Cytoprotective metal-organic frameworks for anaerobic bacteria

We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the d...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 42; pp. 10582 - 10587
Main Authors Ji, Zhe, Zhang, Hao, Liu, Hao, Yaghi, Omar M., Yang, Peidong
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.10.2018
National Academy of Sciences, Washington, DC (United States)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O₂, and enables the cytoprotected bacteria to continuously produce acetate from CO₂ fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
AbstractList We report a strategy to uniformly wrap bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O , and enables the cytoprotected bacteria to continuously produce acetate from CO fixation under oxidative stress. The high definition of the MOF-bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O 2 , and enables the cytoprotected bacteria to continuously produce acetate from CO 2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O₂, and enables the cytoprotected bacteria to continuously produce acetate from CO₂ fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF-bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF-bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
Culturing bacteria to produce desired chemicals has long been practiced in human history, and has recently being taken as a promising approach to sustainable energy when this process is driven by sunlight and fed by CO 2 as the only carbon source. Among these chemical-producing microbes are anaerobic bacteria, inherently susceptible to O 2 and reactive oxygen species that are inevitably generated on anodes. Here, we provide cytoprotection against such oxidative stress by wrapping bacteria with an artificial material, metal-organic frameworks (MOFs), which significantly enhances the lifetime of anaerobes in the presence of O 2 , and maintains the continuous production of acetic acid from CO 2. The ultrathin nature of the MOF layer allows for cell reproduction without loss of this cytoprotective material. We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O 2 , and enables the cytoprotected bacteria to continuously produce acetate from CO 2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. Finally, the open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
Author Liu, Hao
Ji, Zhe
Yang, Peidong
Zhang, Hao
Yaghi, Omar M.
Author_xml – sequence: 1
  givenname: Zhe
  surname: Ji
  fullname: Ji, Zhe
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
– sequence: 2
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: Department of Chemistry, University of California, Berkeley, CA 94720
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Department of Chemistry, University of California, Berkeley, CA 94720
– sequence: 4
  givenname: Omar M.
  surname: Yaghi
  fullname: Yaghi, Omar M.
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
– sequence: 5
  givenname: Peidong
  surname: Yang
  fullname: Yang, Peidong
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30275326$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1561896$$D View this record in Osti.gov
BookMark eNp1kb1vFDEQxS0URC6Bmgp0Ig3NJv5Ye-0mEjqFDykSDdTWrDNOfOzah-0Lyn-PT5cEiETlYn7v-b2ZI3IQU0RCXjN6yuggzjYRyinTVGtuGJPPyIJRwzrVG3pAFpTyodM97w_JUSlrSqmRmr4gh6INpOBqQc5XdzVtcqroarjF5YwVpi7la4jBLX2GGX-l_KMsfcpLiIA5jW0wgquYA7wkzz1MBV_dv8fk-8eLb6vP3eXXT19WHy47J4WqHTe9d0x6zxRS0MoNV8qPznFJuYTea4dSAIpeoBd65LxxQsmBGuWZUVock_O972Y7znjlMNYMk93kMEO-swmC_XcSw429TrdWNblkshm82xukUoMtLrTCNy7F2HpbJhXTRjXo_f0vOf3cYql2DsXhNEHEtC2WtxUPvTFcNPTkCbpO2xzbDhrF5SCGXu5iv_079mPeh_03QO4Bl1MpGb1tyaCGtGsRJsuo3d3Z7u5s_9y56c6e6B6s_694s1esS035Eeeq5eBSit_tm7P0
CitedBy_id crossref_primary_10_1002_celc_202200276
crossref_primary_10_1016_j_ijhydene_2022_03_148
crossref_primary_10_1021_acs_biochem_9b00747
crossref_primary_10_3390_bios13020225
crossref_primary_10_1016_j_greenca_2024_05_005
crossref_primary_10_1002_adtp_202300037
crossref_primary_10_1021_acs_analchem_9b03677
crossref_primary_10_1016_j_nantod_2020_100854
crossref_primary_10_1002_adfm_201905321
crossref_primary_10_1016_j_mtchem_2021_100609
crossref_primary_10_1021_acs_jafc_2c08400
crossref_primary_10_1016_j_tibtech_2024_07_005
crossref_primary_10_1039_C9DT00719A
crossref_primary_10_1002_ange_201914461
crossref_primary_10_1039_C9RA07461A
crossref_primary_10_1016_j_inoche_2024_113029
crossref_primary_10_1038_s41929_020_0428_y
crossref_primary_10_1039_D0CS01571G
crossref_primary_10_1039_D3EE01265D
crossref_primary_10_1007_s40726_023_00259_6
crossref_primary_10_1002_advs_202309775
crossref_primary_10_1021_acs_chemrev_3c00831
crossref_primary_10_1016_j_jwpe_2025_107413
crossref_primary_10_1021_acs_analchem_0c02017
crossref_primary_10_1016_j_checat_2022_09_016
crossref_primary_10_1016_j_watres_2023_120339
crossref_primary_10_1002_anie_202201485
crossref_primary_10_1021_acsnano_4c16480
crossref_primary_10_1134_S1070428021040011
crossref_primary_10_1016_j_rser_2020_110404
crossref_primary_10_1021_acsnano_3c03858
crossref_primary_10_1039_D0CP02741C
crossref_primary_10_1515_ntrev_2022_0482
crossref_primary_10_1021_acsami_1c18597
crossref_primary_10_1039_C9CS00496C
crossref_primary_10_1039_D2RA00673A
crossref_primary_10_1002_adhm_202301343
crossref_primary_10_1002_wnan_1706
crossref_primary_10_1007_s11783_021_1457_8
crossref_primary_10_1021_acsnano_9b08108
crossref_primary_10_1088_1361_6528_ab85ea
crossref_primary_10_1016_j_isci_2021_102294
crossref_primary_10_1016_j_trechm_2024_07_003
crossref_primary_10_1038_s41598_019_43835_x
crossref_primary_10_1016_j_mtbio_2025_101642
crossref_primary_10_1016_j_joule_2021_08_003
crossref_primary_10_1002_ange_202201485
crossref_primary_10_1016_j_scitotenv_2023_169186
crossref_primary_10_1016_j_watres_2022_119033
crossref_primary_10_1126_sciadv_aaz0330
crossref_primary_10_1016_j_biomaterials_2024_123000
crossref_primary_10_1039_D4QI02119C
crossref_primary_10_1016_j_scitotenv_2021_148288
crossref_primary_10_1002_smll_202100300
crossref_primary_10_1016_j_biortech_2024_131518
crossref_primary_10_1021_jacs_0c09284
crossref_primary_10_1038_s41578_022_00426_z
crossref_primary_10_1021_acsmaterialslett_2c00752
crossref_primary_10_1021_acs_est_1c08340
crossref_primary_10_1016_j_biotechadv_2021_107810
crossref_primary_10_1002_adma_201907001
crossref_primary_10_1021_acsami_1c01927
crossref_primary_10_1016_j_biortech_2024_130390
crossref_primary_10_1039_D4TB01882F
crossref_primary_10_1016_j_tibtech_2020_03_008
crossref_primary_10_1016_j_envres_2023_116317
crossref_primary_10_1002_adfm_202000238
crossref_primary_10_1016_j_cej_2020_127452
crossref_primary_10_1016_j_chemosphere_2022_133582
crossref_primary_10_1088_2399_1984_abfd97
crossref_primary_10_1021_jacs_4c09259
crossref_primary_10_1016_j_nantod_2020_100985
crossref_primary_10_1016_j_ccr_2020_213651
crossref_primary_10_1039_D4SC03859B
crossref_primary_10_1016_j_watres_2024_122759
crossref_primary_10_1016_j_biomaterials_2020_120473
crossref_primary_10_1016_j_talanta_2024_126282
crossref_primary_10_1021_acs_est_4c05324
crossref_primary_10_1016_j_jhazmat_2023_132475
crossref_primary_10_1016_j_isci_2021_102952
crossref_primary_10_1016_j_nantod_2021_101331
crossref_primary_10_1021_acsami_4c12355
crossref_primary_10_1002_adma_202211866
crossref_primary_10_1021_acs_est_4c05605
crossref_primary_10_1021_acs_nanolett_9b02916
crossref_primary_10_1088_1361_6528_acbc81
crossref_primary_10_1002_smtd_202101391
crossref_primary_10_1021_acsami_0c06684
crossref_primary_10_1016_j_mtbio_2021_100097
crossref_primary_10_1021_acs_chemrev_2c00512
crossref_primary_10_1002_tcr_202000067
crossref_primary_10_1021_acs_est_0c02709
crossref_primary_10_1021_acs_est_2c01388
crossref_primary_10_1016_j_jece_2024_113063
crossref_primary_10_1002_adma_202304920
crossref_primary_10_1016_j_jwpe_2022_103267
crossref_primary_10_1002_adma_202201247
crossref_primary_10_1016_j_isci_2021_102828
crossref_primary_10_1016_j_rser_2021_111375
crossref_primary_10_1016_j_ijbiomac_2024_137735
crossref_primary_10_1039_D3SC04973F
crossref_primary_10_1002_aenm_202201093
crossref_primary_10_1002_biot_202300084
crossref_primary_10_1360_TB_2021_0584
crossref_primary_10_1016_j_tibtech_2023_06_013
crossref_primary_10_1002_adma_201900545
crossref_primary_10_1021_acs_est_1c06596
crossref_primary_10_1002_adfm_202107421
crossref_primary_10_1016_j_apcatb_2020_119696
crossref_primary_10_1021_acs_accounts_4c00049
crossref_primary_10_1002_anbr_202100034
crossref_primary_10_1016_j_plaphy_2024_109091
crossref_primary_10_1002_adfm_202309288
crossref_primary_10_1021_acsami_0c20390
crossref_primary_10_1039_C8FD00187A
crossref_primary_10_1002_anie_201914461
crossref_primary_10_1016_j_chroma_2019_06_059
crossref_primary_10_1021_acs_nanolett_3c04369
crossref_primary_10_1021_acsnano_0c10144
crossref_primary_10_3390_w17020210
crossref_primary_10_1002_advs_202306450
crossref_primary_10_1016_j_cej_2021_132943
crossref_primary_10_1002_smm2_1322
crossref_primary_10_1002_advs_202308597
crossref_primary_10_1016_j_jece_2024_112794
crossref_primary_10_1016_j_mcat_2023_113122
crossref_primary_10_1016_j_partic_2024_05_002
crossref_primary_10_1002_cnma_202100535
crossref_primary_10_1039_D1EE03094A
crossref_primary_10_1007_s12274_019_2580_8
crossref_primary_10_1002_cssc_202201136
crossref_primary_10_1016_j_jhazmat_2024_135451
crossref_primary_10_1016_j_biortech_2021_126562
crossref_primary_10_1016_j_scitotenv_2021_145136
crossref_primary_10_1016_j_tibtech_2024_11_012
crossref_primary_10_1016_j_electacta_2022_141720
crossref_primary_10_1016_j_biortech_2021_125117
crossref_primary_10_1016_j_envpol_2022_120232
crossref_primary_10_1002_adma_202313389
crossref_primary_10_1016_j_addr_2022_114443
crossref_primary_10_1002_adhm_202000046
crossref_primary_10_1021_acs_langmuir_4c00404
crossref_primary_10_1002_adtp_202400425
crossref_primary_10_1021_acs_est_2c07588
crossref_primary_10_1002_anbr_202000044
crossref_primary_10_1039_C9CS00829B
crossref_primary_10_34133_2022_9804014
crossref_primary_10_1002_adfm_202001648
crossref_primary_10_1016_j_matt_2020_09_006
crossref_primary_10_1007_s11783_024_1865_7
crossref_primary_10_1016_j_scitotenv_2020_140080
crossref_primary_10_1021_acsmaterialslett_2c00820
crossref_primary_10_1039_D3CC03372D
crossref_primary_10_1021_acsami_1c13720
crossref_primary_10_1002_smtd_201900213
crossref_primary_10_1016_j_tibtech_2022_01_012
crossref_primary_10_1126_sciadv_ade0997
crossref_primary_10_1016_j_actbio_2020_06_038
crossref_primary_10_1016_j_ccr_2024_216165
crossref_primary_10_1016_j_ijhydene_2024_11_132
crossref_primary_10_1021_acssuschemeng_9b05175
crossref_primary_10_1016_j_matt_2019_06_007
crossref_primary_10_1021_acsmaterialslett_4c01460
crossref_primary_10_1016_j_watres_2020_115501
crossref_primary_10_1016_j_isci_2021_103049
crossref_primary_10_1016_j_nantod_2023_101973
crossref_primary_10_1016_j_biotechadv_2022_107982
crossref_primary_10_1016_j_nantod_2021_101256
crossref_primary_10_1002_smll_202412264
crossref_primary_10_1016_j_biomaterials_2024_123029
crossref_primary_10_1002_jev2_12281
crossref_primary_10_1039_C9CS00806C
crossref_primary_10_1021_acsami_2c19528
crossref_primary_10_1002_anbr_202000037
crossref_primary_10_1016_j_scitotenv_2022_153857
Cites_doi 10.1128/AEM.68.2.1005-1009.2002
10.1128/AEM.69.2.779-786.2003
10.1021/acs.nanolett.6b02740
10.1021/jp500315u
10.1002/anie.200903010
10.1126/science.aad3317
10.1021/cm970027q
10.1021/jp1028933
10.1038/225519a0
10.1021/jp300255h
10.1002/adma.201304568
10.1073/pnas.1424872112
10.1021/bm015659r
10.1002/adma.201602335
10.1038/s41467-018-04050-w
10.1002/anie.201512054
10.1021/ja01594a004
10.1128/JB.187.6.2020-2029.2005
10.1002/anie.201704120
10.1146/annurev-micro-092412-155620
10.1126/science.aaf5039
10.1021/acs.nanolett.5b01254
10.1021/jacs.7b07895
10.1073/pnas.1508075112
10.1002/adfm.201504480
10.1146/annurev.mi.34.100180.002231
10.1038/s41598-018-22263-3
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Oct 16, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Oct 16, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1808829115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

Virology and AIDS Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10587
ExternalDocumentID PMC6196515
1561896
30275326
10_1073_pnas_1808829115
26532255
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Aeronautics and Space Administration (NASA)
  grantid: No. NNX17AJ31G
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DWIUU
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c536t-294fc15ff16e0a86c7d6fbcc25025a4f8ce53ae343ef38b2216e3657096f19683
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:23:07 EDT 2025
Wed Nov 29 06:10:31 EST 2023
Fri Jul 11 01:29:00 EDT 2025
Mon Jun 30 08:36:21 EDT 2025
Wed Feb 19 02:36:28 EST 2025
Tue Jul 01 03:19:55 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Fri May 30 11:18:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords artificial photosynthesis
anaerobic bacteria
cell wrapping
reactive oxygen species
metal-organic frameworks
Language English
License Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-294fc15ff16e0a86c7d6fbcc25025a4f8ce53ae343ef38b2216e3657096f19683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
National Aeronautics and Space Administration (NASA)
AC02-05CH11231
USDOE Office of Science (SC)
1Z.J. and H.Z. contributed equally to this work.
Reviewers: J.C., Yonsei University; and W.R.D., Northwestern University.
Author contributions: Z.J., H.Z., O.M.Y., and P.Y. designed research; Z.J., H.Z., and H.L. performed research; Z.J., H.Z., and H.L. contributed new reagents/analytic tools; Z.J., H.Z., O.M.Y., and P.Y. analyzed data; and Z.J., H.Z., O.M.Y., and P.Y. wrote the paper.
Contributed by Peidong Yang, August 24, 2018 (sent for review June 4, 2018; reviewed by Jinwoo Cheon and William R. Dichtel)
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6196515
PMID 30275326
PQID 2125737458
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6196515
osti_scitechconnect_1561896
proquest_miscellaneous_2115749923
proquest_journals_2125737458
pubmed_primary_30275326
crossref_citationtrail_10_1073_pnas_1808829115
crossref_primary_10_1073_pnas_1808829115
jstor_primary_26532255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-16
PublicationDateYYYYMMDD 2018-10-16
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
National Academy of Sciences, Washington, DC (United States)
Publisher_xml – name: National Academy of Sciences
– name: National Academy of Sciences, Washington, DC (United States)
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_10_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_8_2
  doi: 10.1128/AEM.68.2.1005-1009.2002
– ident: e_1_3_4_21_2
  doi: 10.1128/AEM.69.2.779-786.2003
– ident: e_1_3_4_7_2
  doi: 10.1021/acs.nanolett.6b02740
– ident: e_1_3_4_25_2
  doi: 10.1021/jp500315u
– ident: e_1_3_4_14_2
  doi: 10.1002/anie.200903010
– ident: e_1_3_4_6_2
  doi: 10.1126/science.aad3317
– ident: e_1_3_4_20_2
  doi: 10.1021/cm970027q
– ident: e_1_3_4_26_2
  doi: 10.1021/jp1028933
– ident: e_1_3_4_18_2
  doi: 10.1038/225519a0
– ident: e_1_3_4_23_2
  doi: 10.1021/jp300255h
– ident: e_1_3_4_13_2
  doi: 10.1002/adma.201304568
– ident: e_1_3_4_2_2
  doi: 10.1073/pnas.1424872112
– ident: e_1_3_4_9_2
  doi: 10.1021/bm015659r
– ident: e_1_3_4_10_2
  doi: 10.1002/adma.201602335
– ident: e_1_3_4_27_2
  doi: 10.1038/s41467-018-04050-w
– ident: e_1_3_4_16_2
  doi: 10.1002/anie.201512054
– ident: e_1_3_4_24_2
  doi: 10.1021/ja01594a004
– ident: e_1_3_4_22_2
  doi: 10.1128/JB.187.6.2020-2029.2005
– ident: e_1_3_4_11_2
  doi: 10.1002/anie.201704120
– ident: e_1_3_4_19_2
  doi: 10.1146/annurev-micro-092412-155620
– ident: e_1_3_4_5_2
  doi: 10.1126/science.aaf5039
– ident: e_1_3_4_3_2
  doi: 10.1021/acs.nanolett.5b01254
– ident: e_1_3_4_17_2
  doi: 10.1021/jacs.7b07895
– ident: e_1_3_4_4_2
  doi: 10.1073/pnas.1508075112
– ident: e_1_3_4_12_2
  doi: 10.1002/adfm.201504480
– ident: e_1_3_4_1_2
  doi: 10.1146/annurev.mi.34.100180.002231
– ident: e_1_3_4_15_2
  doi: 10.1038/s41598-018-22263-3
SSID ssj0009580
Score 2.6305366
Snippet We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection...
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection...
We report a strategy to uniformly wrap bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial...
Culturing bacteria to produce desired chemicals has long been practiced in human history, and has recently being taken as a promising approach to sustainable...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10582
SubjectTerms Acetic acid
Anaerobic bacteria
artificial photosynthesis
Bacteria
BASIC BIOLOGICAL SCIENCES
Carbon dioxide
Carbon dioxide fixation
Carbon sequestration
Catalysis
Catalytic activity
Cell surface
Cell Survival
cell wrapping
Clusters
Cytoprotection
Decomposition
Decomposition reactions
Elongation
High definition
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
Metals
Monolayers
Moorella - growth & development
Nanoparticles
Oxidative Stress
Photosynthesis
Physical Sciences
Reactive oxygen species
Surface Properties
Thickness
Zirconia
Zirconium
Zirconium - chemistry
Zirconium dioxide
Title Cytoprotective metal-organic frameworks for anaerobic bacteria
URI https://www.jstor.org/stable/26532255
https://www.ncbi.nlm.nih.gov/pubmed/30275326
https://www.proquest.com/docview/2125737458
https://www.proquest.com/docview/2115749923
https://www.osti.gov/servlets/purl/1561896
https://pubmed.ncbi.nlm.nih.gov/PMC6196515
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9RAFB60gvQiVq3GVongobJk3WR-JLkIpShLD2sPLVQvITOZoYVuUkz2oH-9b35kkqwtqJewzLxNIN_Lm_eSb76H0PuKMkEFYZFSikckJSLiksRRtShhQGYVqQzbYsWWF-T0kl4O2xXN7pKOz8WvO_eV_A-qMAa46l2y_4CsPykMwG_AF46AMBz_CuOTn13jhBY0AWgtIZOObJ8mMVM97ap1TMlSas0lMeNWoLkc56Vnfh1re9bAqn9NeDxsOnGRoJ1Fs7PV0ML41FACvl95J_GvoZdl4yk_15utkW-lbSk8-7rWakLjFxCxUYONnXy1DZqQc0SM2LafPqraXZrOfayClguSkNLZhkN_hG-IN7rncF228zjTyX_uTjMC83Zt0DTfW3GyJaNtF2Y39RA9SqB4MHTP5ViKOVv0Ik8p_rh1tV30uP__JFWxbFVYuBsIvXeVI9us2lGacv4UPXH1RXhsnWUPPZD1M7TX4xYeOZnxD8_Rp6n3hBPvCQfvCcF7Qu89Ye89L9DFl8_nJ8vIddOIBMWsi5KcKBFTpWImF2XGRFoxxYWAHDihJVGZkBSXEhMsFc54koAd1sSonCkI0xneRzt1U8tXKISsTvEKQ2kO5kxyzsA2yaH4NvKFJEDz_sYVwknN644nN4WhPKS40De9GG56gI78H26tysr9pvsGCW-XMKoXJZg40NAUkDlq-WOheWKiK2IoELKcBeiwR6xwT3BbQNpGU5wSmgXonZ-G-Ko_mpW1bDbaJqYpyaEOCtBLC7C_dO8oAUon0HsDrd0-namvr4yGO9NKnjF9fe85D9Du8LAdop3ux0a-gfy342-NO_8GXPGuXA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytoprotective+metal-organic+frameworks+for+anaerobic+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ji%2C+Zhe&rft.au=Zhang%2C+Hao&rft.au=Liu%2C+Hao&rft.au=Yaghi%2C+Omar+M&rft.date=2018-10-16&rft.eissn=1091-6490&rft.volume=115&rft.issue=42&rft.spage=10582&rft_id=info:doi/10.1073%2Fpnas.1808829115&rft_id=info%3Apmid%2F30275326&rft.externalDocID=30275326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon