Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique
Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxi...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 101; no. 10; pp. 2851 - 2861 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, NJ
Blackwell Publishing Ltd
01.10.2013
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica‐calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3‐h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1–356 μm. The SCPC implant prepared at 900°C was loaded with rh‐BMP‐2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell‐mediated graft resorption and prohibited any accumulation of the material in the body organs. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 2851‐2861, 2013. |
---|---|
AbstractList | Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica‐calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3‐h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1–356 μm. The SCPC implant prepared at 900°C was loaded with rh‐BMP‐2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell‐mediated graft resorption and prohibited any accumulation of the material in the body organs. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 2851‐2861, 2013. Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocom-posite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800 degree C, 850 degree C, or 900 degree C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900 degree C measuring (s = 15.326 plus or minus 2.95 MPa and E = 1095 plus or minus 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 nm. The SCPC implant prepared at 900 degree C was loaded with rhBMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs. Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs. Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs.Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs. |
Author | Cunningham, Larry Hart, Amanda White, Dean El-Ghannam, Ahmed |
Author_xml | – sequence: 1 givenname: Ahmed surname: El-Ghannam fullname: El-Ghannam, Ahmed email: arelgha@uncc.edu organization: Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, North Carolina 28223, Charlotte – sequence: 2 givenname: Amanda surname: Hart fullname: Hart, Amanda organization: Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, North Carolina 28223, Charlotte – sequence: 3 givenname: Dean surname: White fullname: White, Dean organization: Department of Oral Pathology, University of Kentucky, Kentucky 40506, Lexington – sequence: 4 givenname: Larry surname: Cunningham fullname: Cunningham, Larry organization: Department of Oral and Maxillofacial Surgery, University of Kentucky, Kentucky 40506, Lexington |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27734351$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23504981$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1v1DAQxS1URD_gxB35goSEssRx7CTHtoJCtVsufBytsTMBlyRObS80_z0Ouy0SEojTzOH33ozeOyYHoxuRkKcsX7E8L15d62EFK16KWjwgR0yIIisbKQ6WvWwyXjTykByHcJ1gmYviETksuMjLpmZHZNqg-QqjNdDTybsJfbQYKIwtNXN00d1aY-NMXUeBegzOa9A9Um0dmGi_I7XD1MMYkxon8NhSPVMPk20Xv-QwT3b8QmM6M9qbLT4mDzvoAz7ZzxPy8c3rD-dvs_X7i3fnp-vMCC5FZhgaXXZdrUUateEVGlGhbjmvci0akIhYS9lCWUnORN0y1gIvOUArtTH8hLzY-aYv0tkQ1WCDwT79im4bFCt5UxSyydn_oLyoUnIL-myPbvWArZq8HcDP6i7QBDzfAxBSpp2H0djwm6uq9KNYuJc7zngXgsfuHmG5WmpVqVYF6letiWZ_0KkUiNaN0YPt_6Ipdpoftsf5X_bq8mxzeifKdiIbIt7ei8B_U7LilVCfry5Uvv50xc42l0ryny5xxso |
CitedBy_id | crossref_primary_10_1002_jbm_a_35092 crossref_primary_10_4028_www_scientific_net_KEM_829_40 crossref_primary_10_1002_jbm_a_37167 crossref_primary_10_1002_jbm_a_36287 crossref_primary_10_1016_j_joms_2015_07_004 crossref_primary_10_1007_s10439_016_1678_3 crossref_primary_10_1007_s10856_021_06585_9 crossref_primary_10_3390_ma13071500 crossref_primary_10_1115_1_4046248 crossref_primary_10_37349_emed_2024_00203 crossref_primary_10_1155_2016_1282531 crossref_primary_10_1186_s40824_018_0146_6 |
Cites_doi | 10.1007/s10856-010-4121-6 10.1002/jbm.820040309 10.1016/S0142-9612(98)00141-0 10.1016/0142-9612(96)85754-1 10.1016/0142-9612(93)90151-Q 10.1002/jbm.a.30654 10.1016/S0901-5027(05)80698-8 10.1002/jbm.a.30517 10.2106/00004623-199604000-00002 10.1002/jbm.a.32705 10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K 10.1097/00003086-198712000-00003 10.1002/jbm.b.30675 10.1016/j.actbio.2011.09.008 10.1002/jbm.a.30022 10.1002/jbm.1261 10.1002/jbm.a.33228 10.1002/1097-4636(20000905)51:3<491::AID-JBM25>3.0.CO;2-1 10.1016/j.biomaterials.2006.01.031 10.1016/j.joms.2006.10.031 10.1002/jbm.b.30209 10.1002/jbm.b.10068 10.1089/end.1997.11.391 10.3109/17453679709004000 10.1016/S0142-9612(00)00030-2 10.1093/oxfordjournals.jbchem.a021589 10.1016/S0006-8993(02)02878-0 10.1002/jbm.820280503 10.1002/jbm.a.20074 10.1016/S0142-9612(00)00290-8 10.2106/00004623-200004000-00002 10.1002/jbm.a.30128 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company 2014 INIST-CNRS Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1002/jbm.a.34585 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 2861 |
ExternalDocumentID | 23504981 27734351 10_1002_jbm_a_34585 JBMA34585 ark_67375_WNG_0LVN1BMJ_6 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c5365-c1ecb4ff8b5b4f8c37ec57ebd3370b59a6eee866da4763158d11da343aad6bcc3 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Thu Aug 07 15:17:05 EDT 2025 Fri Jul 11 02:58:08 EDT 2025 Thu Apr 03 07:00:55 EDT 2025 Mon Jul 21 09:10:52 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Tue Jul 01 01:11:35 EDT 2025 Wed Jan 22 16:41:51 EST 2025 Wed Oct 30 09:48:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Biological properties Implant Tissue engineering Bone graft Mechanical properties Resorption Cytotoxicity Calcium phosphate Silica Biological activity Calcium Phosphates Rapid technique silica-calcium phosphate Rapid prototyping Biomaterial Biomedical engineering resorption tissue engineering bone graft cytotoxicity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5365-c1ecb4ff8b5b4f8c37ec57ebd3370b59a6eee866da4763158d11da343aad6bcc3 |
Notes | istex:174F3002BAFAC3D710126DE24B7FA7C610043EFF ArticleID:JBMA34585 ark:/67375/WNG-0LVN1BMJ-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23504981 |
PQID | 1433270521 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1439226901 proquest_miscellaneous_1433270521 pubmed_primary_23504981 pascalfrancis_primary_27734351 crossref_primary_10_1002_jbm_a_34585 crossref_citationtrail_10_1002_jbm_a_34585 wiley_primary_10_1002_jbm_a_34585_JBMA34585 istex_primary_ark_67375_WNG_0LVN1BMJ_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2013 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: October 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, NJ |
PublicationPlace_xml | – name: Hoboken, NJ – name: United States |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Hofmann AA, Bloebaum RD, Bachus KN. Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans. Acta Orthop Scand 1997;68:161-166. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 1970;4:433-456. El-Ghannam A, Karima A, Omran M. Nano porous delivery system to treat osteomyelitis and regenerate bone: Gentamicin release kinetics and bactericidal effect. J Biomed Mater Res 2005;73B:277-284. Hicks DC, Judkins AR, Sickel JZ, Rosier RN, Puzas JE, O'Keefe RJ. Granular histiocytosis of pelvic lymph nodes following total hip arthroplasty: The presence of wear debris, cytokine production, and immunologically activated macrophages. J Bone Joint Surg Am 1996;78:482-496. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical appilcations of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-102. El-Ghannam A, Cunningham L, Pienkowski D, Hart A. Bone engineering of the ulna of rabbit. J Oral Maxillofac Surg 2007;65:1495-1502. Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA. Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res 1994;28:537-544. Kohane DS, Plesnila N, Thomas SS, Le D, Langer R, Moskowitz MA. Lipid-sugar particles for intracranial drug delivery: Safety and biocompatibility. Brain Res 2002;946:206-213. M, Nagai N, Dohi Y, Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J Biomed Mater Res 1998;39:190-199. Kohane DS, Lipp M, Kinney R, Anthony D, Lotan N, Langer R. Biocompatibility of lipid-protein-sugar particles containing bupivacaine in the epineurium. J Biomed Mater Res 2002;59:450-459. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Rel Res 1987;225:7-16. Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 2012;8:341-349. El-Ghannam A, Ning CQ. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. J Biomed Mater Res Part A 2006;76:386-397. Schliephake H, Neukam FW, Klosa D. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. Int J Oral Maxillofac Surg 1991;20:53-58. Anderson JM. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur J Pharm Biopharm 1994;40:1-8. El-Ghannam A. Advanced bioceramic composite for bone tissue engineering: Design principles and structure-bioactivity relationship. J Biomed Mater Res 2004;69A:490-501. Gonzalez IA, Wong X, DeAlmeida D, Yurko R, Watkins S, Islam K, Montelaro RC, El-Ghannam A, Mietzner TA. Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices. Nat Proc 2008:6-11. Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res 2000;52:491-499. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000;21:1291-1298. Simon JA, Ricci JL, Cesare PE. Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies. Am J Orthop 1997;26:665-671. Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP. Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres. Biomaterials 1993;14:470-478. Tancred DC, McCormack BAO, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 1998;19:2303-2311. El-Ghannam A, Malkawi A, Kia J, Wyan H, Allen LD, Dréau D. A novel anticancer drug delivery system to treat breast tumors. J Mater Sci: Mater Med 2010;21:2701-2710. El-Ghannam A, Jahed K. Resorbable bioactive ceramic for treatment of bone infection. J Biomed Mater Res Part A 2010;94:308-316. Gupta G, El-Ghannam A, Kirakodu S, Khraisheh M, Zbib H. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite. J Biomed Mater Res Part B: Appl Biomater 2007;81B:387-396. Talja M, Valimaa T, Tamela T, Petas A, Tormala P. Bioabsorbable and biodegradable stents in urology. J Endourol 1997;11:391-397. Howling GI, Sakoda H, Antonarulrajah A, Marrs H, Stewart TD, Appleyard S, Rand B, Fisher J, Ingham E. Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints. J Biomed Mater Res Part B: Appl Biomater 2003;67B:758-764. Vedantham K, Swet JH, Iain MH, El-Ghannam A. A bioresorbable controlled release drug delivery system to treat liver cancer. J Biomed Mater Res Part A 2012;100A:432-440. El-Ghannam A, Ning CQ, Mehta J. Cyclosilicate nanocomposite: A novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J Biomed Mater Res 2004;71A:377-390. Daniel S. Kohane, Julie Y. Tse, Yoon Yeo, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res Part A 2006;77A:351-361. Colombo G, Langer R, Kohane DS. Effect of excipient composition on the biocompatibility of bupivacaine-containing microparticles at the sciatic nerve. J Biomed Mater Res 2004;68A:651-659. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP induced osteogenesis. J Biochem (Tokyo) 1997;121:317-324. Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202-212.teogenesis. J Biochem (Tokyo) 1997;121:317-324. El-Ghannam A, Ricci K, Malkawi A, Jahed K, Vedantham K, Wyan H, Allen LD, Dréau D. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci: Mater Med 2010;21:2701-2710. Ohtsubo S, Matsuda M, Takekawa M. Angiogenesis after sintered bone implantation in rat parietal bone. Histol. Histopathol 2003;18:153-163. Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S. Porositygraded hydroxyapatite ceramics to replace natural bone. Biomaterials 2001;22:1365-1370. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and adominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000;82:457-477. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006;27:3230-3237. 2002; 59 1996; 17 2006; 76 2004; 71A 1987; 225 2000; 21 1997; 26 2003; 67B 2006; 77A 1997; 68 2008 2012; 100A 2004; 68A 2003; 18 1994; 28 2001; 22 1970; 4 1994; 40 1996; 78 2005; 73B 1993; 14 2010; 21 1998; 39 1998; 19 1997; 11 2006; 27 1991; 20 1997; 121 2000; 52 1984 2000; 82 2002; 946 2007; 81B 2007; 65 2004; 69A 2010; 94 2012; 8 e_1_2_6_32_1 e_1_2_6_31_1 Gonzalez IA (e_1_2_6_30_1) 2008 Simon JA (e_1_2_6_14_1) 1997; 26 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_35_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 Ripamonti U (e_1_2_6_10_1) 1997; 121 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Anderson JM (e_1_2_6_18_1) 1994; 40 Ohtsubo S (e_1_2_6_38_1) 2003; 18 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 Goldberg VM (e_1_2_6_37_1) 1987; 225 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 Wise DL (e_1_2_6_11_1) 1984 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Anderson JM. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur J Pharm Biopharm 1994;40:1-8. – reference: Hicks DC, Judkins AR, Sickel JZ, Rosier RN, Puzas JE, O'Keefe RJ. Granular histiocytosis of pelvic lymph nodes following total hip arthroplasty: The presence of wear debris, cytokine production, and immunologically activated macrophages. J Bone Joint Surg Am 1996;78:482-496. – reference: Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res 2000;52:491-499. – reference: Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000;21:1291-1298. – reference: El-Ghannam A, Karima A, Omran M. Nano porous delivery system to treat osteomyelitis and regenerate bone: Gentamicin release kinetics and bactericidal effect. J Biomed Mater Res 2005;73B:277-284. – reference: Schliephake H, Neukam FW, Klosa D. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. Int J Oral Maxillofac Surg 1991;20:53-58. – reference: El-Ghannam A, Ning CQ, Mehta J. Cyclosilicate nanocomposite: A novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J Biomed Mater Res 2004;71A:377-390. – reference: Colombo G, Langer R, Kohane DS. Effect of excipient composition on the biocompatibility of bupivacaine-containing microparticles at the sciatic nerve. J Biomed Mater Res 2004;68A:651-659. – reference: Gupta G, El-Ghannam A, Kirakodu S, Khraisheh M, Zbib H. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite. J Biomed Mater Res Part B: Appl Biomater 2007;81B:387-396. – reference: Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP induced osteogenesis. J Biochem (Tokyo) 1997;121:317-324. – reference: Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202-212.teogenesis. J Biochem (Tokyo) 1997;121:317-324. – reference: El-Ghannam A, Malkawi A, Kia J, Wyan H, Allen LD, Dréau D. A novel anticancer drug delivery system to treat breast tumors. J Mater Sci: Mater Med 2010;21:2701-2710. – reference: Tancred DC, McCormack BAO, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 1998;19:2303-2311. – reference: Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP. Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres. Biomaterials 1993;14:470-478. – reference: El-Ghannam A. Advanced bioceramic composite for bone tissue engineering: Design principles and structure-bioactivity relationship. J Biomed Mater Res 2004;69A:490-501. – reference: El-Ghannam A, Ning CQ. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. J Biomed Mater Res Part A 2006;76:386-397. – reference: Simon JA, Ricci JL, Cesare PE. Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies. Am J Orthop 1997;26:665-671. – reference: Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical appilcations of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-102. – reference: M, Nagai N, Dohi Y, Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J Biomed Mater Res 1998;39:190-199. – reference: Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S. Porositygraded hydroxyapatite ceramics to replace natural bone. Biomaterials 2001;22:1365-1370. – reference: Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 2012;8:341-349. – reference: Talja M, Valimaa T, Tamela T, Petas A, Tormala P. Bioabsorbable and biodegradable stents in urology. J Endourol 1997;11:391-397. – reference: Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and adominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000;82:457-477. – reference: Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Rel Res 1987;225:7-16. – reference: Howling GI, Sakoda H, Antonarulrajah A, Marrs H, Stewart TD, Appleyard S, Rand B, Fisher J, Ingham E. Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints. J Biomed Mater Res Part B: Appl Biomater 2003;67B:758-764. – reference: Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006;27:3230-3237. – reference: Kohane DS, Plesnila N, Thomas SS, Le D, Langer R, Moskowitz MA. Lipid-sugar particles for intracranial drug delivery: Safety and biocompatibility. Brain Res 2002;946:206-213. – reference: El-Ghannam A, Jahed K. Resorbable bioactive ceramic for treatment of bone infection. J Biomed Mater Res Part A 2010;94:308-316. – reference: Vedantham K, Swet JH, Iain MH, El-Ghannam A. A bioresorbable controlled release drug delivery system to treat liver cancer. J Biomed Mater Res Part A 2012;100A:432-440. – reference: Kohane DS, Lipp M, Kinney R, Anthony D, Lotan N, Langer R. Biocompatibility of lipid-protein-sugar particles containing bupivacaine in the epineurium. J Biomed Mater Res 2002;59:450-459. – reference: Daniel S. Kohane, Julie Y. Tse, Yoon Yeo, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res Part A 2006;77A:351-361. – reference: El-Ghannam A, Ricci K, Malkawi A, Jahed K, Vedantham K, Wyan H, Allen LD, Dréau D. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci: Mater Med 2010;21:2701-2710. – reference: Ohtsubo S, Matsuda M, Takekawa M. Angiogenesis after sintered bone implantation in rat parietal bone. Histol. Histopathol 2003;18:153-163. – reference: El-Ghannam A, Cunningham L, Pienkowski D, Hart A. Bone engineering of the ulna of rabbit. J Oral Maxillofac Surg 2007;65:1495-1502. – reference: Hofmann AA, Bloebaum RD, Bachus KN. Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans. Acta Orthop Scand 1997;68:161-166. – reference: Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA. Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res 1994;28:537-544. – reference: Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 1970;4:433-456. – reference: Gonzalez IA, Wong X, DeAlmeida D, Yurko R, Watkins S, Islam K, Montelaro RC, El-Ghannam A, Mietzner TA. Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices. Nat Proc 2008:6-11. – volume: 28 start-page: 537 year: 1994 end-page: 544 article-title: Mineral apposition rates of human cancellous bone at the interface of porous coated implants publication-title: J Biomed Mater Res – volume: 69A start-page: 490 year: 2004 end-page: 501 article-title: Advanced bioceramic composite for bone tissue engineering: Design principles and structure‐bioactivity relationship publication-title: J Biomed Mater Res – volume: 67B start-page: 758 year: 2003 end-page: 764 article-title: Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints publication-title: J Biomed Mater Res Part B: Appl Biomater – volume: 59 start-page: 450 year: 2002 end-page: 459 article-title: Biocompatibility of lipid‐protein‐sugar particles containing bupivacaine in the epineurium publication-title: J Biomed Mater Res – volume: 78 start-page: 482 year: 1996 end-page: 496 article-title: Granular histiocytosis of pelvic lymph nodes following total hip arthroplasty: The presence of wear debris, cytokine production, and immunologically activated macrophages publication-title: J Bone Joint Surg Am – volume: 65 start-page: 1495 year: 2007 end-page: 1502 article-title: Bone engineering of the ulna of rabbit publication-title: J Oral Maxillofac Surg – volume: 14 start-page: 470 year: 1993 end-page: 478 article-title: Biodegradation and brain tissue reaction to poly(D,L‐lactide‐co‐glycolide) microspheres publication-title: Biomaterials – volume: 8 start-page: 341 year: 2012 end-page: 349 article-title: Silicate bioceramics induce angiogenesis during bone regeneration publication-title: Acta Biomater – volume: 81B start-page: 387 year: 2007 end-page: 396 article-title: Enhancement of osteoblast gene expression by mechanically compatible porous Si‐rich nanocomposite publication-title: J Biomed Mater Res Part B: Appl Biomater – volume: 18 start-page: 153 year: 2003 end-page: 163 article-title: Angiogenesis after sintered bone implantation in rat parietal bone. Histol publication-title: Histopathol – volume: 21 start-page: 2701 year: 2010 end-page: 2710 article-title: A novel anticancer drug delivery system to treat breast tumors publication-title: J Mater Sci: Mater Med – volume: 21 start-page: 2701 year: 2010 end-page: 2710 article-title: A ceramic‐based anticancer drug delivery system to treat breast cancer publication-title: J Mater Sci: Mater Med – volume: 71A start-page: 377 year: 2004 end-page: 390 article-title: Cyclosilicate nanocomposite: A novel resorbable bioactive tissue engineering scaffold for BMP and bone‐marrow cell delivery publication-title: J Biomed Mater Res – volume: 94 start-page: 308 year: 2010 end-page: 316 article-title: Resorbable bioactive ceramic for treatment of bone infection publication-title: J Biomed Mater Res Part A – volume: 20 start-page: 53 year: 1991 end-page: 58 article-title: Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study publication-title: Int J Oral Maxillofac Surg – volume: 52 start-page: 491 year: 2000 end-page: 499 article-title: Effects of geometry of hydroxyapatite as a cell substratum in BMP‐induced ectopic bone formation publication-title: J Biomed Mater Res – volume: 22 start-page: 1365 year: 2001 end-page: 1370 article-title: Porositygraded hydroxyapatite ceramics to replace natural bone publication-title: Biomaterials – volume: 19 start-page: 2303 year: 1998 end-page: 2311 article-title: A synthetic bone implant macroscopically identical to cancellous bone publication-title: Biomaterials – volume: 27 start-page: 3230 year: 2006 end-page: 3237 article-title: Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics publication-title: Biomaterials – volume: 121 start-page: 317 year: 1997 end-page: 324 article-title: Pore size of porous hydroxyapatite as the cell‐substratum controls BMP induced osteogenesis publication-title: J Biochem (Tokyo) – volume: 11 start-page: 391 year: 1997 end-page: 397 article-title: Bioabsorbable and biodegradable stents in urology publication-title: J Endourol – volume: 26 start-page: 665 year: 1997 end-page: 671 article-title: Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies publication-title: Am J Orthop – volume: 946 start-page: 206 year: 2002 end-page: 213 article-title: Lipid‐sugar particles for intracranial drug delivery: Safety and biocompatibility publication-title: Brain Res – volume: 68 start-page: 161 year: 1997 end-page: 166 article-title: Progression of human bone ingrowth into porous‐coated implants. Rate of bone ingrowth in humans publication-title: Acta Orthop Scand – volume: 40 start-page: 1 year: 1994 end-page: 8 article-title: In vivo biocompatibility of implantable delivery systems and biomaterials publication-title: Eur J Pharm Biopharm – volume: 100A start-page: 432 year: 2012 end-page: 440 article-title: A bioresorbable controlled release drug delivery system to treat liver cancer publication-title: J Biomed Mater Res Part A – volume: 21 start-page: 1291 year: 2000 end-page: 1298 article-title: Osteoconduction at porous hydroxyapatite with various pore configurations publication-title: Biomaterials – volume: 77A start-page: 351 year: 2006 end-page: 361 article-title: Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum publication-title: J Biomed Mater Res Part A – volume: 39 start-page: 190 year: 1998 end-page: 199 article-title: BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis publication-title: J Biomed Mater Res – start-page: 3 year: 1984 – volume: 17 start-page: 93 year: 1996 end-page: 102 article-title: Sterilization, toxicity, biocompatibility and clinical appilcations of polylactic acid/polyglycolic acid copolymers publication-title: Biomaterials – volume: 225 start-page: 7 year: 1987 end-page: 16 article-title: Natural history of autografts and allografts publication-title: Clin Orthop Rel Res – volume: 4 start-page: 433 year: 1970 end-page: 456 article-title: Potential of ceramic materials as permanently implantable skeletal prostheses publication-title: J Biomed Mater Res – volume: 76 start-page: 386 year: 2006 end-page: 397 article-title: Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro publication-title: J Biomed Mater Res Part A – volume: 121 start-page: 317 year: 1997 end-page: 324 article-title: The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202–212.teogenesis publication-title: J Biochem (Tokyo) – volume: 68A start-page: 651 year: 2004 end-page: 659 article-title: Effect of excipient composition on the biocompatibility of bupivacaine‐containing microparticles at the sciatic nerve publication-title: J Biomed Mater Res – start-page: 6 year: 2008 end-page: 11 article-title: Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices publication-title: Nat Proc – volume: 82 start-page: 457 year: 2000 end-page: 477 article-title: Dissemination of wear particles to the liver, spleen, and adominal lymph nodes of patients with hip or knee replacement publication-title: J Bone Joint Surg Am – volume: 73B start-page: 277 year: 2005 end-page: 284 article-title: Nano porous delivery system to treat osteomyelitis and regenerate bone: Gentamicin release kinetics and bactericidal effect publication-title: J Biomed Mater Res – ident: e_1_2_6_31_1 doi: 10.1007/s10856-010-4121-6 – volume: 18 start-page: 153 year: 2003 ident: e_1_2_6_38_1 article-title: Angiogenesis after sintered bone implantation in rat parietal bone. Histol publication-title: Histopathol – ident: e_1_2_6_5_1 doi: 10.1002/jbm.820040309 – start-page: 3 volume-title: Biopolymeric Controlled Release Systems year: 1984 ident: e_1_2_6_11_1 – ident: e_1_2_6_36_1 doi: 10.1016/S0142-9612(98)00141-0 – ident: e_1_2_6_13_1 doi: 10.1016/0142-9612(96)85754-1 – ident: e_1_2_6_15_1 doi: 10.1016/0142-9612(93)90151-Q – ident: e_1_2_6_21_1 doi: 10.1002/jbm.a.30654 – ident: e_1_2_6_6_1 doi: 10.1016/S0901-5027(05)80698-8 – volume: 26 start-page: 665 year: 1997 ident: e_1_2_6_14_1 article-title: Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies publication-title: Am J Orthop – ident: e_1_2_6_41_1 doi: 10.1002/jbm.a.30517 – ident: e_1_2_6_24_1 doi: 10.2106/00004623-199604000-00002 – ident: e_1_2_6_29_1 doi: 10.1002/jbm.a.32705 – ident: e_1_2_6_8_1 doi: 10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K – volume: 225 start-page: 7 year: 1987 ident: e_1_2_6_37_1 article-title: Natural history of autografts and allografts publication-title: Clin Orthop Rel Res doi: 10.1097/00003086-198712000-00003 – ident: e_1_2_6_35_1 doi: 10.1002/jbm.b.30675 – volume: 40 start-page: 1 year: 1994 ident: e_1_2_6_18_1 article-title: In vivo biocompatibility of implantable delivery systems and biomaterials publication-title: Eur J Pharm Biopharm – ident: e_1_2_6_39_1 doi: 10.1016/j.actbio.2011.09.008 – volume: 121 start-page: 317 year: 1997 ident: e_1_2_6_10_1 article-title: The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202–212.teogenesis publication-title: J Biochem (Tokyo) – ident: e_1_2_6_25_1 doi: 10.1002/jbm.a.30022 – ident: e_1_2_6_17_1 doi: 10.1002/jbm.1261 – start-page: 6 year: 2008 ident: e_1_2_6_30_1 article-title: Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices publication-title: Nat Proc – ident: e_1_2_6_32_1 doi: 10.1002/jbm.a.33228 – ident: e_1_2_6_9_1 doi: 10.1002/1097-4636(20000905)51:3<491::AID-JBM25>3.0.CO;2-1 – ident: e_1_2_6_34_1 doi: 10.1016/j.biomaterials.2006.01.031 – ident: e_1_2_6_26_1 doi: 10.1016/j.joms.2006.10.031 – ident: e_1_2_6_27_1 doi: 10.1002/jbm.b.30209 – ident: e_1_2_6_16_1 doi: 10.1002/jbm.1261 – ident: e_1_2_6_22_1 doi: 10.1002/jbm.b.10068 – ident: e_1_2_6_12_1 doi: 10.1089/end.1997.11.391 – ident: e_1_2_6_40_1 doi: 10.1007/s10856-010-4121-6 – ident: e_1_2_6_3_1 doi: 10.3109/17453679709004000 – ident: e_1_2_6_2_1 doi: 10.1016/S0142-9612(00)00030-2 – ident: e_1_2_6_7_1 doi: 10.1093/oxfordjournals.jbchem.a021589 – ident: e_1_2_6_19_1 doi: 10.1016/S0006-8993(02)02878-0 – ident: e_1_2_6_4_1 doi: 10.1002/jbm.820280503 – ident: e_1_2_6_20_1 doi: 10.1002/jbm.a.20074 – ident: e_1_2_6_33_1 doi: 10.1016/S0142-9612(00)00290-8 – ident: e_1_2_6_23_1 doi: 10.2106/00004623-200004000-00002 – ident: e_1_2_6_28_1 doi: 10.1002/jbm.a.30128 |
SSID | ssj0026052 |
Score | 2.152902 |
Snippet | Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties.... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2851 |
SubjectTerms | Animals Biocompatible Materials - toxicity Biological and medical sciences Biomechanical Phenomena - drug effects Biotechnology Body Fluids bone graft Bone Morphogenetic Protein 2 - pharmacology Calcium Phosphates - toxicity Cell Death - drug effects cytotoxicity Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry Humans Implants, Experimental Industrial applications and implications. Economical aspects Materials Testing Medical sciences Microscopy, Electron, Scanning Miscellaneous Myocardium - pathology Orthopedic surgery Porosity Rabbits Recombinant Proteins - pharmacology resorption silica-calcium phosphate Silicates - toxicity Surface Properties Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Temperature tissue engineering Tissue Engineering - methods Transforming Growth Factor beta - pharmacology Ulna - drug effects Ulna - pathology Wound Healing - drug effects |
Title | Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique |
URI | https://api.istex.fr/ark:/67375/WNG-0LVN1BMJ-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34585 https://www.ncbi.nlm.nih.gov/pubmed/23504981 https://www.proquest.com/docview/1433270521 https://www.proquest.com/docview/1439226901 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucABynspVEaqOICy3cSv7LFFlGrF7gFR6M3yK9LSNomyu1KXX8-Mk6ZdVFWCUyJlnMj2jPONPfMNIXtpWoCeGJVw42TCCwMmJXKZKAP6kamMS4fZyNOZPD7hk1Nx2sXmYC5Myw_Rb7ihZcT1Gg3c2MX-NWnoL3sxNEPGAe_CCozRWgiJvvXkUQjU41kneEAJy8ayy86DJ_s32m78j-7j0F5ifKRZwBAVbW2L28DnJpaNP6Ojx23F1UXkMMQYlLPhammH7vdfDI__3c9t8qiDqfSg1asn5F4on5KHN8gLn5F6GjBrGCeZ1ril3yA3KzWlp269rJbV5dwBxKdVQQ0Fp75qLKZpUTuvTFxk6fyiPoeJhdYhxsFTu6aNqece3wdvWGMuF-1ZZp-Tk6PP3z8dJ139hsQJDJ5zaXCWF0VuBVxyx1RwQgXrGVMjK8ZGhhByKb3hsMqlIvdp6g3jzBgvrXPsBdkqqzK8InTs85AVkisrPffWGeYARyk54twXQsgB-XA1i9p15OZYY-Nct7TMmYZh1EbHYRyQvV64bjk9bhd7H9WhlzHNGYbBKaF_zr7o0dcfs_RwOtHw8d0NfekbZEpBb0Q6IO-uFEiD9eKRjClDtVqA48VYpjCB-k6ZMYBkAG4D8rLVvusvMAEuXg5PPkYduqs_enI4PYh3r_9Jeoc8yLAGSIxgfEO2ls0qvAUktrS70eD-AHh-MH0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BewAO5U3DoyxSxQHkNPa-nGOLKCEkOaAWelvty1Joa0dpIjX8embWidugqhKcbMmztnZ3Zv3N7sw3hOymaQF6YlTCjZMJLwyYlMhlogzoR6YyLh1mIw9HsnfM-yfiZLnhhrkwNT9Es-GGlhHXazRw3JDeu2IN_WXP26bNOADeu2QTa3pHl-p7Qx-FUD2edoIPlLCsK5f5efBk71rjtT_SJg7uJUZImgsYpKKubnET_FxHs_F3dPiQ6FVH6iiU0_Z8Ztvu918cj__f00dka4lU6X6tWo_JnVA-IQ-u8Rc-JZNhwMRhnGc6wV39KdKzUlN66hazalZdjh2gfFoV1FDw66upxUwtaseViessHZ9PzmBuoXWIofDULujUTMYe3wdvWGA6F22IZp-R48PPR596ybKEQ-IExs-5NDjLiyK3Ai65Yyo4oYL1jKmOFV0jQwi5lN5wWOhSkfs09YZxZoyX1jn2nGyUVRm2Ce36PGSF5MpKz711hjmAUkp2OPeFELJFPqymUbslvzmW2TjTNTNzpmEYtdFxGFtktxGe1LQeN4u9j_rQyJjpKUbCKaF_jr7ozuDHKD0Y9jV8fGdNYZoGmVLQG5G2yLuVBmkwYDyVMWWo5hfgezGWKcyhvlWmCzgZsFuLvKjV7-oLTICXl8OTj1GJbuuP7h8M9-Pdy3-Sfkvu9Y6GAz34Ovr2itzPsCRIDGh8TTZm03l4A8BsZnei9f0BVIM0mA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5BKyF44IaGoyxSxQPIaey9nMeWEkpoIoQo9G21l6X0iK0cUsOvZ2adug2qKsGTLXnW1u5-s_7WnvmGkK00LQAnRiXcOJnwwoBLiVwmygA-MpVx6TAbeTCU-4e8fySOlrE5mAtT60M0H9zQM-J6jQ5e-WL7UjT02J61TZtx4Lu3yTqXnRxBvfe9UY9Cph5_dsIWKGFZVy7T8-DK9pXGKy-kdRzbcwyQNFMYo6IubnEd-1wls_Ft1HtQl1ydRhFDDEI5ac9ntu1-_yXx-N8dfUjuL3kq3amB9YjcCuPH5N4V9cInpBoETBvGWaYVftOfoDgrNWNP3WJWzsrzkQOOT8uCGgq7-nJiMU-L2lFp4ipLR2fVKcwstA4xEJ7aBZ2YauTxfnCHBSZz0UZm9ik57H368XE_WRZwSJzA6DmXBmd5UeRWwCF3TAUnVLCeMdWxomtkCCGX0hsOy1wqcp-m3jDOjPHSOseekbVxOQ4bhHZ9HrJCcmWl5946wxwQKSU7nPtCCNki7y9mUbulujkW2TjVtS5zpmEYtdFxGFtkqzGualGP683eRTg0NmZygnFwSuhfw8-6c_BzmO4O-hoevrmCl6ZBphT0RqQt8vYCQBrcF__JmHEo51PYeTGWKcygvtGmCywZmFuLPK_Rd_kEJmCPl8OVDxFDN_VH93cHO_HsxT9ZvyF3vu319MGX4deX5G6G9UBiNOMrsjabzMNrYGUzuxl97w-4kjNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+properties+and+cytotoxicity+of+a+resorbable+bioactive+implant+prepared+by+rapid+prototyping+technique&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=El-Ghannam%2C+A&rft.au=Hart%2C+A&rft.au=White%2C+D&rft.au=Cunningham%2C+L&rft.date=2013-10-01&rft.issn=1549-3296&rft.volume=101A&rft.issue=10&rft.spage=2851&rft.epage=2861&rft_id=info:doi/10.1002%2Fjbm.a.34585&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |