector machines thresholds vigilance assessment Wakefulness Wavelet Analysis wavelet transform Wavelet transforms Workloads |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Skx7E-rm2liiCXpYmm-Qle3wWSxX0IFZ7C_nUB4-ttNv_vzPZD95SwYuwh2Uzu5tkZjIzYfIbQt6akHIIKtWBhVSDxZc1muFaxcRzq5l05ZDYl6-rs3P5-UJd7JT6wpywAR54mLhjnUyGy4PdNFIlZjz3Xuqom-x1MB5XX9ayKZgaQy0BkdeAIyQgqD--bhpwNZjiC-tTQPrvLsU7tmiZJ7ljeE4fkYejx0jXQ0_3yb3UPSYPdnAEn5DtsDWQIj2ZsoHoj82vzRZZStcz-CYtFcHLp_BAA_2GuK3IGYrbsfSnwyoUPf00l8btKa4Xlx3eTfAlT8n56cfvJ2f1WEahDkqseszVTzKIFHg2KUcXgueONa1T2snsgzYegqzUSm9cK3mKMoLhF1mJmI3ITDwjex386QWhnPscmHYxJ1D2lI1XqwRckK3xOqpckffT9NowYoxjqYuthVgDOWFnTlTkzUz6ZwDW-BvRB-TRTIBY2OUBSIgdJcT-S0Iq8g45bFFjoTPBjQcPYEiIfWXX2oDbC46gqcjhghI0LSybJxmxo6Zf22alwAtQ4BdX5PXcjG9i9lqXLm8KjUSgRq4r8nwQqXlIAlzYlglREb0QtsWYly3d5nfBAcfXWNu8_B-TdEDuN3iwo-QkHZK9_uomvQJ3q_dHRbNuAZ6tLMs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcoED4k1gQQYhwSXaOLZr54TKirIgwQGxsLcofi2VqnTZZv8_M86DRiCkHqJ6ktidtzv-BuCVcSE6p0LuChdy9PgyJzecKx94rHQhm3RI7POXxcmp_HSmzoYNt91QVjnaxGSo_dbRHvlRuVBobRXGH28vfuXUNYr-XR1aaFyHGxw9Dcm5WX2YEi6B-VePJiQwtT_alSUGHIXiMx-UoPr_Nsh7HmleLbnnflZ34PYQN7Jlz-i7cC209-DWHprgfdj0GwTBs-OxJoh9X5-vN8RYtpwgOFnqC54eRcca2FdCbyX-MNqUZT8a6kXRsY9Tg9yOkdXYtnQ1gpg8gNPV-2_HJ_nQTCF3Siw6qtgP0ongeDQh-sY5y5uirBqlGxmt08ZiqhUqaU1TSR689Oj-RVTCRyNiIR7CQYtvegyMcxtdoRsfA6p8iMaqRdDOyMpY7VXM4M3489ZuQBqnhhebGjMO4kQ9cSKDlxPpRQ-v8S-id8SjiYAQsdMX28vzelCwWgcT8WMxvjJShcJYbq3UXpfR4txsBq-JwzXpLU7GNcPxA1wSIWDVS20w-MVw0GRwOKNEfXPz4VFG6kHfd_Uf6czgxTRMd1INWxu2V4lGElwj1xk86kVqWpLAQLYqhMhAz4Rttub5SLv-mdDA6baiKp_8f1pP4WZJBzdSzdEhHHSXV-EZhlOdfZ505jcEuSM5 priority: 102 providerName: ProQuest |
Title | Improved Cognitive Vigilance Assessment after Artifact Reduction with Wavelet Independent Component Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35459033 https://www.proquest.com/docview/2653035565 https://www.proquest.com/docview/2654279217 https://pubmed.ncbi.nlm.nih.gov/PMC9033092 https://doaj.org/article/7e8fe8fb397845e08b1bb47d72fb7c8b |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED-NTULjAfFNYFQGIcFLWD7s2HlAqJtWBtImNFHoWxQ79qhUpdBlEvz33DkfasSQqqiqL2mcO_t-5_h-B_BaGeuMETY0kbEhenwekhsORWVjl8uIlz5J7Ow8O53zzwux2IG-xmb3AK9uDO2ontR8s3r3-9efDzjg31PEiSH74VWSIJCIKJF6Dx1SRjHYGR9eJiQphmEtqdBYfB9upwgg8ihNR17Jk_f_O0Vv-ajx_skthzS7B3c7JMmmrervw46tH8CdLX7Bh7BqlwxsxY77XULs2_JyuSJVs-lAysl8pXB_KUp0YBfE50oaY7RMy76XVJ2iYZ-GkrkNo3lkXdO3ntbkEcxnJ1-PT8OuvEJoRJo1tIffcpNaEztlXVUao-MySvJSyJI7baTSGHzZnGtV5jy2Fa8QEKROpJVTqYvSx7Bb4z89BRbH2plIlpWzOAlYp7TIrDSK50rLSrgA3vaPtzAd9ziVwFgVGIOQUopBKQG8GkR_toQbNwkdkY4GAeLI9j-sN5dFN-QKaZXDj0bEpbiwkdKx1lxWMnEa700H8IY0XJBt4c2YsktIwC4RJ1YxlQrhMAJEFcDBSBJHoBk39zZS9AZcJJlAdCAQLwfwcmimM2lXW23X116GE4FjLAN40prU0KXeMgOQI2Mb9XncUi9_eH5wOi3Kk2f_veZz2E8oi8NvQDqA3WZzbV8gtmr0BG7JhcSjmn2cwN7RyfmXi4lfp5j4MfUXMUMo1w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1ie21c0BoKVS79HFALewtxI5dVlplSzcV4k_xG5nJqxuBuFXaw2o9SezM2zv-BuClts5bK11oI-tC9PgiJDccysLFPlWRyOtDYgeHo8mx-DSTsw343Z2FobLKzibWhrpYWtoj305GEq2txPjj3emPkLpG0b-rXQuNRiz23K-fmLKt3k4_IH9fJcnux6OdSdh2FQit5KOKStedsNzZ2Gvni9xaE-dRkuZS5cIbq7TBnMOlwug8FbErRIF-kHvJC6-5jzje9wpcFbQzjvqjZhcJHsd8r0Ev4jyNtldJggFOJOOBz6tbA_ztANY84LA6c83d7d6Cm22cysaNYN2GDVfegRtr6IV3YdFsSLiC7XQ1SOzL_GS-IEFi4x7yk9V9yOtb0TEK9pnQYkkeGG0Cs6859b6o2LRvyFsxslLLkr51oCn34PhSXvN92CzxSQ-BxbHxNlJ54R2aGOe1kSOnrBapNqqQPoA33evNbItsTg02FhlmOMSJrOdEAC960tMGzuNfRO-JRz0BIXDXPyzPTrJWoTPltMePwXhOC-kibWJjhCpU4g3OzQTwmjickZ3Aydi8Pe6ASyLErWysNAbbGH7qALYGlKjfdjjcyUjW2pdVdqENATzvh-lKqpkr3fK8phEEDxmrAB40ItUviWPgnEacB6AGwjZY83CknH-v0cfpsihNHv1_Ws_g2uToYD_bnx7uPYbrCR0aqeudtmCzOjt3TzCUq8zTWn8YfLtshf0D2JJhmA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QHyTMcAgELxETWK7dh4QKhvVymBCiLG-hdixt0pVO9ZMiH-Nv467fK0RiLdJfajqS2Lnvt3z7wBeaOu8tdKFNrIuRI8vQnLDoSxc7FMVibw6JPbpYLh3KD5M5XQDfrdnYaissrWJlaEulpb2yAfJUKK1lRh_DHxTFvF5d_z29EdIHaTon9a2nUYtIvvu109M31ZvJrvI65dJMn7_dWcvbDoMhFbyYUll7E5Y7mzstfNFbq2J8yhJc6ly4Y1V2mD-4VJhdJ6K2BWiQJ_IveSF19xHHO97Ba4qjlEV6pKaXiR7HHO_GsmI8zQarJIEg51Ixj3_V7UJ-NsZrHnDfqXmmusb34KbTczKRrWQ3YYNt7gDN9aQDO_CvN6ccAXbaeuR2LfZ8WxOQsVGHfwnq3qSV7eiIxXsCyHHkmww2hBmRzn1wSjZpGvOWzKyWMsFfWsBVO7B4aW85vuwucAnPQQWx8bbSOWFd2hunNdGDp2yWqTaqEL6AF63rzezDco5NduYZ5jtECeyjhMBPO9IT2toj38RvSMedQSExl39sDw7zhrlzpTTHj8GYzstpIu0iY0RqlCJNzg3E8Ar4nBGNgMnY_Pm6AMuidC3spHSGHhjKKoD2O5Roq7b_nArI1lja1bZhWYE8Kwbpiupfm7hlucVjSCoyFgF8KAWqW5JHIPoNOI8ANUTtt6a-yOL2UmFRE6XRWmy9f9pPYVrqKrZx8nB_iO4ntD5kar0aRs2y7Nz9xijutI8qdSHwffL1tc_Kapl1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Cognitive+Vigilance+Assessment+after+Artifact+Reduction+with+Wavelet+Independent+Component+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Abu+Farha%2C+Nadia&rft.au=Al-Shargie%2C+Fares&rft.au=Tariq%2C+Usman&rft.au=Al-Nashash%2C+Hasan&rft.date=2022-04-01&rft.eissn=1424-8220&rft.volume=22&rft.issue=8&rft_id=info:doi/10.3390%2Fs22083051&rft_id=info%3Apmid%2F35459033&rft.externalDocID=35459033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |