Deep Learning in Medical Hyperspectral Images: A Review
With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 24; p. 9790 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars. |
---|---|
AbstractList | With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars. With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars. |
Audience | Academic |
Author | Cao, Xiaorui Xing, Xiaoxue Chen, Jiexi Yu, He Xu, Tingfa Yan, Kang Cui, Rong |
AuthorAffiliation | 2 Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China 1 College of Electronic and Information Engineering, Changchun University, Changchun 130022, China 4 Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China 3 Image Engineering & Video Technology Lab, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China |
AuthorAffiliation_xml | – name: 2 Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China – name: 3 Image Engineering & Video Technology Lab, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China – name: 4 Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China – name: 1 College of Electronic and Information Engineering, Changchun University, Changchun 130022, China |
Author_xml | – sequence: 1 givenname: Rong surname: Cui fullname: Cui, Rong – sequence: 2 givenname: He orcidid: 0000-0002-4132-1586 surname: Yu fullname: Yu, He – sequence: 3 givenname: Tingfa surname: Xu fullname: Xu, Tingfa – sequence: 4 givenname: Xiaoxue surname: Xing fullname: Xing, Xiaoxue – sequence: 5 givenname: Xiaorui surname: Cao fullname: Cao, Xiaorui – sequence: 6 givenname: Kang surname: Yan fullname: Yan, Kang – sequence: 7 givenname: Jiexi surname: Chen fullname: Chen, Jiexi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36560157$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAURi1URB-w4A-gSGzoYlo_YjtmUWlUCh1pEBKCteU418GjJA52pqj_HodpS6cgL2LfnHuiz7nH6GAIAyD0muAzxhQ-T5TSUkmFn6EjUtJyUVGKDx7tD9FxShuMKWOseoEOmeACEy6PkPwAMBZrMHHwQ1v4ofgMjbemK65vR4hpBDvFfFr1poX0vlgWX-HGw6-X6LkzXYJXd88T9P3j1bfL68X6y6fV5XK9sJyJaUErKknNlRMUpFKCOtY464TiTjLLKylqWQpiuMS8YcJhTpwDLklZN7iykp2g1c7bBLPRY_S9ibc6GK__FEJstYmTtx1ooA3HVS2ZUqasjasZpsrgytWOUCpYdl3sXOO27qGxMMzR9qT7bwb_Q7fhRitZlZzjLHh3J4jh5xbSpHufLHSdGSBsk6aSVwSXXNGMvn2CbsI2DvmqZkrIipRc_KVakwP4wYX8XTtL9TLfC2ccK56ps_9QeTXQe5tHwflc32t48zjoQ8L7356B8x1gY0gpgtPWT2byYc7tO02wngdLPwxW7jh90nEv_Zf9DYaCyAo |
CitedBy_id | crossref_primary_10_3390_rs15123177 crossref_primary_10_3390_s24041306 crossref_primary_10_1061_JCCEE5_CPENG_5939 crossref_primary_10_1109_JAS_2023_123681 crossref_primary_10_1016_j_jfca_2024_106356 crossref_primary_10_1038_s44287_024_00033_w crossref_primary_10_3389_fmed_2023_1235955 crossref_primary_10_1016_j_cmpb_2023_107724 crossref_primary_10_1109_TGRS_2024_3423781 crossref_primary_10_1186_s13054_024_05023_w crossref_primary_10_1016_j_jrras_2024_101026 crossref_primary_10_1016_j_engmed_2025_100059 crossref_primary_10_1016_j_wneu_2024_04_025 crossref_primary_10_1016_j_compbiomed_2024_108849 crossref_primary_10_1049_htl2_12098 crossref_primary_10_1109_ACCESS_2025_3543122 crossref_primary_10_1109_TCI_2024_3485467 crossref_primary_10_3390_bioengineering10101167 crossref_primary_10_3390_biomedicines12102315 crossref_primary_10_1016_j_envres_2023_116389 crossref_primary_10_1016_j_wneu_2023_03_149 crossref_primary_10_1364_BOE_528535 crossref_primary_10_1186_s40478_024_01868_y crossref_primary_10_1016_j_saa_2024_124700 crossref_primary_10_1109_JSTARS_2024_3494258 crossref_primary_10_3390_heritage7050125 crossref_primary_10_3390_technologies12110221 crossref_primary_10_1016_j_isci_2024_111273 crossref_primary_10_3390_s25051330 crossref_primary_10_1109_TMI_2024_3412033 crossref_primary_10_2196_67256 crossref_primary_10_1016_j_infrared_2023_104825 crossref_primary_10_1063_5_0240444 crossref_primary_10_1038_s41598_024_68280_3 crossref_primary_10_3390_rs16020287 |
Cites_doi | 10.1109/MGRS.2013.2244672 10.1016/j.scienta.2013.01.008 10.1016/j.jfoodeng.2012.11.014 10.1117/1.JRS.15.031501 10.3390/app10124078 10.1109/TGRS.2019.2959342 10.3390/s20226666 10.1364/BOE.9.000818 10.1117/1.JBO.19.1.010901 10.1117/1.1813441 10.1117/1.JBO.25.6.066005 10.1145/3065386 10.1117/1.JBO.18.10.100901 10.3390/biomedicines10020397 10.1117/12.596463 10.1109/ACCESS.2021.3068392 10.1007/s00432-018-02834-7 10.1371/journal.pone.0193721 10.1109/TGRS.2014.2381602 10.1364/BOE.381257 10.1007/s10462-021-10018-y 10.1117/1.JBO.19.10.106004 10.1038/s41598-020-60574-6 10.1109/TMI.2020.3024923 10.1016/j.optlastec.2021.106931 10.3390/s17112644 10.3390/s22093420 10.1117/1.JBO.24.3.036007 10.3390/photochem1020008 10.1109/ICIVC.2017.7984606 10.1016/j.media.2022.102488 10.1109/ISBI.2019.8759566 10.1109/JSTARS.2013.2295313 10.3390/s20236955 10.1515/bmt-2017-0145 10.3390/s20071911 10.1109/SAIBMEC.2018.8363180 10.1051/aas:1996266 10.21203/rs.3.rs-393233/v1 10.1109/TBME.2020.3026683 10.3390/jcm11071914 10.1364/BOE.10.004999 10.1038/s41467-019-12242-1 10.1158/1078-0432.CCR-17-0906 10.1049/iet-ipr.2018.5398 10.1364/OE.17.012293 10.1016/S0031-3203(00)00162-X 10.1016/B978-0-444-63977-6.00021-3 10.1109/DICTA.2018.8615761 10.1109/JSTARS.2019.2941454 10.1109/ICET.2006.335947 10.1002/fsn3.1852 10.1109/MGRS.2019.2911100 10.1117/1.JBO.22.6.060503 10.1117/12.2549251 10.1109/JBHI.2019.2905623 10.1007/s11548-019-02016-x 10.11834/jig.210191 10.1109/EMBC44109.2020.9176543 10.1109/AIPR.2011.6176379 10.3390/cancers11091367 10.3390/s21113827 10.1117/12.2216553 10.1364/BOE.10.006370 10.1109/EMBC.2017.8037743 10.3390/jcm9061662 10.1007/978-3-030-59716-0_66 10.1016/j.bbe.2019.01.005 10.1007/s10658-011-9878-z 10.1364/BOE.10.003545 10.1109/EMBC46164.2021.9629676 10.3390/diagnostics11101810 10.1109/TIM.2018.2887069 10.1515/bmt-2017-0155 10.3390/s19040920 10.1117/1.JBO.20.12.126012 10.3390/rs13030405 10.3390/electronics7110283 10.3390/a13110289 10.3390/cancers13050967 10.1038/s42256-021-00309-y 10.1109/TMI.2021.3049591 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22249790 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Medicine |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e2d508b7399a4bafb3029a08fbf12263 PMC9784550 A746535095 36560157 10_3390_s22249790 |
Genre | Journal Article Review |
GeographicLocations | United States Texas China |
GeographicLocations_xml | – name: Texas – name: China – name: United States |
GrantInformation_xml | – fundername: the Natural Science Foundation of Jilin Provincial Science and Technology Department under [NO: 20220101133JC] grantid: NO: 20220101133JC – fundername: Natural Science Foundation of Jilin Provincial Science and Technology Department grantid: NO: 20220101133JC |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-28271b59f62e79962f3dfcf695f73c5876b7461a5705d36f051ffe5714bd08c73 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:21:07 EDT 2025 Thu Aug 21 18:40:38 EDT 2025 Mon Jul 21 11:39:47 EDT 2025 Fri Jul 25 20:12:41 EDT 2025 Thu Jul 03 03:20:40 EDT 2025 Tue Jul 01 05:45:12 EDT 2025 Wed Feb 19 02:26:11 EST 2025 Tue Jul 01 01:19:36 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | deep learning disease diagnosis medical hyperspectral imaging systems |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-28271b59f62e79962f3dfcf695f73c5876b7461a5705d36f051ffe5714bd08c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4132-1586 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22249790 |
PMID | 36560157 |
PQID | 2756781456 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2d508b7399a4bafb3029a08fbf12263 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9784550 proquest_miscellaneous_2758104592 proquest_journals_2756781456 gale_infotracmisc_A746535095 gale_infotracacademiconefile_A746535095 pubmed_primary_36560157 crossref_citationtrail_10_3390_s22249790 crossref_primary_10_3390_s22249790 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_92 ref_91 ref_90 ref_14 Hegde (ref_93) 2019; 39 ref_99 ref_98 Lin (ref_50) 2016; Volume 9902 ref_97 ref_96 Fei (ref_21) 2019; Volume 32 Kulcke (ref_23) 2018; 63 Seyrek (ref_4) 2021; 3 ref_17 ref_15 Maktabi (ref_44) 2019; 14 ref_25 Wei (ref_12) 2021; 26 Lu (ref_70) 2015; 20 Weitzel (ref_30) 1996; 119 Jeyaraj (ref_18) 2019; 145 ref_28 ref_27 ref_26 Sun (ref_76) 2020; 58 Lu (ref_53) 2017; 23 Yu (ref_79) 2001; 34 ref_72 Zhang (ref_85) 2019; 13 Khan (ref_20) 2021; 9 Li (ref_78) 2015; 53 Lu (ref_65) 2014; 19 ref_83 Sun (ref_74) 2019; 7 ref_82 Holmer (ref_24) 2018; 63 ref_81 Lu (ref_11) 2014; 19 ref_89 ref_88 ref_87 Peng (ref_19) 2008; 16 Halicek (ref_48) 2020; 11 Huang (ref_80) 2020; 24 Liu (ref_59) 2020; 25 Wang (ref_75) 2019; 12 Usha (ref_7) 2013; 153 Wang (ref_3) 2021; 54 ref_52 ref_51 Li (ref_13) 2013; 18 Hu (ref_35) 2019; 10 Gao (ref_29) 2009; 17 Wei (ref_86) 2019; 68 ref_60 Mou (ref_73) 2022; 60 Zhu (ref_10) 2020; 8 Kulcke (ref_62) 2020; 25 ref_69 ref_68 Manifold (ref_95) 2021; 3 ref_66 Grigoroiu (ref_45) 2020; 10 Maktabi (ref_57) 2021; 1 Hadoux (ref_104) 2019; 10 Wang (ref_84) 2021; 139 Akbari (ref_64) 2012; Volume 8317 ref_36 ref_34 Ortega (ref_47) 2018; 9 Krizhevsky (ref_16) 2017; 60 ref_32 Wang (ref_55) 2021; 40 Li (ref_58) 2019; 10 ref_31 ref_39 Zherebtsov (ref_67) 2019; 10 Kong (ref_71) 2005; Volume 5692 ref_38 ref_37 Halicek (ref_63) 2017; 22 Seidlitz (ref_56) 2022; 80 Plaza (ref_2) 2013; 1 ref_103 Dremin (ref_61) 2021; 40 ref_46 Temiz (ref_9) 2021; 1 ref_43 ref_100 ref_42 ref_41 ref_102 ref_40 ref_101 Halicek (ref_33) 2019; 24 Peyghambari (ref_1) 2021; 15 Li (ref_77) 2014; 7 Sellar (ref_22) 2005; 44 Huang (ref_8) 2013; 116 ref_49 ref_5 Trajanovski (ref_54) 2021; 68 Mahlein (ref_6) 2012; 133 |
References_xml | – volume: 1 start-page: 6 year: 2013 ident: ref_2 article-title: Hyperspectral Remote Sensing Data Analysis and Future Challenges publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2013.2244672 – volume: 153 start-page: 71 year: 2013 ident: ref_7 article-title: Potential applications of remote sensing in horticulture—A review publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2013.01.008 – ident: ref_100 – volume: 116 start-page: 45 year: 2013 ident: ref_8 article-title: Detection of insect-damaged vegetable soybeans using hyperspectral transmittance image publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2012.11.014 – volume: 15 start-page: 031501 year: 2021 ident: ref_1 article-title: Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review publication-title: J. Appl. Rem. Sens. doi: 10.1117/1.JRS.15.031501 – ident: ref_46 doi: 10.3390/app10124078 – volume: 58 start-page: 3906 year: 2020 ident: ref_76 article-title: Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2959342 – ident: ref_94 doi: 10.3390/s20226666 – volume: 9 start-page: 818 year: 2018 ident: ref_47 article-title: Detecting brain tumor in pathological slides using hyperspectral imaging publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.000818 – volume: 19 start-page: 010901 year: 2014 ident: ref_11 article-title: Medical hyperspectral imaging: A review publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.1.010901 – ident: ref_42 – volume: 44 start-page: 013602 year: 2005 ident: ref_22 article-title: Classification of imaging spectrometers for remote sensing applications publication-title: Opt. Eng. doi: 10.1117/1.1813441 – volume: 25 start-page: 1 year: 2020 ident: ref_59 article-title: Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapper publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.25.6.066005 – volume: 60 start-page: 84 year: 2017 ident: ref_16 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: ref_31 – volume: 18 start-page: 100901 year: 2013 ident: ref_13 article-title: Review of spectral imaging technology in biomedical engineering: Achievements and challenges publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.18.10.100901 – ident: ref_34 doi: 10.3390/biomedicines10020397 – volume: Volume 5692 start-page: 21 year: 2005 ident: ref_71 article-title: Hyperspectral fluorescence image analysis for use in medical diagnostics publication-title: Advanced Biomedical and Clinical Diagnostic Systems III doi: 10.1117/12.596463 – volume: 9 start-page: 79534 year: 2021 ident: ref_20 article-title: Trends in Deep Learning for Medical Hyperspectral Image Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068392 – volume: 145 start-page: 829 year: 2019 ident: ref_18 article-title: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-018-02834-7 – volume: 60 start-page: 1 year: 2022 ident: ref_73 article-title: Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_38 doi: 10.1371/journal.pone.0193721 – volume: 53 start-page: 3681 year: 2015 ident: ref_78 article-title: Local binary patterns and extreme learning machine for hyperspectral imagery classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2381602 – volume: 25 start-page: 086004 year: 2020 ident: ref_62 article-title: Laparoscopic system for simultaneous high-resolution video and rapid hyperspectral imaging in the visible and near-infrared spectral range publication-title: J. Biomed. Opt. – volume: 11 start-page: 1383 year: 2020 ident: ref_48 article-title: Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning publication-title: Biomed. Opt. Express doi: 10.1364/BOE.381257 – volume: 54 start-page: 5205 year: 2021 ident: ref_3 article-title: A review of deep learning used in the hyperspectral image analysis for agriculture publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10018-y – volume: 19 start-page: 106004 year: 2014 ident: ref_65 article-title: Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.10.106004 – volume: 10 start-page: 3947 year: 2020 ident: ref_45 article-title: Deep learning applied to hyperspectral endoscopy for online spectral classification publication-title: Sci. Rep. doi: 10.1038/s41598-020-60574-6 – ident: ref_28 – volume: 40 start-page: 218 year: 2021 ident: ref_55 article-title: Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3024923 – volume: 139 start-page: 106931 year: 2021 ident: ref_84 article-title: A 3D attention networks for classification of white blood cells from microscopy hyperspectral images publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2021.106931 – ident: ref_89 doi: 10.3390/s17112644 – ident: ref_66 doi: 10.3390/s22093420 – volume: 24 start-page: 1 year: 2019 ident: ref_33 article-title: Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.24.3.036007 – volume: 1 start-page: 125 year: 2021 ident: ref_9 article-title: A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration publication-title: Photochem doi: 10.3390/photochem1020008 – ident: ref_17 doi: 10.1109/ICIVC.2017.7984606 – volume: 80 start-page: 102488 year: 2022 ident: ref_56 article-title: Robust deep learning-based semantic organ segmentation in hyperspectral images publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102488 – ident: ref_96 doi: 10.1109/ISBI.2019.8759566 – volume: 7 start-page: 1012 year: 2014 ident: ref_77 article-title: Gabor-filtering-based nearest regularized subspace for hyperspectral image classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2295313 – ident: ref_90 doi: 10.3390/s20236955 – volume: 63 start-page: 519 year: 2018 ident: ref_23 article-title: A compact hyperspectral camera for measurement of perfusion parameters in medicine publication-title: Biomed. Eng./Biomed. Tech. doi: 10.1515/bmt-2017-0145 – ident: ref_51 doi: 10.3390/s20071911 – ident: ref_25 – ident: ref_83 doi: 10.1109/SAIBMEC.2018.8363180 – volume: 119 start-page: 531 year: 1996 ident: ref_30 article-title: 3D: The next generation near-infrared imaging spectrometer publication-title: Astron. Astrophys. Suppl. Ser. doi: 10.1051/aas:1996266 – ident: ref_37 doi: 10.21203/rs.3.rs-393233/v1 – volume: 68 start-page: 1330 year: 2021 ident: ref_54 article-title: Tongue Tumor Detection in Hyperspectral Images Using Deep Learning Semantic Segmentation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3026683 – ident: ref_40 doi: 10.3390/jcm11071914 – volume: 10 start-page: 4999 year: 2019 ident: ref_58 article-title: Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.004999 – volume: 10 start-page: 4227 year: 2019 ident: ref_104 article-title: Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-12242-1 – volume: 23 start-page: 5426 year: 2017 ident: ref_53 article-title: Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0906 – volume: 16 start-page: 438 year: 2008 ident: ref_19 article-title: Development of imaging system for optical coherence tomography in ophthalmology publication-title: Opt. Precis. Eng. – ident: ref_101 – ident: ref_36 – volume: 13 start-page: 2265 year: 2019 ident: ref_85 article-title: Tongue colour and coating prediction in traditional Chinese medicine based on visible hyperspectral imaging publication-title: IET Image Process doi: 10.1049/iet-ipr.2018.5398 – volume: 17 start-page: 12293 year: 2009 ident: ref_29 article-title: Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy publication-title: Opt. Express doi: 10.1364/OE.17.012293 – volume: 34 start-page: 2067 year: 2001 ident: ref_79 article-title: A direct LDA algorithm for high-dimensional data—With application to face recognition publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00162-X – volume: Volume 32 start-page: 523 year: 2019 ident: ref_21 article-title: Hyperspectral imaging in medical applications publication-title: Data Handling in Science and Technology doi: 10.1016/B978-0-444-63977-6.00021-3 – ident: ref_98 doi: 10.1109/DICTA.2018.8615761 – ident: ref_49 – volume: 3 start-page: 6 year: 2021 ident: ref_4 article-title: Classification of Hyperspectral Images with CNN in Agricultural Lands publication-title: Biol. Life Sci. Forum – volume: 12 start-page: 4940 year: 2019 ident: ref_75 article-title: Hyperspectral Band Selection via Adaptive Subspace Partition Strategy publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2941454 – ident: ref_88 doi: 10.1109/ICET.2006.335947 – ident: ref_26 – volume: 8 start-page: 5206 year: 2020 ident: ref_10 article-title: Application of hyperspectral technology in detection of agricultural products and food: A Review publication-title: Food Sci. Nutr. doi: 10.1002/fsn3.1852 – volume: 7 start-page: 118 year: 2019 ident: ref_74 article-title: Hyperspectral Band Selection: A Review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2019.2911100 – volume: 22 start-page: 060503 year: 2017 ident: ref_63 article-title: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.6.060503 – ident: ref_97 doi: 10.1117/12.2549251 – volume: 24 start-page: 160 year: 2020 ident: ref_80 article-title: Blood Cell Classification Based on Hyperspectral Imaging With Modulated Gabor and CNN publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2905623 – volume: 14 start-page: 1651 year: 2019 ident: ref_44 article-title: Tissue classification of oncologic esophageal resectates based on hyperspectral data publication-title: Int. J. CARS doi: 10.1007/s11548-019-02016-x – volume: 26 start-page: 1764 year: 2021 ident: ref_12 article-title: Application of a hyperspectral image in medical field: A review publication-title: J. Image Graph. doi: 10.11834/jig.210191 – ident: ref_39 doi: 10.1109/EMBC44109.2020.9176543 – ident: ref_52 – ident: ref_27 doi: 10.1109/AIPR.2011.6176379 – ident: ref_103 doi: 10.3390/cancers11091367 – ident: ref_91 doi: 10.3390/s21113827 – ident: ref_14 doi: 10.1117/12.2216553 – volume: 10 start-page: 6370 year: 2019 ident: ref_35 article-title: Tumor tissue classification based on micro-hyperspectral technology and deep learning publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.006370 – ident: ref_69 doi: 10.1109/EMBC.2017.8037743 – volume: Volume 8317 start-page: 299 year: 2012 ident: ref_64 article-title: Detection of cancer metastasis using a novel macroscopic hyperspectral method publication-title: Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging – ident: ref_41 doi: 10.3390/jcm9061662 – ident: ref_32 doi: 10.1007/978-3-030-59716-0_66 – volume: 39 start-page: 382 year: 2019 ident: ref_93 article-title: Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.01.005 – volume: 133 start-page: 197 year: 2012 ident: ref_6 article-title: Recent advances in sensing plant diseases for precision crop protection publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-011-9878-z – volume: 10 start-page: 3545 year: 2019 ident: ref_67 article-title: Hyperspectral imaging of human skin aided by artificial neural networks publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.003545 – ident: ref_102 – ident: ref_68 doi: 10.1109/EMBC46164.2021.9629676 – ident: ref_81 doi: 10.3390/diagnostics11101810 – volume: 68 start-page: 4481 year: 2019 ident: ref_86 article-title: Medical Hyperspectral Image Classification Based on End-to-End Fusion Deep Neural Network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2887069 – volume: 63 start-page: 547 year: 2018 ident: ref_24 article-title: Hyperspectral imaging in perfusion and wound diagnostics—Methods and algorithms for the determination of tissue parameters publication-title: Biomed. Eng./Biomed. Tech. doi: 10.1515/bmt-2017-0155 – ident: ref_87 doi: 10.3390/s19040920 – volume: 20 start-page: 126012 year: 2015 ident: ref_70 article-title: Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.20.12.126012 – ident: ref_5 doi: 10.3390/rs13030405 – ident: ref_82 doi: 10.3390/electronics7110283 – ident: ref_72 doi: 10.3390/a13110289 – ident: ref_92 doi: 10.3390/cancers13050967 – volume: 3 start-page: 306 year: 2021 ident: ref_95 article-title: A versatile deep learning architecture for classification and label-free prediction of hyperspectral images publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00309-y – ident: ref_15 – ident: ref_43 – volume: 1 start-page: 22 year: 2021 ident: ref_57 article-title: Automatic tissue segmentation of hyperspectral images in liver and head neck surgeries using machine learning publication-title: AIS – ident: ref_60 – volume: 40 start-page: 1207 year: 2021 ident: ref_61 article-title: Skin Complications of Diabetes Mellitus Revealed by Polarized Hyperspectral Imaging and Machine Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3049591 – volume: Volume 9902 start-page: 414 year: 2016 ident: ref_50 article-title: Probe-Based Rapid Hybrid Hyperspectral and Tissue Surface Imaging Aided by Fully Convolutional Networks publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016 – ident: ref_99 |
SSID | ssj0023338 |
Score | 2.5762184 |
SecondaryResourceType | review_article |
Snippet | With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9790 |
SubjectTerms | Algorithms Classification Deep Learning Diagnostic Imaging Discriminant analysis Disease disease diagnosis Medical diagnosis medical hyperspectral imaging systems Medical imaging Medical imaging equipment Medicine Neural networks Remote sensing Review Sensors Spectrum analysis Support vector machines Tomography |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDLamneCAGD_LNhQQElyqtU2TvO72GEyPSXBi0m5RksYwaXTT3tv_P7vNq1qBxGWnSo1bJXYc-1PiLwAfpJOVNBjyBguf19Gp3EWNeaDoVTD7UKu4Gvn7D706r88u1MXkqi8-EzbQAw-KO4pVSzmENxRIXe0dellUjSsW6LGk1KHn-aSYtwVTCWpJQl4Dj5AkUH-0pihYN4YX3kn06Un6_16KJ7Fofk5yEnhOn8KTlDGK5dDTPdiJ3TN4POERfA7mS4w3IlGl_hKXnUj7L2JFMHOopqQ_i29_aPVYH4ulGLYEXsD56defJ6s83YiQByX1Jid8ZEqvGtRVNIRUKpQtBtSNQiODopXNm1qXTplCtVIjeRxiVKasfVssgpEvYbe77uJrEGjQETiMpmhDLStHeauuQ6AH8maMzODTVlM2JLpwvrXiyhJsYKXaUakZvB9FbwaOjH8JfWZ1jwJMa92_IGPbZGz7P2Nn8JGNZdn5qDPBpRoCGhLTWNmlYbo4yoFUBgczSXKaMG_emtsmp11bZsJnBjClM3g3NvOXfBCti9d3vcyCEKxqqgxeDbNjHJJkIqNSmQzMbN7Mxjxv6S5_95TehOW5vPzNQyhpHx5VXKPRn7k5gN3N7V08pMxp49_2TnIPdxUUDA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61VKrKAbW0hQCtXFSpvUQkcWxvuFTbx3aLRE9F4mbZjg1IkF3Y5f8zk3jDRq16irSeVfyax5fxfAb4yA0vuAourUJm09IbkRovQ-rQe2XEPlQLqkY-_S2nZ-XJuTiPH9wW8Vjlyia2hrqeOfpGfkQ05UTPJOSX-W1Kt0ZRdjVeofEUnuXoaehI12jyswdcHPFXxybEEdofLdAXlpUi87vmg1qq_r8N8ppHGp6WXHM_k5ewFeNGNu4W-hU88c02bK6xCW7D89OYJ38N6rv3cxa5Uy_YVcNiQoZNEXd25ZX4EvbrBs3J4piNWZcjeANnkx9_vk3TeEVC6gSXyxQBk8qtqIIsvELoUgReBxdkJYLiTqCps6qUuREqEzWXAVUwBC9UXto6GznF38JGM2v8LrCggkG06FVWu5IXBgNZWTqHj0DZGZ7A59WkaRf5w-kai2uNOILmV_fzm8BhLzrvSDP-JfSVZr4XIJ7r9ofZ3YWOaqN9UWMEaRWGUaa0JlieFZXJRsGGHANH7NQnWjdN2oidcSYWFeCQiNdKjxXxx2FQJBI4GEiiFrlh82rlddTihX7ccwl86Jvpn3QyrfGz-1ZmhJBWVEUCO91G6YfEidkoFyoBNdhCgzEPW5qry5bjG8E91Zvv_b9b-_CioHKM9njNAWws7-79OwySlvZ9qwkPjzwO0Q priority: 102 providerName: ProQuest |
Title | Deep Learning in Medical Hyperspectral Images: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36560157 https://www.proquest.com/docview/2756781456 https://www.proquest.com/docview/2758104592 https://pubmed.ncbi.nlm.nih.gov/PMC9784550 https://doaj.org/article/e2d508b7399a4bafb3029a08fbf12263 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_OOxB9ED2_omeJIuhLvCSbzTSCSE-vVqGHiIW-hd3N7nlwl961PdD_3plkGxo8fGmhOyH7NTvz6-z8BuC1UCIV6ExUuFhHmVUyUjZ3kSHrFTP7UCU5G3l6kk9m2be5nO_Apsamn8DVjdCO60nNlufvfl_9-UgK_4ERJ0H2wxXZuKzAgpD7Hhkk5EIG06wLJqSCYFhLKtQX75mihrH_33N5yzD1L01uWaHxfbjn3cdw1K73A9ix9T7c3SIV3IfbUx8ufwj42drL0FOonoZndejjMuGE4GebZUkvCb9e0Kmyeh-OwjZU8Ahm4-OfnyaRr5QQGSnydUS4CRMtC5enFgnBpE5Uzri8kA6FkXTiaczyREmMZSVyR5ronJWYZLqKhwbFY9itF7V9CqFDpwg0Wowrk4lUkT-bZ8bQl-MgjQjg7WbSSuNpxLmaxXlJcILnt-zmN4BXnehly51xk9ARz3wnwHTXzQ-L5Wnptae0aUWOpEbyplSmldMiTgsVD512CfmP1Kk3vG4lbxPqjFE-t4CGxPRW5QiZRo58IxnAQU-SlMn0mzcrX272YskM-cwMJvMAXnbN_CRfUKvt4rqRGRKylUUawJN2o3RDEkxwlEgMAHtbqDfmfkt99quh-iaMz2nnz_7fredwJ-WsjOaWzQHsrpfX9gX5Sms9gFs4R_ocjr8MYO_o-OT7j0Hzv8Og0ZG_EeMUlA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9VFBepgUWBIKLVXvX642REAqUkNCmp1bqbVmvd0sl6oQmFeJP8RuZ8YtYIG49RfJOnH3MM7PzDcALYQQXytsw81EeJs7I0LjUhxatV0ToQ4WkauTpYTo-Tj6fyJM1-NXWwtC1ylYnVoq6mFn6j3yXYMoJnkmm7-bfQ-oaRdnVtoVGzRb77ucPDNkWbyd7eL4vOR99PPowDpuuAqGVIl2GGGOoOJeZT7lT6O1zLwpvfZpJr4SVqB1ylaSxkSqShUg9cq33Tqo4yYtoYJXA916D64lAS06V6aNPXYAnMN6r0YtwMNpdoO1NMkXqfsXmVa0B_jYAKxawfztzxdyNbsNm46eyYc1Yd2DNlVuwsYJeuAU3pk1e_i6oPefmrMFqPWVnJWsSQGyMcW5dzok_wibnqL4Wb9iQ1TmJe3B8JZt3H9bLWekeAvPKG4xOnYoKmwhu0HFOE2vxw1M2SATwut00bRu8cmqb8U1j3EL7q7v9DeB5RzqvQTr-RfSedr4jIFzt6sHs4lQ3YqodL9BjzRW6bSbJjc9FxDMTDXzuY3RUcVKv6Nw0ST9OxpqmiAGXRDhaeqgIrw6dMBnATo8Spdb2h9uT143WWOg_PB7As26Yvkk34Uo3u6xoBhhCy4wH8KBmlG5JgpCUYqkCUD0W6q25P1Kefa0wxTM1oPr2R_-f1lO4OT6aHuiDyeH-NtziVApSXe3ZgfXlxaV7jA7aMn9SSQWDL1cthr8Bm-tKUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTprgAcH4CgwwCAQvUZM4jhskhDq6qmWsmhCT9pY5jj0mbWlZOyH-Nf467hInNALxtqdKsZva5_us734H8IorHnFptZ_aIPdjo4SvTGJ9jdYrIPShQlA18sEsmRzFn47F8Qb8amphKK2y0YmVoi7mmv4j7xNMOcEziaRvXVrE4Wj8YfHdpw5SdNPatNOoWWTf_PyB4dvy_XSEZ_06isZ7Xz9OfNdhwNeCJysf4w0Z5iK1SWQkev6R5YXVNkmFlVwL1BS5jJNQCRmIgicWOdhaI2QY50Uw0JLje2_ApqSoqAebu3uzwy9tuMcx-quxjDhPg_4SLXGcSlL-axawahTwtzlYs4fdXM014ze-A7ed18qGNZvdhQ1TbsOtNSzDbdg6cLf090COjFkwh9x6ys5K5q6D2ASj3rq4E3-ETS9QmS3fsSGrbyjuw9G1kO8B9Mp5aR4Bs9IqjFWNDAod80ihG53EWuOHpbsh7sHbhmiZdujl1ETjPMMohuibtfT14GU7dVFDdvxr0i5Rvp1AKNvVg_nlaeaENjNRgf5rLtGJU3GubM6DKFXBwOY2RLcVF_WGzi0jXYCL0cqVNOCWCFUrG0pCr0OXTHiw05mJMqy7w83JZ06HLLM_HO_Bi3aYvkl5caWZX1VzBhhQizTy4GHNKO2WOOEqhUJ6IDss1Nlzd6Q8-1YhjKdyQNXuj_-_rOewhSKYfZ7O9p_AzYjqQqo8nx3orS6vzFP01lb5MycWDE6uWxJ_A64OT-U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Medical+Hyperspectral+Images%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cui%2C+Rong&rft.au=He%2C+Yu&rft.au=Xu%2C+Tingfa&rft.au=Xing%2C+Xiaoxue&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft.spage=9790&rft_id=info:doi/10.3390%2Fs22249790&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |