D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 value...
Saved in:
Published in | Journal of computer-aided molecular design Vol. 32; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0920-654X 1573-4951 1573-4951 |
DOI | 10.1007/s10822-017-0088-4 |
Cover
Abstract | The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank (
http://www.pdb.org
), and in affinity ranking and scoring of bound ligands. |
---|---|
AbstractList | The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands. The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands.The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands. The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands. The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning 6 orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015, with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to Grand Challenge 2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( www.pdb.org ), and in affinity ranking and scoring of bound ligands. |
Author | Gaieb, Zied Rudolph, Markus G. Liu, Shuai Gathiaka, Symon Gilson, Michael K. Shao, Chenghua Amaro, Rommie E. Chiu, Michael Yang, Huanwang Walters, W. Patrick Feher, Victoria A. Burley, Stephen K. Kuhn, Bernd |
AuthorAffiliation | 2 Silicon Therapeutics, Boston MA 02210 3 Merck & Co., Inc., Boston, MA 02115 4 RCSB Protein Data Bank Rutgers University, New Brunswick, NJ 08901 6 Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland 5 Relay Therapeutics, Cambridge, MA 20142 1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093 |
AuthorAffiliation_xml | – name: 3 Merck & Co., Inc., Boston, MA 02115 – name: 4 RCSB Protein Data Bank Rutgers University, New Brunswick, NJ 08901 – name: 5 Relay Therapeutics, Cambridge, MA 20142 – name: 1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093 – name: 6 Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland – name: 2 Silicon Therapeutics, Boston MA 02210 |
Author_xml | – sequence: 1 givenname: Zied surname: Gaieb fullname: Gaieb, Zied organization: Drug Design Data Resource, University of California – sequence: 2 givenname: Shuai surname: Liu fullname: Liu, Shuai organization: Drug Design Data Resource, University of California – sequence: 3 givenname: Symon surname: Gathiaka fullname: Gathiaka, Symon organization: Merck & Co., Inc – sequence: 4 givenname: Michael surname: Chiu fullname: Chiu, Michael organization: Drug Design Data Resource, University of California – sequence: 5 givenname: Huanwang surname: Yang fullname: Yang, Huanwang organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey – sequence: 6 givenname: Chenghua surname: Shao fullname: Shao, Chenghua organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey – sequence: 7 givenname: Victoria A. surname: Feher fullname: Feher, Victoria A. organization: Drug Design Data Resource, University of California – sequence: 8 givenname: W. Patrick surname: Walters fullname: Walters, W. Patrick organization: Relay Therapeutics – sequence: 9 givenname: Bernd surname: Kuhn fullname: Kuhn, Bernd organization: Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd – sequence: 10 givenname: Markus G. surname: Rudolph fullname: Rudolph, Markus G. organization: Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd – sequence: 11 givenname: Stephen K. surname: Burley fullname: Burley, Stephen K. organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey – sequence: 12 givenname: Michael K. surname: Gilson fullname: Gilson, Michael K. email: drugdesigndata@gmail.com organization: Drug Design Data Resource, University of California – sequence: 13 givenname: Rommie E. surname: Amaro fullname: Amaro, Rommie E. organization: Drug Design Data Resource, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29204945$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFqFTEUhoO02NurD-BGAm5cODXJTJIZF4JctRYKgii4C5nMyTQ1N7kmc4vd-Q6-YZ-kGW4rbUFXIef8_89_-A7RXogBEHpGyRElRL7OlLSMVYTKipC2rZpHaEG5rKum43QPLUjHSCV48_0AHeZ8ToqnE-QxOmBl0XQNX6Bf7-sv-DjpMODVmfYewgiYvcG9d2W0STA4M7kYcLTlFydw4er3H-_G2bGJGfIrrK11wU2XuMT8cGGcR2WbwOvJXQDuS1QZY5sAMARIo4P8BO1b7TM8vXmX6NvHD19Xn6rTz8cnq3enleG1mCrKjZa8McJQqC1jpO06OxDb9tCSttFWCsMFlVyUYwcYJGs0l5L1fblQdLReore73M22X8NgIExJe7VJbq3TpYraqfub4M7UGC8Ul0Jy1pSAlzcBKf7cQp7U2mUD3usAcZsV7WRNGCF0lr54ID2P2xTKebOKUcZEobNEz-82-lvlFkoRyJ3ApJhzAquMm_RMoRR0XlGiZvxqh18V_GrGr-YC9IHzNvx_Hrbz5KIt9NOd0v80XQPC7cJ7 |
CitedBy_id | crossref_primary_10_1007_s13721_021_00320_8 crossref_primary_10_1021_acs_jctc_0c00395 crossref_primary_10_1016_j_jmb_2018_11_005 crossref_primary_10_1021_acs_jctc_8b00318 crossref_primary_10_1002_wcms_1429 crossref_primary_10_1002_wcms_1705 crossref_primary_10_12688_f1000research_20559_1 crossref_primary_10_1039_D0CP00305K crossref_primary_10_1007_s10822_018_0110_5 crossref_primary_10_1016_j_bmcl_2021_128026 crossref_primary_10_3390_ijms21207648 crossref_primary_10_1080_23746149_2018_1477531 crossref_primary_10_1016_j_drudis_2020_02_002 crossref_primary_10_1002_prot_26587 crossref_primary_10_1007_s10822_019_00275_z crossref_primary_10_1038_s43588_024_00627_2 crossref_primary_10_3389_fmolb_2020_00114 crossref_primary_10_1021_acs_jcim_9b01174 crossref_primary_10_1016_j_cbpa_2018_06_006 crossref_primary_10_1007_s10822_018_0148_4 crossref_primary_10_1021_acs_jctc_8b00826 crossref_primary_10_1021_acs_jcim_3c01573 crossref_primary_10_1021_acs_jcim_0c00122 crossref_primary_10_1021_acs_jmedchem_0c02227 crossref_primary_10_1016_j_heliyon_2019_e02446 crossref_primary_10_1080_17460441_2021_1884065 crossref_primary_10_1002_wcms_1410 crossref_primary_10_1021_acs_jctc_5c00038 crossref_primary_10_3389_fchem_2018_00188 crossref_primary_10_3934_mbe_2021451 crossref_primary_10_1007_s10822_019_00263_3 crossref_primary_10_1016_j_str_2021_10_003 crossref_primary_10_1007_s10822_019_00244_6 crossref_primary_10_1186_s13321_019_0346_7 crossref_primary_10_1021_acs_jcim_9b00135 crossref_primary_10_3389_fphar_2018_01089 crossref_primary_10_1002_prot_26515 crossref_primary_10_1002_qua_25678 crossref_primary_10_1021_acs_jcim_0c00558 crossref_primary_10_1007_s10822_018_0133_y crossref_primary_10_1002_pro_3784 crossref_primary_10_3389_fbinf_2022_885983 crossref_primary_10_1038_s41570_018_0148 crossref_primary_10_1021_acs_jcim_1c01223 crossref_primary_10_1016_j_abb_2021_108893 crossref_primary_10_1016_j_jmgm_2019_06_011 crossref_primary_10_1021_acs_jcim_9b00383 crossref_primary_10_1093_nar_gkae1075 crossref_primary_10_1007_s10822_019_00237_5 crossref_primary_10_1021_acs_jcim_8b00712 crossref_primary_10_1007_s10822_020_00290_5 crossref_primary_10_1021_acs_jcim_9b00645 crossref_primary_10_1007_s10822_019_00185_0 crossref_primary_10_1002_wcms_1716 crossref_primary_10_1007_s10822_018_0162_6 crossref_primary_10_1021_acs_jcim_2c00751 crossref_primary_10_3390_molecules29040830 crossref_primary_10_1080_07391102_2024_2322639 crossref_primary_10_1007_s10822_019_00241_9 crossref_primary_10_1021_acs_jcim_8b00545 crossref_primary_10_1021_acs_jcim_8b00941 crossref_primary_10_1007_s10822_019_00223_x crossref_primary_10_1063_5_0012230 crossref_primary_10_1016_j_ailsci_2022_100056 crossref_primary_10_1007_s10822_018_0139_5 crossref_primary_10_1002_prot_26535 crossref_primary_10_1007_s10822_017_0071_0 crossref_primary_10_1021_acs_jctc_8b01290 crossref_primary_10_1021_acs_jpclett_4c02332 crossref_primary_10_1007_s10822_018_0154_6 crossref_primary_10_1021_acs_jmedchem_1c01017 crossref_primary_10_1039_D0RA09320C crossref_primary_10_3389_fchem_2020_00246 crossref_primary_10_1002_wcms_1465 crossref_primary_10_1021_acs_jmedchem_9b01545 crossref_primary_10_1021_acs_jcim_0c01382 crossref_primary_10_1111_jcmm_14583 crossref_primary_10_1007_s10822_019_00211_1 crossref_primary_10_53879_id_61_09_14685 crossref_primary_10_1038_s41570_022_00363_z crossref_primary_10_1002_aisy_202400238 crossref_primary_10_1021_acs_jcim_1c00796 crossref_primary_10_1021_acs_jcim_2c00485 crossref_primary_10_3390_molecules27144568 crossref_primary_10_1021_acs_jcim_4c00391 crossref_primary_10_1021_acs_jcim_4c02296 crossref_primary_10_1038_s41467_019_10853_2 crossref_primary_10_1002_cmdc_201900286 crossref_primary_10_1021_acs_jctc_9b00213 crossref_primary_10_1002_ejoc_201901124 crossref_primary_10_1007_s10822_018_0180_4 crossref_primary_10_1007_s10822_020_00289_y crossref_primary_10_1007_s10822_021_00430_5 crossref_primary_10_1007_s10822_022_00452_7 crossref_primary_10_1021_acs_jpcb_9b07588 crossref_primary_10_1007_s00894_019_4036_1 crossref_primary_10_1016_j_dcmed_2022_10_003 crossref_primary_10_1007_s10822_020_00363_5 crossref_primary_10_1016_j_compbiomed_2023_107250 crossref_primary_10_1021_acs_jcim_9b00032 crossref_primary_10_1002_prot_25869 crossref_primary_10_1021_acs_jctc_8b00418 crossref_primary_10_1124_pharmrev_121_000436 crossref_primary_10_1016_j_str_2019_05_012 crossref_primary_10_1093_nar_gky949 crossref_primary_10_1021_acs_jcim_0c00113 crossref_primary_10_1016_j_jmgm_2021_108119 crossref_primary_10_1021_acs_jcim_0c00474 crossref_primary_10_1021_acs_jcim_1c00292 crossref_primary_10_1063_1_5123154 crossref_primary_10_1080_17460441_2021_1925247 crossref_primary_10_3389_fmolb_2020_00093 crossref_primary_10_1186_s13321_025_00955_z crossref_primary_10_3390_molecules24142610 crossref_primary_10_1039_D2CP01727J crossref_primary_10_1007_s10822_019_00212_0 crossref_primary_10_3389_fmolb_2023_1210576 crossref_primary_10_1021_acs_jpclett_9b00741 crossref_primary_10_1007_s10822_021_00406_5 crossref_primary_10_1016_j_sbi_2023_102548 crossref_primary_10_1021_acs_jcim_1c00737 crossref_primary_10_1021_acs_jctc_1c00194 crossref_primary_10_3389_fphar_2019_00561 crossref_primary_10_1016_j_bcp_2018_11_007 crossref_primary_10_1002_prot_26601 crossref_primary_10_1021_acs_jcim_8b00199 crossref_primary_10_1093_bioinformatics_btaa748 crossref_primary_10_1021_acs_jcim_9b00728 crossref_primary_10_1371_journal_pone_0213217 crossref_primary_10_3390_molecules25112487 crossref_primary_10_1016_j_jiec_2019_12_009 crossref_primary_10_1007_s10822_019_00220_0 crossref_primary_10_1007_s10822_021_00433_2 crossref_primary_10_3390_molecules25204723 crossref_primary_10_1021_acs_jmedchem_9b02126 crossref_primary_10_1021_acsmedchemlett_9b00151 crossref_primary_10_3390_ijms222212320 crossref_primary_10_1002_prot_26213 crossref_primary_10_1007_s10822_019_00247_3 crossref_primary_10_1093_bioinformatics_bty816 crossref_primary_10_2139_ssrn_3291330 crossref_primary_10_1109_JBHI_2023_3315073 |
Cites_doi | 10.1007/s10822-016-9946-8 10.1107/S0907444904016427 10.1016/j.bmcl.2010.11.039 10.1107/S0021889807021206 10.1126/science.284.5418.1362 10.1016/S1097-2765(00)80348-2 10.1021/jacs.6b11467 10.1021/acs.jctc.6b01141 10.1021/acs.jcim.6b00182 10.1016/S0022-2836(02)00470-9 10.1006/abio.1997.2557 10.1021/ci200269q 10.1016/j.bmcl.2010.12.123 10.1126/science.284.5418.1365 10.1016/S1097-2765(00)00050-2 10.1007/s10822-007-9159-2 10.1016/j.jmgm.2010.05.008 10.1126/science.1096361 10.1007/978-1-62703-342-8_10 10.1021/ci00063a006 10.1021/acs.jcim.5b00387 10.1007/s10822-014-9735-1 10.1016/0097-8485(84)85020-2 10.1007/s10822-016-9954-8 10.1021/ci400025f 10.1124/pr.112.007336 10.1007/s10822-016-9974-4 10.1016/j.bmcl.2009.03.008 10.1016/S0076-6879(97)76066-X 10.1007/s10969-007-9029-0 10.1016/S0076-6879(03)74014-2 10.1021/acs.jmedchem.6b01881 10.1194/jlr.M012542 10.1021/acs.jctc.5b00159 10.1107/S0907444909047337 10.1016/j.sbi.2016.10.007 10.1016/0006-2952(73)90196-2 10.1002/prot.10613 10.1021/ci100062n 10.1021/acs.jcim.5b00523 10.1039/C5SC02678D 10.1021/acsomega.6b00086 10.1107/S0907444904026460 10.1002/jcc.21334 10.1002/wcms.1157 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2017 Journal of Computer-Aided Molecular Design is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2017 – notice: Journal of Computer-Aided Molecular Design is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7SC 7X7 7XB 88E 88I 8AL 8AO 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB. L7M L~C L~D M0N M0S M1P M2P P5Z P62 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s10822-017-0088-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1573-4951 |
EndPage | 20 |
ExternalDocumentID | PMC5767524 29204945 10_1007_s10822_017_0088_4 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences grantid: U01 GM111528 funderid: http://dx.doi.org/10.13039/100000057 – fundername: NIGMS NIH HHS grantid: P41 GM103426 – fundername: NIGMS NIH HHS grantid: U01 GM111528 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 186 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDO EIOEI EJD EMB EMK EMOBN EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KB. KDC KOV KOW LAK LK5 LLZTM M0N M1P M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9N PCBAR PDBOC PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7U Z7V Z7W Z7X Z83 Z87 Z8O Z91 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 K9. L7M L~C L~D PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c536t-15ca754c6c1e3f220899fd0f8be8084af76c561756092ded724a5772bb2046913 |
IEDL.DBID | 8FG |
ISSN | 0920-654X 1573-4951 |
IngestDate | Thu Aug 21 18:20:34 EDT 2025 Mon Sep 08 16:57:52 EDT 2025 Fri Jul 25 19:04:06 EDT 2025 Thu Apr 03 06:57:19 EDT 2025 Tue Jul 01 04:24:25 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Fri Feb 21 02:34:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Ligand ranking Farnesoid X receptor D3R Blinded prediction challenge Docking Scoring Alchemical methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-15ca754c6c1e3f220899fd0f8be8084af76c561756092ded724a5772bb2046913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5767524 |
PMID | 29204945 |
PQID | 1972122657 |
PQPubID | 54123 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5767524 proquest_miscellaneous_1973020014 proquest_journals_1972122657 pubmed_primary_29204945 crossref_citationtrail_10_1007_s10822_017_0088_4 crossref_primary_10_1007_s10822_017_0088_4 springer_journals_10_1007_s10822_017_0088_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | Incorporating Perspectives in Drug Discovery and Design |
PublicationTitle | Journal of computer-aided molecular design |
PublicationTitleAbbrev | J Comput Aided Mol Des |
PublicationTitleAlternate | J Comput Aided Mol Des |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Wang, Chen, Hollister (CR12) 1999; 3 Mishra, Calabró, Loeffler (CR42) 2015; 11 Keränen, Pérez-Benito, Ciordia (CR36) 2017; 13 McCoy, Grosse-Kunstleve, Adams (CR23) 2007; 40 Smith, Damm-Ganamet, Dunbar (CR6) 2016; 56 Winn, Murshudov, Papiz (CR24) 2003; 374 Carlson (CR4) 2016; 56 Richter, Benson, Bleicher (CR15) 2011; 21 Tembre, Mc Cammon (CR18) 1984; 8 Jacobson, Friesner, Xiang, Honig (CR29) 2002; 320 Trott, Olson (CR43) 2010; 31 Gathiaka, Liu, Chiu (CR9) 2016; 30 Kabsch (CR22) 2010; 66 Chipot (CR39) 2014; 4 Carlson, Smith, Damm-Ganamet (CR5) 2016; 56 Bannan, Burley, Chiu (CR44) 2016; 30 Feng, Yang, Zhang (CR17) 2009; 19 Yin, Henriksen, Slochower (CR45) 2017; 31 Lu, Makishima, Repa (CR13) 2000; 6 Duan, Dixon, Lowrie, Sherman (CR33) 2010; 29 Jacobson, Pincus, Rapp (CR28) 2004; 55 Damm-Ganamet, Smith, Dunbar (CR7) 2013; 53 Smith, Dunbar, Ung (CR8) 2011; 51 Otwinowski, Minor (CR21) 1997; 276 Krissinel, Henrick (CR26) 2004; 60 Parks, Blanchard, Bledsoe (CR11) 1999; 284 CR27 Aldeghi, Heifetz, Bodkin (CR40) 2015; 7 Ekins, Bunin, Kortagere (CR31) 2013 Aldeghi, Heifetz, Bodkin (CR41) 2017; 139 Makishima, Okamoto, Repa (CR10) 1999; 284 Warkentin, Thorne (CR20) 2007; 8 Muddana, Fenley, Mobley, Gilson (CR46) 2014; 28 Jorgensen (CR3) 2004; 303 Abel, Mondal, Masse (CR38) 2017; 43 Sliwoski, Kothiwale, Meiler, Lowe (CR1) 2014; 66 Nichols, Parks, Consler, Blanchard (CR19) 1998; 257 Blanc, Roversi, Vonrhein (CR25) 2004; 60 Yung-Chi, Prusoff (CR30) 1973; 22 Amaro, Baron, McCammon (CR2) 2008; 22 Gardès, Blum, Bleicher (CR14) 2011; 52 Kuhn, Tichý, Wang (CR35) 2017; 60 Lenselink, Louvel, Forti (CR37) 2016; 1 Viswanadhan, Ghose, Revankar, Robins (CR32) 1989; 29 Richter, Benson, Blum (CR16) 2011; 21 Sastry, Lowrie, Dixon, Sherman (CR34) 2010; 50 TT Lu (88_CR13) 2000; 6 C Yung-Chi (88_CR30) 1973; 22 S Gathiaka (88_CR9) 2016; 30 WL Jorgensen (88_CR3) 2004; 303 RD Smith (88_CR6) 2016; 56 VN Viswanadhan (88_CR32) 1989; 29 SK Mishra (88_CR42) 2015; 11 MP Jacobson (88_CR28) 2004; 55 C Chipot (88_CR39) 2014; 4 HS Muddana (88_CR46) 2014; 28 DJ Parks (88_CR11) 1999; 284 HA Carlson (88_CR5) 2016; 56 S Feng (88_CR17) 2009; 19 JS Nichols (88_CR19) 1998; 257 M Warkentin (88_CR20) 2007; 8 M Aldeghi (88_CR41) 2017; 139 HGF Richter (88_CR16) 2011; 21 J Yin (88_CR45) 2017; 31 88_CR27 H Keränen (88_CR36) 2017; 13 G Sliwoski (88_CR1) 2014; 66 E Blanc (88_CR25) 2004; 60 RE Amaro (88_CR2) 2008; 22 KL Damm-Ganamet (88_CR7) 2013; 53 E Krissinel (88_CR26) 2004; 60 M Makishima (88_CR10) 1999; 284 H Wang (88_CR12) 1999; 3 M Sastry (88_CR34) 2010; 50 AJ McCoy (88_CR23) 2007; 40 J Duan (88_CR33) 2010; 29 Z Otwinowski (88_CR21) 1997; 276 S Ekins (88_CR31) 2013 CC Bannan (88_CR44) 2016; 30 HA Carlson (88_CR4) 2016; 56 MD Winn (88_CR24) 2003; 374 EB Lenselink (88_CR37) 2016; 1 BL Tembre (88_CR18) 1984; 8 HGF Richter (88_CR15) 2011; 21 B Kuhn (88_CR35) 2017; 60 RD Smith (88_CR8) 2011; 51 M Aldeghi (88_CR40) 2015; 7 R Abel (88_CR38) 2017; 43 O Trott (88_CR43) 2010; 31 W Kabsch (88_CR22) 2010; 66 C Gardès (88_CR14) 2011; 52 MP Jacobson (88_CR29) 2002; 320 |
References_xml | – volume: 30 start-page: 651 year: 2016 end-page: 668 ident: CR9 article-title: D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9946-8 – volume: 60 start-page: 2210 year: 2004 end-page: 2221 ident: CR25 article-title: Refinement of severely incomplete structures with maximum likelihood in BUSTER–TNT publication-title: Acta Crystallogr D doi: 10.1107/S0907444904016427 – volume: 21 start-page: 191 year: 2011 end-page: 194 ident: CR16 article-title: Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2010.11.039 – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: CR23 article-title: Phaser crystallographic software publication-title: J Appl Crystallogr doi: 10.1107/S0021889807021206 – volume: 31 start-page: 455 year: 2010 end-page: 461 ident: CR43 article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J Comput Chem – volume: 284 start-page: 1362 year: 1999 end-page: 1365 ident: CR10 article-title: Identification of a nuclear receptor for bile acids publication-title: Science doi: 10.1126/science.284.5418.1362 – volume: 3 start-page: 543 year: 1999 end-page: 553 ident: CR12 article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80348-2 – volume: 60 start-page: 2256 year: 2004 end-page: 2268 ident: CR26 article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions publication-title: Acta Crystallogr – volume: 139 start-page: 946 year: 2017 end-page: 957 ident: CR41 article-title: Predictions of ligand selectivity from absolute binding free energy calculations publication-title: J Am Chem Soc doi: 10.1021/jacs.6b11467 – volume: 4 start-page: 71 year: 2014 end-page: 89 ident: CR39 article-title: Frontiers in free-energy calculations of biological systems publication-title: Wiley Interdiscip Rev – volume: 13 start-page: 1439 year: 2017 end-page: 1453 ident: CR36 article-title: Acylguanidine beta secretase 1 inhibitors: a combined experimental and free energy perturbation study publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.6b01141 – volume: 56 start-page: 951 year: 2016 end-page: 954 ident: CR4 article-title: Lessons learned over four benchmark exercises from the community structure–activity resource publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00182 – volume: 320 start-page: 597 year: 2002 end-page: 608 ident: CR29 article-title: On the role of the crystal environment in determining protein side-chain conformations publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00470-9 – volume: 257 start-page: 112 year: 1998 end-page: 119 ident: CR19 article-title: Development of a scintillation proximity assay for peroxisome proliferator-activated receptor ligand binding domain publication-title: Anal Biochem doi: 10.1006/abio.1997.2557 – volume: 51 start-page: 2115 year: 2011 end-page: 2131 ident: CR8 article-title: CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions publication-title: J Chem Inf Model doi: 10.1021/ci200269q – volume: 21 start-page: 1134 year: 2011 end-page: 1140 ident: CR15 article-title: Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2010.12.123 – volume: 284 start-page: 1365 year: 1999 end-page: 1368 ident: CR11 article-title: Bile acids: natural ligands for an orphan nuclear receptor publication-title: Science doi: 10.1126/science.284.5418.1365 – volume: 6 start-page: 507 year: 2000 end-page: 515 ident: CR13 article-title: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors publication-title: Mol Cell doi: 10.1016/S1097-2765(00)00050-2 – volume: 22 start-page: 693 year: 2008 end-page: 705 ident: CR2 article-title: An improved relaxed complex scheme for receptor flexibility in computer-aided drug design publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-007-9159-2 – volume: 29 start-page: 157 year: 2010 end-page: 170 ident: CR33 article-title: Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2010.05.008 – volume: 303 start-page: 1813 year: 2004 end-page: 1818 ident: CR3 article-title: The many roles of computation in drug discovery publication-title: Science doi: 10.1126/science.1096361 – start-page: 139 year: 2013 end-page: 154 ident: CR31 article-title: The collaborative drug discovery (CDD) database publication-title: In silico models for drug discovery doi: 10.1007/978-1-62703-342-8_10 – volume: 29 start-page: 163 year: 1989 end-page: 172 ident: CR32 article-title: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00063a006 – volume: 56 start-page: 1022 year: 2016 end-page: 1031 ident: CR6 article-title: CSAR benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00387 – ident: CR27 – volume: 28 start-page: 305 year: 2014 end-page: 317 ident: CR46 article-title: The SAMPL4 host–guest blind prediction challenge: an overview publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9735-1 – volume: 8 start-page: 281 year: 1984 end-page: 283 ident: CR18 article-title: Ligand-receptor interactions publication-title: Comput Chem doi: 10.1016/0097-8485(84)85020-2 – volume: 30 start-page: 927 year: 2016 end-page: 944 ident: CR44 article-title: Blind prediction of cyclohexane–water distribution coefficients from the SAMPL5 challenge publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9954-8 – volume: 53 start-page: 1853 year: 2013 end-page: 1870 ident: CR7 article-title: CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series publication-title: J Chem Inf Model doi: 10.1021/ci400025f – volume: 66 start-page: 334 year: 2014 end-page: 395 ident: CR1 article-title: Computational methods in drug discovery publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – volume: 31 start-page: 1 year: 2017 end-page: 19 ident: CR45 article-title: Overview of the SAMPL5 host–guest challenge: are we doing better? publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9974-4 – volume: 19 start-page: 2595 year: 2009 end-page: 2598 ident: CR17 article-title: Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.03.008 – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: CR21 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76066-X – volume: 8 start-page: 141 year: 2007 end-page: 144 ident: CR20 article-title: A general method for hyperquenching protein crystals publication-title: J Struct Funct Genom doi: 10.1007/s10969-007-9029-0 – volume: 374 start-page: 300 year: 2003 end-page: 321 ident: CR24 article-title: Macromolecular TLS refinement in REFMAC at moderate resolutions publication-title: Methods Enzymol doi: 10.1016/S0076-6879(03)74014-2 – volume: 60 start-page: 2485 year: 2017 end-page: 2497 ident: CR35 article-title: Prospective evaluation of free energy calculations for the prioritization of cathepsin L inhibitors publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01881 – volume: 52 start-page: 1188 year: 2011 end-page: 1199 ident: CR14 article-title: Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-I expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor publication-title: J Lipid Res doi: 10.1194/jlr.M012542 – volume: 11 start-page: 3333 year: 2015 end-page: 3345 ident: CR42 article-title: Evaluation of selected classical force fields for alchemical binding free energy calculations of protein-carbohydrate complexes publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.5b00159 – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: CR22 article-title: XDS publication-title: Acta Crystallogr D doi: 10.1107/S0907444909047337 – volume: 43 start-page: 38 year: 2017 end-page: 44 ident: CR38 article-title: Accelerating drug discovery through tight integration of expert molecular design and predictive scoring publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2016.10.007 – volume: 22 start-page: 3099 year: 1973 end-page: 3108 ident: CR30 article-title: Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction publication-title: Biochem Pharmacol doi: 10.1016/0006-2952(73)90196-2 – volume: 55 start-page: 351 year: 2004 end-page: 367 ident: CR28 article-title: A hierarchical approach to all-atom protein loop prediction publication-title: Proteins Struct Funct Bioinform doi: 10.1002/prot.10613 – volume: 50 start-page: 771 year: 2010 end-page: 784 ident: CR34 article-title: Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments publication-title: J Chem Inf Model doi: 10.1021/ci100062n – volume: 56 start-page: 1063 year: 2016 end-page: 1077 ident: CR5 article-title: CSAR 2014: a benchmark exercise using unpublished data from pharma publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00523 – volume: 7 start-page: 207 year: 2015 end-page: 218 ident: CR40 article-title: Accurate calculation of the absolute free energy of binding for drug molecules publication-title: Chem Sci doi: 10.1039/C5SC02678D – volume: 1 start-page: 293 year: 2016 end-page: 304 ident: CR37 article-title: Predicting binding affinities for GPCR ligands using free-energy perturbation publication-title: ACS Omega doi: 10.1021/acsomega.6b00086 – volume: 19 start-page: 2595 year: 2009 ident: 88_CR17 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.03.008 – volume: 30 start-page: 927 year: 2016 ident: 88_CR44 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9954-8 – volume: 320 start-page: 597 year: 2002 ident: 88_CR29 publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00470-9 – volume: 31 start-page: 1 year: 2017 ident: 88_CR45 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9974-4 – volume: 51 start-page: 2115 year: 2011 ident: 88_CR8 publication-title: J Chem Inf Model doi: 10.1021/ci200269q – volume: 284 start-page: 1362 year: 1999 ident: 88_CR10 publication-title: Science doi: 10.1126/science.284.5418.1362 – ident: 88_CR27 – volume: 60 start-page: 2256 year: 2004 ident: 88_CR26 publication-title: Acta Crystallogr doi: 10.1107/S0907444904026460 – volume: 66 start-page: 334 year: 2014 ident: 88_CR1 publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – volume: 284 start-page: 1365 year: 1999 ident: 88_CR11 publication-title: Science doi: 10.1126/science.284.5418.1365 – volume: 11 start-page: 3333 year: 2015 ident: 88_CR42 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.5b00159 – volume: 31 start-page: 455 year: 2010 ident: 88_CR43 publication-title: J Comput Chem doi: 10.1002/jcc.21334 – volume: 29 start-page: 157 year: 2010 ident: 88_CR33 publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2010.05.008 – volume: 28 start-page: 305 year: 2014 ident: 88_CR46 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9735-1 – volume: 43 start-page: 38 year: 2017 ident: 88_CR38 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2016.10.007 – volume: 303 start-page: 1813 year: 2004 ident: 88_CR3 publication-title: Science doi: 10.1126/science.1096361 – volume: 276 start-page: 307 year: 1997 ident: 88_CR21 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76066-X – volume: 52 start-page: 1188 year: 2011 ident: 88_CR14 publication-title: J Lipid Res doi: 10.1194/jlr.M012542 – start-page: 139 volume-title: In silico models for drug discovery year: 2013 ident: 88_CR31 doi: 10.1007/978-1-62703-342-8_10 – volume: 60 start-page: 2210 year: 2004 ident: 88_CR25 publication-title: Acta Crystallogr D doi: 10.1107/S0907444904016427 – volume: 56 start-page: 951 year: 2016 ident: 88_CR4 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00182 – volume: 8 start-page: 141 year: 2007 ident: 88_CR20 publication-title: J Struct Funct Genom doi: 10.1007/s10969-007-9029-0 – volume: 66 start-page: 125 year: 2010 ident: 88_CR22 publication-title: Acta Crystallogr D doi: 10.1107/S0907444909047337 – volume: 55 start-page: 351 year: 2004 ident: 88_CR28 publication-title: Proteins Struct Funct Bioinform doi: 10.1002/prot.10613 – volume: 53 start-page: 1853 year: 2013 ident: 88_CR7 publication-title: J Chem Inf Model doi: 10.1021/ci400025f – volume: 50 start-page: 771 year: 2010 ident: 88_CR34 publication-title: J Chem Inf Model doi: 10.1021/ci100062n – volume: 257 start-page: 112 year: 1998 ident: 88_CR19 publication-title: Anal Biochem doi: 10.1006/abio.1997.2557 – volume: 13 start-page: 1439 year: 2017 ident: 88_CR36 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.6b01141 – volume: 21 start-page: 1134 year: 2011 ident: 88_CR15 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2010.12.123 – volume: 22 start-page: 693 year: 2008 ident: 88_CR2 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-007-9159-2 – volume: 139 start-page: 946 year: 2017 ident: 88_CR41 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b11467 – volume: 4 start-page: 71 year: 2014 ident: 88_CR39 publication-title: Wiley Interdiscip Rev doi: 10.1002/wcms.1157 – volume: 3 start-page: 543 year: 1999 ident: 88_CR12 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80348-2 – volume: 8 start-page: 281 year: 1984 ident: 88_CR18 publication-title: Comput Chem doi: 10.1016/0097-8485(84)85020-2 – volume: 56 start-page: 1022 year: 2016 ident: 88_CR6 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00387 – volume: 29 start-page: 163 year: 1989 ident: 88_CR32 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00063a006 – volume: 40 start-page: 658 year: 2007 ident: 88_CR23 publication-title: J Appl Crystallogr doi: 10.1107/S0021889807021206 – volume: 6 start-page: 507 year: 2000 ident: 88_CR13 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)00050-2 – volume: 1 start-page: 293 year: 2016 ident: 88_CR37 publication-title: ACS Omega doi: 10.1021/acsomega.6b00086 – volume: 7 start-page: 207 year: 2015 ident: 88_CR40 publication-title: Chem Sci doi: 10.1039/C5SC02678D – volume: 30 start-page: 651 year: 2016 ident: 88_CR9 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9946-8 – volume: 21 start-page: 191 year: 2011 ident: 88_CR16 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2010.11.039 – volume: 374 start-page: 300 year: 2003 ident: 88_CR24 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(03)74014-2 – volume: 22 start-page: 3099 year: 1973 ident: 88_CR30 publication-title: Biochem Pharmacol doi: 10.1016/0006-2952(73)90196-2 – volume: 56 start-page: 1063 year: 2016 ident: 88_CR5 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00523 – volume: 60 start-page: 2485 year: 2017 ident: 88_CR35 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01881 |
SSID | ssj0007960 |
Score | 2.564562 |
Snippet | The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures... The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Affinity Animal Anatomy Chemistry Chemistry and Materials Science Computer Applications in Chemistry Computer-Aided Design Crystal structure Databases, Protein Datasets Drug Design Energy methods Free energy Histology Humans Inhibitory Concentration 50 Ligands Molecular Docking Simulation Morphology Pharmaceutical sciences Physical Chemistry Protein Binding Ranking Receptors, Cytoplasmic and Nuclear - agonists Receptors, Cytoplasmic and Nuclear - antagonists & inhibitors Receptors, Cytoplasmic and Nuclear - chemistry Receptors, Cytoplasmic and Nuclear - metabolism Scaffolds Software Test procedures Thermodynamics |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbhQxEC3B5AAcWMI2EJCROAEddXvphVs0ZBEIDiiRhlPLdtvQIuoZzYJITvxD_jBfQlVvzCSAlGt7a9tl17PL9QrgpTNSp1HMg6jQIpBa6MAIrQPE_k5qJzQX5Cj88VN8cCTfj9W49eOed6_dO5NkvVOvOLuhMgtoV0W9lQbyOmyoKM3SAWzs7H_5sNtvwElWOweHGZ2MlBx3xsy_VbKuji5hzMtPJS_YS2s1tHcHDrsONK9Pvm8vF2bbnl7gdrxiD-_C7RaWsp1Gju7BNVdtwo1RFw1uE26tEBfeh5_vxGe2j2quYKMuGgvjb5nBZgs2nZH1h2acTTyrmSDK6vzX2XH5lUpMJ3M3f8O09yXuJyeMwsbTfT1-wtTGueaHY6asHW6YnznHiBybCC0ewNHe7uHoIGhjOARWiXgRRMrqREkb28gJzzlZGX0R-tS4NEyl9klsEcIlCLwyXrgi4VIrRPzGcDq5R-IhDKpJ5R4DEyrSmUuNT6zAJGGUTQoTogiE0irPhxB2U5nbluCc4mwc53-omWmAcxzgnAY4l0N41ReZNuwe_8u81clH3i70eU5R2yKEsCoZwos-GeeG7C66cpNlnUeE9HYNq3jUiFPfGgULk5lUQ0jWBK3PQPTf6ylV-a2mAVfEw8OxztedNK381r868eRKuZ_CTQSIaXPltAWDxWzpniEIW5jn7aL7DbEoKKE priority: 102 providerName: Springer Nature |
Title | D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies |
URI | https://link.springer.com/article/10.1007/s10822-017-0088-4 https://www.ncbi.nlm.nih.gov/pubmed/29204945 https://www.proquest.com/docview/1972122657 https://www.proquest.com/docview/1973020014 https://pubmed.ncbi.nlm.nih.gov/PMC5767524 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY3QNwQLC8CktlJE5AROJHnHBBbWm7AlGhFZXKKbIdGyKtktJ2Edz4D_xDfgkzeXS3rNhTpI6TNh1n5ovH832EPHNG6CSKWRDlmgdCcx0YrnUA2N8J7bhmHBuFP8zi47l4t5CLdsFt3W6r7GJiHajzyuIa-SuUx4oAK0j1ZvktQNUorK62Ehp75CCCTIPzPJlMt5FYpXWXcJjiK5IUi66q2bTOQWoMMEZDFkwCsZuXLoHNy3sm_ymc1vlocpvcaoEkHTSev0OuufKQXB91-m2H5OYFqsG75MdbfkKnkJhyOur0Uyh7TQ3AzJwuV1ivQR_RytOau6Eo__z6fVp8wTOW1dqtX1LtfQER4CdFoXdcYYePwNq0w3x31BR1iwz1K-co0lkjBcU9Mp-MP42Og1Z1IbCSx5sgklYrKWxsI8c9Y1gX9HnoE-OSMBHaq9gC6FIAlVKWu1wxoSVgdGMYvmtH_D7ZL6vSPSSUy0inLjFeWQ4mbqRVuQmjJA2FlZ71SNj955ltKclRGeM0OydTRjdl4KYM3ZSJHnm-PWXZ8HFcNfioc2TWPprr7Hwi9cjTrRl8g5USXbrqrB7DQ9xtBpd40Ph9-20o7yVSIXtE7cyI7QAk7N61lMXXmrhbInMOg2u-6ObOhZ_1v5t4dPVNPCY3AMMlzarQEdnfrM7cE8BJG9Mne2qh-vUj0ScHg8lwOMPj9PP7MRyH49nHE7DO2eAvA7kVxg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FySFwQBC2gQCNBBfAwu7FCxJCMEmYkGSEokSam9Ntt8FSZA8zEyA3_oH_4KP4Eqq8JUNEbrm6Fy9Vrnrd1fUK4Kk1Uoeezx0v1cKRWmjHCK0dxP5Wais0F5QovDvyhwfy41iNl-B3mwtDxypbm1gZ6rRMaI_8FZXH8hArqODt5KtDVaMoutqW0KjVYtuefMcl2-zN1jrK9xnnmxv7g6HTVBVwEiX8ueOpRAdKJn7iWZFxTnGvLHWz0NjQDaXOAj9BUBEgFIh4atOAS60QgxrDaS3pCZz3CixLymjtwfL7jdGnvc72B1GVl4wjcVGm5LiNo9bJeuiMHfIK6HdDRy56wnPw9vwpzX9CtZUH3LwB1xvoyt7VunYTlmyxCiuDtmLcKlw7Q254C36siz32AV1hygZtxRbGXzODwDZlkylFiEgrWJmxii0iL_78_HWUf6YRk3JmZy-ZzrIcbc4Jo9LytKePl7C1TsD5ZpnJq6Qclk2tZUSgTaQXt-HgUiRyB3pFWdh7wITydGRDkwWJwCZhVBKkxvXCyJWJyngf3Pabx0lDgk61OI7iU_pmElOMYopJTLHsw_NuyKRmALmo81oryLgxBrP4VHX78KRrRtlQbEYXtjyu-giXzrfhFHdruXd3o4JiMpKqD8GCRnQdiCJ8saXIv1RU4Yq4ejjO-aLVnTOP9b-XuH_xSzyGleH-7k68szXafgBXEUGG9Z7UGvTm02P7EFHa3Dxqfg0Gh5f9N_4FlLFL_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkaA8IChQFgoYCV4Ai8SXXJAQQrssLYUKISrtW7AdGyJVybK7BfrGP_A3fA5fwkxu7VLRt76uL9lkxp4zHs8ZQh44I3USRpyFuRZMaqGZEVozwP5Oaic0F5go_G432tqTbyZqskJ-d7kweK2y2xPrjTqvLJ6RP8XyWCFgBXDgfXst4v1o_GL6lWEFKYy0duU0GhXZcYffwX2bP98egawfcj5-9XG4xdoKA8wqES1YqKyOlbSRDZ3wnGMMzOeBT4xLgkRqH0cWAEYMsCDluctjLrUCPGoMR78yFDDvOXI-FoCqYC3Fk97ZC-K0zlCGceCeKTnpIqpN2h6YZYb2ASxwwuSyTTwBdE_e1_wnaFvbwvEVcrkFsfRlo3VXyYor18nFYVc7bp1cOkZzeI38GIkP9DUYxZwOu9otlD-jBiBuTqczjBWhftDK05o3oij__Py1X3zGEdNq7uZPqPa-gN3nkGKReTzdh5-gtUnF-eaoKer0HOpnzlGk0kb6i-tk70zkcYOsllXpbhIqVKhTlxgfWwFNwigb5yYIkzSQVnk-IEH3zTPb0qFjVY797IjIGcWUgZgyFFMmB-RRP2TacIGc1nmzE2TWbgvz7EiJB-R-3wyywSiNLl11UPcRAd50gyk2Grn3T8PSYjKVakDiJY3oOyBZ-HJLWXypScMVsvZwmPNxpzvH_tb_XuLW6S9xj1yANZi93d7duU3WAEomzeHUJlldzA7cHYBrC3O3XheUfDrrhfgXZfROxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D3R+Grand+Challenge+2%3A+blind+prediction+of+protein%E2%80%93ligand+poses%2C+affinity+rankings%2C+and+relative+binding+free+energies&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Zied+Gaieb&rft.au=Liu%2C+Shuai&rft.au=Symon+Gathiaka&rft.au=Chiu%2C+Michael&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1007%2Fs10822-017-0088-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon |