Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale
Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow r...
Saved in:
Published in | AIChE journal Vol. 62; no. 1; pp. 166 - 179 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Blackwell Publishing Ltd
01.01.2016
American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0001-1541 1547-5905 |
DOI | 10.1002/aic.15072 |
Cover
Loading…
Abstract | Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent. © 2015 American Institute of Chemical Engineers AIChE J, 62: 166–179, 2016 |
---|---|
AbstractList | Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent. copyright 2015 American Institute of Chemical Engineers AIChE J, 62: 166-179, 2016 Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent. © 2015 American Institute of Chemical Engineers AIChE J, 62: 166–179, 2016 Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent. |
Author | Shah, Nilay Sharifzadeh, Mahdi |
Author_xml | – sequence: 1 givenname: Mahdi surname: Sharifzadeh fullname: Sharifzadeh, Mahdi email: mahdi@imperial.ac.uk organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering (CPSE), Imperial College London, U.K., SW7 2AZ, London – sequence: 2 givenname: Nilay surname: Shah fullname: Shah, Nilay organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering (CPSE), Imperial College London, U.K., SW7 2AZ, London |
BookMark | eNqNkUtv1TAQhS1UJG4LC_6BJTawSOtnHLOrrvqSykOiqEvL8Z0gl8QOtkO5_74ut7CoRMXKY-s7Zzxz9tFeiAEQek3JISWEHVnvDqkkij1DKyqFaqQmcg-tCCG0qQ_0BdrP-abemOrYCqW1TX0M2Nm5LAnwkOKEg621HfE3m7GLU-8DbLDbuhHwHG8h4Xm0oeT3-Escf0IoeIY0xDTZ4OBeMNvkczW1BduAfdgsuSRfDbOzI7xEzwc7Znj1cB6gr6cnV-vz5vLT2cX6-LJxkrescQMRUlutBaG0F5KzrtfAN-1AOBUKHMDQ98q1nBLewiCcprLvFLSKA2WaH6C3O985xR8L5GImnx2M9e8Ql2xop1RHKRXdf6CECKVY21b0zSP0Ji4p1EEM1XXvTPJOPkkpKYWufXml3u0ol2LOCQYzJz_ZtDWUmPs4TY3T_I6zskePWOeLLT6Gkqwfn1Lc-hG2_7Y2xxfrP4pmp_C5wK-_Cpu-m7pUJc31xzMjTjn5fNV-MIzfATuFwH4 |
CODEN | AICEAC |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2015_11_017 crossref_primary_10_1016_j_apenergy_2018_10_087 crossref_primary_10_3390_pr7060366 crossref_primary_10_1016_j_applthermaleng_2020_116287 crossref_primary_10_3390_en15239226 crossref_primary_10_1002_aic_15151 crossref_primary_10_3390_pr7060364 crossref_primary_10_1039_C9EE01526D crossref_primary_10_1016_j_jclepro_2023_137776 crossref_primary_10_1016_j_apenergy_2016_11_010 crossref_primary_10_1016_j_rser_2017_01_069 crossref_primary_10_1016_j_jclepro_2018_09_115 |
Cites_doi | 10.1016/j.ijggc.2013.03.002 10.1016/j.apenergy.2014.04.066 10.1016/j.compchemeng.2012.08.009 10.1115/1.4001988 10.1016/j.fuel.2007.01.028 10.1021/ie050548k 10.1016/j.energy.2010.06.004 10.1016/j.energy.2010.11.037 10.1016/j.ijggc.2014.09.024 10.1016/j.fuel.2015.01.030 10.1016/j.compchemeng.2015.01.006 10.1016/j.compchemeng.2012.06.038 10.1016/j.applthermaleng.2008.08.010 10.1021/ie901014t 10.1016/j.ijggc.2011.10.008 10.1016/j.ijggc.2010.10.006 10.1016/j.ijggc.2013.10.003 10.1021/i200016a028 10.1016/j.ijggc.2011.10.004 10.1016/j.compchemeng.2011.12.007 10.1016/j.cherd.2011.03.003 10.1016/j.ces.2013.01.026 10.1252/jcej.1.56 10.1016/j.ijggc.2015.10.009 10.1016/j.egypro.2011.02.159 10.1016/j.cherd.2011.03.005 10.1016/j.ijggc.2012.10.013 10.1016/j.fuel.2010.10.056 10.1016/j.cherd.2013.05.007 10.1002/ceat.270160102 10.1016/j.jclepro.2015.04.129 |
ContentType | Journal Article |
Copyright | 2015 American Institute of Chemical Engineers Copyright American Institute of Chemical Engineers Jan 2016 2016 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2015 American Institute of Chemical Engineers – notice: Copyright American Institute of Chemical Engineers Jan 2016 – notice: 2016 American Institute of Chemical Engineers |
DBID | BSCLL AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI 7SU FR3 |
DOI | 10.1002/aic.15072 |
DatabaseName | Istex CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts Environmental Engineering Abstracts Engineering Research Database |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Engineering Research Database Environmental Engineering Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1547-5905 |
EndPage | 179 |
ExternalDocumentID | 3916674491 10_1002_aic_15072 AIC15072 ark_67375_WNG_4F30PT6M_2 |
Genre | article Feature |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAIHA AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEUYN AFWVQ ALVPJ AAYXX ABJIA ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7ST 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K L7M SOI 7SU FR3 |
ID | FETCH-LOGICAL-c5362-cf0459a994011b45328b9e3d6f03147eceefbb7c631036ef4c915b87e673e1293 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Jul 11 03:17:54 EDT 2025 Fri Jul 11 07:45:11 EDT 2025 Fri Jul 25 10:56:35 EDT 2025 Fri Jul 25 10:44:55 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Tue Jul 01 01:40:36 EDT 2025 Wed Jan 22 16:22:18 EST 2025 Wed Oct 30 09:47:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5362-cf0459a994011b45328b9e3d6f03147eceefbb7c631036ef4c915b87e673e1293 |
Notes | istex:A19F042F001BCDD2BCA2C78D7D7A1314EDCAA0C9 ArticleID:AIC15072 ark:/67375/WNG-4F30PT6M-2 in the session of 2 Design of CO Best Presentation during the 2014 AIChE Annual Meeting in Atlanta, GA, November 16–21, 2014. This contribution was identified by the AIChE Session Chair, Dr Athanasios Papadopoulos (Centre for Research and Technology Hellas), as the Capture Systems SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1755491113 |
PQPubID | 7879 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1877811148 proquest_miscellaneous_1800477266 proquest_journals_1907225385 proquest_journals_1755491113 crossref_primary_10_1002_aic_15072 crossref_citationtrail_10_1002_aic_15072 wiley_primary_10_1002_aic_15072_AIC15072 istex_primary_ark_67375_WNG_4F30PT6M_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | AIChE journal |
PublicationTitleAlternate | AIChE J |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers |
References | Delarue E, Martens P, D'haeseleer W. Market opportunities for power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2012;6:12-20. Sharifzadeh M, Shah, N. Comparative studies of CO2 capture solvents for gas-fired power plants: integrated modelling and pilot plant assessments. Int J Greenhouse Gas Control; in press. DOI: 10.1016/j.ijggc.2015.10.009. Sharifzadeh M. Integration of process design and control: a review. Chem Eng Res Des. 2013;91:2515-2549. Mac Dowell N, Shah N. The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation. Comput Chem Eng. 2015;74:169-183. Seader JD, Henley EJ, Roper DK. Separation Process Principles, 3rd ed. Hoboken: John Wiley & Sons, Inc., 2013. Peters MS, Timmerhaus KD, West RE. Plant Design and Economics for Chemical Engineers, 5th ed. London: McGraw-Hill Chemical Engineering Series, 2003. Lawal A, Wang M, Stephenson P, Obi O. Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation. Fuel. 2012;101:115-128. Romeo LM, Bolea I, Lara Y, Escosa JM. Optimization of intercooling compression in CO2 capture systems. Appl Therm Eng. 2009;29:1744-1751. Couper JR, Penney WR, Fair JR. Chemical Process Equipment Selection and Design, 3rd ed. Burlington: Elsevier Science, 2012. Grossmann IE. Advances in mathematical programming models for enterprise-wide optimization. Comput Chem Eng. 2012;47:2-18. Sharifzadeh M, Thornhill NF. Optimal selection of control structures using a steady-state inversely controlled process model. Comput Chem Eng. 2012;38:126-138. Ahn H, Luberti M, Liu Z, Brandani S. Process configuration studies of the amine capture process for coal-fired power plants. Int J Greenhouse Gas Control. 2013:16;29-40. Oyenekan BA, Rochelle GT. Energy performance of stripper configurations for CO2 capture by aqueous amines. Ind Eng Chem Res. 2006;45:2457-2464. gSAFT software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/gproms/options/physprops/saft/. Accessed 15 September 2015. Manzolini G, Sanchez Fernandez E, Rezvani S, Macchi E, Goetheer ELV, Vlugt TJH. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology. Appl Energy. 2015;138:546-558. Bravo JL, Rocha JA, Fair JR. A comprehensive model for the performance of columns containing structured packings. Inst Chem Eng Symp Ser. 1992;128:A489-A507. Li H, Ditaranto M, Berstad D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture. Energy. 2011;36:1124-1133. International Energy Agency (IEA). World Energy Outlook. Paris: International Energy Agency (IEA), 2014. Ulrich GD, Vasudevan PT. How to estimate utility costs. Chem Eng. 2006;113:66-69. Bravo JL, Fair JR. Generalized correlation for mass transfer in packed distillation columns. Ind Eng Chem Process Des Dev. 1982;21:162-170. Bravo JL, Rocha JA, Fair JR. Mass transfer in Gauze Packings. Hydrocarbon Process. 1985;64:56-60. Pfaff I, Oexmann J, Kather A. Optimised integration of post-combustion CO2 capture process in greenfield power plants. Energy. 2010;35:4030-4041. Chalmers H, Gibbins J. Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance. Fuel. 2007;86:2109-2123. Energy Information Administration. Electricity wholesale market. Washington DC: US Department of Energy. Available at: http://www.eia.gov/electricity/wholesale/. Accessed 15 September 2015. Weber PT. Modeling gas turbine engine performance at part-load. A Thesis for UTSR Gas Turbine Industrial Fellowship Program. Electric Power Research Institute, Southwest Research Institute, University of Wyoming. Available at: http://www.swri.org/utsr/presentations/WeberPatrickRept.pdf. Accessed 15 September 2015. Billet R, Schultes M. Predicting mass transfer in packed columns. Chem Eng Technol. 1993;16:1-9. Karimi M, Hillestad M, Svendsen HF. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chem Eng Res Des. 2011;89:1229-1236. Le Moullec Y, Neveux T, Al Azki A, Chikukwa A, Hoff KA. Process modifications for solvent-based post-combustion CO2 capture. Int J Greenhouse Gas Control. 2014;31:96-112. Karimi M, Hillestad M, Svendsen HF. Investigation of the dynamic behavior of different stripper configurations for post-combustion CO2 capture. Int J Greenhouse Gas Control. 2012;7:230-239. Sharifzadeh M, Thornhill NF. Integrated design and control using a dynamic inversely controlled process model. Comput Chem Eng. 2013:48:121-134. Advanced Model Library - Gas-Liquid Contactors (AML:GLC) software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/processbuilder/libraries/aml_glc.html. Accessed 15 September 2015. Haslbeck L, Kuehn NJ, Lewis EG, Pinkerton LL, Simpson J, Turner MJ, Varghese E, Woods MC. Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity. Revision 2. Pittsburgh, PA: National Energy Technology Laboratory (NETL). Report number DOE/NETL-2010/1397, Nov 2010. Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn. 1968;1:56-62. Khalilpour R, Abbas A. HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2011;5:189-199. Cohen SM, Rochelle GT, Webber ME. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices. Energy Procedia. 2011;4:2604-2611. Biliyok C, Yeung H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int J Greenhouse Gas Control. 2013;19:396-405. Mac Dowell N, Llovell F, Adjiman CS, Jackson G, Galindo A. Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach. Ind Eng Chem Res. 2010;49:1883-1899. Lucquiaud M, Gibbins J. On the integration of CO2 capture with coal-fired power plants: a methodology to assess and optimise solvent-based post-combustion capture systems. Chem Eng Res Des. 2011;89:1553-1571. Jonshagen K, Sipöcz N, Genrup M. A novel approach of retrofitting a combined cycle with post combustion CO2 capture. J Eng Gas Turbine Power. 2010;133:011703-011703-7. Available at: http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1425741&resultClick=3. Mac Dowell N, Samsatli NJ, Shah N. Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control. 2013;12:247-258. Sharifzadeh M. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chem Eng Sci. 2013;92:21-39. gCCS: Whole chain CCS systems modelling software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/power/ccs/gccs.html. Accessed 15 September 2015. Luo X, Wang M, Chen J. Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression. Fuel. 2015;151:110-117. Damartzis T, Papadopoulos AI, Seferlis P. Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants. J Clean Prod. 2015; In press. doi:10.1016/j.jclepro.2015.04.129. 2013; 48 2012; 101 2010; 35 2012 2010 1968; 1 2015; 74 2013; 91 1992; 128 2013; 92 2003 2012; 38 2011; 36 2011; 4 1985; 64 2011; 5 2009; 29 2006; 113 2013; 19 2015; 151 2010; 49 2013; 16 1993; 16 2006; 45 2015; 138 2013; 12 1982; 21 2010; 133 2011; 89 2015 2014 2013 2012; 6 2007; 86 2012; 47 2012; 7 2014; 31 e_1_2_7_6_1 Haslbeck L (e_1_2_7_5_1) 2010 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Bravo JL (e_1_2_7_33_1) 1992; 128 e_1_2_7_19_1 Couper JR (e_1_2_7_36_1) 2012 Weber PT (e_1_2_7_47_1) e_1_2_7_18_1 e_1_2_7_17_1 International Energy Agency (IEA) (e_1_2_7_2_1) 2014 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 Seader JD (e_1_2_7_28_1) 2013 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_29_1 Bravo JL (e_1_2_7_32_1) 1985; 64 Peters MS (e_1_2_7_37_1) 2003 Ulrich GD (e_1_2_7_39_1) 2006; 113 Energy Information Administration (e_1_2_7_38_1) e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 |
References_xml | – reference: Sharifzadeh M, Thornhill NF. Integrated design and control using a dynamic inversely controlled process model. Comput Chem Eng. 2013:48:121-134. – reference: Seader JD, Henley EJ, Roper DK. Separation Process Principles, 3rd ed. Hoboken: John Wiley & Sons, Inc., 2013. – reference: Couper JR, Penney WR, Fair JR. Chemical Process Equipment Selection and Design, 3rd ed. Burlington: Elsevier Science, 2012. – reference: Lucquiaud M, Gibbins J. On the integration of CO2 capture with coal-fired power plants: a methodology to assess and optimise solvent-based post-combustion capture systems. Chem Eng Res Des. 2011;89:1553-1571. – reference: Luo X, Wang M, Chen J. Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression. Fuel. 2015;151:110-117. – reference: Le Moullec Y, Neveux T, Al Azki A, Chikukwa A, Hoff KA. Process modifications for solvent-based post-combustion CO2 capture. Int J Greenhouse Gas Control. 2014;31:96-112. – reference: Pfaff I, Oexmann J, Kather A. Optimised integration of post-combustion CO2 capture process in greenfield power plants. Energy. 2010;35:4030-4041. – reference: Cohen SM, Rochelle GT, Webber ME. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices. Energy Procedia. 2011;4:2604-2611. – reference: Grossmann IE. Advances in mathematical programming models for enterprise-wide optimization. Comput Chem Eng. 2012;47:2-18. – reference: Sharifzadeh M. Integration of process design and control: a review. Chem Eng Res Des. 2013;91:2515-2549. – reference: Bravo JL, Rocha JA, Fair JR. Mass transfer in Gauze Packings. Hydrocarbon Process. 1985;64:56-60. – reference: Energy Information Administration. Electricity wholesale market. Washington DC: US Department of Energy. Available at: http://www.eia.gov/electricity/wholesale/. Accessed 15 September 2015. – reference: Sharifzadeh M, Shah, N. Comparative studies of CO2 capture solvents for gas-fired power plants: integrated modelling and pilot plant assessments. Int J Greenhouse Gas Control; in press. DOI: 10.1016/j.ijggc.2015.10.009. – reference: gSAFT software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/gproms/options/physprops/saft/. Accessed 15 September 2015. – reference: Biliyok C, Yeung H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int J Greenhouse Gas Control. 2013;19:396-405. – reference: Romeo LM, Bolea I, Lara Y, Escosa JM. Optimization of intercooling compression in CO2 capture systems. Appl Therm Eng. 2009;29:1744-1751. – reference: gCCS: Whole chain CCS systems modelling software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/power/ccs/gccs.html. Accessed 15 September 2015. – reference: Mac Dowell N, Samsatli NJ, Shah N. Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control. 2013;12:247-258. – reference: Advanced Model Library - Gas-Liquid Contactors (AML:GLC) software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/processbuilder/libraries/aml_glc.html. Accessed 15 September 2015. – reference: Bravo JL, Fair JR. Generalized correlation for mass transfer in packed distillation columns. Ind Eng Chem Process Des Dev. 1982;21:162-170. – reference: Ulrich GD, Vasudevan PT. How to estimate utility costs. Chem Eng. 2006;113:66-69. – reference: Peters MS, Timmerhaus KD, West RE. Plant Design and Economics for Chemical Engineers, 5th ed. London: McGraw-Hill Chemical Engineering Series, 2003. – reference: Lawal A, Wang M, Stephenson P, Obi O. Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation. Fuel. 2012;101:115-128. – reference: Sharifzadeh M, Thornhill NF. Optimal selection of control structures using a steady-state inversely controlled process model. Comput Chem Eng. 2012;38:126-138. – reference: Delarue E, Martens P, D'haeseleer W. Market opportunities for power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2012;6:12-20. – reference: Oyenekan BA, Rochelle GT. Energy performance of stripper configurations for CO2 capture by aqueous amines. Ind Eng Chem Res. 2006;45:2457-2464. – reference: Damartzis T, Papadopoulos AI, Seferlis P. Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants. J Clean Prod. 2015; In press. doi:10.1016/j.jclepro.2015.04.129. – reference: Bravo JL, Rocha JA, Fair JR. A comprehensive model for the performance of columns containing structured packings. Inst Chem Eng Symp Ser. 1992;128:A489-A507. – reference: Sharifzadeh M. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chem Eng Sci. 2013;92:21-39. – reference: Karimi M, Hillestad M, Svendsen HF. Investigation of the dynamic behavior of different stripper configurations for post-combustion CO2 capture. Int J Greenhouse Gas Control. 2012;7:230-239. – reference: Mac Dowell N, Llovell F, Adjiman CS, Jackson G, Galindo A. Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach. Ind Eng Chem Res. 2010;49:1883-1899. – reference: Mac Dowell N, Shah N. The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation. Comput Chem Eng. 2015;74:169-183. – reference: Chalmers H, Gibbins J. Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance. Fuel. 2007;86:2109-2123. – reference: Manzolini G, Sanchez Fernandez E, Rezvani S, Macchi E, Goetheer ELV, Vlugt TJH. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology. Appl Energy. 2015;138:546-558. – reference: International Energy Agency (IEA). World Energy Outlook. Paris: International Energy Agency (IEA), 2014. – reference: Karimi M, Hillestad M, Svendsen HF. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chem Eng Res Des. 2011;89:1229-1236. – reference: Li H, Ditaranto M, Berstad D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture. Energy. 2011;36:1124-1133. – reference: Khalilpour R, Abbas A. HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2011;5:189-199. – reference: Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn. 1968;1:56-62. – reference: Billet R, Schultes M. Predicting mass transfer in packed columns. Chem Eng Technol. 1993;16:1-9. – reference: Haslbeck L, Kuehn NJ, Lewis EG, Pinkerton LL, Simpson J, Turner MJ, Varghese E, Woods MC. Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity. Revision 2. Pittsburgh, PA: National Energy Technology Laboratory (NETL). Report number DOE/NETL-2010/1397, Nov 2010. – reference: Weber PT. Modeling gas turbine engine performance at part-load. A Thesis for UTSR Gas Turbine Industrial Fellowship Program. Electric Power Research Institute, Southwest Research Institute, University of Wyoming. Available at: http://www.swri.org/utsr/presentations/WeberPatrickRept.pdf. Accessed 15 September 2015. – reference: Jonshagen K, Sipöcz N, Genrup M. A novel approach of retrofitting a combined cycle with post combustion CO2 capture. J Eng Gas Turbine Power. 2010;133:011703-011703-7. Available at: http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1425741&resultClick=3. – reference: Ahn H, Luberti M, Liu Z, Brandani S. Process configuration studies of the amine capture process for coal-fired power plants. Int J Greenhouse Gas Control. 2013:16;29-40. – volume: 138 start-page: 546 year: 2015 end-page: 558 article-title: Economic assessment of novel amine based CO capture technologies integrated in power plants based on European Benchmarking Task Force methodology publication-title: Appl Energy. – volume: 91 start-page: 2515 year: 2013 end-page: 2549 article-title: Integration of process design and control: a review publication-title: Chem Eng Res Des. – volume: 19 start-page: 396 year: 2013 end-page: 405 article-title: Evaluation of natural gas combined cycle power plant for post‐combustion CO capture integration publication-title: Int J Greenhouse Gas Control. – volume: 101 start-page: 115 year: 2012 end-page: 128 article-title: Demonstrating full‐scale post‐combustion CO capture for coal‐fired power plants through dynamic modelling and simulation publication-title: Fuel. – volume: 5 start-page: 189 year: 2011 end-page: 199 article-title: HEN optimization for efficient retrofitting of coal‐fired power plants with post‐combustion carbon capture publication-title: Int J Greenhouse Gas Control. – volume: 49 start-page: 1883 year: 2010 end-page: 1899 article-title: Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT‐VR approach publication-title: Ind Eng Chem Res. – volume: 113 start-page: 66 year: 2006 end-page: 69 article-title: How to estimate utility costs publication-title: Chem Eng. – volume: 12 start-page: 247 year: 2013 end-page: 258 article-title: Dynamic modelling and analysis of an amine‐based post‐combustion CO capture absorption column publication-title: Int J Greenhouse Gas Control. – volume: 1 start-page: 56 year: 1968 end-page: 62 article-title: Mass transfer coefficients between gas and liquid phases in packed columns publication-title: J Chem Eng Jpn. – volume: 38 start-page: 126 year: 2012 end-page: 138 article-title: Optimal selection of control structures using a steady‐state inversely controlled process model publication-title: Comput Chem Eng. – volume: 4 start-page: 2604 year: 2011 end-page: 2611 article-title: Optimal operation of flexible post‐combustion CO capture in response to volatile electricity prices publication-title: Energy Procedia. – year: 2003 – volume: 74 start-page: 169 year: 2015 end-page: 183 article-title: The multi‐period optimisation of an amine‐based CO capture process integrated with a super‐critical coal‐fired power station for flexible operation publication-title: Comput Chem Eng. – article-title: Comparative studies of CO capture solvents for gas‐fired power plants: integrated modelling and pilot plant assessments publication-title: Int J Greenhouse Gas Control – volume: 89 start-page: 1229 year: 2011 end-page: 1236 article-title: Capital costs and energy considerations of different alternative stripper configurations for post combustion CO capture publication-title: Chem Eng Res Des. – volume: 21 start-page: 162 year: 1982 end-page: 170 article-title: Generalized correlation for mass transfer in packed distillation columns publication-title: Ind Eng Chem Process Des Dev. – volume: 64 start-page: 56 year: 1985 end-page: 60 article-title: Mass transfer in Gauze Packings publication-title: Hydrocarbon Process. – year: 2014 – volume: 151 start-page: 110 year: 2015 end-page: 117 article-title: Heat integration of natural gas combined cycle power plant integrated with post‐combustion CO capture and compression publication-title: Fuel. – volume: 47 start-page: 2 year: 2012 end-page: 18 article-title: Advances in mathematical programming models for enterprise‐wide optimization publication-title: Comput Chem Eng. – year: 2010 – volume: 45 start-page: 2457 year: 2006 end-page: 2464 article-title: Energy performance of stripper configurations for CO capture by aqueous amines publication-title: Ind Eng Chem Res. – volume: 7 start-page: 230 year: 2012 end-page: 239 article-title: Investigation of the dynamic behavior of different stripper configurations for post‐combustion CO capture publication-title: Int J Greenhouse Gas Control. – year: 2012 – volume: 29 start-page: 1744 year: 2009 end-page: 1751 article-title: Optimization of intercooling compression in CO capture systems publication-title: Appl Therm Eng. – volume: 133 start-page: 011703 year: 2010 end-page: 011703‐7 article-title: A novel approach of retrofitting a combined cycle with post combustion CO capture publication-title: J Eng Gas Turbine Power. – volume: 36 start-page: 1124 year: 2011 end-page: 1133 article-title: Technologies for increasing CO concentration in exhaust gas from natural gas‐fired power production with post‐combustion, amine‐based CO capture publication-title: Energy. – volume: 16 start-page: 29 year: 2013 end-page: 40 article-title: Process configuration studies of the amine capture process for coal‐fired power plants publication-title: Int J Greenhouse Gas Control. – volume: 89 start-page: 1553 year: 2011 end-page: 1571 article-title: On the integration of CO capture with coal‐fired power plants: a methodology to assess and optimise solvent‐based post‐combustion capture systems publication-title: Chem Eng Res Des. – volume: 31 start-page: 96 year: 2014 end-page: 112 article-title: Process modifications for solvent‐based post‐combustion CO capture publication-title: Int J Greenhouse Gas Control. – volume: 6 start-page: 12 year: 2012 end-page: 20 article-title: Market opportunities for power plants with post‐combustion carbon capture publication-title: Int J Greenhouse Gas Control. – volume: 86 start-page: 2109 year: 2007 end-page: 2123 article-title: Initial evaluation of the impact of post‐combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance publication-title: Fuel. – volume: 48 start-page: 121 year: 2013 end-page: 134 article-title: Integrated design and control using a dynamic inversely controlled process model publication-title: Comput Chem Eng. – volume: 35 start-page: 4030 year: 2010 end-page: 4041 article-title: Optimised integration of post‐combustion CO capture process in greenfield power plants publication-title: Energy. – volume: 92 start-page: 21 year: 2013 end-page: 39 article-title: Implementation of a steady‐state inversely controlled process model for integrated design and control of an ETBE reactive distillation publication-title: Chem Eng Sci. – volume: 128 start-page: A489 year: 1992 end-page: A507 article-title: A comprehensive model for the performance of columns containing structured packings publication-title: Inst Chem Eng Symp Ser. – year: 2015 article-title: Process flowsheet design optimization for various amine‐based solvents in post‐combustion CO capture plants publication-title: J Clean Prod. – year: 2013 – volume: 16 start-page: 1 year: 1993 end-page: 9 article-title: Predicting mass transfer in packed columns publication-title: Chem Eng Technol. – ident: e_1_2_7_18_1 doi: 10.1016/j.ijggc.2013.03.002 – ident: e_1_2_7_6_1 doi: 10.1016/j.apenergy.2014.04.066 – volume-title: Separation Process Principles year: 2013 ident: e_1_2_7_28_1 – ident: e_1_2_7_43_1 doi: 10.1016/j.compchemeng.2012.08.009 – ident: e_1_2_7_11_1 doi: 10.1115/1.4001988 – ident: e_1_2_7_25_1 doi: 10.1016/j.fuel.2007.01.028 – ident: e_1_2_7_3_1 – ident: e_1_2_7_16_1 doi: 10.1021/ie050548k – volume: 113 start-page: 66 year: 2006 ident: e_1_2_7_39_1 article-title: How to estimate utility costs publication-title: Chem Eng. – volume-title: Plant Design and Economics for Chemical Engineers year: 2003 ident: e_1_2_7_37_1 – volume-title: gSAFT software tool ident: e_1_2_7_46_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.energy.2010.06.004 – ident: e_1_2_7_15_1 doi: 10.1016/j.energy.2010.11.037 – ident: e_1_2_7_17_1 doi: 10.1016/j.ijggc.2014.09.024 – volume: 128 start-page: A489 year: 1992 ident: e_1_2_7_33_1 article-title: A comprehensive model for the performance of columns containing structured packings publication-title: Inst Chem Eng Symp Ser. – volume-title: World Energy Outlook year: 2014 ident: e_1_2_7_2_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.fuel.2015.01.030 – ident: e_1_2_7_22_1 doi: 10.1016/j.compchemeng.2015.01.006 – ident: e_1_2_7_4_1 – ident: e_1_2_7_40_1 doi: 10.1016/j.compchemeng.2012.06.038 – ident: e_1_2_7_8_1 doi: 10.1016/j.applthermaleng.2008.08.010 – ident: e_1_2_7_35_1 doi: 10.1021/ie901014t – ident: e_1_2_7_20_1 doi: 10.1016/j.ijggc.2011.10.008 – volume-title: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity. Revision 2 year: 2010 ident: e_1_2_7_5_1 – volume-title: Chemical Process Equipment Selection and Design year: 2012 ident: e_1_2_7_36_1 – ident: e_1_2_7_12_1 doi: 10.1016/j.ijggc.2010.10.006 – ident: e_1_2_7_13_1 doi: 10.1016/j.ijggc.2013.10.003 – volume: 64 start-page: 56 year: 1985 ident: e_1_2_7_32_1 article-title: Mass transfer in Gauze Packings publication-title: Hydrocarbon Process. – ident: e_1_2_7_30_1 doi: 10.1021/i200016a028 – ident: e_1_2_7_23_1 doi: 10.1016/j.ijggc.2011.10.004 – ident: e_1_2_7_41_1 doi: 10.1016/j.compchemeng.2011.12.007 – volume-title: Electricity wholesale market ident: e_1_2_7_38_1 – ident: e_1_2_7_7_1 doi: 10.1016/j.cherd.2011.03.003 – ident: e_1_2_7_42_1 doi: 10.1016/j.ces.2013.01.026 – ident: e_1_2_7_29_1 doi: 10.1252/jcej.1.56 – ident: e_1_2_7_27_1 doi: 10.1016/j.ijggc.2015.10.009 – ident: e_1_2_7_26_1 doi: 10.1016/j.egypro.2011.02.159 – volume-title: gCCS: Whole chain CCS systems modelling software tool ident: e_1_2_7_44_1 – ident: e_1_2_7_9_1 doi: 10.1016/j.cherd.2011.03.005 – ident: e_1_2_7_34_1 doi: 10.1016/j.ijggc.2012.10.013 – ident: e_1_2_7_24_1 doi: 10.1016/j.fuel.2010.10.056 – ident: e_1_2_7_21_1 doi: 10.1016/j.cherd.2013.05.007 – volume-title: Modeling gas turbine engine performance at part‐load. A Thesis for UTSR Gas Turbine Industrial Fellowship Program ident: e_1_2_7_47_1 – ident: e_1_2_7_31_1 doi: 10.1002/ceat.270160102 – ident: e_1_2_7_19_1 doi: 10.1016/j.jclepro.2015.04.129 – volume-title: Advanced Model Library ‐ Gas‐Liquid Contactors (AML:GLC) software tool ident: e_1_2_7_45_1 |
SSID | ssj0012782 |
Score | 2.232814 |
Snippet | Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 166 |
SubjectTerms | Carbon carbon capture Carbon capture and storage Carbon sequestration CO2 Combined cycle Combined cycle engines Combined cycle power generation Design analysis Design engineering Design optimization Electric power generation Electric power plants Energy energy efficiency Flow rates Flow velocity Flue gas Gas flow GCCmax Industrial plants integrated process design and control Monoethanolamine (MEA) Natural gas natural gas combined cycle (NGCC) power plant Power plants Regeneration Solvents Steam electric power generation Upstream |
Title | Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale |
URI | https://api.istex.fr/ark:/67375/WNG-4F30PT6M-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15072 https://www.proquest.com/docview/1755491113 https://www.proquest.com/docview/1907225385 https://www.proquest.com/docview/1800477266 https://www.proquest.com/docview/1877811148 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5FX_TBW6wXUUR8ad07jT5JsR5QEQ_0QQhJNivFsl16gPrrndlLK1XEt4XMHsnOZL4kM98QsgdGJGVgqZrFDB4zemBSoYlqBsApi8DfBiFmI7evgvN77_LRf6yQ4yIXJuOHKDfc0DLS-RoNXKrB4SdpqOzoOqIZnH8xVgsB0U1JHWU7rJExhcNyGWCCXbAKWc5heeeYL5rGYX0dA5pf4Wrqb1rz5Kn40izM5KU-Gqq6fv9G4vjPriyQuRyH0pNMcRZJxcRLZPYLO-Ey6TdlX_ViqmWCxwwUM1FoSgQKNz7LAYXXwLrahFS_wTNoggXXaNLFyJojetvrYiglTT4zE6guix5SOaQypp2ycAgdgLKYFXLfOr1rntfyEg017WO-lY4AEnLJOSzTbOX5rtNQ3LhhECEtPjPggiOlmA6wnFlgIk9z21cNBqrgGoQaq2Qq7sVmjVAeAdhi0ljahF4gNddMR9p27BBAZujzKjkofpbQOX85ltHoiox52REwjCIdxirZLUWTjLRjktB--sdLCdl_wSg35ouHqzPhtVzr-i5oCxDcLFRC5AY-EIC6YGUNjsKd3MzhDQ44E79KdspmsFw8jpGx6Y1ApoFUnQwQ0m8yDFOBwYSg-6kK_dwhcXLRTC_W_y66QWYAAeZ7SptkatgfmS1AWUO1nZrTB5OxIhc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZTxsxEB4heGh5aGkLIhytW1UVLwl7O0Z9QWnT0JKogiB4QZbt9VaIaLPKIRV-PTN7ARUg1LeVdvawd76dz8d8A_AZQaRU5Oimwy0tMwYIqdgmTYvklCcYb6OYspH7g6h3Evw8C88W4GuVC1PoQ9QTboSM_H9NAKcJ6d1b1VB1YVpEZ_AHvEQVvQmW345q8SjX4-1CKxwHzEgU3EpXyPF260vvRaMl6ti_96jmXcKaR5zuaziv3rXYaHLZms90y1z_I-P4v41ZgVclFWX7he-8gQWbvoXlOwKF72DSURM9TplRGa00MEpGYbkWKF74R00ZPgeH1jZm5grvwTKqucayEW2u2WPH4xHtpmTZbXICM3XdQ6ZmTKXsoq4dwqboL3YVTrrfh51es6zS0DQhpVyZBFmhUELgSM3VQeh7bS2sH0cJKeNzi1E40ZqbiCqaRTYJjHBD3eboDb4ltrEGi-k4tevARIJ8iyvrGBsHkTLCcJMY13Nj5JlxKBqwU30taUoJc6qkMZKF-LInsRtl3o0N-FSbZoVux0NGX_JPXluoySVtdOOhPB38kEHXd34Po75Ew63KJ2SJ8alE4oWDa4wV_sOnBT7Bw3gSNuBjfRrBSysyKrXjOdq0Sa2TI0l6yoZTNjCiCJuf-9DjDZL7B538YOP5ph_gRW_YP5SHB4Nfm_ASCWE5xbQFi7PJ3G4j6Zrp9zm2bgCW2CYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KC6IffIunfUQR8ctd95ls6qdy9WzVHkVb7IdCSLKJlB57yz1A_eud2VdbqSJ-W8jsI9mZzG-SzG8AXqERac0D0w-Eo23GBE0qd77vEJwKj_6W55SNfDjm-yfJh9P0dAXetrkwNT9Et-BGllHN12TgZe63L0lD9bkdEJrB-Xct4UFGkdfe5447KoxEVlOFY7yMOCFsaYWCaLu79ZozWqNx_X4NaV7Fq5XDGd2Ds_ZT63MmF4Plwgzsz99YHP-zL_fhbgNE2W6tOQ9gxRUP4c4VesJHMBvqmZkWzOqS9hkYpaKwigkUb_ym5wxfg4G1y5n9gc9gJVVcY-WEjtbssC_TCZ2lZOVlagKzXdVDphdMF-y8qxzC5qgt7jGcjN4dD_f7TY2Gvk0p4cp6xIRSS4lxWmiSNI4yI12cc0-8-MKhD_bGCMupnhl3PrEyTE0mUBdiR1jjCawW08I9BSY9oi2hXWBdnnBtpRXW2zAKc0SZeSp78Kb9Wco2BOZUR2OiaurlSOEwqmoYe_CyEy1r1o6bhF5Xf7yT0LMLOuYmUvV1_F4lozg4OuaHCgXXW5VQjYXPFcIuDK3RU8Q3N0t8Q4TeJO3Bi64ZTZf2Y3ThpkuUyYirUyBE-puMoFxgtCHsfqVCf-6Q2j0YVhfP_l10C24d7Y3Up4Pxx-dwG9Fgs760DquL2dJtIOJamM3Ksn4BJXUk6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+capture+from+natural+gas+combined+cycle+power+plants%3A+Solvent+performance+comparison+at+an+industrial+scale&rft.jtitle=AIChE+journal&rft.au=Sharifzadeh%2C+Mahdi&rft.au=Shah%2C+Nilay&rft.date=2016-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=62&rft.issue=1&rft.spage=166&rft.epage=179&rft_id=info:doi/10.1002%2Faic.15072&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_4F30PT6M_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |