A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

Summary Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine‐root traits are und...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 215; no. 1; pp. 15 - 26
Main Authors Iversen, Colleen M., McCormack, M. Luke, Powell, A. Shafer, Blackwood, Christopher B., Freschet, Grégoire T., Kattge, Jens, Roumet, Catherine, Stover, Daniel B., Soudzilovskaia, Nadejda A., Valverde‐Barrantes, Oscar J., Bodegom, Peter M., Violle, Cyrille
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.07.2017
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine‐root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine‐root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine‐root trait database, and introduces the Fine‐Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below‐ground plant ecology. For example, FRED facilitates the quantification of variation in fine‐root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine‐root traits across space and time.
AbstractList Summary Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine‐root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine‐root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine‐root trait database, and introduces the Fine‐Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below‐ground plant ecology. For example, FRED facilitates the quantification of variation in fine‐root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine‐root traits across space and time.
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine‐root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine‐root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine‐root trait database, and introduces the Fine‐Root Ecology Database ( FRED , http://roots.ornl.gov ) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below‐ground plant ecology. For example, FRED facilitates the quantification of variation in fine‐root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine‐root traits across space and time.
Summary Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.
Summary Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine‐root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine‐root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine‐root trait database, and introduces the Fine‐Root Ecology Database ( <styled-content style='fixed-case'>FRED</styled-content> , <ext-link href='http://roots.ornl.gov'>http://roots.ornl.gov</ext-link> ) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. <styled-content style='fixed-case'>FRED</styled-content> represents a critical step toward improving our understanding of below‐ground plant ecology. For example, <styled-content style='fixed-case'>FRED</styled-content> facilitates the quantification of variation in fine‐root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into <styled-content style='fixed-case'>FRED</styled-content> to fill gaps in trait coverage will improve our understanding of changes in fine‐root traits across space and time.
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine‐root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine‐root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine‐root trait database, and introduces the Fine‐Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below‐ground plant ecology. For example, FRED facilitates the quantification of variation in fine‐root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine‐root traits across space and time.
Author Jens Kattge
Grégoire T. Freschet
Oscar J. Valverde-Barrantes
A. Shafer Powell
Cyrille Violle
Christopher B. Blackwood
Colleen M. Iversen
Peter M. van Bodegom
Nadejda A. Soudzilovskaia
Catherine Roumet
Daniel B. Stover
Author_xml – sequence: 1
  givenname: Colleen M.
  surname: Iversen
  fullname: Iversen, Colleen M.
  email: iversencm@ornl.gov
  organization: Oak Ridge National Laboratory
– sequence: 2
  givenname: M. Luke
  surname: McCormack
  fullname: McCormack, M. Luke
  organization: University of Minnesota
– sequence: 3
  givenname: A. Shafer
  surname: Powell
  fullname: Powell, A. Shafer
  organization: Oak Ridge National Laboratory
– sequence: 4
  givenname: Christopher B.
  surname: Blackwood
  fullname: Blackwood, Christopher B.
  organization: Kent State University
– sequence: 5
  givenname: Grégoire T.
  surname: Freschet
  fullname: Freschet, Grégoire T.
  organization: UMR 5175 (CNRS – Université de Montpellier – Université Paul‐Valéry Montpellier – EPHE)
– sequence: 6
  givenname: Jens
  surname: Kattge
  fullname: Kattge, Jens
  organization: Halle‐Jena‐Leipzig
– sequence: 7
  givenname: Catherine
  surname: Roumet
  fullname: Roumet, Catherine
  organization: UMR 5175 (CNRS – Université de Montpellier – Université Paul‐Valéry Montpellier – EPHE)
– sequence: 8
  givenname: Daniel B.
  surname: Stover
  fullname: Stover, Daniel B.
  organization: US Department of Energy
– sequence: 9
  givenname: Nadejda A.
  surname: Soudzilovskaia
  fullname: Soudzilovskaia, Nadejda A.
  organization: Leiden University
– sequence: 10
  givenname: Oscar J.
  surname: Valverde‐Barrantes
  fullname: Valverde‐Barrantes, Oscar J.
  organization: Florida International University
– sequence: 11
  givenname: Peter M.
  surname: Bodegom
  fullname: Bodegom, Peter M.
  organization: Leiden University
– sequence: 12
  givenname: Cyrille
  surname: Violle
  fullname: Violle, Cyrille
  organization: UMR 5175 (CNRS – Université de Montpellier – Université Paul‐Valéry Montpellier – EPHE)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28245064$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1362203$$D View this record in Osti.gov
BookMark eNp90T1vFDEQBmALBZFLoOAHgCxooNjEX-v1llFICFIECIGgs7zeuTuffPbF9iq6f49hkxSRwM00zzvyzByhgxADIPSSkhNa32nYrU-oEEo-QQsqZN8oyrsDtCCEqUYK-esQHeW8IYT0rWTP0CFTTLREigX6eYZXPg7G40sXoPkWY8EXNvq42uMPppjBZMAlYjOOCXLGA_h426xSnMKI7dp4D2EFGbuAd96EgmEOP0dPl8ZneHFXj9GPy4vv51fN9ZePn87PrhvbcimbUSoue8tpDwNv5chHQjtgY6cUs8QQRnvFFRXdkrDODpIqMXRgleFLQUfT8mP0Zu4bc3E6W1fArm0MAWzRlEvGCK_o3Yx2Kd5MkIveumzB1w9DnLJmdTOil4zLSt8-ops4pVBH0LQnvFOdoLSq13dqGrYw6l1yW5P2-n6vFbyfgU0x5wTLB0KJ_nMzXW-m_96s2tNHtk5hiouhJOP8_xK3zsP-3631569X94lXc2KTS0wPiZ4QSiRT_DeOEa4i
CitedBy_id crossref_primary_10_1111_1365_2435_13402
crossref_primary_10_21829_myb_2018_2401898
crossref_primary_10_1111_1365_2435_13520
crossref_primary_10_1111_nph_20197
crossref_primary_10_1016_j_landurbplan_2024_105061
crossref_primary_10_1111_gcb_16701
crossref_primary_10_1038_s41467_024_53180_x
crossref_primary_10_1111_1365_2745_14315
crossref_primary_10_1029_2017JG004308
crossref_primary_10_1038_s41597_022_01396_1
crossref_primary_10_1111_gcb_17116
crossref_primary_10_1111_1365_2435_13881
crossref_primary_10_1016_j_agee_2020_106915
crossref_primary_10_1111_1365_2435_14505
crossref_primary_10_1111_nph_17572
crossref_primary_10_1111_1365_2745_12806
crossref_primary_10_1111_gcb_14994
crossref_primary_10_1111_nph_17578
crossref_primary_10_1016_j_scitotenv_2017_11_073
crossref_primary_10_5194_gmd_16_6267_2023
crossref_primary_10_1088_1748_9326_aaeae7
crossref_primary_10_1111_oik_08907
crossref_primary_10_1111_1365_2745_12921
crossref_primary_10_1098_rstb_2017_0390
crossref_primary_10_1016_j_tree_2023_11_011
crossref_primary_10_1111_nph_16807
crossref_primary_10_1111_1365_2745_14423
crossref_primary_10_1098_rstb_2022_0192
crossref_primary_10_1111_jvs_12877
crossref_primary_10_1002_pei3_10010
crossref_primary_10_5194_essd_13_4263_2021
crossref_primary_10_3389_fevo_2019_00382
crossref_primary_10_1002_ecs2_2202
crossref_primary_10_1111_nph_16804
crossref_primary_10_3389_fpls_2019_00701
crossref_primary_10_1038_s41559_021_01471_7
crossref_primary_10_1111_nph_15022
crossref_primary_10_1029_2019JG005468
crossref_primary_10_1111_1365_2435_13420
crossref_primary_10_1111_mec_14924
crossref_primary_10_1002_ppp3_6
crossref_primary_10_1007_s11104_019_04396_0
crossref_primary_10_3389_fpls_2021_690235
crossref_primary_10_1111_ele_14262
crossref_primary_10_1111_1365_2745_13368
crossref_primary_10_1111_1365_2745_14213
crossref_primary_10_1111_oik_08827
crossref_primary_10_1007_s11104_017_3393_8
crossref_primary_10_1111_ele_13858
crossref_primary_10_1093_aob_mcy061
crossref_primary_10_1111_nph_17326
crossref_primary_10_1111_nph_14853
crossref_primary_10_1111_nph_14612
crossref_primary_10_3389_ffgc_2024_1324405
crossref_primary_10_1093_biosci_biae042
crossref_primary_10_1007_s00376_024_4034_9
crossref_primary_10_1002_ecy_2588
crossref_primary_10_3390_f13010093
crossref_primary_10_1111_gcb_17127
crossref_primary_10_1007_s00442_023_05315_y
crossref_primary_10_1111_gcb_14894
crossref_primary_10_1111_avsc_12392
crossref_primary_10_1093_aob_mcy076
crossref_primary_10_1007_s10530_022_02853_z
crossref_primary_10_3390_plants14050825
crossref_primary_10_1111_1365_2435_13041
crossref_primary_10_1007_s13595_020_00977_7
crossref_primary_10_1088_1748_9326_ace637
crossref_primary_10_1029_2018JG004808
crossref_primary_10_1111_btp_12771
crossref_primary_10_1111_1365_2745_12973
crossref_primary_10_1093_jpe_rtaa080
crossref_primary_10_1016_j_soilbio_2022_108578
crossref_primary_10_1093_treephys_tpy010
crossref_primary_10_1038_s41586_021_03871_y
crossref_primary_10_3389_fpls_2020_01211
crossref_primary_10_1016_j_compag_2024_109457
crossref_primary_10_1029_2020JG006205
crossref_primary_10_3389_fmars_2021_763922
crossref_primary_10_1371_journal_pone_0247907
crossref_primary_10_1111_nph_16976
crossref_primary_10_1111_oik_08284
crossref_primary_10_1016_j_tree_2023_09_002
crossref_primary_10_1111_1365_2435_12883
crossref_primary_10_3389_fpls_2021_773118
crossref_primary_10_1002_ece3_7391
crossref_primary_10_1007_s11104_022_05665_1
crossref_primary_10_1111_nph_16962
crossref_primary_10_1002_ece3_7036
crossref_primary_10_3389_fpls_2021_785589
crossref_primary_10_1111_btp_13296
crossref_primary_10_1002_ajb2_1420
crossref_primary_10_1111_nph_16729
crossref_primary_10_1111_1365_2435_14381
crossref_primary_10_1038_s41477_024_01700_4
crossref_primary_10_1080_13416979_2025_2465818
crossref_primary_10_1111_oik_09924
crossref_primary_10_1002_csc2_21315
crossref_primary_10_1111_1365_2435_13972
crossref_primary_10_1016_j_heliyon_2022_e11475
crossref_primary_10_3390_f10121123
crossref_primary_10_1007_s11104_019_03989_z
crossref_primary_10_52586_4945
crossref_primary_10_1088_1748_9326_ac6005
crossref_primary_10_1029_2022WR032962
crossref_primary_10_1016_j_foreco_2019_117664
crossref_primary_10_1111_1365_2745_14137
crossref_primary_10_3390_f15030495
crossref_primary_10_1073_pnas_2418632121
crossref_primary_10_5194_essd_15_25_2023
crossref_primary_10_1111_oik_09032
crossref_primary_10_1038_s41467_019_10245_6
crossref_primary_10_1111_gcb_13766
crossref_primary_10_1139_er_2023_0130
crossref_primary_10_1038_s41598_023_30782_x
crossref_primary_10_1016_j_ecoinf_2022_101605
crossref_primary_10_1029_2021JG006606
crossref_primary_10_1111_1365_2745_70018
crossref_primary_10_1590_1983_21252020v33n218rc
crossref_primary_10_1007_s10457_022_00801_3
crossref_primary_10_1111_nph_17590
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_1016_j_soilbio_2025_109734
crossref_primary_10_1007_s11104_018_3821_4
crossref_primary_10_1111_nph_14522
crossref_primary_10_1093_aobpla_plab056
crossref_primary_10_1111_1365_2435_13486
crossref_primary_10_1038_nature25783
crossref_primary_10_1016_j_scitotenv_2023_168038
crossref_primary_10_1038_s41467_022_28748_0
crossref_primary_10_1073_pnas_2314231121
crossref_primary_10_1016_j_pedobi_2017_11_001
crossref_primary_10_1016_j_rhisph_2023_100675
crossref_primary_10_1029_2023MS003689
crossref_primary_10_1111_jbi_14157
crossref_primary_10_1093_jpe_rtaa043
crossref_primary_10_1007_s12224_024_09442_z
crossref_primary_10_1016_j_tplants_2019_09_010
crossref_primary_10_1029_2022EF002897
crossref_primary_10_1007_s11104_018_3815_2
crossref_primary_10_1111_1365_2745_13181
crossref_primary_10_1111_1365_2664_13113
crossref_primary_10_1086_717623
crossref_primary_10_3389_fpls_2022_1077090
crossref_primary_10_5194_bg_22_1475_2025
crossref_primary_10_1111_gcb_16659
crossref_primary_10_1111_ele_13248
crossref_primary_10_1002_ece3_6781
crossref_primary_10_1007_s00442_019_04373_5
crossref_primary_10_1002_ecs2_2716
crossref_primary_10_1093_forestry_cpae026
crossref_primary_10_1111_1365_2745_12769
crossref_primary_10_1111_jbi_13848
crossref_primary_10_1126_sciadv_aba3756
crossref_primary_10_3389_ffgc_2021_704469
crossref_primary_10_1111_ele_14330
crossref_primary_10_1007_s12237_021_00945_y
crossref_primary_10_1016_j_geoderma_2021_115011
crossref_primary_10_1007_s11104_023_06093_5
crossref_primary_10_1016_j_scitotenv_2023_162721
crossref_primary_10_1002_2018JG004502
crossref_primary_10_1007_s10021_020_00583_8
crossref_primary_10_1007_s40725_025_00245_9
crossref_primary_10_1111_1365_2664_13489
crossref_primary_10_1111_nph_17854
crossref_primary_10_1111_geb_13384
crossref_primary_10_3389_ffgc_2024_1322087
crossref_primary_10_1002_ecs2_2944
crossref_primary_10_1111_1365_2435_13148
crossref_primary_10_1111_nph_14571
crossref_primary_10_1111_1365_2435_13145
crossref_primary_10_12677_IJE_2021_101002
crossref_primary_10_3390_biology12081074
crossref_primary_10_1016_j_ecolmodel_2022_109940
crossref_primary_10_1111_1365_2745_13407
crossref_primary_10_1007_s11104_017_3408_5
crossref_primary_10_1007_s00411_022_01010_3
crossref_primary_10_3389_fpls_2024_1488383
crossref_primary_10_1111_nph_17163
crossref_primary_10_1007_s00035_024_00325_9
crossref_primary_10_1111_1365_2745_13763
crossref_primary_10_1007_s11104_020_04619_9
crossref_primary_10_1016_j_rhisph_2023_100695
crossref_primary_10_1016_j_oneear_2021_06_013
crossref_primary_10_3390_f11050528
crossref_primary_10_1111_oik_08308
crossref_primary_10_1016_j_still_2022_105539
crossref_primary_10_1016_j_ppees_2018_02_002
crossref_primary_10_1002_ece3_8182
crossref_primary_10_7717_peerj_7006
crossref_primary_10_1016_j_scitotenv_2021_150513
crossref_primary_10_1016_j_jhydrol_2021_126591
crossref_primary_10_1111_nph_16982
crossref_primary_10_1029_2022MS003480
crossref_primary_10_1111_oik_08899
crossref_primary_10_1029_2021GL093858
crossref_primary_10_1111_nph_16865
crossref_primary_10_1007_s13595_018_0758_y
crossref_primary_10_1038_s41597_022_01913_2
crossref_primary_10_1111_1365_2745_13190
crossref_primary_10_5194_gmd_10_3499_2017
crossref_primary_10_1016_j_scitotenv_2024_173147
crossref_primary_10_1007_s42965_021_00159_0
crossref_primary_10_1016_j_pedobi_2021_150708
crossref_primary_10_1111_jvs_13194
crossref_primary_10_3390_life13081668
crossref_primary_10_1002_ece3_11690
crossref_primary_10_1111_oik_10763
crossref_primary_10_1111_nph_18070
crossref_primary_10_1111_nph_18191
crossref_primary_10_1016_j_scienta_2024_113574
crossref_primary_10_3389_fpls_2021_692715
crossref_primary_10_1007_s11104_017_3433_4
crossref_primary_10_1111_geb_12783
crossref_primary_10_1111_nph_18998
crossref_primary_10_5194_bg_19_3505_2022
crossref_primary_10_1016_j_scitotenv_2022_153525
crossref_primary_10_1111_nph_18066
crossref_primary_10_1038_s41598_023_45187_z
crossref_primary_10_1111_plb_13562
crossref_primary_10_1002_ece3_9979
crossref_primary_10_1111_1365_2745_13413
crossref_primary_10_1038_s41559_018_0647_7
crossref_primary_10_1111_brv_13107
crossref_primary_10_1111_rec_13291
crossref_primary_10_3390_plants13040536
crossref_primary_10_1007_s11104_024_07162_z
crossref_primary_10_1007_s10021_019_00350_4
crossref_primary_10_1111_1365_2745_12918
crossref_primary_10_1111_gcb_15677
crossref_primary_10_1007_s11104_021_05177_4
crossref_primary_10_1088_1748_9326_ac9d4f
crossref_primary_10_1016_j_ecolind_2023_109944
crossref_primary_10_1111_1365_2745_13328
crossref_primary_10_1111_gcb_14904
crossref_primary_10_1108_IJCCSM_06_2020_0066
crossref_primary_10_1016_j_tplants_2025_01_012
crossref_primary_10_1111_ele_13651
crossref_primary_10_1038_s41559_020_1109_6
crossref_primary_10_1007_s11676_022_01551_9
crossref_primary_10_1111_geb_13179
crossref_primary_10_1111_nph_18736
crossref_primary_10_1021_acs_est_9b07228
crossref_primary_10_1029_2019MS001841
crossref_primary_10_1007_s11104_019_04232_5
crossref_primary_10_1111_aec_13232
crossref_primary_10_1016_j_fecs_2024_100249
crossref_primary_10_1038_s41467_024_45113_5
crossref_primary_10_1007_s11104_022_05516_z
crossref_primary_10_1111_nph_17072
crossref_primary_10_1007_s00442_022_05224_6
crossref_primary_10_1111_nph_14927
crossref_primary_10_1111_gcb_16073
crossref_primary_10_1371_journal_pone_0262410
crossref_primary_10_3389_fpls_2019_01215
crossref_primary_10_1111_jbi_13472
crossref_primary_10_5194_gmd_14_5217_2021
Cites_doi 10.1111/j.1365-2745.2011.01914.x
10.1046/j.1365-2435.2002.00664.x
10.1073/pnas.1116092109
10.1111/nph.12583
10.1111/j.1469-8137.2012.04198.x
10.1111/nph.13363
10.1007/s11104-016-3040-9
10.1080/01904169209364361
10.1007/s004420050239
10.1029/2009GB003521
10.1146/annurev.ecolsys.33.010802.150452
10.1073/pnas.1304551110
10.1111/nph.13828
10.1111/j.1469-8137.2010.03388.x
10.1111/nph.12842
10.1111/nph.14048
10.1071/BT06118
10.1111/nph.13829
10.1016/j.soilbio.2015.01.001
10.1111/ele.12508
10.1002/j.1537-2197.1968.tb06968.x
10.1111/j.1469-8137.2005.01349.x
10.1073/pnas.1310700110
10.1073/pnas.1415442111
10.1016/j.ecolmodel.2014.11.013
10.1111/nph.13451
10.1111/nph.13034
10.1071/BT12225
10.1111/geb.12272
10.1890/06-0989
10.1111/1365-2745.12211
10.1111/1365-2745.12087
10.1111/j.1365-2486.2011.02451.x
10.3389/fpls.2014.00006
10.1104/pp.94.2.621
10.1038/250026a0
10.1016/j.tree.2014.10.006
10.1038/nature16489
10.1111/j.1365-2435.2011.01913.x
10.1038/344058a0
10.1111/gcb.12871
10.1111/nph.14243
10.1615/Int.J.UncertaintyQuantification.2013006821
10.1111/nph.14003
10.1007/978-3-642-67282-8
10.1111/1365-2435.12384
10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
10.1127/0941-2948/2006/0130
10.1111/nph.14247
10.1139/cjb-2015-0245
10.1111/j.0030-1299.2007.15559.x
10.1111/j.1365-2745.2009.01615.x
10.1111/1365‐2745.12698
10.1093/aob/mcu077
10.1111/geb.12048
10.5194/gmd-4-993-2011
10.1111/nph.13623
ContentType Journal Article
Copyright 2017 New Phytologist Trust
2017 UT‐Battelle LLC. New Phytologist © 2017 New Phytologist Trust
2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Copyright_xml – notice: 2017 New Phytologist Trust
– notice: 2017 UT‐Battelle LLC. New Phytologist © 2017 New Phytologist Trust
– notice: 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7S9
L.6
OIOZB
OTOTI
DOI 10.1111/nph.14486
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Ecology
EISSN 1469-8137
EndPage 26
ExternalDocumentID 1362203
28245064
10_1111_nph_14486
NPH14486
90010628
Genre commentary
Journal Article
GrantInformation_xml – fundername: European Research Council (ERC)
  funderid: ERC‐StG‐2014‐639706‐CONSTRAINTS
– fundername: Office of Biological and Environmental Research
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7S9
L.6
ADACV
OIOZB
OTOTI
ID FETCH-LOGICAL-c5366-d68369c319eb356d3d017e2d7882c0a0219838147f027cb6184b7ec8a3f41da53
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Mon Nov 25 02:40:59 EST 2024
Fri Jul 11 18:26:35 EDT 2025
Fri Jul 25 10:34:48 EDT 2025
Wed Feb 19 02:42:57 EST 2025
Tue Jul 01 03:09:25 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Wed Jan 22 16:32:23 EST 2025
Thu Jul 03 22:32:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords terrestrial biosphere models
database
fine roots
functional traits
Fine-Root Ecology Database (FRED)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5366-d68369c319eb356d3d017e2d7882c0a0219838147f027cb6184b7ec8a3f41da53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
USDOE Office of Science (SC), Biological and Environmental Research (BER)
AC05-00OR22725
OpenAccessLink https://www.osti.gov/servlets/purl/1362203
PMID 28245064
PQID 1903787411
PQPubID 2026848
PageCount 12
ParticipantIDs osti_scitechconnect_1362203
proquest_miscellaneous_2000496236
proquest_journals_1903787411
pubmed_primary_28245064
crossref_primary_10_1111_nph_14486
crossref_citationtrail_10_1111_nph_14486
wiley_primary_10_1111_nph_14486_NPH14486
jstor_primary_90010628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: United States
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2002; 16
2010; 98
2013; 22
2013; 61
1997; 111
2013; 200
2010; 188
2014; 29
1992; 15
2011; 17
1990; 344
1979
2014; 5
2014; 4
2010; 24
2015; 82
1982; 5
2013; 110
2012; 26
1983; 29
2014; 203
1968; 55
1974; 250
1990; 94
2012; 100
2015; 18
2012
2016; 407
2016; 209
2015a; 297
2002; 72
2016; 529
2006; 15
2002; 33
2013; 101
2015; 208
2016; 94
2015; 205
2011; 4
2004; 428
2014; 111
2007; 55
2017; 213
2014; 114
2012; 109
2015; 24
2012; 195
2007; 116
2015; 29
2015b; 207
2015; 21
2016; 212
2016; 211
2016; 210
2017
2016
2007; 88
1969
2014; 102
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
Sutton RF (e_1_2_11_49_1) 1983; 29
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
Fitter A (e_1_2_11_9_1) 1982; 5
e_1_2_11_48_1
e_1_2_11_2_1
Kramer PJ (e_1_2_11_22_1) 1969
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Iversen CM (e_1_2_11_15_1) 2016
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– volume: 29
  start-page: 692
  year: 2014
  end-page: 699
  article-title: Going underground: root traits as drivers of ecosystem processes
  publication-title: Trends in Ecology & Evolution
– volume: 94
  start-page: 417
  year: 2016
  end-page: 423
  article-title: Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change
  publication-title: Botany‐Botanique
– volume: 5
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Abiotic stress responses in plant roots; a proteomics perspective
  publication-title: Frontiers in Plant Science
– volume: 82
  start-page: 112
  year: 2015
  end-page: 118
  article-title: The effects of simulated nitrogen deposition on plant root traits: a meta‐analysis
  publication-title: Soil Biology & Biochemistry
– volume: 250
  start-page: 26
  year: 1974
  end-page: 31
  article-title: Vegetation classification by reference to strategies
  publication-title: Nature
– volume: 210
  start-page: 827
  year: 2016
  end-page: 838
  article-title: Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms
  publication-title: New Phytologist
– volume: 15
  start-page: 259
  year: 2006
  end-page: 263
  article-title: World map of the Köppen–Geiger climate classification updated
  publication-title: Meteorologische Zeitschrift
– volume: 211
  start-page: 1159
  year: 2016
  end-page: 1169
  article-title: Towards a multidimensional root trait framework: a tree root review
  publication-title: New Phytologist
– volume: 55
  start-page: 247
  year: 1968
  end-page: 254
  article-title: Morphological studies of the root of red pine, L. Growth characteristics and patterns of branching
  publication-title: American Journal of Botany
– year: 1979
– volume: 21
  start-page: 3074
  year: 2015
  end-page: 3086
  article-title: Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model
  publication-title: Global Change Biology
– volume: 529
  start-page: 167
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 116
  start-page: 882
  year: 2007
  end-page: 892
  article-title: Let the concept of trait be functional!
  publication-title: Oikos
– volume: 203
  start-page: 863
  year: 2014
  end-page: 872
  article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species
  publication-title: New Phytologist
– volume: 195
  start-page: 823
  year: 2012
  end-page: 831
  article-title: Predicting fine root lifespan from plant functional traits in temperate trees
  publication-title: New Phytologist
– volume: 212
  start-page: 389
  year: 2016
  end-page: 399
  article-title: Scots pine fine roots adjust along a 2000‐km latitudinal climatic gradient
  publication-title: New Phytologist
– year: 1969
– volume: 188
  start-page: 543
  year: 2010
  end-page: 553
  article-title: Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi‐arid and arid ecosystems
  publication-title: New Phytologist
– volume: 205
  start-page: 59
  year: 2015
  end-page: 78
  article-title: Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations
  publication-title: New Phytologist
– volume: 16
  start-page: 545
  year: 2002
  end-page: 556
  article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail
  publication-title: Functional Ecology
– volume: 407
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Advances in the rhizosphere: stretching the interface of life
  publication-title: Plant and Soil
– volume: 213
  start-page: 1597
  year: 2017
  end-page: 1603
  article-title: Below‐ground frontiers in trait‐based plant ecology
  publication-title: New Phytologist
– volume: 344
  start-page: 58
  year: 1990
  end-page: 60
  article-title: Rapid physiological adjustment of roots to localized soil enrichment
  publication-title: Nature
– volume: 200
  start-page: 939
  year: 2013
  end-page: 942
  article-title: Introduction to a : modeling the hidden half – the root of our problem
  publication-title: New Phytologist
– volume: 88
  start-page: 1328
  year: 2007
  end-page: 1334
  article-title: Effect of elevated CO on coarse‐root biomass in Florida scrub detected by ground‐penetrating radar
  publication-title: Ecology
– volume: 101
  start-page: 933
  year: 2013
  end-page: 942
  article-title: The distribution of below‐ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours
  publication-title: Journal of Ecology
– year: 2017
  article-title: Towards a thesaurus of plant characteristics: an ecological contribution
  publication-title: Journal of Ecology
– volume: 55
  start-page: 493
  year: 2007
  end-page: 512
  article-title: Roots of the second green revolution
  publication-title: Australian Journal of Botany
– volume: 15
  start-page: 763
  year: 1992
  end-page: 782
  article-title: The costs and benefits of constructing roots of small diameter
  publication-title: Journal of Plant Nutrition
– volume: 111
  start-page: 13733
  year: 2014
  end-page: 13738
  article-title: A fully traits‐based approach to modeling global vegetation distribution
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY – a global database of plant traits
  publication-title: Global Change Biology
– volume: 24
  start-page: 371
  year: 2015
  end-page: 382
  article-title: Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry
  publication-title: Global Ecology and Biogeography
– volume: 111
  start-page: 13690
  year: 2014
  end-page: 13696
  article-title: The emergence and promise of functional biogeography
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: some leading dimensions of variation between species
  publication-title: Annual Review of Ecology and Systematics
– volume: 212
  start-page: 838
  year: 2016
  end-page: 855
  article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field
  publication-title: New Phytologist
– volume: 210
  start-page: 815
  year: 2016
  end-page: 826
  article-title: Root structure–function relationships in 74 herbaceous species: evidence of a root economics spectrum related to carbon economy
  publication-title: New Phytologist
– year: 2016
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 29
  start-page: 1
  year: 1983
  end-page: 138
  article-title: Root and root system terminology
  publication-title: Forest Science
– volume: 22
  start-page: 846
  year: 2013
  end-page: 856
  article-title: Variation of first‐order root traits across climatic gradients and evolutionary trends in geological time
  publication-title: Global Ecology and Biogeography
– year: 2012
– volume: 18
  start-page: 1406
  year: 2015
  end-page: 1419
  article-title: A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities
  publication-title: Ecology Letters
– volume: 100
  start-page: 128
  year: 2012
  end-page: 140
  article-title: How fundamental plant functional trait relationships scale‐up to trade‐offs and synergies in ecosystem services
  publication-title: Journal of Ecology
– volume: 297
  start-page: 107
  year: 2015a
  end-page: 117
  article-title: Sensitivity of four ecological models to adjustments in fine root turnover rate
  publication-title: Ecological Modelling
– volume: 4
  start-page: 63
  year: 2014
  end-page: 93
  article-title: Dimensionality reduction for complex models via Bayesian compressive sensing
  publication-title: International Journal for Uncertainty Quantification
– volume: 111
  start-page: 302
  year: 1997
  end-page: 308
  article-title: Relationships among root branch order, carbon, and nitrogen in four temperate species
  publication-title: Oecologia
– volume: 109
  start-page: 4181
  year: 2012
  end-page: 4186
  article-title: Strong relationship between elemental stoichiometry and metabolome in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 26
  start-page: 56
  year: 2012
  end-page: 65
  article-title: A plant economics spectrum of litter decomposability
  publication-title: Functional Ecology
– volume: 72
  start-page: 293
  year: 2002
  end-page: 309
  article-title: Fine root architecture of nine North American trees
  publication-title: Ecological Monographs
– volume: 208
  start-page: 114
  year: 2015
  end-page: 124
  article-title: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest
  publication-title: New Phytologist
– volume: 24
  start-page: GB1005
  year: 2010
  article-title: Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimates
  publication-title: Global Biogeochemical Cycles
– volume: 94
  start-page: 621
  year: 1990
  end-page: 627
  article-title: Carbon and nitrogen economy of 24 wild species differing in relative growth rate
  publication-title: Plant Physiology
– volume: 114
  start-page: 1
  year: 2014
  end-page: 16
  article-title: Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high‐latitude ecosystems
  publication-title: Annals of Botany
– volume: 207
  start-page: 505
  year: 2015b
  end-page: 518
  article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes
  publication-title: New Phytologist
– volume: 61
  start-page: 167
  year: 2013
  end-page: 234
  article-title: New handbook for standardised measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 29
  start-page: 796
  year: 2015
  end-page: 807
  article-title: Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees
  publication-title: Functional Ecology
– volume: 4
  start-page: 993
  year: 2011
  end-page: 1010
  article-title: Plant functional type mapping for earth system models
  publication-title: Geoscientific Model Development
– volume: 209
  start-page: 563
  year: 2016
  end-page: 575
  article-title: Variation in trait trade‐offs allows differentiation among predefined plant functional types: implications for predictive ecology
  publication-title: New Phytologist
– volume: 110
  start-page: 18180
  year: 2013
  end-page: 18184
  article-title: Functional traits predict relationship between plant abundance dynamic and long‐term climate warming
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 5
  start-page: 313
  year: 1982
  end-page: 322
  article-title: Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species
  publication-title: Plant, Cell & Environment
– volume: 98
  start-page: 362
  year: 2010
  end-page: 373
  article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora
  publication-title: Journal of Ecology
– ident: e_1_2_11_26_1
  doi: 10.1111/j.1365-2745.2011.01914.x
– ident: e_1_2_11_25_1
  doi: 10.1046/j.1365-2435.2002.00664.x
– ident: e_1_2_11_42_1
  doi: 10.1073/pnas.1116092109
– ident: e_1_2_11_30_1
  doi: 10.1111/nph.12583
– ident: e_1_2_11_31_1
  doi: 10.1111/j.1469-8137.2012.04198.x
– ident: e_1_2_11_33_1
  doi: 10.1111/nph.13363
– ident: e_1_2_11_34_1
  doi: 10.1007/s11104-016-3040-9
– ident: e_1_2_11_7_1
  doi: 10.1080/01904169209364361
– ident: e_1_2_11_40_1
  doi: 10.1007/s004420050239
– volume: 29
  start-page: 1
  year: 1983
  ident: e_1_2_11_49_1
  article-title: Root and root system terminology
  publication-title: Forest Science
– ident: e_1_2_11_64_1
  doi: 10.1029/2009GB003521
– ident: e_1_2_11_59_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_2_11_3_1
  doi: 10.1073/pnas.1304551110
– ident: e_1_2_11_43_1
  doi: 10.1111/nph.13828
– ident: e_1_2_11_28_1
  doi: 10.1111/j.1469-8137.2010.03388.x
– ident: e_1_2_11_19_1
  doi: 10.1111/nph.12842
– ident: e_1_2_11_63_1
  doi: 10.1111/nph.14048
– ident: e_1_2_11_29_1
  doi: 10.1071/BT06118
– ident: e_1_2_11_24_1
  doi: 10.1111/nph.13829
– ident: e_1_2_11_27_1
  doi: 10.1016/j.soilbio.2015.01.001
– volume: 5
  start-page: 313
  year: 1982
  ident: e_1_2_11_9_1
  article-title: Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species
  publication-title: Plant, Cell & Environment
– ident: e_1_2_11_45_1
  doi: 10.1111/ele.12508
– ident: e_1_2_11_60_1
  doi: 10.1002/j.1537-2197.1968.tb06968.x
– ident: e_1_2_11_61_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– volume-title: Plant and soil water relationships: a modern synthesis
  year: 1969
  ident: e_1_2_11_22_1
– ident: e_1_2_11_17_1
– ident: e_1_2_11_47_1
  doi: 10.1073/pnas.1310700110
– ident: e_1_2_11_56_1
  doi: 10.1073/pnas.1415442111
– ident: e_1_2_11_32_1
  doi: 10.1016/j.ecolmodel.2014.11.013
– ident: e_1_2_11_8_1
  doi: 10.1111/nph.13451
– ident: e_1_2_11_57_1
  doi: 10.1111/nph.13034
– ident: e_1_2_11_35_1
  doi: 10.1071/BT12225
– ident: e_1_2_11_21_1
– ident: e_1_2_11_46_1
  doi: 10.1111/geb.12272
– ident: e_1_2_11_48_1
  doi: 10.1890/06-0989
– ident: e_1_2_11_41_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_11_52_1
  doi: 10.1111/1365-2745.12087
– ident: e_1_2_11_18_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_2_11_13_1
  doi: 10.3389/fpls.2014.00006
– ident: e_1_2_11_37_1
  doi: 10.1104/pp.94.2.621
– ident: e_1_2_11_14_1
  doi: 10.1038/250026a0
– ident: e_1_2_11_2_1
  doi: 10.1016/j.tree.2014.10.006
– ident: e_1_2_11_6_1
  doi: 10.1038/nature16489
– ident: e_1_2_11_10_1
  doi: 10.1111/j.1365-2435.2011.01913.x
– ident: e_1_2_11_16_1
  doi: 10.1038/344058a0
– ident: e_1_2_11_54_1
  doi: 10.1111/gcb.12871
– ident: e_1_2_11_36_1
  doi: 10.1111/nph.14243
– ident: e_1_2_11_44_1
  doi: 10.1615/Int.J.UncertaintyQuantification.2013006821
– ident: e_1_2_11_58_1
  doi: 10.1111/nph.14003
– ident: e_1_2_11_4_1
  doi: 10.1007/978-3-642-67282-8
– ident: e_1_2_11_51_1
  doi: 10.1111/1365-2435.12384
– ident: e_1_2_11_39_1
  doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
– ident: e_1_2_11_20_1
  doi: 10.1127/0941-2948/2006/0130
– volume-title: Fine‐Root Ecology Database (FRED): a global collection of root trait data with coincident site, vegetation, edaphic, and climatic data, version 1
  year: 2016
  ident: e_1_2_11_15_1
– ident: e_1_2_11_23_1
  doi: 10.1111/nph.14247
– ident: e_1_2_11_50_1
  doi: 10.1139/cjb-2015-0245
– ident: e_1_2_11_55_1
  doi: 10.1111/j.0030-1299.2007.15559.x
– ident: e_1_2_11_11_1
  doi: 10.1111/j.1365-2745.2009.01615.x
– ident: e_1_2_11_12_1
  doi: 10.1111/1365‐2745.12698
– ident: e_1_2_11_62_1
  doi: 10.1093/aob/mcu077
– ident: e_1_2_11_5_1
  doi: 10.1111/geb.12048
– ident: e_1_2_11_38_1
  doi: 10.5194/gmd-4-993-2011
– ident: e_1_2_11_53_1
  doi: 10.1111/nph.13623
SSID ssj0009562
Score 2.6257665
Snippet Summary Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem...
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem...
Summary Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem...
SourceID osti
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms Assessments
BASIC BIOLOGICAL SCIENCES
Biosphere
Data
Databases, Factual
Ecological function
Ecology
Ecology - methods
Ecosystem
Ecosystems
Environment models
Environmental changes
Environmental conditions
environmental factors
Environmental gradient
Evolution
fine roots
Fine‐Root Ecology Database (FRED)
FRED
functional traits
Gradients
KNOWLEDGE MANAGEMENT AND PRESERVATION
Leaves
mycorrhiza
Plant ecology
Plant Roots - anatomy & histology
Plant Roots - physiology
Rhizopolis
Roots
space and time
terrestrial biosphere models
Tradeoffs
Viewpoints
Wood
Title A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
URI https://www.jstor.org/stable/90010628
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14486
https://www.ncbi.nlm.nih.gov/pubmed/28245064
https://www.proquest.com/docview/1903787411
https://www.proquest.com/docview/2000496236
https://www.osti.gov/servlets/purl/1362203
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS9xAFL2I-NAXrW2t27UyLX3oS2QzM5lN8Emry1KoFKmwUCHM16K4JIubpdgnf4K_0V_ivZMPtFgofQvkTjLJ3DNzbnLnXIBPWTwlCRcbZW6oI-lTHRme-igVIsYFjg9N-OD27USNz-TXSTJZgf12L0ytD9F9cCNkhPmaAK7N4hHIi_kF_ZlMSW6bcrWIEJ3yR4K7ircKzEqqSaMqRFk8Xcsna1Gdjogzc4nYeo5vPqWvYf0ZbcB52_M67eRqb1mZPfv7D1HH_3y0l7De8FJ2UDvSJqz44hWsHZbIHW9ew88DViuHsBFe_P727rQsK3YcFK9v2JGuNK2GrCoZTmQUwDPjZ-UvNKRdI4Vjtq3ZsmCXBZvPcDyZr5u_gbPR8Y8v46gpyxDZRCgVOZUKlVnELgbiiXLCIao9dxhMczvQSBqyFHmAHE4x5LWGKsqYobepFlMZO52ILVgtysJvA0N2kWTSJJJPaYOrz5zUQsXGYrOBcnEPPrcDlNtGs5xKZ8zyNnbBV5WHV9WDj53pvBbqeM5oK4xyZ5GFmJinPejTsOdIO0g711KSka1y9CvOB6IHO6035A3EFzkyKYGznYyxlx-60whO-uOiC18uF1TjEyMwZJh457e1F3W3xlhXklogPmPwhb_3Oj_5Pg4H7_7dtA8vOBGQkFi8A6vV9dK_R_pUmd2AkwdhUBNX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBQkulL_CtgUMAolLqo3teJMDh8J2taXtClWttBKH4NhegVglKzarajn1EfogvAovwZMw4_yoRUXi0gO3SJkodjw_3zjjbwBeJuGEKFxMkNieDqSLdZDx2AWxECEGON7L_Ibb4UgNT-T7cTRegR_NWZiKH6LdcCPL8P6aDJw2pC9YeT77TL8mY1WXVO675SkmbPM3e31c3VecD3aP3w2DuqdAYCKhVGBVLFRiUPEwi4yUFRZV0nGLmSA3XY0RL4kxiMneBPM1k1E7lKznTKzFRIZWU48IdPg3qIM4MfX3j_gFil_FG85nJdW45jGiuqF2qJeiX1UAibGgQGu-CuFeBsw-4g3W4GfzrapCl6_bizLbNt__oJH8Xz7mXbhTQ2-2U9nKPVhx-X24-bZAeLx8AB93WEWOwgY4m19n50dFUbJdT-q9ZH1dagr4rCwY-mrao2CZmxanKEgHY3LLTNOWZs6-5Gw2RZVlrnr8IZxcy8TWYTUvcvcYGAKoKJFZJPmEzvC6xEotVJgZfKyrbNiB141GpKamZafuINO0Sc9waVK_NB140YrOKi6Sq4TWvVq1EolP-3ncgU3SsxSRFdEDG6qjMmUaIoLhXdGBrUb90tqLzVMEiwIdugxxlM_b2-h_6KeSzl2xmFMbU0wyEUTjmx9Vatu-GtN5SYSIOEevfH8fdTr6MPQXG_8u-gxuDY8PD9KDvdH-JtzmhLd8HfUWrJbfFu4JosUye-qNlMGn61bk3yTcbmk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VBSEu5bcQWmBBIHFxFa_XG_vAoZBGKYWoqqgUicPi_bGoiOyIOKrCiUfgPXgVnoInYWb9oxYViUsP3Cx5LO965-eb9ew3AM_SMCcKFxOkdpAFwiVZoHnigiSKQgxwfKD9htu7iRwfizfTeLoGP9qzMDU_RLfhRpbh_TUZ-NzmZ4y8mH-iP5OJbCoqD9zqFPO1xcv9IS7uc85He-9fj4OmpUBg4kjKwMokkqlBvcMkMpY2sqiRjltMBLnpZxjw0gRjmBjkmK4ZTd1Q9MCZJItyEdqMWkSgv78iZD-lPhHDI36G4VfylvJZCjltaIyobKgb6rngV9c_Yigo0ZgvArjn8bIPeKMb8LP9VHWdy-edZaV3zNc_WCT_k295EzYa4M12a0u5BWuuuA1XX5UIjld34MMuq6lR2Agn8-vb96OyrNiep_ResWFWZRTuWVUy9NS0Q8G0m5WnKEjHYgrLTNuUZsFOCjafocIyVz9-F44vZWKbsF6UhbsPDOFTnAodC57TCV6XWpFFMtQGH-tLG_bgRasQyjSk7NQbZKba5AyXRvml6cHTTnReM5FcJLTptaqTSH3Sz5MebJGaKcRVRA5sqIrKVCpE_ML7UQ-2W-1TjQ9bKISKEbpzEeIon3S30fvQL6WscOVyQU1MMcVECI1vvldrbfdqTOYF0SHiHL3u_X3UanI49hcP_l30MVw7HI7U2_3JwRZc5wS2fBH1NqxXX5buIULFSj_yJsrg42Xr8W9Lk20Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+Fine-Root+Ecology+Database+to+address+below-ground+challenges+in+plant+ecology&rft.jtitle=The+New+phytologist&rft.au=Iversen%2C+Colleen+M&rft.au=McCormack%2C+M+Luke&rft.au=Powell%2C+A+Shafer&rft.au=Blackwood%2C+Christopher+B&rft.date=2017-07-01&rft.eissn=1469-8137&rft.volume=215&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1111%2Fnph.14486&rft_id=info%3Apmid%2F28245064&rft.externalDocID=28245064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon