Cytoprotective metal-organic frameworks for anaerobic bacteria
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the d...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 42; pp. 10582 - 10587 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.10.2018
National Academy of Sciences, Washington, DC (United States) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O₂, and enables the cytoprotected bacteria to continuously produce acetate from CO₂ fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. |
---|---|
AbstractList | We report a strategy to uniformly wrap
bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O
, and enables the cytoprotected bacteria to continuously produce acetate from CO
fixation under oxidative stress. The high definition of the MOF-bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O 2 , and enables the cytoprotected bacteria to continuously produce acetate from CO 2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O₂, and enables the cytoprotected bacteria to continuously produce acetate from CO₂ fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF-bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF-bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. Culturing bacteria to produce desired chemicals has long been practiced in human history, and has recently being taken as a promising approach to sustainable energy when this process is driven by sunlight and fed by CO 2 as the only carbon source. Among these chemical-producing microbes are anaerobic bacteria, inherently susceptible to O 2 and reactive oxygen species that are inevitably generated on anodes. Here, we provide cytoprotection against such oxidative stress by wrapping bacteria with an artificial material, metal-organic frameworks (MOFs), which significantly enhances the lifetime of anaerobes in the presence of O 2 , and maintains the continuous production of acetic acid from CO 2. The ultrathin nature of the MOF layer allows for cell reproduction without loss of this cytoprotective material. We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O 2 , and enables the cytoprotected bacteria to continuously produce acetate from CO 2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. Finally, the open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles. |
Author | Liu, Hao Ji, Zhe Yang, Peidong Zhang, Hao Yaghi, Omar M. |
Author_xml | – sequence: 1 givenname: Zhe surname: Ji fullname: Ji, Zhe organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 – sequence: 2 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: Department of Chemistry, University of California, Berkeley, CA 94720 – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao organization: Department of Chemistry, University of California, Berkeley, CA 94720 – sequence: 4 givenname: Omar M. surname: Yaghi fullname: Yaghi, Omar M. organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 – sequence: 5 givenname: Peidong surname: Yang fullname: Yang, Peidong organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30275326$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1561896$$D View this record in Osti.gov |
BookMark | eNp1kb1vFDEQxS0URC6Bmgp0Ig3NJv5Ye-0mEjqFDykSDdTWrDNOfOzah-0Lyn-PT5cEiETlYn7v-b2ZI3IQU0RCXjN6yuggzjYRyinTVGtuGJPPyIJRwzrVG3pAFpTyodM97w_JUSlrSqmRmr4gh6INpOBqQc5XdzVtcqroarjF5YwVpi7la4jBLX2GGX-l_KMsfcpLiIA5jW0wgquYA7wkzz1MBV_dv8fk-8eLb6vP3eXXT19WHy47J4WqHTe9d0x6zxRS0MoNV8qPznFJuYTea4dSAIpeoBd65LxxQsmBGuWZUVock_O972Y7znjlMNYMk93kMEO-swmC_XcSw429TrdWNblkshm82xukUoMtLrTCNy7F2HpbJhXTRjXo_f0vOf3cYql2DsXhNEHEtC2WtxUPvTFcNPTkCbpO2xzbDhrF5SCGXu5iv_079mPeh_03QO4Bl1MpGb1tyaCGtGsRJsuo3d3Z7u5s_9y56c6e6B6s_694s1esS035Eeeq5eBSit_tm7P0 |
CitedBy_id | crossref_primary_10_1002_celc_202200276 crossref_primary_10_1016_j_ijhydene_2022_03_148 crossref_primary_10_1021_acs_biochem_9b00747 crossref_primary_10_3390_bios13020225 crossref_primary_10_1016_j_greenca_2024_05_005 crossref_primary_10_1002_adtp_202300037 crossref_primary_10_1021_acs_analchem_9b03677 crossref_primary_10_1016_j_nantod_2020_100854 crossref_primary_10_1002_adfm_201905321 crossref_primary_10_1016_j_mtchem_2021_100609 crossref_primary_10_1021_acs_jafc_2c08400 crossref_primary_10_1016_j_tibtech_2024_07_005 crossref_primary_10_1039_C9DT00719A crossref_primary_10_1002_ange_201914461 crossref_primary_10_1039_C9RA07461A crossref_primary_10_1016_j_inoche_2024_113029 crossref_primary_10_1038_s41929_020_0428_y crossref_primary_10_1039_D0CS01571G crossref_primary_10_1039_D3EE01265D crossref_primary_10_1007_s40726_023_00259_6 crossref_primary_10_1002_advs_202309775 crossref_primary_10_1021_acs_chemrev_3c00831 crossref_primary_10_1016_j_jwpe_2025_107413 crossref_primary_10_1021_acs_analchem_0c02017 crossref_primary_10_1016_j_checat_2022_09_016 crossref_primary_10_1016_j_watres_2023_120339 crossref_primary_10_1002_anie_202201485 crossref_primary_10_1021_acsnano_4c16480 crossref_primary_10_1134_S1070428021040011 crossref_primary_10_1016_j_rser_2020_110404 crossref_primary_10_1021_acsnano_3c03858 crossref_primary_10_1039_D0CP02741C crossref_primary_10_1515_ntrev_2022_0482 crossref_primary_10_1021_acsami_1c18597 crossref_primary_10_1039_C9CS00496C crossref_primary_10_1039_D2RA00673A crossref_primary_10_1002_adhm_202301343 crossref_primary_10_1002_wnan_1706 crossref_primary_10_1007_s11783_021_1457_8 crossref_primary_10_1021_acsnano_9b08108 crossref_primary_10_1088_1361_6528_ab85ea crossref_primary_10_1016_j_isci_2021_102294 crossref_primary_10_1016_j_trechm_2024_07_003 crossref_primary_10_1038_s41598_019_43835_x crossref_primary_10_1016_j_mtbio_2025_101642 crossref_primary_10_1016_j_joule_2021_08_003 crossref_primary_10_1002_ange_202201485 crossref_primary_10_1016_j_scitotenv_2023_169186 crossref_primary_10_1016_j_watres_2022_119033 crossref_primary_10_1126_sciadv_aaz0330 crossref_primary_10_1016_j_biomaterials_2024_123000 crossref_primary_10_1039_D4QI02119C crossref_primary_10_1016_j_scitotenv_2021_148288 crossref_primary_10_1002_smll_202100300 crossref_primary_10_1016_j_biortech_2024_131518 crossref_primary_10_1021_jacs_0c09284 crossref_primary_10_1038_s41578_022_00426_z crossref_primary_10_1021_acsmaterialslett_2c00752 crossref_primary_10_1021_acs_est_1c08340 crossref_primary_10_1016_j_biotechadv_2021_107810 crossref_primary_10_1002_adma_201907001 crossref_primary_10_1021_acsami_1c01927 crossref_primary_10_1016_j_biortech_2024_130390 crossref_primary_10_1039_D4TB01882F crossref_primary_10_1016_j_tibtech_2020_03_008 crossref_primary_10_1016_j_envres_2023_116317 crossref_primary_10_1002_adfm_202000238 crossref_primary_10_1016_j_cej_2020_127452 crossref_primary_10_1016_j_chemosphere_2022_133582 crossref_primary_10_1088_2399_1984_abfd97 crossref_primary_10_1021_jacs_4c09259 crossref_primary_10_1016_j_nantod_2020_100985 crossref_primary_10_1016_j_ccr_2020_213651 crossref_primary_10_1039_D4SC03859B crossref_primary_10_1016_j_watres_2024_122759 crossref_primary_10_1016_j_biomaterials_2020_120473 crossref_primary_10_1016_j_talanta_2024_126282 crossref_primary_10_1021_acs_est_4c05324 crossref_primary_10_1016_j_jhazmat_2023_132475 crossref_primary_10_1016_j_isci_2021_102952 crossref_primary_10_1016_j_nantod_2021_101331 crossref_primary_10_1021_acsami_4c12355 crossref_primary_10_1002_adma_202211866 crossref_primary_10_1021_acs_est_4c05605 crossref_primary_10_1021_acs_nanolett_9b02916 crossref_primary_10_1088_1361_6528_acbc81 crossref_primary_10_1002_smtd_202101391 crossref_primary_10_1021_acsami_0c06684 crossref_primary_10_1016_j_mtbio_2021_100097 crossref_primary_10_1021_acs_chemrev_2c00512 crossref_primary_10_1002_tcr_202000067 crossref_primary_10_1021_acs_est_0c02709 crossref_primary_10_1021_acs_est_2c01388 crossref_primary_10_1016_j_jece_2024_113063 crossref_primary_10_1002_adma_202304920 crossref_primary_10_1016_j_jwpe_2022_103267 crossref_primary_10_1002_adma_202201247 crossref_primary_10_1016_j_isci_2021_102828 crossref_primary_10_1016_j_rser_2021_111375 crossref_primary_10_1016_j_ijbiomac_2024_137735 crossref_primary_10_1039_D3SC04973F crossref_primary_10_1002_aenm_202201093 crossref_primary_10_1002_biot_202300084 crossref_primary_10_1360_TB_2021_0584 crossref_primary_10_1016_j_tibtech_2023_06_013 crossref_primary_10_1002_adma_201900545 crossref_primary_10_1021_acs_est_1c06596 crossref_primary_10_1002_adfm_202107421 crossref_primary_10_1016_j_apcatb_2020_119696 crossref_primary_10_1021_acs_accounts_4c00049 crossref_primary_10_1002_anbr_202100034 crossref_primary_10_1016_j_plaphy_2024_109091 crossref_primary_10_1002_adfm_202309288 crossref_primary_10_1021_acsami_0c20390 crossref_primary_10_1039_C8FD00187A crossref_primary_10_1002_anie_201914461 crossref_primary_10_1016_j_chroma_2019_06_059 crossref_primary_10_1021_acs_nanolett_3c04369 crossref_primary_10_1021_acsnano_0c10144 crossref_primary_10_3390_w17020210 crossref_primary_10_1002_advs_202306450 crossref_primary_10_1016_j_cej_2021_132943 crossref_primary_10_1002_smm2_1322 crossref_primary_10_1002_advs_202308597 crossref_primary_10_1016_j_jece_2024_112794 crossref_primary_10_1016_j_mcat_2023_113122 crossref_primary_10_1016_j_partic_2024_05_002 crossref_primary_10_1002_cnma_202100535 crossref_primary_10_1039_D1EE03094A crossref_primary_10_1007_s12274_019_2580_8 crossref_primary_10_1002_cssc_202201136 crossref_primary_10_1016_j_jhazmat_2024_135451 crossref_primary_10_1016_j_biortech_2021_126562 crossref_primary_10_1016_j_scitotenv_2021_145136 crossref_primary_10_1016_j_tibtech_2024_11_012 crossref_primary_10_1016_j_electacta_2022_141720 crossref_primary_10_1016_j_biortech_2021_125117 crossref_primary_10_1016_j_envpol_2022_120232 crossref_primary_10_1002_adma_202313389 crossref_primary_10_1016_j_addr_2022_114443 crossref_primary_10_1002_adhm_202000046 crossref_primary_10_1021_acs_langmuir_4c00404 crossref_primary_10_1002_adtp_202400425 crossref_primary_10_1021_acs_est_2c07588 crossref_primary_10_1002_anbr_202000044 crossref_primary_10_1039_C9CS00829B crossref_primary_10_34133_2022_9804014 crossref_primary_10_1002_adfm_202001648 crossref_primary_10_1016_j_matt_2020_09_006 crossref_primary_10_1007_s11783_024_1865_7 crossref_primary_10_1016_j_scitotenv_2020_140080 crossref_primary_10_1021_acsmaterialslett_2c00820 crossref_primary_10_1039_D3CC03372D crossref_primary_10_1021_acsami_1c13720 crossref_primary_10_1002_smtd_201900213 crossref_primary_10_1016_j_tibtech_2022_01_012 crossref_primary_10_1126_sciadv_ade0997 crossref_primary_10_1016_j_actbio_2020_06_038 crossref_primary_10_1016_j_ccr_2024_216165 crossref_primary_10_1016_j_ijhydene_2024_11_132 crossref_primary_10_1021_acssuschemeng_9b05175 crossref_primary_10_1016_j_matt_2019_06_007 crossref_primary_10_1021_acsmaterialslett_4c01460 crossref_primary_10_1016_j_watres_2020_115501 crossref_primary_10_1016_j_isci_2021_103049 crossref_primary_10_1016_j_nantod_2023_101973 crossref_primary_10_1016_j_biotechadv_2022_107982 crossref_primary_10_1016_j_nantod_2021_101256 crossref_primary_10_1002_smll_202412264 crossref_primary_10_1016_j_biomaterials_2024_123029 crossref_primary_10_1002_jev2_12281 crossref_primary_10_1039_C9CS00806C crossref_primary_10_1021_acsami_2c19528 crossref_primary_10_1002_anbr_202000037 crossref_primary_10_1016_j_scitotenv_2022_153857 |
Cites_doi | 10.1128/AEM.68.2.1005-1009.2002 10.1128/AEM.69.2.779-786.2003 10.1021/acs.nanolett.6b02740 10.1021/jp500315u 10.1002/anie.200903010 10.1126/science.aad3317 10.1021/cm970027q 10.1021/jp1028933 10.1038/225519a0 10.1021/jp300255h 10.1002/adma.201304568 10.1073/pnas.1424872112 10.1021/bm015659r 10.1002/adma.201602335 10.1038/s41467-018-04050-w 10.1002/anie.201512054 10.1021/ja01594a004 10.1128/JB.187.6.2020-2029.2005 10.1002/anie.201704120 10.1146/annurev-micro-092412-155620 10.1126/science.aaf5039 10.1021/acs.nanolett.5b01254 10.1021/jacs.7b07895 10.1073/pnas.1508075112 10.1002/adfm.201504480 10.1146/annurev.mi.34.100180.002231 10.1038/s41598-018-22263-3 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright © 2018 the Author(s). Published by PNAS. Copyright National Academy of Sciences Oct 16, 2018 Copyright © 2018 the Author(s). Published by PNAS. 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright © 2018 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Oct 16, 2018 – notice: Copyright © 2018 the Author(s). Published by PNAS. 2018 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.1808829115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10587 |
ExternalDocumentID | PMC6196515 1561896 30275326 10_1073_pnas_1808829115 26532255 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Aeronautics and Space Administration (NASA) grantid: No. NNX17AJ31G |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DWIUU OIOZB OTOTI ZA5 5PM |
ID | FETCH-LOGICAL-c536t-294fc15ff16e0a86c7d6fbcc25025a4f8ce53ae343ef38b2216e3657096f19683 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:23:07 EDT 2025 Wed Nov 29 06:10:31 EST 2023 Fri Jul 11 01:29:00 EDT 2025 Mon Jun 30 08:36:21 EDT 2025 Wed Feb 19 02:36:28 EST 2025 Tue Jul 01 03:19:55 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Fri May 30 11:18:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | artificial photosynthesis anaerobic bacteria cell wrapping reactive oxygen species metal-organic frameworks |
Language | English |
License | Copyright © 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-294fc15ff16e0a86c7d6fbcc25025a4f8ce53ae343ef38b2216e3657096f19683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 National Aeronautics and Space Administration (NASA) AC02-05CH11231 USDOE Office of Science (SC) 1Z.J. and H.Z. contributed equally to this work. Reviewers: J.C., Yonsei University; and W.R.D., Northwestern University. Author contributions: Z.J., H.Z., O.M.Y., and P.Y. designed research; Z.J., H.Z., and H.L. performed research; Z.J., H.Z., and H.L. contributed new reagents/analytic tools; Z.J., H.Z., O.M.Y., and P.Y. analyzed data; and Z.J., H.Z., O.M.Y., and P.Y. wrote the paper. Contributed by Peidong Yang, August 24, 2018 (sent for review June 4, 2018; reviewed by Jinwoo Cheon and William R. Dichtel) |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6196515 |
PMID | 30275326 |
PQID | 2125737458 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6196515 osti_scitechconnect_1561896 proquest_miscellaneous_2115749923 proquest_journals_2125737458 pubmed_primary_30275326 crossref_citationtrail_10_1073_pnas_1808829115 crossref_primary_10_1073_pnas_1808829115 jstor_primary_26532255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-16 |
PublicationDateYYYYMMDD | 2018-10-16 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences National Academy of Sciences, Washington, DC (United States) |
Publisher_xml | – name: National Academy of Sciences – name: National Academy of Sciences, Washington, DC (United States) |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_11_2 e_1_3_4_12_2 e_1_3_4_10_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_8_2 doi: 10.1128/AEM.68.2.1005-1009.2002 – ident: e_1_3_4_21_2 doi: 10.1128/AEM.69.2.779-786.2003 – ident: e_1_3_4_7_2 doi: 10.1021/acs.nanolett.6b02740 – ident: e_1_3_4_25_2 doi: 10.1021/jp500315u – ident: e_1_3_4_14_2 doi: 10.1002/anie.200903010 – ident: e_1_3_4_6_2 doi: 10.1126/science.aad3317 – ident: e_1_3_4_20_2 doi: 10.1021/cm970027q – ident: e_1_3_4_26_2 doi: 10.1021/jp1028933 – ident: e_1_3_4_18_2 doi: 10.1038/225519a0 – ident: e_1_3_4_23_2 doi: 10.1021/jp300255h – ident: e_1_3_4_13_2 doi: 10.1002/adma.201304568 – ident: e_1_3_4_2_2 doi: 10.1073/pnas.1424872112 – ident: e_1_3_4_9_2 doi: 10.1021/bm015659r – ident: e_1_3_4_10_2 doi: 10.1002/adma.201602335 – ident: e_1_3_4_27_2 doi: 10.1038/s41467-018-04050-w – ident: e_1_3_4_16_2 doi: 10.1002/anie.201512054 – ident: e_1_3_4_24_2 doi: 10.1021/ja01594a004 – ident: e_1_3_4_22_2 doi: 10.1128/JB.187.6.2020-2029.2005 – ident: e_1_3_4_11_2 doi: 10.1002/anie.201704120 – ident: e_1_3_4_19_2 doi: 10.1146/annurev-micro-092412-155620 – ident: e_1_3_4_5_2 doi: 10.1126/science.aaf5039 – ident: e_1_3_4_3_2 doi: 10.1021/acs.nanolett.5b01254 – ident: e_1_3_4_17_2 doi: 10.1021/jacs.7b07895 – ident: e_1_3_4_4_2 doi: 10.1073/pnas.1508075112 – ident: e_1_3_4_12_2 doi: 10.1002/adfm.201504480 – ident: e_1_3_4_1_2 doi: 10.1146/annurev.mi.34.100180.002231 – ident: e_1_3_4_15_2 doi: 10.1038/s41598-018-22263-3 |
SSID | ssj0009580 |
Score | 2.6305366 |
Snippet | We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection... We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection... We report a strategy to uniformly wrap bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial... Culturing bacteria to produce desired chemicals has long been practiced in human history, and has recently being taken as a promising approach to sustainable... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10582 |
SubjectTerms | Acetic acid Anaerobic bacteria artificial photosynthesis Bacteria BASIC BIOLOGICAL SCIENCES Carbon dioxide Carbon dioxide fixation Carbon sequestration Catalysis Catalytic activity Cell surface Cell Survival cell wrapping Clusters Cytoprotection Decomposition Decomposition reactions Elongation High definition Metal-organic frameworks Metal-Organic Frameworks - chemistry Metals Monolayers Moorella - growth & development Nanoparticles Oxidative Stress Photosynthesis Physical Sciences Reactive oxygen species Surface Properties Thickness Zirconia Zirconium Zirconium - chemistry Zirconium dioxide |
Title | Cytoprotective metal-organic frameworks for anaerobic bacteria |
URI | https://www.jstor.org/stable/26532255 https://www.ncbi.nlm.nih.gov/pubmed/30275326 https://www.proquest.com/docview/2125737458 https://www.proquest.com/docview/2115749923 https://www.osti.gov/servlets/purl/1561896 https://pubmed.ncbi.nlm.nih.gov/PMC6196515 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9RAFB60gvQiVq3GVongobJk3WR-JLkIpShLD2sPLVQvITOZoYVuUkz2oH-9b35kkqwtqJewzLxNIN_Lm_eSb76H0PuKMkEFYZFSikckJSLiksRRtShhQGYVqQzbYsWWF-T0kl4O2xXN7pKOz8WvO_eV_A-qMAa46l2y_4CsPykMwG_AF46AMBz_CuOTn13jhBY0AWgtIZOObJ8mMVM97ap1TMlSas0lMeNWoLkc56Vnfh1re9bAqn9NeDxsOnGRoJ1Fs7PV0ML41FACvl95J_GvoZdl4yk_15utkW-lbSk8-7rWakLjFxCxUYONnXy1DZqQc0SM2LafPqraXZrOfayClguSkNLZhkN_hG-IN7rncF228zjTyX_uTjMC83Zt0DTfW3GyJaNtF2Y39RA9SqB4MHTP5ViKOVv0Ik8p_rh1tV30uP__JFWxbFVYuBsIvXeVI9us2lGacv4UPXH1RXhsnWUPPZD1M7TX4xYeOZnxD8_Rp6n3hBPvCQfvCcF7Qu89Ye89L9DFl8_nJ8vIddOIBMWsi5KcKBFTpWImF2XGRFoxxYWAHDihJVGZkBSXEhMsFc54koAd1sSonCkI0xneRzt1U8tXKISsTvEKQ2kO5kxyzsA2yaH4NvKFJEDz_sYVwknN644nN4WhPKS40De9GG56gI78H26tysr9pvsGCW-XMKoXJZg40NAUkDlq-WOheWKiK2IoELKcBeiwR6xwT3BbQNpGU5wSmgXonZ-G-Ko_mpW1bDbaJqYpyaEOCtBLC7C_dO8oAUon0HsDrd0-namvr4yGO9NKnjF9fe85D9Du8LAdop3ux0a-gfy342-NO_8GXPGuXA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytoprotective+metal-organic+frameworks+for+anaerobic+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ji%2C+Zhe&rft.au=Zhang%2C+Hao&rft.au=Liu%2C+Hao&rft.au=Yaghi%2C+Omar+M&rft.date=2018-10-16&rft.eissn=1091-6490&rft.volume=115&rft.issue=42&rft.spage=10582&rft_id=info:doi/10.1073%2Fpnas.1808829115&rft_id=info%3Apmid%2F30275326&rft.externalDocID=30275326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |