Deep Learning in Medical Hyperspectral Images: A Review

With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 24; p. 9790
Main Authors Cui, Rong, Yu, He, Xu, Tingfa, Xing, Xiaoxue, Cao, Xiaorui, Yan, Kang, Chen, Jiexi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.
AbstractList With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.
With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.
Audience Academic
Author Cao, Xiaorui
Xing, Xiaoxue
Chen, Jiexi
Yu, He
Xu, Tingfa
Yan, Kang
Cui, Rong
AuthorAffiliation 2 Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China
1 College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
4 Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
3 Image Engineering & Video Technology Lab, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
AuthorAffiliation_xml – name: 2 Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China
– name: 3 Image Engineering & Video Technology Lab, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
– name: 4 Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
– name: 1 College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
Author_xml – sequence: 1
  givenname: Rong
  surname: Cui
  fullname: Cui, Rong
– sequence: 2
  givenname: He
  orcidid: 0000-0002-4132-1586
  surname: Yu
  fullname: Yu, He
– sequence: 3
  givenname: Tingfa
  surname: Xu
  fullname: Xu, Tingfa
– sequence: 4
  givenname: Xiaoxue
  surname: Xing
  fullname: Xing, Xiaoxue
– sequence: 5
  givenname: Xiaorui
  surname: Cao
  fullname: Cao, Xiaorui
– sequence: 6
  givenname: Kang
  surname: Yan
  fullname: Yan, Kang
– sequence: 7
  givenname: Jiexi
  surname: Chen
  fullname: Chen, Jiexi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36560157$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAURi1URB-w4A-gSGzoYlo_YjtmUWlUCh1pEBKCteU418GjJA52pqj_HodpS6cgL2LfnHuiz7nH6GAIAyD0muAzxhQ-T5TSUkmFn6EjUtJyUVGKDx7tD9FxShuMKWOseoEOmeACEy6PkPwAMBZrMHHwQ1v4ofgMjbemK65vR4hpBDvFfFr1poX0vlgWX-HGw6-X6LkzXYJXd88T9P3j1bfL68X6y6fV5XK9sJyJaUErKknNlRMUpFKCOtY464TiTjLLKylqWQpiuMS8YcJhTpwDLklZN7iykp2g1c7bBLPRY_S9ibc6GK__FEJstYmTtx1ooA3HVS2ZUqasjasZpsrgytWOUCpYdl3sXOO27qGxMMzR9qT7bwb_Q7fhRitZlZzjLHh3J4jh5xbSpHufLHSdGSBsk6aSVwSXXNGMvn2CbsI2DvmqZkrIipRc_KVakwP4wYX8XTtL9TLfC2ccK56ps_9QeTXQe5tHwflc32t48zjoQ8L7356B8x1gY0gpgtPWT2byYc7tO02wngdLPwxW7jh90nEv_Zf9DYaCyAo
CitedBy_id crossref_primary_10_3390_rs15123177
crossref_primary_10_3390_s24041306
crossref_primary_10_1061_JCCEE5_CPENG_5939
crossref_primary_10_1109_JAS_2023_123681
crossref_primary_10_1016_j_jfca_2024_106356
crossref_primary_10_1038_s44287_024_00033_w
crossref_primary_10_3389_fmed_2023_1235955
crossref_primary_10_1016_j_cmpb_2023_107724
crossref_primary_10_1109_TGRS_2024_3423781
crossref_primary_10_1186_s13054_024_05023_w
crossref_primary_10_1016_j_jrras_2024_101026
crossref_primary_10_1016_j_engmed_2025_100059
crossref_primary_10_1016_j_wneu_2024_04_025
crossref_primary_10_1016_j_compbiomed_2024_108849
crossref_primary_10_1049_htl2_12098
crossref_primary_10_1109_ACCESS_2025_3543122
crossref_primary_10_1109_TCI_2024_3485467
crossref_primary_10_3390_bioengineering10101167
crossref_primary_10_3390_biomedicines12102315
crossref_primary_10_1016_j_envres_2023_116389
crossref_primary_10_1016_j_wneu_2023_03_149
crossref_primary_10_1364_BOE_528535
crossref_primary_10_1186_s40478_024_01868_y
crossref_primary_10_1016_j_saa_2024_124700
crossref_primary_10_1109_JSTARS_2024_3494258
crossref_primary_10_3390_heritage7050125
crossref_primary_10_3390_technologies12110221
crossref_primary_10_1016_j_isci_2024_111273
crossref_primary_10_3390_s25051330
crossref_primary_10_1109_TMI_2024_3412033
crossref_primary_10_2196_67256
crossref_primary_10_1016_j_infrared_2023_104825
crossref_primary_10_1063_5_0240444
crossref_primary_10_1038_s41598_024_68280_3
crossref_primary_10_3390_rs16020287
Cites_doi 10.1109/MGRS.2013.2244672
10.1016/j.scienta.2013.01.008
10.1016/j.jfoodeng.2012.11.014
10.1117/1.JRS.15.031501
10.3390/app10124078
10.1109/TGRS.2019.2959342
10.3390/s20226666
10.1364/BOE.9.000818
10.1117/1.JBO.19.1.010901
10.1117/1.1813441
10.1117/1.JBO.25.6.066005
10.1145/3065386
10.1117/1.JBO.18.10.100901
10.3390/biomedicines10020397
10.1117/12.596463
10.1109/ACCESS.2021.3068392
10.1007/s00432-018-02834-7
10.1371/journal.pone.0193721
10.1109/TGRS.2014.2381602
10.1364/BOE.381257
10.1007/s10462-021-10018-y
10.1117/1.JBO.19.10.106004
10.1038/s41598-020-60574-6
10.1109/TMI.2020.3024923
10.1016/j.optlastec.2021.106931
10.3390/s17112644
10.3390/s22093420
10.1117/1.JBO.24.3.036007
10.3390/photochem1020008
10.1109/ICIVC.2017.7984606
10.1016/j.media.2022.102488
10.1109/ISBI.2019.8759566
10.1109/JSTARS.2013.2295313
10.3390/s20236955
10.1515/bmt-2017-0145
10.3390/s20071911
10.1109/SAIBMEC.2018.8363180
10.1051/aas:1996266
10.21203/rs.3.rs-393233/v1
10.1109/TBME.2020.3026683
10.3390/jcm11071914
10.1364/BOE.10.004999
10.1038/s41467-019-12242-1
10.1158/1078-0432.CCR-17-0906
10.1049/iet-ipr.2018.5398
10.1364/OE.17.012293
10.1016/S0031-3203(00)00162-X
10.1016/B978-0-444-63977-6.00021-3
10.1109/DICTA.2018.8615761
10.1109/JSTARS.2019.2941454
10.1109/ICET.2006.335947
10.1002/fsn3.1852
10.1109/MGRS.2019.2911100
10.1117/1.JBO.22.6.060503
10.1117/12.2549251
10.1109/JBHI.2019.2905623
10.1007/s11548-019-02016-x
10.11834/jig.210191
10.1109/EMBC44109.2020.9176543
10.1109/AIPR.2011.6176379
10.3390/cancers11091367
10.3390/s21113827
10.1117/12.2216553
10.1364/BOE.10.006370
10.1109/EMBC.2017.8037743
10.3390/jcm9061662
10.1007/978-3-030-59716-0_66
10.1016/j.bbe.2019.01.005
10.1007/s10658-011-9878-z
10.1364/BOE.10.003545
10.1109/EMBC46164.2021.9629676
10.3390/diagnostics11101810
10.1109/TIM.2018.2887069
10.1515/bmt-2017-0155
10.3390/s19040920
10.1117/1.JBO.20.12.126012
10.3390/rs13030405
10.3390/electronics7110283
10.3390/a13110289
10.3390/cancers13050967
10.1038/s42256-021-00309-y
10.1109/TMI.2021.3049591
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22249790
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Medicine
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e2d508b7399a4bafb3029a08fbf12263
PMC9784550
A746535095
36560157
10_3390_s22249790
Genre Journal Article
Review
GeographicLocations United States
Texas
China
GeographicLocations_xml – name: Texas
– name: China
– name: United States
GrantInformation_xml – fundername: the Natural Science Foundation of Jilin Provincial Science and Technology Department under [NO: 20220101133JC]
  grantid: NO: 20220101133JC
– fundername: Natural Science Foundation of Jilin Provincial Science and Technology Department
  grantid: NO: 20220101133JC
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-28271b59f62e79962f3dfcf695f73c5876b7461a5705d36f051ffe5714bd08c73
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:21:07 EDT 2025
Thu Aug 21 18:40:38 EDT 2025
Mon Jul 21 11:39:47 EDT 2025
Fri Jul 25 20:12:41 EDT 2025
Thu Jul 03 03:20:40 EDT 2025
Tue Jul 01 05:45:12 EDT 2025
Wed Feb 19 02:26:11 EST 2025
Tue Jul 01 01:19:36 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords deep learning
disease diagnosis
medical hyperspectral imaging systems
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-28271b59f62e79962f3dfcf695f73c5876b7461a5705d36f051ffe5714bd08c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4132-1586
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22249790
PMID 36560157
PQID 2756781456
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e2d508b7399a4bafb3029a08fbf12263
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9784550
proquest_miscellaneous_2758104592
proquest_journals_2756781456
gale_infotracmisc_A746535095
gale_infotracacademiconefile_A746535095
pubmed_primary_36560157
crossref_citationtrail_10_3390_s22249790
crossref_primary_10_3390_s22249790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_92
ref_91
ref_90
ref_14
Hegde (ref_93) 2019; 39
ref_99
ref_98
Lin (ref_50) 2016; Volume 9902
ref_97
ref_96
Fei (ref_21) 2019; Volume 32
Kulcke (ref_23) 2018; 63
Seyrek (ref_4) 2021; 3
ref_17
ref_15
Maktabi (ref_44) 2019; 14
ref_25
Wei (ref_12) 2021; 26
Lu (ref_70) 2015; 20
Weitzel (ref_30) 1996; 119
Jeyaraj (ref_18) 2019; 145
ref_28
ref_27
ref_26
Sun (ref_76) 2020; 58
Lu (ref_53) 2017; 23
Yu (ref_79) 2001; 34
ref_72
Zhang (ref_85) 2019; 13
Khan (ref_20) 2021; 9
Li (ref_78) 2015; 53
Lu (ref_65) 2014; 19
ref_83
Sun (ref_74) 2019; 7
ref_82
Holmer (ref_24) 2018; 63
ref_81
Lu (ref_11) 2014; 19
ref_89
ref_88
ref_87
Peng (ref_19) 2008; 16
Halicek (ref_48) 2020; 11
Huang (ref_80) 2020; 24
Liu (ref_59) 2020; 25
Wang (ref_75) 2019; 12
Usha (ref_7) 2013; 153
Wang (ref_3) 2021; 54
ref_52
ref_51
Li (ref_13) 2013; 18
Hu (ref_35) 2019; 10
Gao (ref_29) 2009; 17
Wei (ref_86) 2019; 68
ref_60
Mou (ref_73) 2022; 60
Zhu (ref_10) 2020; 8
Kulcke (ref_62) 2020; 25
ref_69
ref_68
Manifold (ref_95) 2021; 3
ref_66
Grigoroiu (ref_45) 2020; 10
Maktabi (ref_57) 2021; 1
Hadoux (ref_104) 2019; 10
Wang (ref_84) 2021; 139
Akbari (ref_64) 2012; Volume 8317
ref_36
ref_34
Ortega (ref_47) 2018; 9
Krizhevsky (ref_16) 2017; 60
ref_32
Wang (ref_55) 2021; 40
Li (ref_58) 2019; 10
ref_31
ref_39
Zherebtsov (ref_67) 2019; 10
Kong (ref_71) 2005; Volume 5692
ref_38
ref_37
Halicek (ref_63) 2017; 22
Seidlitz (ref_56) 2022; 80
Plaza (ref_2) 2013; 1
ref_103
Dremin (ref_61) 2021; 40
ref_46
Temiz (ref_9) 2021; 1
ref_43
ref_100
ref_42
ref_41
ref_102
ref_40
ref_101
Halicek (ref_33) 2019; 24
Peyghambari (ref_1) 2021; 15
Li (ref_77) 2014; 7
Sellar (ref_22) 2005; 44
Huang (ref_8) 2013; 116
ref_49
ref_5
Trajanovski (ref_54) 2021; 68
Mahlein (ref_6) 2012; 133
References_xml – volume: 1
  start-page: 6
  year: 2013
  ident: ref_2
  article-title: Hyperspectral Remote Sensing Data Analysis and Future Challenges
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2013.2244672
– volume: 153
  start-page: 71
  year: 2013
  ident: ref_7
  article-title: Potential applications of remote sensing in horticulture—A review
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2013.01.008
– ident: ref_100
– volume: 116
  start-page: 45
  year: 2013
  ident: ref_8
  article-title: Detection of insect-damaged vegetable soybeans using hyperspectral transmittance image
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2012.11.014
– volume: 15
  start-page: 031501
  year: 2021
  ident: ref_1
  article-title: Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review
  publication-title: J. Appl. Rem. Sens.
  doi: 10.1117/1.JRS.15.031501
– ident: ref_46
  doi: 10.3390/app10124078
– volume: 58
  start-page: 3906
  year: 2020
  ident: ref_76
  article-title: Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2959342
– ident: ref_94
  doi: 10.3390/s20226666
– volume: 9
  start-page: 818
  year: 2018
  ident: ref_47
  article-title: Detecting brain tumor in pathological slides using hyperspectral imaging
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.000818
– volume: 19
  start-page: 010901
  year: 2014
  ident: ref_11
  article-title: Medical hyperspectral imaging: A review
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.1.010901
– ident: ref_42
– volume: 44
  start-page: 013602
  year: 2005
  ident: ref_22
  article-title: Classification of imaging spectrometers for remote sensing applications
  publication-title: Opt. Eng.
  doi: 10.1117/1.1813441
– volume: 25
  start-page: 1
  year: 2020
  ident: ref_59
  article-title: Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapper
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.25.6.066005
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_16
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_31
– volume: 18
  start-page: 100901
  year: 2013
  ident: ref_13
  article-title: Review of spectral imaging technology in biomedical engineering: Achievements and challenges
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.18.10.100901
– ident: ref_34
  doi: 10.3390/biomedicines10020397
– volume: Volume 5692
  start-page: 21
  year: 2005
  ident: ref_71
  article-title: Hyperspectral fluorescence image analysis for use in medical diagnostics
  publication-title: Advanced Biomedical and Clinical Diagnostic Systems III
  doi: 10.1117/12.596463
– volume: 9
  start-page: 79534
  year: 2021
  ident: ref_20
  article-title: Trends in Deep Learning for Medical Hyperspectral Image Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3068392
– volume: 145
  start-page: 829
  year: 2019
  ident: ref_18
  article-title: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-018-02834-7
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_73
  article-title: Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_38
  doi: 10.1371/journal.pone.0193721
– volume: 53
  start-page: 3681
  year: 2015
  ident: ref_78
  article-title: Local binary patterns and extreme learning machine for hyperspectral imagery classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2381602
– volume: 25
  start-page: 086004
  year: 2020
  ident: ref_62
  article-title: Laparoscopic system for simultaneous high-resolution video and rapid hyperspectral imaging in the visible and near-infrared spectral range
  publication-title: J. Biomed. Opt.
– volume: 11
  start-page: 1383
  year: 2020
  ident: ref_48
  article-title: Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.381257
– volume: 54
  start-page: 5205
  year: 2021
  ident: ref_3
  article-title: A review of deep learning used in the hyperspectral image analysis for agriculture
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10018-y
– volume: 19
  start-page: 106004
  year: 2014
  ident: ref_65
  article-title: Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.10.106004
– volume: 10
  start-page: 3947
  year: 2020
  ident: ref_45
  article-title: Deep learning applied to hyperspectral endoscopy for online spectral classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60574-6
– ident: ref_28
– volume: 40
  start-page: 218
  year: 2021
  ident: ref_55
  article-title: Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3024923
– volume: 139
  start-page: 106931
  year: 2021
  ident: ref_84
  article-title: A 3D attention networks for classification of white blood cells from microscopy hyperspectral images
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2021.106931
– ident: ref_89
  doi: 10.3390/s17112644
– ident: ref_66
  doi: 10.3390/s22093420
– volume: 24
  start-page: 1
  year: 2019
  ident: ref_33
  article-title: Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.24.3.036007
– volume: 1
  start-page: 125
  year: 2021
  ident: ref_9
  article-title: A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration
  publication-title: Photochem
  doi: 10.3390/photochem1020008
– ident: ref_17
  doi: 10.1109/ICIVC.2017.7984606
– volume: 80
  start-page: 102488
  year: 2022
  ident: ref_56
  article-title: Robust deep learning-based semantic organ segmentation in hyperspectral images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102488
– ident: ref_96
  doi: 10.1109/ISBI.2019.8759566
– volume: 7
  start-page: 1012
  year: 2014
  ident: ref_77
  article-title: Gabor-filtering-based nearest regularized subspace for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2295313
– ident: ref_90
  doi: 10.3390/s20236955
– volume: 63
  start-page: 519
  year: 2018
  ident: ref_23
  article-title: A compact hyperspectral camera for measurement of perfusion parameters in medicine
  publication-title: Biomed. Eng./Biomed. Tech.
  doi: 10.1515/bmt-2017-0145
– ident: ref_51
  doi: 10.3390/s20071911
– ident: ref_25
– ident: ref_83
  doi: 10.1109/SAIBMEC.2018.8363180
– volume: 119
  start-page: 531
  year: 1996
  ident: ref_30
  article-title: 3D: The next generation near-infrared imaging spectrometer
  publication-title: Astron. Astrophys. Suppl. Ser.
  doi: 10.1051/aas:1996266
– ident: ref_37
  doi: 10.21203/rs.3.rs-393233/v1
– volume: 68
  start-page: 1330
  year: 2021
  ident: ref_54
  article-title: Tongue Tumor Detection in Hyperspectral Images Using Deep Learning Semantic Segmentation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3026683
– ident: ref_40
  doi: 10.3390/jcm11071914
– volume: 10
  start-page: 4999
  year: 2019
  ident: ref_58
  article-title: Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.004999
– volume: 10
  start-page: 4227
  year: 2019
  ident: ref_104
  article-title: Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12242-1
– volume: 23
  start-page: 5426
  year: 2017
  ident: ref_53
  article-title: Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0906
– volume: 16
  start-page: 438
  year: 2008
  ident: ref_19
  article-title: Development of imaging system for optical coherence tomography in ophthalmology
  publication-title: Opt. Precis. Eng.
– ident: ref_101
– ident: ref_36
– volume: 13
  start-page: 2265
  year: 2019
  ident: ref_85
  article-title: Tongue colour and coating prediction in traditional Chinese medicine based on visible hyperspectral imaging
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2018.5398
– volume: 17
  start-page: 12293
  year: 2009
  ident: ref_29
  article-title: Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy
  publication-title: Opt. Express
  doi: 10.1364/OE.17.012293
– volume: 34
  start-page: 2067
  year: 2001
  ident: ref_79
  article-title: A direct LDA algorithm for high-dimensional data—With application to face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00162-X
– volume: Volume 32
  start-page: 523
  year: 2019
  ident: ref_21
  article-title: Hyperspectral imaging in medical applications
  publication-title: Data Handling in Science and Technology
  doi: 10.1016/B978-0-444-63977-6.00021-3
– ident: ref_98
  doi: 10.1109/DICTA.2018.8615761
– ident: ref_49
– volume: 3
  start-page: 6
  year: 2021
  ident: ref_4
  article-title: Classification of Hyperspectral Images with CNN in Agricultural Lands
  publication-title: Biol. Life Sci. Forum
– volume: 12
  start-page: 4940
  year: 2019
  ident: ref_75
  article-title: Hyperspectral Band Selection via Adaptive Subspace Partition Strategy
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2941454
– ident: ref_88
  doi: 10.1109/ICET.2006.335947
– ident: ref_26
– volume: 8
  start-page: 5206
  year: 2020
  ident: ref_10
  article-title: Application of hyperspectral technology in detection of agricultural products and food: A Review
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.1852
– volume: 7
  start-page: 118
  year: 2019
  ident: ref_74
  article-title: Hyperspectral Band Selection: A Review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2911100
– volume: 22
  start-page: 060503
  year: 2017
  ident: ref_63
  article-title: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.6.060503
– ident: ref_97
  doi: 10.1117/12.2549251
– volume: 24
  start-page: 160
  year: 2020
  ident: ref_80
  article-title: Blood Cell Classification Based on Hyperspectral Imaging With Modulated Gabor and CNN
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2905623
– volume: 14
  start-page: 1651
  year: 2019
  ident: ref_44
  article-title: Tissue classification of oncologic esophageal resectates based on hyperspectral data
  publication-title: Int. J. CARS
  doi: 10.1007/s11548-019-02016-x
– volume: 26
  start-page: 1764
  year: 2021
  ident: ref_12
  article-title: Application of a hyperspectral image in medical field: A review
  publication-title: J. Image Graph.
  doi: 10.11834/jig.210191
– ident: ref_39
  doi: 10.1109/EMBC44109.2020.9176543
– ident: ref_52
– ident: ref_27
  doi: 10.1109/AIPR.2011.6176379
– ident: ref_103
  doi: 10.3390/cancers11091367
– ident: ref_91
  doi: 10.3390/s21113827
– ident: ref_14
  doi: 10.1117/12.2216553
– volume: 10
  start-page: 6370
  year: 2019
  ident: ref_35
  article-title: Tumor tissue classification based on micro-hyperspectral technology and deep learning
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.006370
– ident: ref_69
  doi: 10.1109/EMBC.2017.8037743
– volume: Volume 8317
  start-page: 299
  year: 2012
  ident: ref_64
  article-title: Detection of cancer metastasis using a novel macroscopic hyperspectral method
  publication-title: Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging
– ident: ref_41
  doi: 10.3390/jcm9061662
– ident: ref_32
  doi: 10.1007/978-3-030-59716-0_66
– volume: 39
  start-page: 382
  year: 2019
  ident: ref_93
  article-title: Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.01.005
– volume: 133
  start-page: 197
  year: 2012
  ident: ref_6
  article-title: Recent advances in sensing plant diseases for precision crop protection
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-011-9878-z
– volume: 10
  start-page: 3545
  year: 2019
  ident: ref_67
  article-title: Hyperspectral imaging of human skin aided by artificial neural networks
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.003545
– ident: ref_102
– ident: ref_68
  doi: 10.1109/EMBC46164.2021.9629676
– ident: ref_81
  doi: 10.3390/diagnostics11101810
– volume: 68
  start-page: 4481
  year: 2019
  ident: ref_86
  article-title: Medical Hyperspectral Image Classification Based on End-to-End Fusion Deep Neural Network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2887069
– volume: 63
  start-page: 547
  year: 2018
  ident: ref_24
  article-title: Hyperspectral imaging in perfusion and wound diagnostics—Methods and algorithms for the determination of tissue parameters
  publication-title: Biomed. Eng./Biomed. Tech.
  doi: 10.1515/bmt-2017-0155
– ident: ref_87
  doi: 10.3390/s19040920
– volume: 20
  start-page: 126012
  year: 2015
  ident: ref_70
  article-title: Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.20.12.126012
– ident: ref_5
  doi: 10.3390/rs13030405
– ident: ref_82
  doi: 10.3390/electronics7110283
– ident: ref_72
  doi: 10.3390/a13110289
– ident: ref_92
  doi: 10.3390/cancers13050967
– volume: 3
  start-page: 306
  year: 2021
  ident: ref_95
  article-title: A versatile deep learning architecture for classification and label-free prediction of hyperspectral images
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00309-y
– ident: ref_15
– ident: ref_43
– volume: 1
  start-page: 22
  year: 2021
  ident: ref_57
  article-title: Automatic tissue segmentation of hyperspectral images in liver and head neck surgeries using machine learning
  publication-title: AIS
– ident: ref_60
– volume: 40
  start-page: 1207
  year: 2021
  ident: ref_61
  article-title: Skin Complications of Diabetes Mellitus Revealed by Polarized Hyperspectral Imaging and Machine Learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3049591
– volume: Volume 9902
  start-page: 414
  year: 2016
  ident: ref_50
  article-title: Probe-Based Rapid Hybrid Hyperspectral and Tissue Surface Imaging Aided by Fully Convolutional Networks
  publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016
– ident: ref_99
SSID ssj0023338
Score 2.5762184
SecondaryResourceType review_article
Snippet With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9790
SubjectTerms Algorithms
Classification
Deep Learning
Diagnostic Imaging
Discriminant analysis
Disease
disease diagnosis
Medical diagnosis
medical hyperspectral imaging systems
Medical imaging
Medical imaging equipment
Medicine
Neural networks
Remote sensing
Review
Sensors
Spectrum analysis
Support vector machines
Tomography
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDLamneCAGD_LNhQQElyqtU2TvO72GEyPSXBi0m5RksYwaXTT3tv_P7vNq1qBxGWnSo1bJXYc-1PiLwAfpJOVNBjyBguf19Gp3EWNeaDoVTD7UKu4Gvn7D706r88u1MXkqi8-EzbQAw-KO4pVSzmENxRIXe0dellUjSsW6LGk1KHn-aSYtwVTCWpJQl4Dj5AkUH-0pihYN4YX3kn06Un6_16KJ7Fofk5yEnhOn8KTlDGK5dDTPdiJ3TN4POERfA7mS4w3IlGl_hKXnUj7L2JFMHOopqQ_i29_aPVYH4ulGLYEXsD56defJ6s83YiQByX1Jid8ZEqvGtRVNIRUKpQtBtSNQiODopXNm1qXTplCtVIjeRxiVKasfVssgpEvYbe77uJrEGjQETiMpmhDLStHeauuQ6AH8maMzODTVlM2JLpwvrXiyhJsYKXaUakZvB9FbwaOjH8JfWZ1jwJMa92_IGPbZGz7P2Nn8JGNZdn5qDPBpRoCGhLTWNmlYbo4yoFUBgczSXKaMG_emtsmp11bZsJnBjClM3g3NvOXfBCti9d3vcyCEKxqqgxeDbNjHJJkIqNSmQzMbN7Mxjxv6S5_95TehOW5vPzNQyhpHx5VXKPRn7k5gN3N7V08pMxp49_2TnIPdxUUDA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61VKrKAbW0hQCtXFSpvUQkcWxvuFTbx3aLRE9F4mbZjg1IkF3Y5f8zk3jDRq16irSeVfyax5fxfAb4yA0vuAourUJm09IbkRovQ-rQe2XEPlQLqkY-_S2nZ-XJuTiPH9wW8Vjlyia2hrqeOfpGfkQ05UTPJOSX-W1Kt0ZRdjVeofEUnuXoaehI12jyswdcHPFXxybEEdofLdAXlpUi87vmg1qq_r8N8ppHGp6WXHM_k5ewFeNGNu4W-hU88c02bK6xCW7D89OYJ38N6rv3cxa5Uy_YVcNiQoZNEXd25ZX4EvbrBs3J4piNWZcjeANnkx9_vk3TeEVC6gSXyxQBk8qtqIIsvELoUgReBxdkJYLiTqCps6qUuREqEzWXAVUwBC9UXto6GznF38JGM2v8LrCggkG06FVWu5IXBgNZWTqHj0DZGZ7A59WkaRf5w-kai2uNOILmV_fzm8BhLzrvSDP-JfSVZr4XIJ7r9ofZ3YWOaqN9UWMEaRWGUaa0JlieFZXJRsGGHANH7NQnWjdN2oidcSYWFeCQiNdKjxXxx2FQJBI4GEiiFrlh82rlddTihX7ccwl86Jvpn3QyrfGz-1ZmhJBWVEUCO91G6YfEidkoFyoBNdhCgzEPW5qry5bjG8E91Zvv_b9b-_CioHKM9njNAWws7-79OwySlvZ9qwkPjzwO0Q
  priority: 102
  providerName: ProQuest
Title Deep Learning in Medical Hyperspectral Images: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/36560157
https://www.proquest.com/docview/2756781456
https://www.proquest.com/docview/2758104592
https://pubmed.ncbi.nlm.nih.gov/PMC9784550
https://doaj.org/article/e2d508b7399a4bafb3029a08fbf12263
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_OOxB9ED2_omeJIuhLvCSbzTSCSE-vVqGHiIW-hd3N7nlwl961PdD_3plkGxo8fGmhOyH7NTvz6-z8BuC1UCIV6ExUuFhHmVUyUjZ3kSHrFTP7UCU5G3l6kk9m2be5nO_Apsamn8DVjdCO60nNlufvfl_9-UgK_4ERJ0H2wxXZuKzAgpD7Hhkk5EIG06wLJqSCYFhLKtQX75mihrH_33N5yzD1L01uWaHxfbjn3cdw1K73A9ix9T7c3SIV3IfbUx8ufwj42drL0FOonoZndejjMuGE4GebZUkvCb9e0Kmyeh-OwjZU8Ahm4-OfnyaRr5QQGSnydUS4CRMtC5enFgnBpE5Uzri8kA6FkXTiaczyREmMZSVyR5ronJWYZLqKhwbFY9itF7V9CqFDpwg0Wowrk4lUkT-bZ8bQl-MgjQjg7WbSSuNpxLmaxXlJcILnt-zmN4BXnehly51xk9ARz3wnwHTXzQ-L5Wnptae0aUWOpEbyplSmldMiTgsVD512CfmP1Kk3vG4lbxPqjFE-t4CGxPRW5QiZRo58IxnAQU-SlMn0mzcrX272YskM-cwMJvMAXnbN_CRfUKvt4rqRGRKylUUawJN2o3RDEkxwlEgMAHtbqDfmfkt99quh-iaMz2nnz_7fredwJ-WsjOaWzQHsrpfX9gX5Sms9gFs4R_ocjr8MYO_o-OT7j0Hzv8Og0ZG_EeMUlA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9VFBepgUWBIKLVXvX642REAqUkNCmp1bqbVmvd0sl6oQmFeJP8RuZ8YtYIG49RfJOnH3MM7PzDcALYQQXytsw81EeJs7I0LjUhxatV0ToQ4WkauTpYTo-Tj6fyJM1-NXWwtC1ylYnVoq6mFn6j3yXYMoJnkmm7-bfQ-oaRdnVtoVGzRb77ucPDNkWbyd7eL4vOR99PPowDpuuAqGVIl2GGGOoOJeZT7lT6O1zLwpvfZpJr4SVqB1ylaSxkSqShUg9cq33Tqo4yYtoYJXA916D64lAS06V6aNPXYAnMN6r0YtwMNpdoO1NMkXqfsXmVa0B_jYAKxawfztzxdyNbsNm46eyYc1Yd2DNlVuwsYJeuAU3pk1e_i6oPefmrMFqPWVnJWsSQGyMcW5dzok_wibnqL4Wb9iQ1TmJe3B8JZt3H9bLWekeAvPKG4xOnYoKmwhu0HFOE2vxw1M2SATwut00bRu8cmqb8U1j3EL7q7v9DeB5RzqvQTr-RfSedr4jIFzt6sHs4lQ3YqodL9BjzRW6bSbJjc9FxDMTDXzuY3RUcVKv6Nw0ST9OxpqmiAGXRDhaeqgIrw6dMBnATo8Spdb2h9uT143WWOg_PB7As26Yvkk34Uo3u6xoBhhCy4wH8KBmlG5JgpCUYqkCUD0W6q25P1Kefa0wxTM1oPr2R_-f1lO4OT6aHuiDyeH-NtziVApSXe3ZgfXlxaV7jA7aMn9SSQWDL1cthr8Bm-tKUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTprgAcH4CgwwCAQvUZM4jhskhDq6qmWsmhCT9pY5jj0mbWlZOyH-Nf467hInNALxtqdKsZva5_us734H8IorHnFptZ_aIPdjo4SvTGJ9jdYrIPShQlA18sEsmRzFn47F8Qb8amphKK2y0YmVoi7mmv4j7xNMOcEziaRvXVrE4Wj8YfHdpw5SdNPatNOoWWTf_PyB4dvy_XSEZ_06isZ7Xz9OfNdhwNeCJysf4w0Z5iK1SWQkev6R5YXVNkmFlVwL1BS5jJNQCRmIgicWOdhaI2QY50Uw0JLje2_ApqSoqAebu3uzwy9tuMcx-quxjDhPg_4SLXGcSlL-axawahTwtzlYs4fdXM014ze-A7ed18qGNZvdhQ1TbsOtNSzDbdg6cLf090COjFkwh9x6ys5K5q6D2ASj3rq4E3-ETS9QmS3fsSGrbyjuw9G1kO8B9Mp5aR4Bs9IqjFWNDAod80ihG53EWuOHpbsh7sHbhmiZdujl1ETjPMMohuibtfT14GU7dVFDdvxr0i5Rvp1AKNvVg_nlaeaENjNRgf5rLtGJU3GubM6DKFXBwOY2RLcVF_WGzi0jXYCL0cqVNOCWCFUrG0pCr0OXTHiw05mJMqy7w83JZ06HLLM_HO_Bi3aYvkl5caWZX1VzBhhQizTy4GHNKO2WOOEqhUJ6IDss1Nlzd6Q8-1YhjKdyQNXuj_-_rOewhSKYfZ7O9p_AzYjqQqo8nx3orS6vzFP01lb5MycWDE6uWxJ_A64OT-U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Medical+Hyperspectral+Images%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cui%2C+Rong&rft.au=He%2C+Yu&rft.au=Xu%2C+Tingfa&rft.au=Xing%2C+Xiaoxue&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft.spage=9790&rft_id=info:doi/10.3390%2Fs22249790&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon