Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique

Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxi...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 101; no. 10; pp. 2851 - 2861
Main Authors El-Ghannam, Ahmed, Hart, Amanda, White, Dean, Cunningham, Larry
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 01.10.2013
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica‐calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3‐h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1–356 μm. The SCPC implant prepared at 900°C was loaded with rh‐BMP‐2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell‐mediated graft resorption and prohibited any accumulation of the material in the body organs. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 2851‐2861, 2013.
AbstractList Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica‐calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3‐h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1–356 μm. The SCPC implant prepared at 900°C was loaded with rh‐BMP‐2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell‐mediated graft resorption and prohibited any accumulation of the material in the body organs. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 2851‐2861, 2013.
Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocom-posite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800 degree C, 850 degree C, or 900 degree C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900 degree C measuring (s = 15.326 plus or minus 2.95 MPa and E = 1095 plus or minus 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 nm. The SCPC implant prepared at 900 degree C was loaded with rhBMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs.
Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs.
Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs.Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs.
Author Cunningham, Larry
Hart, Amanda
White, Dean
El-Ghannam, Ahmed
Author_xml – sequence: 1
  givenname: Ahmed
  surname: El-Ghannam
  fullname: El-Ghannam, Ahmed
  email: arelgha@uncc.edu
  organization: Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, North Carolina 28223, Charlotte
– sequence: 2
  givenname: Amanda
  surname: Hart
  fullname: Hart, Amanda
  organization: Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, North Carolina 28223, Charlotte
– sequence: 3
  givenname: Dean
  surname: White
  fullname: White, Dean
  organization: Department of Oral Pathology, University of Kentucky, Kentucky 40506, Lexington
– sequence: 4
  givenname: Larry
  surname: Cunningham
  fullname: Cunningham, Larry
  organization: Department of Oral and Maxillofacial Surgery, University of Kentucky, Kentucky 40506, Lexington
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27734351$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23504981$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URD_gxB35goSEssRx7CTHtoJCtVsufBytsTMBlyRObS80_z0Ouy0SEojTzOH33ozeOyYHoxuRkKcsX7E8L15d62EFK16KWjwgR0yIIisbKQ6WvWwyXjTykByHcJ1gmYviETksuMjLpmZHZNqg-QqjNdDTybsJfbQYKIwtNXN00d1aY-NMXUeBegzOa9A9Um0dmGi_I7XD1MMYkxon8NhSPVMPk20Xv-QwT3b8QmM6M9qbLT4mDzvoAz7ZzxPy8c3rD-dvs_X7i3fnp-vMCC5FZhgaXXZdrUUateEVGlGhbjmvci0akIhYS9lCWUnORN0y1gIvOUArtTH8hLzY-aYv0tkQ1WCDwT79im4bFCt5UxSyydn_oLyoUnIL-myPbvWArZq8HcDP6i7QBDzfAxBSpp2H0djwm6uq9KNYuJc7zngXgsfuHmG5WmpVqVYF6letiWZ_0KkUiNaN0YPt_6Ipdpoftsf5X_bq8mxzeifKdiIbIt7ei8B_U7LilVCfry5Uvv50xc42l0ryny5xxso
CitedBy_id crossref_primary_10_1002_jbm_a_35092
crossref_primary_10_4028_www_scientific_net_KEM_829_40
crossref_primary_10_1002_jbm_a_37167
crossref_primary_10_1002_jbm_a_36287
crossref_primary_10_1016_j_joms_2015_07_004
crossref_primary_10_1007_s10439_016_1678_3
crossref_primary_10_1007_s10856_021_06585_9
crossref_primary_10_3390_ma13071500
crossref_primary_10_1115_1_4046248
crossref_primary_10_37349_emed_2024_00203
crossref_primary_10_1155_2016_1282531
crossref_primary_10_1186_s40824_018_0146_6
Cites_doi 10.1007/s10856-010-4121-6
10.1002/jbm.820040309
10.1016/S0142-9612(98)00141-0
10.1016/0142-9612(96)85754-1
10.1016/0142-9612(93)90151-Q
10.1002/jbm.a.30654
10.1016/S0901-5027(05)80698-8
10.1002/jbm.a.30517
10.2106/00004623-199604000-00002
10.1002/jbm.a.32705
10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K
10.1097/00003086-198712000-00003
10.1002/jbm.b.30675
10.1016/j.actbio.2011.09.008
10.1002/jbm.a.30022
10.1002/jbm.1261
10.1002/jbm.a.33228
10.1002/1097-4636(20000905)51:3<491::AID-JBM25>3.0.CO;2-1
10.1016/j.biomaterials.2006.01.031
10.1016/j.joms.2006.10.031
10.1002/jbm.b.30209
10.1002/jbm.b.10068
10.1089/end.1997.11.391
10.3109/17453679709004000
10.1016/S0142-9612(00)00030-2
10.1093/oxfordjournals.jbchem.a021589
10.1016/S0006-8993(02)02878-0
10.1002/jbm.820280503
10.1002/jbm.a.20074
10.1016/S0142-9612(00)00290-8
10.2106/00004623-200004000-00002
10.1002/jbm.a.30128
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company
2014 INIST-CNRS
Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1002/jbm.a.34585
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef
Engineering Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 2861
ExternalDocumentID 23504981
27734351
10_1002_jbm_a_34585
JBMA34585
ark_67375_WNG_0LVN1BMJ_6
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c5365-c1ecb4ff8b5b4f8c37ec57ebd3370b59a6eee866da4763158d11da343aad6bcc3
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Thu Aug 07 15:17:05 EDT 2025
Fri Jul 11 02:58:08 EDT 2025
Thu Apr 03 07:00:55 EDT 2025
Mon Jul 21 09:10:52 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
Tue Jul 01 01:11:35 EDT 2025
Wed Jan 22 16:41:51 EST 2025
Wed Oct 30 09:48:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Biological properties
Implant
Tissue engineering
Bone graft
Mechanical properties
Resorption
Cytotoxicity
Calcium phosphate
Silica
Biological activity
Calcium Phosphates
Rapid technique
silica-calcium phosphate
Rapid prototyping
Biomaterial
Biomedical engineering
resorption
tissue engineering
bone graft
cytotoxicity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5365-c1ecb4ff8b5b4f8c37ec57ebd3370b59a6eee866da4763158d11da343aad6bcc3
Notes istex:174F3002BAFAC3D710126DE24B7FA7C610043EFF
ArticleID:JBMA34585
ark:/67375/WNG-0LVN1BMJ-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23504981
PQID 1433270521
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1439226901
proquest_miscellaneous_1433270521
pubmed_primary_23504981
pascalfrancis_primary_27734351
crossref_primary_10_1002_jbm_a_34585
crossref_citationtrail_10_1002_jbm_a_34585
wiley_primary_10_1002_jbm_a_34585_JBMA34585
istex_primary_ark_67375_WNG_0LVN1BMJ_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2013
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: October 2013
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: United States
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Hofmann AA, Bloebaum RD, Bachus KN. Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans. Acta Orthop Scand 1997;68:161-166.
Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 1970;4:433-456.
El-Ghannam A, Karima A, Omran M. Nano porous delivery system to treat osteomyelitis and regenerate bone: Gentamicin release kinetics and bactericidal effect. J Biomed Mater Res 2005;73B:277-284.
Hicks DC, Judkins AR, Sickel JZ, Rosier RN, Puzas JE, O'Keefe RJ. Granular histiocytosis of pelvic lymph nodes following total hip arthroplasty: The presence of wear debris, cytokine production, and immunologically activated macrophages. J Bone Joint Surg Am 1996;78:482-496.
Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical appilcations of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-102.
El-Ghannam A, Cunningham L, Pienkowski D, Hart A. Bone engineering of the ulna of rabbit. J Oral Maxillofac Surg 2007;65:1495-1502.
Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA. Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res 1994;28:537-544.
Kohane DS, Plesnila N, Thomas SS, Le D, Langer R, Moskowitz MA. Lipid-sugar particles for intracranial drug delivery: Safety and biocompatibility. Brain Res 2002;946:206-213.
M, Nagai N, Dohi Y, Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J Biomed Mater Res 1998;39:190-199.
Kohane DS, Lipp M, Kinney R, Anthony D, Lotan N, Langer R. Biocompatibility of lipid-protein-sugar particles containing bupivacaine in the epineurium. J Biomed Mater Res 2002;59:450-459.
Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Rel Res 1987;225:7-16.
Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 2012;8:341-349.
El-Ghannam A, Ning CQ. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. J Biomed Mater Res Part A 2006;76:386-397.
Schliephake H, Neukam FW, Klosa D. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. Int J Oral Maxillofac Surg 1991;20:53-58.
Anderson JM. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur J Pharm Biopharm 1994;40:1-8.
El-Ghannam A. Advanced bioceramic composite for bone tissue engineering: Design principles and structure-bioactivity relationship. J Biomed Mater Res 2004;69A:490-501.
Gonzalez IA, Wong X, DeAlmeida D, Yurko R, Watkins S, Islam K, Montelaro RC, El-Ghannam A, Mietzner TA. Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices. Nat Proc 2008:6-11.
Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res 2000;52:491-499.
Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000;21:1291-1298.
Simon JA, Ricci JL, Cesare PE. Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies. Am J Orthop 1997;26:665-671.
Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP. Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres. Biomaterials 1993;14:470-478.
Tancred DC, McCormack BAO, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 1998;19:2303-2311.
El-Ghannam A, Malkawi A, Kia J, Wyan H, Allen LD, Dréau D. A novel anticancer drug delivery system to treat breast tumors. J Mater Sci: Mater Med 2010;21:2701-2710.
El-Ghannam A, Jahed K. Resorbable bioactive ceramic for treatment of bone infection. J Biomed Mater Res Part A 2010;94:308-316.
Gupta G, El-Ghannam A, Kirakodu S, Khraisheh M, Zbib H. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite. J Biomed Mater Res Part B: Appl Biomater 2007;81B:387-396.
Talja M, Valimaa T, Tamela T, Petas A, Tormala P. Bioabsorbable and biodegradable stents in urology. J Endourol 1997;11:391-397.
Howling GI, Sakoda H, Antonarulrajah A, Marrs H, Stewart TD, Appleyard S, Rand B, Fisher J, Ingham E. Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints. J Biomed Mater Res Part B: Appl Biomater 2003;67B:758-764.
Vedantham K, Swet JH, Iain MH, El-Ghannam A. A bioresorbable controlled release drug delivery system to treat liver cancer. J Biomed Mater Res Part A 2012;100A:432-440.
El-Ghannam A, Ning CQ, Mehta J. Cyclosilicate nanocomposite: A novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J Biomed Mater Res 2004;71A:377-390.
Daniel S. Kohane, Julie Y. Tse, Yoon Yeo, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res Part A 2006;77A:351-361.
Colombo G, Langer R, Kohane DS. Effect of excipient composition on the biocompatibility of bupivacaine-containing microparticles at the sciatic nerve. J Biomed Mater Res 2004;68A:651-659.
Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP induced osteogenesis. J Biochem (Tokyo) 1997;121:317-324.
Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202-212.teogenesis. J Biochem (Tokyo) 1997;121:317-324.
El-Ghannam A, Ricci K, Malkawi A, Jahed K, Vedantham K, Wyan H, Allen LD, Dréau D. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci: Mater Med 2010;21:2701-2710.
Ohtsubo S, Matsuda M, Takekawa M. Angiogenesis after sintered bone implantation in rat parietal bone. Histol. Histopathol 2003;18:153-163.
Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S. Porositygraded hydroxyapatite ceramics to replace natural bone. Biomaterials 2001;22:1365-1370.
Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and adominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000;82:457-477.
Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006;27:3230-3237.
2002; 59
1996; 17
2006; 76
2004; 71A
1987; 225
2000; 21
1997; 26
2003; 67B
2006; 77A
1997; 68
2008
2012; 100A
2004; 68A
2003; 18
1994; 28
2001; 22
1970; 4
1994; 40
1996; 78
2005; 73B
1993; 14
2010; 21
1998; 39
1998; 19
1997; 11
2006; 27
1991; 20
1997; 121
2000; 52
1984
2000; 82
2002; 946
2007; 81B
2007; 65
2004; 69A
2010; 94
2012; 8
e_1_2_6_32_1
e_1_2_6_31_1
Gonzalez IA (e_1_2_6_30_1) 2008
Simon JA (e_1_2_6_14_1) 1997; 26
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
Ripamonti U (e_1_2_6_10_1) 1997; 121
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Anderson JM (e_1_2_6_18_1) 1994; 40
Ohtsubo S (e_1_2_6_38_1) 2003; 18
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Goldberg VM (e_1_2_6_37_1) 1987; 225
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Wise DL (e_1_2_6_11_1) 1984
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Anderson JM. In vivo biocompatibility of implantable delivery systems and biomaterials. Eur J Pharm Biopharm 1994;40:1-8.
– reference: Hicks DC, Judkins AR, Sickel JZ, Rosier RN, Puzas JE, O'Keefe RJ. Granular histiocytosis of pelvic lymph nodes following total hip arthroplasty: The presence of wear debris, cytokine production, and immunologically activated macrophages. J Bone Joint Surg Am 1996;78:482-496.
– reference: Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res 2000;52:491-499.
– reference: Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000;21:1291-1298.
– reference: El-Ghannam A, Karima A, Omran M. Nano porous delivery system to treat osteomyelitis and regenerate bone: Gentamicin release kinetics and bactericidal effect. J Biomed Mater Res 2005;73B:277-284.
– reference: Schliephake H, Neukam FW, Klosa D. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. Int J Oral Maxillofac Surg 1991;20:53-58.
– reference: El-Ghannam A, Ning CQ, Mehta J. Cyclosilicate nanocomposite: A novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J Biomed Mater Res 2004;71A:377-390.
– reference: Colombo G, Langer R, Kohane DS. Effect of excipient composition on the biocompatibility of bupivacaine-containing microparticles at the sciatic nerve. J Biomed Mater Res 2004;68A:651-659.
– reference: Gupta G, El-Ghannam A, Kirakodu S, Khraisheh M, Zbib H. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite. J Biomed Mater Res Part B: Appl Biomater 2007;81B:387-396.
– reference: Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP induced osteogenesis. J Biochem (Tokyo) 1997;121:317-324.
– reference: Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202-212.teogenesis. J Biochem (Tokyo) 1997;121:317-324.
– reference: El-Ghannam A, Malkawi A, Kia J, Wyan H, Allen LD, Dréau D. A novel anticancer drug delivery system to treat breast tumors. J Mater Sci: Mater Med 2010;21:2701-2710.
– reference: Tancred DC, McCormack BAO, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 1998;19:2303-2311.
– reference: Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP. Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres. Biomaterials 1993;14:470-478.
– reference: El-Ghannam A. Advanced bioceramic composite for bone tissue engineering: Design principles and structure-bioactivity relationship. J Biomed Mater Res 2004;69A:490-501.
– reference: El-Ghannam A, Ning CQ. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. J Biomed Mater Res Part A 2006;76:386-397.
– reference: Simon JA, Ricci JL, Cesare PE. Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies. Am J Orthop 1997;26:665-671.
– reference: Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical appilcations of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-102.
– reference: M, Nagai N, Dohi Y, Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J Biomed Mater Res 1998;39:190-199.
– reference: Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S. Porositygraded hydroxyapatite ceramics to replace natural bone. Biomaterials 2001;22:1365-1370.
– reference: Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 2012;8:341-349.
– reference: Talja M, Valimaa T, Tamela T, Petas A, Tormala P. Bioabsorbable and biodegradable stents in urology. J Endourol 1997;11:391-397.
– reference: Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and adominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000;82:457-477.
– reference: Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Rel Res 1987;225:7-16.
– reference: Howling GI, Sakoda H, Antonarulrajah A, Marrs H, Stewart TD, Appleyard S, Rand B, Fisher J, Ingham E. Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints. J Biomed Mater Res Part B: Appl Biomater 2003;67B:758-764.
– reference: Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006;27:3230-3237.
– reference: Kohane DS, Plesnila N, Thomas SS, Le D, Langer R, Moskowitz MA. Lipid-sugar particles for intracranial drug delivery: Safety and biocompatibility. Brain Res 2002;946:206-213.
– reference: El-Ghannam A, Jahed K. Resorbable bioactive ceramic for treatment of bone infection. J Biomed Mater Res Part A 2010;94:308-316.
– reference: Vedantham K, Swet JH, Iain MH, El-Ghannam A. A bioresorbable controlled release drug delivery system to treat liver cancer. J Biomed Mater Res Part A 2012;100A:432-440.
– reference: Kohane DS, Lipp M, Kinney R, Anthony D, Lotan N, Langer R. Biocompatibility of lipid-protein-sugar particles containing bupivacaine in the epineurium. J Biomed Mater Res 2002;59:450-459.
– reference: Daniel S. Kohane, Julie Y. Tse, Yoon Yeo, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res Part A 2006;77A:351-361.
– reference: El-Ghannam A, Ricci K, Malkawi A, Jahed K, Vedantham K, Wyan H, Allen LD, Dréau D. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci: Mater Med 2010;21:2701-2710.
– reference: Ohtsubo S, Matsuda M, Takekawa M. Angiogenesis after sintered bone implantation in rat parietal bone. Histol. Histopathol 2003;18:153-163.
– reference: El-Ghannam A, Cunningham L, Pienkowski D, Hart A. Bone engineering of the ulna of rabbit. J Oral Maxillofac Surg 2007;65:1495-1502.
– reference: Hofmann AA, Bloebaum RD, Bachus KN. Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans. Acta Orthop Scand 1997;68:161-166.
– reference: Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA. Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res 1994;28:537-544.
– reference: Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 1970;4:433-456.
– reference: Gonzalez IA, Wong X, DeAlmeida D, Yurko R, Watkins S, Islam K, Montelaro RC, El-Ghannam A, Mietzner TA. Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices. Nat Proc 2008:6-11.
– volume: 28
  start-page: 537
  year: 1994
  end-page: 544
  article-title: Mineral apposition rates of human cancellous bone at the interface of porous coated implants
  publication-title: J Biomed Mater Res
– volume: 69A
  start-page: 490
  year: 2004
  end-page: 501
  article-title: Advanced bioceramic composite for bone tissue engineering: Design principles and structure‐bioactivity relationship
  publication-title: J Biomed Mater Res
– volume: 67B
  start-page: 758
  year: 2003
  end-page: 764
  article-title: Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints
  publication-title: J Biomed Mater Res Part B: Appl Biomater
– volume: 59
  start-page: 450
  year: 2002
  end-page: 459
  article-title: Biocompatibility of lipid‐protein‐sugar particles containing bupivacaine in the epineurium
  publication-title: J Biomed Mater Res
– volume: 78
  start-page: 482
  year: 1996
  end-page: 496
  article-title: Granular histiocytosis of pelvic lymph nodes following total hip arthroplasty: The presence of wear debris, cytokine production, and immunologically activated macrophages
  publication-title: J Bone Joint Surg Am
– volume: 65
  start-page: 1495
  year: 2007
  end-page: 1502
  article-title: Bone engineering of the ulna of rabbit
  publication-title: J Oral Maxillofac Surg
– volume: 14
  start-page: 470
  year: 1993
  end-page: 478
  article-title: Biodegradation and brain tissue reaction to poly(D,L‐lactide‐co‐glycolide) microspheres
  publication-title: Biomaterials
– volume: 8
  start-page: 341
  year: 2012
  end-page: 349
  article-title: Silicate bioceramics induce angiogenesis during bone regeneration
  publication-title: Acta Biomater
– volume: 81B
  start-page: 387
  year: 2007
  end-page: 396
  article-title: Enhancement of osteoblast gene expression by mechanically compatible porous Si‐rich nanocomposite
  publication-title: J Biomed Mater Res Part B: Appl Biomater
– volume: 18
  start-page: 153
  year: 2003
  end-page: 163
  article-title: Angiogenesis after sintered bone implantation in rat parietal bone. Histol
  publication-title: Histopathol
– volume: 21
  start-page: 2701
  year: 2010
  end-page: 2710
  article-title: A novel anticancer drug delivery system to treat breast tumors
  publication-title: J Mater Sci: Mater Med
– volume: 21
  start-page: 2701
  year: 2010
  end-page: 2710
  article-title: A ceramic‐based anticancer drug delivery system to treat breast cancer
  publication-title: J Mater Sci: Mater Med
– volume: 71A
  start-page: 377
  year: 2004
  end-page: 390
  article-title: Cyclosilicate nanocomposite: A novel resorbable bioactive tissue engineering scaffold for BMP and bone‐marrow cell delivery
  publication-title: J Biomed Mater Res
– volume: 94
  start-page: 308
  year: 2010
  end-page: 316
  article-title: Resorbable bioactive ceramic for treatment of bone infection
  publication-title: J Biomed Mater Res Part A
– volume: 20
  start-page: 53
  year: 1991
  end-page: 58
  article-title: Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study
  publication-title: Int J Oral Maxillofac Surg
– volume: 52
  start-page: 491
  year: 2000
  end-page: 499
  article-title: Effects of geometry of hydroxyapatite as a cell substratum in BMP‐induced ectopic bone formation
  publication-title: J Biomed Mater Res
– volume: 22
  start-page: 1365
  year: 2001
  end-page: 1370
  article-title: Porositygraded hydroxyapatite ceramics to replace natural bone
  publication-title: Biomaterials
– volume: 19
  start-page: 2303
  year: 1998
  end-page: 2311
  article-title: A synthetic bone implant macroscopically identical to cancellous bone
  publication-title: Biomaterials
– volume: 27
  start-page: 3230
  year: 2006
  end-page: 3237
  article-title: Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics
  publication-title: Biomaterials
– volume: 121
  start-page: 317
  year: 1997
  end-page: 324
  article-title: Pore size of porous hydroxyapatite as the cell‐substratum controls BMP induced osteogenesis
  publication-title: J Biochem (Tokyo)
– volume: 11
  start-page: 391
  year: 1997
  end-page: 397
  article-title: Bioabsorbable and biodegradable stents in urology
  publication-title: J Endourol
– volume: 26
  start-page: 665
  year: 1997
  end-page: 671
  article-title: Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies
  publication-title: Am J Orthop
– volume: 946
  start-page: 206
  year: 2002
  end-page: 213
  article-title: Lipid‐sugar particles for intracranial drug delivery: Safety and biocompatibility
  publication-title: Brain Res
– volume: 68
  start-page: 161
  year: 1997
  end-page: 166
  article-title: Progression of human bone ingrowth into porous‐coated implants. Rate of bone ingrowth in humans
  publication-title: Acta Orthop Scand
– volume: 40
  start-page: 1
  year: 1994
  end-page: 8
  article-title: In vivo biocompatibility of implantable delivery systems and biomaterials
  publication-title: Eur J Pharm Biopharm
– volume: 100A
  start-page: 432
  year: 2012
  end-page: 440
  article-title: A bioresorbable controlled release drug delivery system to treat liver cancer
  publication-title: J Biomed Mater Res Part A
– volume: 21
  start-page: 1291
  year: 2000
  end-page: 1298
  article-title: Osteoconduction at porous hydroxyapatite with various pore configurations
  publication-title: Biomaterials
– volume: 77A
  start-page: 351
  year: 2006
  end-page: 361
  article-title: Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum
  publication-title: J Biomed Mater Res Part A
– volume: 39
  start-page: 190
  year: 1998
  end-page: 199
  article-title: BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis
  publication-title: J Biomed Mater Res
– start-page: 3
  year: 1984
– volume: 17
  start-page: 93
  year: 1996
  end-page: 102
  article-title: Sterilization, toxicity, biocompatibility and clinical appilcations of polylactic acid/polyglycolic acid copolymers
  publication-title: Biomaterials
– volume: 225
  start-page: 7
  year: 1987
  end-page: 16
  article-title: Natural history of autografts and allografts
  publication-title: Clin Orthop Rel Res
– volume: 4
  start-page: 433
  year: 1970
  end-page: 456
  article-title: Potential of ceramic materials as permanently implantable skeletal prostheses
  publication-title: J Biomed Mater Res
– volume: 76
  start-page: 386
  year: 2006
  end-page: 397
  article-title: Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro
  publication-title: J Biomed Mater Res Part A
– volume: 121
  start-page: 317
  year: 1997
  end-page: 324
  article-title: The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202–212.teogenesis
  publication-title: J Biochem (Tokyo)
– volume: 68A
  start-page: 651
  year: 2004
  end-page: 659
  article-title: Effect of excipient composition on the biocompatibility of bupivacaine‐containing microparticles at the sciatic nerve
  publication-title: J Biomed Mater Res
– start-page: 6
  year: 2008
  end-page: 11
  article-title: Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices
  publication-title: Nat Proc
– volume: 82
  start-page: 457
  year: 2000
  end-page: 477
  article-title: Dissemination of wear particles to the liver, spleen, and adominal lymph nodes of patients with hip or knee replacement
  publication-title: J Bone Joint Surg Am
– volume: 73B
  start-page: 277
  year: 2005
  end-page: 284
  article-title: Nano porous delivery system to treat osteomyelitis and regenerate bone: Gentamicin release kinetics and bactericidal effect
  publication-title: J Biomed Mater Res
– ident: e_1_2_6_31_1
  doi: 10.1007/s10856-010-4121-6
– volume: 18
  start-page: 153
  year: 2003
  ident: e_1_2_6_38_1
  article-title: Angiogenesis after sintered bone implantation in rat parietal bone. Histol
  publication-title: Histopathol
– ident: e_1_2_6_5_1
  doi: 10.1002/jbm.820040309
– start-page: 3
  volume-title: Biopolymeric Controlled Release Systems
  year: 1984
  ident: e_1_2_6_11_1
– ident: e_1_2_6_36_1
  doi: 10.1016/S0142-9612(98)00141-0
– ident: e_1_2_6_13_1
  doi: 10.1016/0142-9612(96)85754-1
– ident: e_1_2_6_15_1
  doi: 10.1016/0142-9612(93)90151-Q
– ident: e_1_2_6_21_1
  doi: 10.1002/jbm.a.30654
– ident: e_1_2_6_6_1
  doi: 10.1016/S0901-5027(05)80698-8
– volume: 26
  start-page: 665
  year: 1997
  ident: e_1_2_6_14_1
  article-title: Bioresorbabale fracture fixation in orthopedics: A comprehensive review. I. Basic science and preclinical studies
  publication-title: Am J Orthop
– ident: e_1_2_6_41_1
  doi: 10.1002/jbm.a.30517
– ident: e_1_2_6_24_1
  doi: 10.2106/00004623-199604000-00002
– ident: e_1_2_6_29_1
  doi: 10.1002/jbm.a.32705
– ident: e_1_2_6_8_1
  doi: 10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K
– volume: 225
  start-page: 7
  year: 1987
  ident: e_1_2_6_37_1
  article-title: Natural history of autografts and allografts
  publication-title: Clin Orthop Rel Res
  doi: 10.1097/00003086-198712000-00003
– ident: e_1_2_6_35_1
  doi: 10.1002/jbm.b.30675
– volume: 40
  start-page: 1
  year: 1994
  ident: e_1_2_6_18_1
  article-title: In vivo biocompatibility of implantable delivery systems and biomaterials
  publication-title: Eur J Pharm Biopharm
– ident: e_1_2_6_39_1
  doi: 10.1016/j.actbio.2011.09.008
– volume: 121
  start-page: 317
  year: 1997
  ident: e_1_2_6_10_1
  article-title: The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12:202–212.teogenesis
  publication-title: J Biochem (Tokyo)
– ident: e_1_2_6_25_1
  doi: 10.1002/jbm.a.30022
– ident: e_1_2_6_17_1
  doi: 10.1002/jbm.1261
– start-page: 6
  year: 2008
  ident: e_1_2_6_30_1
  article-title: Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices
  publication-title: Nat Proc
– ident: e_1_2_6_32_1
  doi: 10.1002/jbm.a.33228
– ident: e_1_2_6_9_1
  doi: 10.1002/1097-4636(20000905)51:3<491::AID-JBM25>3.0.CO;2-1
– ident: e_1_2_6_34_1
  doi: 10.1016/j.biomaterials.2006.01.031
– ident: e_1_2_6_26_1
  doi: 10.1016/j.joms.2006.10.031
– ident: e_1_2_6_27_1
  doi: 10.1002/jbm.b.30209
– ident: e_1_2_6_16_1
  doi: 10.1002/jbm.1261
– ident: e_1_2_6_22_1
  doi: 10.1002/jbm.b.10068
– ident: e_1_2_6_12_1
  doi: 10.1089/end.1997.11.391
– ident: e_1_2_6_40_1
  doi: 10.1007/s10856-010-4121-6
– ident: e_1_2_6_3_1
  doi: 10.3109/17453679709004000
– ident: e_1_2_6_2_1
  doi: 10.1016/S0142-9612(00)00030-2
– ident: e_1_2_6_7_1
  doi: 10.1093/oxfordjournals.jbchem.a021589
– ident: e_1_2_6_19_1
  doi: 10.1016/S0006-8993(02)02878-0
– ident: e_1_2_6_4_1
  doi: 10.1002/jbm.820280503
– ident: e_1_2_6_20_1
  doi: 10.1002/jbm.a.20074
– ident: e_1_2_6_33_1
  doi: 10.1016/S0142-9612(00)00290-8
– ident: e_1_2_6_23_1
  doi: 10.2106/00004623-200004000-00002
– ident: e_1_2_6_28_1
  doi: 10.1002/jbm.a.30128
SSID ssj0026052
Score 2.152902
Snippet Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties....
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2851
SubjectTerms Animals
Biocompatible Materials - toxicity
Biological and medical sciences
Biomechanical Phenomena - drug effects
Biotechnology
Body Fluids
bone graft
Bone Morphogenetic Protein 2 - pharmacology
Calcium Phosphates - toxicity
Cell Death - drug effects
cytotoxicity
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Humans
Implants, Experimental
Industrial applications and implications. Economical aspects
Materials Testing
Medical sciences
Microscopy, Electron, Scanning
Miscellaneous
Myocardium - pathology
Orthopedic surgery
Porosity
Rabbits
Recombinant Proteins - pharmacology
resorption
silica-calcium phosphate
Silicates - toxicity
Surface Properties
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Temperature
tissue engineering
Tissue Engineering - methods
Transforming Growth Factor beta - pharmacology
Ulna - drug effects
Ulna - pathology
Wound Healing - drug effects
Title Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique
URI https://api.istex.fr/ark:/67375/WNG-0LVN1BMJ-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34585
https://www.ncbi.nlm.nih.gov/pubmed/23504981
https://www.proquest.com/docview/1433270521
https://www.proquest.com/docview/1439226901
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucABynspVEaqOICy3cSv7LFFlGrF7gFR6M3yK9LSNomyu1KXX8-Mk6ZdVFWCUyJlnMj2jPONPfMNIXtpWoCeGJVw42TCCwMmJXKZKAP6kamMS4fZyNOZPD7hk1Nx2sXmYC5Myw_Rb7ihZcT1Gg3c2MX-NWnoL3sxNEPGAe_CCozRWgiJvvXkUQjU41kneEAJy8ayy86DJ_s32m78j-7j0F5ifKRZwBAVbW2L28DnJpaNP6Ojx23F1UXkMMQYlLPhammH7vdfDI__3c9t8qiDqfSg1asn5F4on5KHN8gLn5F6GjBrGCeZ1ril3yA3KzWlp269rJbV5dwBxKdVQQ0Fp75qLKZpUTuvTFxk6fyiPoeJhdYhxsFTu6aNqece3wdvWGMuF-1ZZp-Tk6PP3z8dJ139hsQJDJ5zaXCWF0VuBVxyx1RwQgXrGVMjK8ZGhhByKb3hsMqlIvdp6g3jzBgvrXPsBdkqqzK8InTs85AVkisrPffWGeYARyk54twXQsgB-XA1i9p15OZYY-Nct7TMmYZh1EbHYRyQvV64bjk9bhd7H9WhlzHNGYbBKaF_zr7o0dcfs_RwOtHw8d0NfekbZEpBb0Q6IO-uFEiD9eKRjClDtVqA48VYpjCB-k6ZMYBkAG4D8rLVvusvMAEuXg5PPkYduqs_enI4PYh3r_9Jeoc8yLAGSIxgfEO2ls0qvAUktrS70eD-AHh-MH0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BewAO5U3DoyxSxQHkNPa-nGOLKCEkOaAWelvty1Joa0dpIjX8embWidugqhKcbMmztnZ3Zv3N7sw3hOymaQF6YlTCjZMJLwyYlMhlogzoR6YyLh1mIw9HsnfM-yfiZLnhhrkwNT9Es-GGlhHXazRw3JDeu2IN_WXP26bNOADeu2QTa3pHl-p7Qx-FUD2edoIPlLCsK5f5efBk71rjtT_SJg7uJUZImgsYpKKubnET_FxHs_F3dPiQ6FVH6iiU0_Z8Ztvu918cj__f00dka4lU6X6tWo_JnVA-IQ-u8Rc-JZNhwMRhnGc6wV39KdKzUlN66hazalZdjh2gfFoV1FDw66upxUwtaseViessHZ9PzmBuoXWIofDULujUTMYe3wdvWGA6F22IZp-R48PPR596ybKEQ-IExs-5NDjLiyK3Ai65Yyo4oYL1jKmOFV0jQwi5lN5wWOhSkfs09YZxZoyX1jn2nGyUVRm2Ce36PGSF5MpKz711hjmAUkp2OPeFELJFPqymUbslvzmW2TjTNTNzpmEYtdFxGFtktxGe1LQeN4u9j_rQyJjpKUbCKaF_jr7ozuDHKD0Y9jV8fGdNYZoGmVLQG5G2yLuVBmkwYDyVMWWo5hfgezGWKcyhvlWmCzgZsFuLvKjV7-oLTICXl8OTj1GJbuuP7h8M9-Pdy3-Sfkvu9Y6GAz34Ovr2itzPsCRIDGh8TTZm03l4A8BsZnei9f0BVIM0mA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5BKyF44IaGoyxSxQPIaey9nMeWEkpoIoQo9G21l6X0iK0cUsOvZ2adug2qKsGTLXnW1u5-s_7WnvmGkK00LQAnRiXcOJnwwoBLiVwmygA-MpVx6TAbeTCU-4e8fySOlrE5mAtT60M0H9zQM-J6jQ5e-WL7UjT02J61TZtx4Lu3yTqXnRxBvfe9UY9Cph5_dsIWKGFZVy7T8-DK9pXGKy-kdRzbcwyQNFMYo6IubnEd-1wls_Ft1HtQl1ydRhFDDEI5ac9ntu1-_yXx-N8dfUjuL3kq3amB9YjcCuPH5N4V9cInpBoETBvGWaYVftOfoDgrNWNP3WJWzsrzkQOOT8uCGgq7-nJiMU-L2lFp4ipLR2fVKcwstA4xEJ7aBZ2YauTxfnCHBSZz0UZm9ik57H368XE_WRZwSJzA6DmXBmd5UeRWwCF3TAUnVLCeMdWxomtkCCGX0hsOy1wqcp-m3jDOjPHSOseekbVxOQ4bhHZ9HrJCcmWl5946wxwQKSU7nPtCCNki7y9mUbulujkW2TjVtS5zpmEYtdFxGFtkqzGualGP683eRTg0NmZygnFwSuhfw8-6c_BzmO4O-hoevrmCl6ZBphT0RqQt8vYCQBrcF__JmHEo51PYeTGWKcygvtGmCywZmFuLPK_Rd_kEJmCPl8OVDxFDN_VH93cHO_HsxT9ZvyF3vu319MGX4deX5G6G9UBiNOMrsjabzMNrYGUzuxl97w-4kjNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+properties+and+cytotoxicity+of+a+resorbable+bioactive+implant+prepared+by+rapid+prototyping+technique&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=El-Ghannam%2C+A&rft.au=Hart%2C+A&rft.au=White%2C+D&rft.au=Cunningham%2C+L&rft.date=2013-10-01&rft.issn=1549-3296&rft.volume=101A&rft.issue=10&rft.spage=2851&rft.epage=2861&rft_id=info:doi/10.1002%2Fjbm.a.34585&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon