D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies

The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 value...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer-aided molecular design Vol. 32; no. 1; pp. 1 - 20
Main Authors Gaieb, Zied, Liu, Shuai, Gathiaka, Symon, Chiu, Michael, Yang, Huanwang, Shao, Chenghua, Feher, Victoria A., Walters, W. Patrick, Kuhn, Bernd, Rudolph, Markus G., Burley, Stephen K., Gilson, Michael K., Amaro, Rommie E.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-654X
1573-4951
1573-4951
DOI10.1007/s10822-017-0088-4

Cover

Abstract The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands.
AbstractList The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands.
The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands.The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands.
The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( http://www.pdb.org ), and in affinity ranking and scoring of bound ligands.
The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning 6 orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015, with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to Grand Challenge 2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank ( www.pdb.org ), and in affinity ranking and scoring of bound ligands.
Author Gaieb, Zied
Rudolph, Markus G.
Liu, Shuai
Gathiaka, Symon
Gilson, Michael K.
Shao, Chenghua
Amaro, Rommie E.
Chiu, Michael
Yang, Huanwang
Walters, W. Patrick
Feher, Victoria A.
Burley, Stephen K.
Kuhn, Bernd
AuthorAffiliation 2 Silicon Therapeutics, Boston MA 02210
3 Merck & Co., Inc., Boston, MA 02115
4 RCSB Protein Data Bank Rutgers University, New Brunswick, NJ 08901
6 Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
5 Relay Therapeutics, Cambridge, MA 20142
1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093
AuthorAffiliation_xml – name: 3 Merck & Co., Inc., Boston, MA 02115
– name: 4 RCSB Protein Data Bank Rutgers University, New Brunswick, NJ 08901
– name: 5 Relay Therapeutics, Cambridge, MA 20142
– name: 1 Drug Design Data Resource, University of California, San Diego, La Jolla, CA 92093
– name: 6 Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
– name: 2 Silicon Therapeutics, Boston MA 02210
Author_xml – sequence: 1
  givenname: Zied
  surname: Gaieb
  fullname: Gaieb, Zied
  organization: Drug Design Data Resource, University of California
– sequence: 2
  givenname: Shuai
  surname: Liu
  fullname: Liu, Shuai
  organization: Drug Design Data Resource, University of California
– sequence: 3
  givenname: Symon
  surname: Gathiaka
  fullname: Gathiaka, Symon
  organization: Merck & Co., Inc
– sequence: 4
  givenname: Michael
  surname: Chiu
  fullname: Chiu, Michael
  organization: Drug Design Data Resource, University of California
– sequence: 5
  givenname: Huanwang
  surname: Yang
  fullname: Yang, Huanwang
  organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey
– sequence: 6
  givenname: Chenghua
  surname: Shao
  fullname: Shao, Chenghua
  organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey
– sequence: 7
  givenname: Victoria A.
  surname: Feher
  fullname: Feher, Victoria A.
  organization: Drug Design Data Resource, University of California
– sequence: 8
  givenname: W. Patrick
  surname: Walters
  fullname: Walters, W. Patrick
  organization: Relay Therapeutics
– sequence: 9
  givenname: Bernd
  surname: Kuhn
  fullname: Kuhn, Bernd
  organization: Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd
– sequence: 10
  givenname: Markus G.
  surname: Rudolph
  fullname: Rudolph, Markus G.
  organization: Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd
– sequence: 11
  givenname: Stephen K.
  surname: Burley
  fullname: Burley, Stephen K.
  organization: RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey
– sequence: 12
  givenname: Michael K.
  surname: Gilson
  fullname: Gilson, Michael K.
  email: drugdesigndata@gmail.com
  organization: Drug Design Data Resource, University of California
– sequence: 13
  givenname: Rommie E.
  surname: Amaro
  fullname: Amaro, Rommie E.
  organization: Drug Design Data Resource, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29204945$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFqFTEUhoO02NurD-BGAm5cODXJTJIZF4JctRYKgii4C5nMyTQ1N7kmc4vd-Q6-YZ-kGW4rbUFXIef8_89_-A7RXogBEHpGyRElRL7OlLSMVYTKipC2rZpHaEG5rKum43QPLUjHSCV48_0AHeZ8ToqnE-QxOmBl0XQNX6Bf7-sv-DjpMODVmfYewgiYvcG9d2W0STA4M7kYcLTlFydw4er3H-_G2bGJGfIrrK11wU2XuMT8cGGcR2WbwOvJXQDuS1QZY5sAMARIo4P8BO1b7TM8vXmX6NvHD19Xn6rTz8cnq3enleG1mCrKjZa8McJQqC1jpO06OxDb9tCSttFWCsMFlVyUYwcYJGs0l5L1fblQdLReore73M22X8NgIExJe7VJbq3TpYraqfub4M7UGC8Ul0Jy1pSAlzcBKf7cQp7U2mUD3usAcZsV7WRNGCF0lr54ID2P2xTKebOKUcZEobNEz-82-lvlFkoRyJ3ApJhzAquMm_RMoRR0XlGiZvxqh18V_GrGr-YC9IHzNvx_Hrbz5KIt9NOd0v80XQPC7cJ7
CitedBy_id crossref_primary_10_1007_s13721_021_00320_8
crossref_primary_10_1021_acs_jctc_0c00395
crossref_primary_10_1016_j_jmb_2018_11_005
crossref_primary_10_1021_acs_jctc_8b00318
crossref_primary_10_1002_wcms_1429
crossref_primary_10_1002_wcms_1705
crossref_primary_10_12688_f1000research_20559_1
crossref_primary_10_1039_D0CP00305K
crossref_primary_10_1007_s10822_018_0110_5
crossref_primary_10_1016_j_bmcl_2021_128026
crossref_primary_10_3390_ijms21207648
crossref_primary_10_1080_23746149_2018_1477531
crossref_primary_10_1016_j_drudis_2020_02_002
crossref_primary_10_1002_prot_26587
crossref_primary_10_1007_s10822_019_00275_z
crossref_primary_10_1038_s43588_024_00627_2
crossref_primary_10_3389_fmolb_2020_00114
crossref_primary_10_1021_acs_jcim_9b01174
crossref_primary_10_1016_j_cbpa_2018_06_006
crossref_primary_10_1007_s10822_018_0148_4
crossref_primary_10_1021_acs_jctc_8b00826
crossref_primary_10_1021_acs_jcim_3c01573
crossref_primary_10_1021_acs_jcim_0c00122
crossref_primary_10_1021_acs_jmedchem_0c02227
crossref_primary_10_1016_j_heliyon_2019_e02446
crossref_primary_10_1080_17460441_2021_1884065
crossref_primary_10_1002_wcms_1410
crossref_primary_10_1021_acs_jctc_5c00038
crossref_primary_10_3389_fchem_2018_00188
crossref_primary_10_3934_mbe_2021451
crossref_primary_10_1007_s10822_019_00263_3
crossref_primary_10_1016_j_str_2021_10_003
crossref_primary_10_1007_s10822_019_00244_6
crossref_primary_10_1186_s13321_019_0346_7
crossref_primary_10_1021_acs_jcim_9b00135
crossref_primary_10_3389_fphar_2018_01089
crossref_primary_10_1002_prot_26515
crossref_primary_10_1002_qua_25678
crossref_primary_10_1021_acs_jcim_0c00558
crossref_primary_10_1007_s10822_018_0133_y
crossref_primary_10_1002_pro_3784
crossref_primary_10_3389_fbinf_2022_885983
crossref_primary_10_1038_s41570_018_0148
crossref_primary_10_1021_acs_jcim_1c01223
crossref_primary_10_1016_j_abb_2021_108893
crossref_primary_10_1016_j_jmgm_2019_06_011
crossref_primary_10_1021_acs_jcim_9b00383
crossref_primary_10_1093_nar_gkae1075
crossref_primary_10_1007_s10822_019_00237_5
crossref_primary_10_1021_acs_jcim_8b00712
crossref_primary_10_1007_s10822_020_00290_5
crossref_primary_10_1021_acs_jcim_9b00645
crossref_primary_10_1007_s10822_019_00185_0
crossref_primary_10_1002_wcms_1716
crossref_primary_10_1007_s10822_018_0162_6
crossref_primary_10_1021_acs_jcim_2c00751
crossref_primary_10_3390_molecules29040830
crossref_primary_10_1080_07391102_2024_2322639
crossref_primary_10_1007_s10822_019_00241_9
crossref_primary_10_1021_acs_jcim_8b00545
crossref_primary_10_1021_acs_jcim_8b00941
crossref_primary_10_1007_s10822_019_00223_x
crossref_primary_10_1063_5_0012230
crossref_primary_10_1016_j_ailsci_2022_100056
crossref_primary_10_1007_s10822_018_0139_5
crossref_primary_10_1002_prot_26535
crossref_primary_10_1007_s10822_017_0071_0
crossref_primary_10_1021_acs_jctc_8b01290
crossref_primary_10_1021_acs_jpclett_4c02332
crossref_primary_10_1007_s10822_018_0154_6
crossref_primary_10_1021_acs_jmedchem_1c01017
crossref_primary_10_1039_D0RA09320C
crossref_primary_10_3389_fchem_2020_00246
crossref_primary_10_1002_wcms_1465
crossref_primary_10_1021_acs_jmedchem_9b01545
crossref_primary_10_1021_acs_jcim_0c01382
crossref_primary_10_1111_jcmm_14583
crossref_primary_10_1007_s10822_019_00211_1
crossref_primary_10_53879_id_61_09_14685
crossref_primary_10_1038_s41570_022_00363_z
crossref_primary_10_1002_aisy_202400238
crossref_primary_10_1021_acs_jcim_1c00796
crossref_primary_10_1021_acs_jcim_2c00485
crossref_primary_10_3390_molecules27144568
crossref_primary_10_1021_acs_jcim_4c00391
crossref_primary_10_1021_acs_jcim_4c02296
crossref_primary_10_1038_s41467_019_10853_2
crossref_primary_10_1002_cmdc_201900286
crossref_primary_10_1021_acs_jctc_9b00213
crossref_primary_10_1002_ejoc_201901124
crossref_primary_10_1007_s10822_018_0180_4
crossref_primary_10_1007_s10822_020_00289_y
crossref_primary_10_1007_s10822_021_00430_5
crossref_primary_10_1007_s10822_022_00452_7
crossref_primary_10_1021_acs_jpcb_9b07588
crossref_primary_10_1007_s00894_019_4036_1
crossref_primary_10_1016_j_dcmed_2022_10_003
crossref_primary_10_1007_s10822_020_00363_5
crossref_primary_10_1016_j_compbiomed_2023_107250
crossref_primary_10_1021_acs_jcim_9b00032
crossref_primary_10_1002_prot_25869
crossref_primary_10_1021_acs_jctc_8b00418
crossref_primary_10_1124_pharmrev_121_000436
crossref_primary_10_1016_j_str_2019_05_012
crossref_primary_10_1093_nar_gky949
crossref_primary_10_1021_acs_jcim_0c00113
crossref_primary_10_1016_j_jmgm_2021_108119
crossref_primary_10_1021_acs_jcim_0c00474
crossref_primary_10_1021_acs_jcim_1c00292
crossref_primary_10_1063_1_5123154
crossref_primary_10_1080_17460441_2021_1925247
crossref_primary_10_3389_fmolb_2020_00093
crossref_primary_10_1186_s13321_025_00955_z
crossref_primary_10_3390_molecules24142610
crossref_primary_10_1039_D2CP01727J
crossref_primary_10_1007_s10822_019_00212_0
crossref_primary_10_3389_fmolb_2023_1210576
crossref_primary_10_1021_acs_jpclett_9b00741
crossref_primary_10_1007_s10822_021_00406_5
crossref_primary_10_1016_j_sbi_2023_102548
crossref_primary_10_1021_acs_jcim_1c00737
crossref_primary_10_1021_acs_jctc_1c00194
crossref_primary_10_3389_fphar_2019_00561
crossref_primary_10_1016_j_bcp_2018_11_007
crossref_primary_10_1002_prot_26601
crossref_primary_10_1021_acs_jcim_8b00199
crossref_primary_10_1093_bioinformatics_btaa748
crossref_primary_10_1021_acs_jcim_9b00728
crossref_primary_10_1371_journal_pone_0213217
crossref_primary_10_3390_molecules25112487
crossref_primary_10_1016_j_jiec_2019_12_009
crossref_primary_10_1007_s10822_019_00220_0
crossref_primary_10_1007_s10822_021_00433_2
crossref_primary_10_3390_molecules25204723
crossref_primary_10_1021_acs_jmedchem_9b02126
crossref_primary_10_1021_acsmedchemlett_9b00151
crossref_primary_10_3390_ijms222212320
crossref_primary_10_1002_prot_26213
crossref_primary_10_1007_s10822_019_00247_3
crossref_primary_10_1093_bioinformatics_bty816
crossref_primary_10_2139_ssrn_3291330
crossref_primary_10_1109_JBHI_2023_3315073
Cites_doi 10.1007/s10822-016-9946-8
10.1107/S0907444904016427
10.1016/j.bmcl.2010.11.039
10.1107/S0021889807021206
10.1126/science.284.5418.1362
10.1016/S1097-2765(00)80348-2
10.1021/jacs.6b11467
10.1021/acs.jctc.6b01141
10.1021/acs.jcim.6b00182
10.1016/S0022-2836(02)00470-9
10.1006/abio.1997.2557
10.1021/ci200269q
10.1016/j.bmcl.2010.12.123
10.1126/science.284.5418.1365
10.1016/S1097-2765(00)00050-2
10.1007/s10822-007-9159-2
10.1016/j.jmgm.2010.05.008
10.1126/science.1096361
10.1007/978-1-62703-342-8_10
10.1021/ci00063a006
10.1021/acs.jcim.5b00387
10.1007/s10822-014-9735-1
10.1016/0097-8485(84)85020-2
10.1007/s10822-016-9954-8
10.1021/ci400025f
10.1124/pr.112.007336
10.1007/s10822-016-9974-4
10.1016/j.bmcl.2009.03.008
10.1016/S0076-6879(97)76066-X
10.1007/s10969-007-9029-0
10.1016/S0076-6879(03)74014-2
10.1021/acs.jmedchem.6b01881
10.1194/jlr.M012542
10.1021/acs.jctc.5b00159
10.1107/S0907444909047337
10.1016/j.sbi.2016.10.007
10.1016/0006-2952(73)90196-2
10.1002/prot.10613
10.1021/ci100062n
10.1021/acs.jcim.5b00523
10.1039/C5SC02678D
10.1021/acsomega.6b00086
10.1107/S0907444904026460
10.1002/jcc.21334
10.1002/wcms.1157
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2017
Journal of Computer-Aided Molecular Design is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2017
– notice: Journal of Computer-Aided Molecular Design is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SC
7X7
7XB
88E
88I
8AL
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB.
L7M
L~C
L~D
M0N
M0S
M1P
M2P
P5Z
P62
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s10822-017-0088-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Computer Science Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1573-4951
EndPage 20
ExternalDocumentID PMC5767524
29204945
10_1007_s10822_017_0088_4
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  grantid: U01 GM111528
  funderid: http://dx.doi.org/10.13039/100000057
– fundername: NIGMS NIH HHS
  grantid: P41 GM103426
– fundername: NIGMS NIH HHS
  grantid: U01 GM111528
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.GJ
.VR
06C
06D
0R~
0VY
186
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KB.
KDC
KOV
KOW
LAK
LK5
LLZTM
M0N
M1P
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9N
PCBAR
PDBOC
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z83
Z87
Z8O
Z91
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
K9.
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c536t-15ca754c6c1e3f220899fd0f8be8084af76c561756092ded724a5772bb2046913
IEDL.DBID 8FG
ISSN 0920-654X
1573-4951
IngestDate Thu Aug 21 18:20:34 EDT 2025
Mon Sep 08 16:57:52 EDT 2025
Fri Jul 25 19:04:06 EDT 2025
Thu Apr 03 06:57:19 EDT 2025
Tue Jul 01 04:24:25 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Fri Feb 21 02:34:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ligand ranking
Farnesoid X receptor
D3R
Blinded prediction challenge
Docking
Scoring
Alchemical methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-15ca754c6c1e3f220899fd0f8be8084af76c561756092ded724a5772bb2046913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5767524
PMID 29204945
PQID 1972122657
PQPubID 54123
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5767524
proquest_miscellaneous_1973020014
proquest_journals_1972122657
pubmed_primary_29204945
crossref_citationtrail_10_1007_s10822_017_0088_4
crossref_primary_10_1007_s10822_017_0088_4
springer_journals_10_1007_s10822_017_0088_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle Incorporating Perspectives in Drug Discovery and Design
PublicationTitle Journal of computer-aided molecular design
PublicationTitleAbbrev J Comput Aided Mol Des
PublicationTitleAlternate J Comput Aided Mol Des
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Wang, Chen, Hollister (CR12) 1999; 3
Mishra, Calabró, Loeffler (CR42) 2015; 11
Keränen, Pérez-Benito, Ciordia (CR36) 2017; 13
McCoy, Grosse-Kunstleve, Adams (CR23) 2007; 40
Smith, Damm-Ganamet, Dunbar (CR6) 2016; 56
Winn, Murshudov, Papiz (CR24) 2003; 374
Carlson (CR4) 2016; 56
Richter, Benson, Bleicher (CR15) 2011; 21
Tembre, Mc Cammon (CR18) 1984; 8
Jacobson, Friesner, Xiang, Honig (CR29) 2002; 320
Trott, Olson (CR43) 2010; 31
Gathiaka, Liu, Chiu (CR9) 2016; 30
Kabsch (CR22) 2010; 66
Chipot (CR39) 2014; 4
Carlson, Smith, Damm-Ganamet (CR5) 2016; 56
Bannan, Burley, Chiu (CR44) 2016; 30
Feng, Yang, Zhang (CR17) 2009; 19
Yin, Henriksen, Slochower (CR45) 2017; 31
Lu, Makishima, Repa (CR13) 2000; 6
Duan, Dixon, Lowrie, Sherman (CR33) 2010; 29
Jacobson, Pincus, Rapp (CR28) 2004; 55
Damm-Ganamet, Smith, Dunbar (CR7) 2013; 53
Smith, Dunbar, Ung (CR8) 2011; 51
Otwinowski, Minor (CR21) 1997; 276
Krissinel, Henrick (CR26) 2004; 60
Parks, Blanchard, Bledsoe (CR11) 1999; 284
CR27
Aldeghi, Heifetz, Bodkin (CR40) 2015; 7
Ekins, Bunin, Kortagere (CR31) 2013
Aldeghi, Heifetz, Bodkin (CR41) 2017; 139
Makishima, Okamoto, Repa (CR10) 1999; 284
Warkentin, Thorne (CR20) 2007; 8
Muddana, Fenley, Mobley, Gilson (CR46) 2014; 28
Jorgensen (CR3) 2004; 303
Abel, Mondal, Masse (CR38) 2017; 43
Sliwoski, Kothiwale, Meiler, Lowe (CR1) 2014; 66
Nichols, Parks, Consler, Blanchard (CR19) 1998; 257
Blanc, Roversi, Vonrhein (CR25) 2004; 60
Yung-Chi, Prusoff (CR30) 1973; 22
Amaro, Baron, McCammon (CR2) 2008; 22
Gardès, Blum, Bleicher (CR14) 2011; 52
Kuhn, Tichý, Wang (CR35) 2017; 60
Lenselink, Louvel, Forti (CR37) 2016; 1
Viswanadhan, Ghose, Revankar, Robins (CR32) 1989; 29
Richter, Benson, Blum (CR16) 2011; 21
Sastry, Lowrie, Dixon, Sherman (CR34) 2010; 50
TT Lu (88_CR13) 2000; 6
C Yung-Chi (88_CR30) 1973; 22
S Gathiaka (88_CR9) 2016; 30
WL Jorgensen (88_CR3) 2004; 303
RD Smith (88_CR6) 2016; 56
VN Viswanadhan (88_CR32) 1989; 29
SK Mishra (88_CR42) 2015; 11
MP Jacobson (88_CR28) 2004; 55
C Chipot (88_CR39) 2014; 4
HS Muddana (88_CR46) 2014; 28
DJ Parks (88_CR11) 1999; 284
HA Carlson (88_CR5) 2016; 56
S Feng (88_CR17) 2009; 19
JS Nichols (88_CR19) 1998; 257
M Warkentin (88_CR20) 2007; 8
M Aldeghi (88_CR41) 2017; 139
HGF Richter (88_CR16) 2011; 21
J Yin (88_CR45) 2017; 31
88_CR27
H Keränen (88_CR36) 2017; 13
G Sliwoski (88_CR1) 2014; 66
E Blanc (88_CR25) 2004; 60
RE Amaro (88_CR2) 2008; 22
KL Damm-Ganamet (88_CR7) 2013; 53
E Krissinel (88_CR26) 2004; 60
M Makishima (88_CR10) 1999; 284
H Wang (88_CR12) 1999; 3
M Sastry (88_CR34) 2010; 50
AJ McCoy (88_CR23) 2007; 40
J Duan (88_CR33) 2010; 29
Z Otwinowski (88_CR21) 1997; 276
S Ekins (88_CR31) 2013
CC Bannan (88_CR44) 2016; 30
HA Carlson (88_CR4) 2016; 56
MD Winn (88_CR24) 2003; 374
EB Lenselink (88_CR37) 2016; 1
BL Tembre (88_CR18) 1984; 8
HGF Richter (88_CR15) 2011; 21
B Kuhn (88_CR35) 2017; 60
RD Smith (88_CR8) 2011; 51
M Aldeghi (88_CR40) 2015; 7
R Abel (88_CR38) 2017; 43
O Trott (88_CR43) 2010; 31
W Kabsch (88_CR22) 2010; 66
C Gardès (88_CR14) 2011; 52
MP Jacobson (88_CR29) 2002; 320
References_xml – volume: 30
  start-page: 651
  year: 2016
  end-page: 668
  ident: CR9
  article-title: D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9946-8
– volume: 60
  start-page: 2210
  year: 2004
  end-page: 2221
  ident: CR25
  article-title: Refinement of severely incomplete structures with maximum likelihood in BUSTER–TNT
  publication-title: Acta Crystallogr D
  doi: 10.1107/S0907444904016427
– volume: 21
  start-page: 191
  year: 2011
  end-page: 194
  ident: CR16
  article-title: Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2010.11.039
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: CR23
  article-title: Phaser crystallographic software
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889807021206
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  ident: CR43
  article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
– volume: 284
  start-page: 1362
  year: 1999
  end-page: 1365
  ident: CR10
  article-title: Identification of a nuclear receptor for bile acids
  publication-title: Science
  doi: 10.1126/science.284.5418.1362
– volume: 3
  start-page: 543
  year: 1999
  end-page: 553
  ident: CR12
  article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80348-2
– volume: 60
  start-page: 2256
  year: 2004
  end-page: 2268
  ident: CR26
  article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
  publication-title: Acta Crystallogr
– volume: 139
  start-page: 946
  year: 2017
  end-page: 957
  ident: CR41
  article-title: Predictions of ligand selectivity from absolute binding free energy calculations
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b11467
– volume: 4
  start-page: 71
  year: 2014
  end-page: 89
  ident: CR39
  article-title: Frontiers in free-energy calculations of biological systems
  publication-title: Wiley Interdiscip Rev
– volume: 13
  start-page: 1439
  year: 2017
  end-page: 1453
  ident: CR36
  article-title: Acylguanidine beta secretase 1 inhibitors: a combined experimental and free energy perturbation study
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.6b01141
– volume: 56
  start-page: 951
  year: 2016
  end-page: 954
  ident: CR4
  article-title: Lessons learned over four benchmark exercises from the community structure–activity resource
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00182
– volume: 320
  start-page: 597
  year: 2002
  end-page: 608
  ident: CR29
  article-title: On the role of the crystal environment in determining protein side-chain conformations
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00470-9
– volume: 257
  start-page: 112
  year: 1998
  end-page: 119
  ident: CR19
  article-title: Development of a scintillation proximity assay for peroxisome proliferator-activated receptor ligand binding domain
  publication-title: Anal Biochem
  doi: 10.1006/abio.1997.2557
– volume: 51
  start-page: 2115
  year: 2011
  end-page: 2131
  ident: CR8
  article-title: CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions
  publication-title: J Chem Inf Model
  doi: 10.1021/ci200269q
– volume: 21
  start-page: 1134
  year: 2011
  end-page: 1140
  ident: CR15
  article-title: Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2010.12.123
– volume: 284
  start-page: 1365
  year: 1999
  end-page: 1368
  ident: CR11
  article-title: Bile acids: natural ligands for an orphan nuclear receptor
  publication-title: Science
  doi: 10.1126/science.284.5418.1365
– volume: 6
  start-page: 507
  year: 2000
  end-page: 515
  ident: CR13
  article-title: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)00050-2
– volume: 22
  start-page: 693
  year: 2008
  end-page: 705
  ident: CR2
  article-title: An improved relaxed complex scheme for receptor flexibility in computer-aided drug design
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-007-9159-2
– volume: 29
  start-page: 157
  year: 2010
  end-page: 170
  ident: CR33
  article-title: Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2010.05.008
– volume: 303
  start-page: 1813
  year: 2004
  end-page: 1818
  ident: CR3
  article-title: The many roles of computation in drug discovery
  publication-title: Science
  doi: 10.1126/science.1096361
– start-page: 139
  year: 2013
  end-page: 154
  ident: CR31
  article-title: The collaborative drug discovery (CDD) database
  publication-title: In silico models for drug discovery
  doi: 10.1007/978-1-62703-342-8_10
– volume: 29
  start-page: 163
  year: 1989
  end-page: 172
  ident: CR32
  article-title: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00063a006
– volume: 56
  start-page: 1022
  year: 2016
  end-page: 1031
  ident: CR6
  article-title: CSAR benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00387
– ident: CR27
– volume: 28
  start-page: 305
  year: 2014
  end-page: 317
  ident: CR46
  article-title: The SAMPL4 host–guest blind prediction challenge: an overview
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9735-1
– volume: 8
  start-page: 281
  year: 1984
  end-page: 283
  ident: CR18
  article-title: Ligand-receptor interactions
  publication-title: Comput Chem
  doi: 10.1016/0097-8485(84)85020-2
– volume: 30
  start-page: 927
  year: 2016
  end-page: 944
  ident: CR44
  article-title: Blind prediction of cyclohexane–water distribution coefficients from the SAMPL5 challenge
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9954-8
– volume: 53
  start-page: 1853
  year: 2013
  end-page: 1870
  ident: CR7
  article-title: CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400025f
– volume: 66
  start-page: 334
  year: 2014
  end-page: 395
  ident: CR1
  article-title: Computational methods in drug discovery
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.112.007336
– volume: 31
  start-page: 1
  year: 2017
  end-page: 19
  ident: CR45
  article-title: Overview of the SAMPL5 host–guest challenge: are we doing better?
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9974-4
– volume: 19
  start-page: 2595
  year: 2009
  end-page: 2598
  ident: CR17
  article-title: Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2009.03.008
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: CR21
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 8
  start-page: 141
  year: 2007
  end-page: 144
  ident: CR20
  article-title: A general method for hyperquenching protein crystals
  publication-title: J Struct Funct Genom
  doi: 10.1007/s10969-007-9029-0
– volume: 374
  start-page: 300
  year: 2003
  end-page: 321
  ident: CR24
  article-title: Macromolecular TLS refinement in REFMAC at moderate resolutions
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(03)74014-2
– volume: 60
  start-page: 2485
  year: 2017
  end-page: 2497
  ident: CR35
  article-title: Prospective evaluation of free energy calculations for the prioritization of cathepsin L inhibitors
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b01881
– volume: 52
  start-page: 1188
  year: 2011
  end-page: 1199
  ident: CR14
  article-title: Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-I expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M012542
– volume: 11
  start-page: 3333
  year: 2015
  end-page: 3345
  ident: CR42
  article-title: Evaluation of selected classical force fields for alchemical binding free energy calculations of protein-carbohydrate complexes
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.5b00159
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  ident: CR22
  article-title: XDS
  publication-title: Acta Crystallogr D
  doi: 10.1107/S0907444909047337
– volume: 43
  start-page: 38
  year: 2017
  end-page: 44
  ident: CR38
  article-title: Accelerating drug discovery through tight integration of expert molecular design and predictive scoring
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2016.10.007
– volume: 22
  start-page: 3099
  year: 1973
  end-page: 3108
  ident: CR30
  article-title: Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction
  publication-title: Biochem Pharmacol
  doi: 10.1016/0006-2952(73)90196-2
– volume: 55
  start-page: 351
  year: 2004
  end-page: 367
  ident: CR28
  article-title: A hierarchical approach to all-atom protein loop prediction
  publication-title: Proteins Struct Funct Bioinform
  doi: 10.1002/prot.10613
– volume: 50
  start-page: 771
  year: 2010
  end-page: 784
  ident: CR34
  article-title: Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100062n
– volume: 56
  start-page: 1063
  year: 2016
  end-page: 1077
  ident: CR5
  article-title: CSAR 2014: a benchmark exercise using unpublished data from pharma
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00523
– volume: 7
  start-page: 207
  year: 2015
  end-page: 218
  ident: CR40
  article-title: Accurate calculation of the absolute free energy of binding for drug molecules
  publication-title: Chem Sci
  doi: 10.1039/C5SC02678D
– volume: 1
  start-page: 293
  year: 2016
  end-page: 304
  ident: CR37
  article-title: Predicting binding affinities for GPCR ligands using free-energy perturbation
  publication-title: ACS Omega
  doi: 10.1021/acsomega.6b00086
– volume: 19
  start-page: 2595
  year: 2009
  ident: 88_CR17
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2009.03.008
– volume: 30
  start-page: 927
  year: 2016
  ident: 88_CR44
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9954-8
– volume: 320
  start-page: 597
  year: 2002
  ident: 88_CR29
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00470-9
– volume: 31
  start-page: 1
  year: 2017
  ident: 88_CR45
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9974-4
– volume: 51
  start-page: 2115
  year: 2011
  ident: 88_CR8
  publication-title: J Chem Inf Model
  doi: 10.1021/ci200269q
– volume: 284
  start-page: 1362
  year: 1999
  ident: 88_CR10
  publication-title: Science
  doi: 10.1126/science.284.5418.1362
– ident: 88_CR27
– volume: 60
  start-page: 2256
  year: 2004
  ident: 88_CR26
  publication-title: Acta Crystallogr
  doi: 10.1107/S0907444904026460
– volume: 66
  start-page: 334
  year: 2014
  ident: 88_CR1
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.112.007336
– volume: 284
  start-page: 1365
  year: 1999
  ident: 88_CR11
  publication-title: Science
  doi: 10.1126/science.284.5418.1365
– volume: 11
  start-page: 3333
  year: 2015
  ident: 88_CR42
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.5b00159
– volume: 31
  start-page: 455
  year: 2010
  ident: 88_CR43
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– volume: 29
  start-page: 157
  year: 2010
  ident: 88_CR33
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2010.05.008
– volume: 28
  start-page: 305
  year: 2014
  ident: 88_CR46
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9735-1
– volume: 43
  start-page: 38
  year: 2017
  ident: 88_CR38
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2016.10.007
– volume: 303
  start-page: 1813
  year: 2004
  ident: 88_CR3
  publication-title: Science
  doi: 10.1126/science.1096361
– volume: 276
  start-page: 307
  year: 1997
  ident: 88_CR21
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 52
  start-page: 1188
  year: 2011
  ident: 88_CR14
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M012542
– start-page: 139
  volume-title: In silico models for drug discovery
  year: 2013
  ident: 88_CR31
  doi: 10.1007/978-1-62703-342-8_10
– volume: 60
  start-page: 2210
  year: 2004
  ident: 88_CR25
  publication-title: Acta Crystallogr D
  doi: 10.1107/S0907444904016427
– volume: 56
  start-page: 951
  year: 2016
  ident: 88_CR4
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00182
– volume: 8
  start-page: 141
  year: 2007
  ident: 88_CR20
  publication-title: J Struct Funct Genom
  doi: 10.1007/s10969-007-9029-0
– volume: 66
  start-page: 125
  year: 2010
  ident: 88_CR22
  publication-title: Acta Crystallogr D
  doi: 10.1107/S0907444909047337
– volume: 55
  start-page: 351
  year: 2004
  ident: 88_CR28
  publication-title: Proteins Struct Funct Bioinform
  doi: 10.1002/prot.10613
– volume: 53
  start-page: 1853
  year: 2013
  ident: 88_CR7
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400025f
– volume: 50
  start-page: 771
  year: 2010
  ident: 88_CR34
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100062n
– volume: 257
  start-page: 112
  year: 1998
  ident: 88_CR19
  publication-title: Anal Biochem
  doi: 10.1006/abio.1997.2557
– volume: 13
  start-page: 1439
  year: 2017
  ident: 88_CR36
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.6b01141
– volume: 21
  start-page: 1134
  year: 2011
  ident: 88_CR15
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2010.12.123
– volume: 22
  start-page: 693
  year: 2008
  ident: 88_CR2
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-007-9159-2
– volume: 139
  start-page: 946
  year: 2017
  ident: 88_CR41
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b11467
– volume: 4
  start-page: 71
  year: 2014
  ident: 88_CR39
  publication-title: Wiley Interdiscip Rev
  doi: 10.1002/wcms.1157
– volume: 3
  start-page: 543
  year: 1999
  ident: 88_CR12
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80348-2
– volume: 8
  start-page: 281
  year: 1984
  ident: 88_CR18
  publication-title: Comput Chem
  doi: 10.1016/0097-8485(84)85020-2
– volume: 56
  start-page: 1022
  year: 2016
  ident: 88_CR6
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00387
– volume: 29
  start-page: 163
  year: 1989
  ident: 88_CR32
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00063a006
– volume: 40
  start-page: 658
  year: 2007
  ident: 88_CR23
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889807021206
– volume: 6
  start-page: 507
  year: 2000
  ident: 88_CR13
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)00050-2
– volume: 1
  start-page: 293
  year: 2016
  ident: 88_CR37
  publication-title: ACS Omega
  doi: 10.1021/acsomega.6b00086
– volume: 7
  start-page: 207
  year: 2015
  ident: 88_CR40
  publication-title: Chem Sci
  doi: 10.1039/C5SC02678D
– volume: 30
  start-page: 651
  year: 2016
  ident: 88_CR9
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9946-8
– volume: 21
  start-page: 191
  year: 2011
  ident: 88_CR16
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2010.11.039
– volume: 374
  start-page: 300
  year: 2003
  ident: 88_CR24
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(03)74014-2
– volume: 22
  start-page: 3099
  year: 1973
  ident: 88_CR30
  publication-title: Biochem Pharmacol
  doi: 10.1016/0006-2952(73)90196-2
– volume: 56
  start-page: 1063
  year: 2016
  ident: 88_CR5
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00523
– volume: 60
  start-page: 2485
  year: 2017
  ident: 88_CR35
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b01881
SSID ssj0007960
Score 2.564562
Snippet The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures...
The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Affinity
Animal Anatomy
Chemistry
Chemistry and Materials Science
Computer Applications in Chemistry
Computer-Aided Design
Crystal structure
Databases, Protein
Datasets
Drug Design
Energy methods
Free energy
Histology
Humans
Inhibitory Concentration 50
Ligands
Molecular Docking Simulation
Morphology
Pharmaceutical sciences
Physical Chemistry
Protein Binding
Ranking
Receptors, Cytoplasmic and Nuclear - agonists
Receptors, Cytoplasmic and Nuclear - antagonists & inhibitors
Receptors, Cytoplasmic and Nuclear - chemistry
Receptors, Cytoplasmic and Nuclear - metabolism
Scaffolds
Software
Test procedures
Thermodynamics
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbhQxEC3B5AAcWMI2EJCROAEddXvphVs0ZBEIDiiRhlPLdtvQIuoZzYJITvxD_jBfQlVvzCSAlGt7a9tl17PL9QrgpTNSp1HMg6jQIpBa6MAIrQPE_k5qJzQX5Cj88VN8cCTfj9W49eOed6_dO5NkvVOvOLuhMgtoV0W9lQbyOmyoKM3SAWzs7H_5sNtvwElWOweHGZ2MlBx3xsy_VbKuji5hzMtPJS_YS2s1tHcHDrsONK9Pvm8vF2bbnl7gdrxiD-_C7RaWsp1Gju7BNVdtwo1RFw1uE26tEBfeh5_vxGe2j2quYKMuGgvjb5nBZgs2nZH1h2acTTyrmSDK6vzX2XH5lUpMJ3M3f8O09yXuJyeMwsbTfT1-wtTGueaHY6asHW6YnznHiBybCC0ewNHe7uHoIGhjOARWiXgRRMrqREkb28gJzzlZGX0R-tS4NEyl9klsEcIlCLwyXrgi4VIrRPzGcDq5R-IhDKpJ5R4DEyrSmUuNT6zAJGGUTQoTogiE0irPhxB2U5nbluCc4mwc53-omWmAcxzgnAY4l0N41ReZNuwe_8u81clH3i70eU5R2yKEsCoZwos-GeeG7C66cpNlnUeE9HYNq3jUiFPfGgULk5lUQ0jWBK3PQPTf6ylV-a2mAVfEw8OxztedNK381r868eRKuZ_CTQSIaXPltAWDxWzpniEIW5jn7aL7DbEoKKE
  priority: 102
  providerName: Springer Nature
Title D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
URI https://link.springer.com/article/10.1007/s10822-017-0088-4
https://www.ncbi.nlm.nih.gov/pubmed/29204945
https://www.proquest.com/docview/1972122657
https://www.proquest.com/docview/1973020014
https://pubmed.ncbi.nlm.nih.gov/PMC5767524
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY3QNwQLC8CktlJE5AROJHnHBBbWm7AlGhFZXKKbIdGyKtktJ2Edz4D_xDfgkzeXS3rNhTpI6TNh1n5ovH832EPHNG6CSKWRDlmgdCcx0YrnUA2N8J7bhmHBuFP8zi47l4t5CLdsFt3W6r7GJiHajzyuIa-SuUx4oAK0j1ZvktQNUorK62Ehp75CCCTIPzPJlMt5FYpXWXcJjiK5IUi66q2bTOQWoMMEZDFkwCsZuXLoHNy3sm_ymc1vlocpvcaoEkHTSev0OuufKQXB91-m2H5OYFqsG75MdbfkKnkJhyOur0Uyh7TQ3AzJwuV1ivQR_RytOau6Eo__z6fVp8wTOW1dqtX1LtfQER4CdFoXdcYYePwNq0w3x31BR1iwz1K-co0lkjBcU9Mp-MP42Og1Z1IbCSx5sgklYrKWxsI8c9Y1gX9HnoE-OSMBHaq9gC6FIAlVKWu1wxoSVgdGMYvmtH_D7ZL6vSPSSUy0inLjFeWQ4mbqRVuQmjJA2FlZ71SNj955ltKclRGeM0OydTRjdl4KYM3ZSJHnm-PWXZ8HFcNfioc2TWPprr7Hwi9cjTrRl8g5USXbrqrB7DQ9xtBpd40Ph9-20o7yVSIXtE7cyI7QAk7N61lMXXmrhbInMOg2u-6ObOhZ_1v5t4dPVNPCY3AMMlzarQEdnfrM7cE8BJG9Mne2qh-vUj0ScHg8lwOMPj9PP7MRyH49nHE7DO2eAvA7kVxg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FySFwQBC2gQCNBBfAwu7FCxJCMEmYkGSEokSam9Ntt8FSZA8zEyA3_oH_4KP4Eqq8JUNEbrm6Fy9Vrnrd1fUK4Kk1Uoeezx0v1cKRWmjHCK0dxP5Wais0F5QovDvyhwfy41iNl-B3mwtDxypbm1gZ6rRMaI_8FZXH8hArqODt5KtDVaMoutqW0KjVYtuefMcl2-zN1jrK9xnnmxv7g6HTVBVwEiX8ueOpRAdKJn7iWZFxTnGvLHWz0NjQDaXOAj9BUBEgFIh4atOAS60QgxrDaS3pCZz3CixLymjtwfL7jdGnvc72B1GVl4wjcVGm5LiNo9bJeuiMHfIK6HdDRy56wnPw9vwpzX9CtZUH3LwB1xvoyt7VunYTlmyxCiuDtmLcKlw7Q254C36siz32AV1hygZtxRbGXzODwDZlkylFiEgrWJmxii0iL_78_HWUf6YRk3JmZy-ZzrIcbc4Jo9LytKePl7C1TsD5ZpnJq6Qclk2tZUSgTaQXt-HgUiRyB3pFWdh7wITydGRDkwWJwCZhVBKkxvXCyJWJyngf3Pabx0lDgk61OI7iU_pmElOMYopJTLHsw_NuyKRmALmo81oryLgxBrP4VHX78KRrRtlQbEYXtjyu-giXzrfhFHdruXd3o4JiMpKqD8GCRnQdiCJ8saXIv1RU4Yq4ejjO-aLVnTOP9b-XuH_xSzyGleH-7k68szXafgBXEUGG9Z7UGvTm02P7EFHa3Dxqfg0Gh5f9N_4FlLFL_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkaA8IChQFgoYCV4Ai8SXXJAQQrssLYUKISrtW7AdGyJVybK7BfrGP_A3fA5fwkxu7VLRt76uL9lkxp4zHs8ZQh44I3USRpyFuRZMaqGZEVozwP5Oaic0F5go_G432tqTbyZqskJ-d7kweK2y2xPrjTqvLJ6RP8XyWCFgBXDgfXst4v1o_GL6lWEFKYy0duU0GhXZcYffwX2bP98egawfcj5-9XG4xdoKA8wqES1YqKyOlbSRDZ3wnGMMzOeBT4xLgkRqH0cWAEYMsCDluctjLrUCPGoMR78yFDDvOXI-FoCqYC3Fk97ZC-K0zlCGceCeKTnpIqpN2h6YZYb2ASxwwuSyTTwBdE_e1_wnaFvbwvEVcrkFsfRlo3VXyYor18nFYVc7bp1cOkZzeI38GIkP9DUYxZwOu9otlD-jBiBuTqczjBWhftDK05o3oij__Py1X3zGEdNq7uZPqPa-gN3nkGKReTzdh5-gtUnF-eaoKer0HOpnzlGk0kb6i-tk70zkcYOsllXpbhIqVKhTlxgfWwFNwigb5yYIkzSQVnk-IEH3zTPb0qFjVY797IjIGcWUgZgyFFMmB-RRP2TacIGc1nmzE2TWbgvz7EiJB-R-3wyywSiNLl11UPcRAd50gyk2Grn3T8PSYjKVakDiJY3oOyBZ-HJLWXypScMVsvZwmPNxpzvH_tb_XuLW6S9xj1yANZi93d7duU3WAEomzeHUJlldzA7cHYBrC3O3XheUfDrrhfgXZfROxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D3R+Grand+Challenge+2%3A+blind+prediction+of+protein%E2%80%93ligand+poses%2C+affinity+rankings%2C+and+relative+binding+free+energies&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Zied+Gaieb&rft.au=Liu%2C+Shuai&rft.au=Symon+Gathiaka&rft.au=Chiu%2C+Michael&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1007%2Fs10822-017-0088-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon