Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale

Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow r...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 62; no. 1; pp. 166 - 179
Main Authors Sharifzadeh, Mahdi, Shah, Nilay
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.01.2016
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.15072

Cover

Loading…
Abstract Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent. © 2015 American Institute of Chemical Engineers AIChE J, 62: 166–179, 2016
AbstractList Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent. copyright 2015 American Institute of Chemical Engineers AIChE J, 62: 166-179, 2016
Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent. © 2015 American Institute of Chemical Engineers AIChE J, 62: 166–179, 2016
Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent.
Author Shah, Nilay
Sharifzadeh, Mahdi
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Sharifzadeh
  fullname: Sharifzadeh, Mahdi
  email: mahdi@imperial.ac.uk
  organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering (CPSE), Imperial College London, U.K., SW7 2AZ, London
– sequence: 2
  givenname: Nilay
  surname: Shah
  fullname: Shah, Nilay
  organization: Dept. of Chemical Engineering, Centre for Process Systems Engineering (CPSE), Imperial College London, U.K., SW7 2AZ, London
BookMark eNqNkUtv1TAQhS1UJG4LC_6BJTawSOtnHLOrrvqSykOiqEvL8Z0gl8QOtkO5_74ut7CoRMXKY-s7Zzxz9tFeiAEQek3JISWEHVnvDqkkij1DKyqFaqQmcg-tCCG0qQ_0BdrP-abemOrYCqW1TX0M2Nm5LAnwkOKEg621HfE3m7GLU-8DbLDbuhHwHG8h4Xm0oeT3-Escf0IoeIY0xDTZ4OBeMNvkczW1BduAfdgsuSRfDbOzI7xEzwc7Znj1cB6gr6cnV-vz5vLT2cX6-LJxkrescQMRUlutBaG0F5KzrtfAN-1AOBUKHMDQ98q1nBLewiCcprLvFLSKA2WaH6C3O985xR8L5GImnx2M9e8Ql2xop1RHKRXdf6CECKVY21b0zSP0Ji4p1EEM1XXvTPJOPkkpKYWufXml3u0ol2LOCQYzJz_ZtDWUmPs4TY3T_I6zskePWOeLLT6Gkqwfn1Lc-hG2_7Y2xxfrP4pmp_C5wK-_Cpu-m7pUJc31xzMjTjn5fNV-MIzfATuFwH4
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_apenergy_2015_11_017
crossref_primary_10_1016_j_apenergy_2018_10_087
crossref_primary_10_3390_pr7060366
crossref_primary_10_1016_j_applthermaleng_2020_116287
crossref_primary_10_3390_en15239226
crossref_primary_10_1002_aic_15151
crossref_primary_10_3390_pr7060364
crossref_primary_10_1039_C9EE01526D
crossref_primary_10_1016_j_jclepro_2023_137776
crossref_primary_10_1016_j_apenergy_2016_11_010
crossref_primary_10_1016_j_rser_2017_01_069
crossref_primary_10_1016_j_jclepro_2018_09_115
Cites_doi 10.1016/j.ijggc.2013.03.002
10.1016/j.apenergy.2014.04.066
10.1016/j.compchemeng.2012.08.009
10.1115/1.4001988
10.1016/j.fuel.2007.01.028
10.1021/ie050548k
10.1016/j.energy.2010.06.004
10.1016/j.energy.2010.11.037
10.1016/j.ijggc.2014.09.024
10.1016/j.fuel.2015.01.030
10.1016/j.compchemeng.2015.01.006
10.1016/j.compchemeng.2012.06.038
10.1016/j.applthermaleng.2008.08.010
10.1021/ie901014t
10.1016/j.ijggc.2011.10.008
10.1016/j.ijggc.2010.10.006
10.1016/j.ijggc.2013.10.003
10.1021/i200016a028
10.1016/j.ijggc.2011.10.004
10.1016/j.compchemeng.2011.12.007
10.1016/j.cherd.2011.03.003
10.1016/j.ces.2013.01.026
10.1252/jcej.1.56
10.1016/j.ijggc.2015.10.009
10.1016/j.egypro.2011.02.159
10.1016/j.cherd.2011.03.005
10.1016/j.ijggc.2012.10.013
10.1016/j.fuel.2010.10.056
10.1016/j.cherd.2013.05.007
10.1002/ceat.270160102
10.1016/j.jclepro.2015.04.129
ContentType Journal Article
Copyright 2015 American Institute of Chemical Engineers
Copyright American Institute of Chemical Engineers Jan 2016
2016 American Institute of Chemical Engineers
Copyright_xml – notice: 2015 American Institute of Chemical Engineers
– notice: Copyright American Institute of Chemical Engineers Jan 2016
– notice: 2016 American Institute of Chemical Engineers
DBID BSCLL
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
7SU
FR3
DOI 10.1002/aic.15072
DatabaseName Istex
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
Environmental Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Engineering Research Database
Environmental Engineering Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef
Solid State and Superconductivity Abstracts

Solid State and Superconductivity Abstracts
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 179
ExternalDocumentID 3916674491
10_1002_aic_15072
AIC15072
ark_67375_WNG_4F30PT6M_2
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
ALVPJ
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7ST
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
L7M
SOI
7SU
FR3
ID FETCH-LOGICAL-c5362-cf0459a994011b45328b9e3d6f03147eceefbb7c631036ef4c915b87e673e1293
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 11 03:17:54 EDT 2025
Fri Jul 11 07:45:11 EDT 2025
Fri Jul 25 10:56:35 EDT 2025
Fri Jul 25 10:44:55 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 01:40:36 EDT 2025
Wed Jan 22 16:22:18 EST 2025
Wed Oct 30 09:47:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5362-cf0459a994011b45328b9e3d6f03147eceefbb7c631036ef4c915b87e673e1293
Notes istex:A19F042F001BCDD2BCA2C78D7D7A1314EDCAA0C9
ArticleID:AIC15072
ark:/67375/WNG-4F30PT6M-2
in the session of
2
Design of CO
Best Presentation
during the 2014 AIChE Annual Meeting in Atlanta, GA, November 16–21, 2014.
This contribution was identified by the AIChE Session Chair, Dr Athanasios Papadopoulos (Centre for Research and Technology Hellas), as the
Capture Systems
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1755491113
PQPubID 7879
PageCount 14
ParticipantIDs proquest_miscellaneous_1877811148
proquest_miscellaneous_1800477266
proquest_journals_1907225385
proquest_journals_1755491113
crossref_primary_10_1002_aic_15072
crossref_citationtrail_10_1002_aic_15072
wiley_primary_10_1002_aic_15072_AIC15072
istex_primary_ark_67375_WNG_4F30PT6M_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2016
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Delarue E, Martens P, D'haeseleer W. Market opportunities for power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2012;6:12-20.
Sharifzadeh M, Shah, N. Comparative studies of CO2 capture solvents for gas-fired power plants: integrated modelling and pilot plant assessments. Int J Greenhouse Gas Control; in press. DOI: 10.1016/j.ijggc.2015.10.009.
Sharifzadeh M. Integration of process design and control: a review. Chem Eng Res Des. 2013;91:2515-2549.
Mac Dowell N, Shah N. The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation. Comput Chem Eng. 2015;74:169-183.
Seader JD, Henley EJ, Roper DK. Separation Process Principles, 3rd ed. Hoboken: John Wiley & Sons, Inc., 2013.
Peters MS, Timmerhaus KD, West RE. Plant Design and Economics for Chemical Engineers, 5th ed. London: McGraw-Hill Chemical Engineering Series, 2003.
Lawal A, Wang M, Stephenson P, Obi O. Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation. Fuel. 2012;101:115-128.
Romeo LM, Bolea I, Lara Y, Escosa JM. Optimization of intercooling compression in CO2 capture systems. Appl Therm Eng. 2009;29:1744-1751.
Couper JR, Penney WR, Fair JR. Chemical Process Equipment Selection and Design, 3rd ed. Burlington: Elsevier Science, 2012.
Grossmann IE. Advances in mathematical programming models for enterprise-wide optimization. Comput Chem Eng. 2012;47:2-18.
Sharifzadeh M, Thornhill NF. Optimal selection of control structures using a steady-state inversely controlled process model. Comput Chem Eng. 2012;38:126-138.
Ahn H, Luberti M, Liu Z, Brandani S. Process configuration studies of the amine capture process for coal-fired power plants. Int J Greenhouse Gas Control. 2013:16;29-40.
Oyenekan BA, Rochelle GT. Energy performance of stripper configurations for CO2 capture by aqueous amines. Ind Eng Chem Res. 2006;45:2457-2464.
gSAFT software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/gproms/options/physprops/saft/. Accessed 15 September 2015.
Manzolini G, Sanchez Fernandez E, Rezvani S, Macchi E, Goetheer ELV, Vlugt TJH. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology. Appl Energy. 2015;138:546-558.
Bravo JL, Rocha JA, Fair JR. A comprehensive model for the performance of columns containing structured packings. Inst Chem Eng Symp Ser. 1992;128:A489-A507.
Li H, Ditaranto M, Berstad D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture. Energy. 2011;36:1124-1133.
International Energy Agency (IEA). World Energy Outlook. Paris: International Energy Agency (IEA), 2014.
Ulrich GD, Vasudevan PT. How to estimate utility costs. Chem Eng. 2006;113:66-69.
Bravo JL, Fair JR. Generalized correlation for mass transfer in packed distillation columns. Ind Eng Chem Process Des Dev. 1982;21:162-170.
Bravo JL, Rocha JA, Fair JR. Mass transfer in Gauze Packings. Hydrocarbon Process. 1985;64:56-60.
Pfaff I, Oexmann J, Kather A. Optimised integration of post-combustion CO2 capture process in greenfield power plants. Energy. 2010;35:4030-4041.
Chalmers H, Gibbins J. Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance. Fuel. 2007;86:2109-2123.
Energy Information Administration. Electricity wholesale market. Washington DC: US Department of Energy. Available at: http://www.eia.gov/electricity/wholesale/. Accessed 15 September 2015.
Weber PT. Modeling gas turbine engine performance at part-load. A Thesis for UTSR Gas Turbine Industrial Fellowship Program. Electric Power Research Institute, Southwest Research Institute, University of Wyoming. Available at: http://www.swri.org/utsr/presentations/WeberPatrickRept.pdf. Accessed 15 September 2015.
Billet R, Schultes M. Predicting mass transfer in packed columns. Chem Eng Technol. 1993;16:1-9.
Karimi M, Hillestad M, Svendsen HF. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chem Eng Res Des. 2011;89:1229-1236.
Le Moullec Y, Neveux T, Al Azki A, Chikukwa A, Hoff KA. Process modifications for solvent-based post-combustion CO2 capture. Int J Greenhouse Gas Control. 2014;31:96-112.
Karimi M, Hillestad M, Svendsen HF. Investigation of the dynamic behavior of different stripper configurations for post-combustion CO2 capture. Int J Greenhouse Gas Control. 2012;7:230-239.
Sharifzadeh M, Thornhill NF. Integrated design and control using a dynamic inversely controlled process model. Comput Chem Eng. 2013:48:121-134.
Advanced Model Library - Gas-Liquid Contactors (AML:GLC) software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/processbuilder/libraries/aml_glc.html. Accessed 15 September 2015.
Haslbeck L, Kuehn NJ, Lewis EG, Pinkerton LL, Simpson J, Turner MJ, Varghese E, Woods MC. Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity. Revision 2. Pittsburgh, PA: National Energy Technology Laboratory (NETL). Report number DOE/NETL-2010/1397, Nov 2010.
Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn. 1968;1:56-62.
Khalilpour R, Abbas A. HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2011;5:189-199.
Cohen SM, Rochelle GT, Webber ME. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices. Energy Procedia. 2011;4:2604-2611.
Biliyok C, Yeung H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int J Greenhouse Gas Control. 2013;19:396-405.
Mac Dowell N, Llovell F, Adjiman CS, Jackson G, Galindo A. Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach. Ind Eng Chem Res. 2010;49:1883-1899.
Lucquiaud M, Gibbins J. On the integration of CO2 capture with coal-fired power plants: a methodology to assess and optimise solvent-based post-combustion capture systems. Chem Eng Res Des. 2011;89:1553-1571.
Jonshagen K, Sipöcz N, Genrup M. A novel approach of retrofitting a combined cycle with post combustion CO2 capture. J Eng Gas Turbine Power. 2010;133:011703-011703-7. Available at: http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1425741&resultClick=3.
Mac Dowell N, Samsatli NJ, Shah N. Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control. 2013;12:247-258.
Sharifzadeh M. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chem Eng Sci. 2013;92:21-39.
gCCS: Whole chain CCS systems modelling software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/power/ccs/gccs.html. Accessed 15 September 2015.
Luo X, Wang M, Chen J. Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression. Fuel. 2015;151:110-117.
Damartzis T, Papadopoulos AI, Seferlis P. Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants. J Clean Prod. 2015; In press. doi:10.1016/j.jclepro.2015.04.129.
2013; 48
2012; 101
2010; 35
2012
2010
1968; 1
2015; 74
2013; 91
1992; 128
2013; 92
2003
2012; 38
2011; 36
2011; 4
1985; 64
2011; 5
2009; 29
2006; 113
2013; 19
2015; 151
2010; 49
2013; 16
1993; 16
2006; 45
2015; 138
2013; 12
1982; 21
2010; 133
2011; 89
2015
2014
2013
2012; 6
2007; 86
2012; 47
2012; 7
2014; 31
e_1_2_7_6_1
Haslbeck L (e_1_2_7_5_1) 2010
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Bravo JL (e_1_2_7_33_1) 1992; 128
e_1_2_7_19_1
Couper JR (e_1_2_7_36_1) 2012
Weber PT (e_1_2_7_47_1)
e_1_2_7_18_1
e_1_2_7_17_1
International Energy Agency (IEA) (e_1_2_7_2_1) 2014
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
Seader JD (e_1_2_7_28_1) 2013
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Bravo JL (e_1_2_7_32_1) 1985; 64
Peters MS (e_1_2_7_37_1) 2003
Ulrich GD (e_1_2_7_39_1) 2006; 113
Energy Information Administration (e_1_2_7_38_1)
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – reference: Sharifzadeh M, Thornhill NF. Integrated design and control using a dynamic inversely controlled process model. Comput Chem Eng. 2013:48:121-134.
– reference: Seader JD, Henley EJ, Roper DK. Separation Process Principles, 3rd ed. Hoboken: John Wiley & Sons, Inc., 2013.
– reference: Couper JR, Penney WR, Fair JR. Chemical Process Equipment Selection and Design, 3rd ed. Burlington: Elsevier Science, 2012.
– reference: Lucquiaud M, Gibbins J. On the integration of CO2 capture with coal-fired power plants: a methodology to assess and optimise solvent-based post-combustion capture systems. Chem Eng Res Des. 2011;89:1553-1571.
– reference: Luo X, Wang M, Chen J. Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression. Fuel. 2015;151:110-117.
– reference: Le Moullec Y, Neveux T, Al Azki A, Chikukwa A, Hoff KA. Process modifications for solvent-based post-combustion CO2 capture. Int J Greenhouse Gas Control. 2014;31:96-112.
– reference: Pfaff I, Oexmann J, Kather A. Optimised integration of post-combustion CO2 capture process in greenfield power plants. Energy. 2010;35:4030-4041.
– reference: Cohen SM, Rochelle GT, Webber ME. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices. Energy Procedia. 2011;4:2604-2611.
– reference: Grossmann IE. Advances in mathematical programming models for enterprise-wide optimization. Comput Chem Eng. 2012;47:2-18.
– reference: Sharifzadeh M. Integration of process design and control: a review. Chem Eng Res Des. 2013;91:2515-2549.
– reference: Bravo JL, Rocha JA, Fair JR. Mass transfer in Gauze Packings. Hydrocarbon Process. 1985;64:56-60.
– reference: Energy Information Administration. Electricity wholesale market. Washington DC: US Department of Energy. Available at: http://www.eia.gov/electricity/wholesale/. Accessed 15 September 2015.
– reference: Sharifzadeh M, Shah, N. Comparative studies of CO2 capture solvents for gas-fired power plants: integrated modelling and pilot plant assessments. Int J Greenhouse Gas Control; in press. DOI: 10.1016/j.ijggc.2015.10.009.
– reference: gSAFT software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/gproms/options/physprops/saft/. Accessed 15 September 2015.
– reference: Biliyok C, Yeung H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int J Greenhouse Gas Control. 2013;19:396-405.
– reference: Romeo LM, Bolea I, Lara Y, Escosa JM. Optimization of intercooling compression in CO2 capture systems. Appl Therm Eng. 2009;29:1744-1751.
– reference: gCCS: Whole chain CCS systems modelling software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/power/ccs/gccs.html. Accessed 15 September 2015.
– reference: Mac Dowell N, Samsatli NJ, Shah N. Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control. 2013;12:247-258.
– reference: Advanced Model Library - Gas-Liquid Contactors (AML:GLC) software tool. London: Process Systems Enterprise. Available at: http://www.psenterprise.com/processbuilder/libraries/aml_glc.html. Accessed 15 September 2015.
– reference: Bravo JL, Fair JR. Generalized correlation for mass transfer in packed distillation columns. Ind Eng Chem Process Des Dev. 1982;21:162-170.
– reference: Ulrich GD, Vasudevan PT. How to estimate utility costs. Chem Eng. 2006;113:66-69.
– reference: Peters MS, Timmerhaus KD, West RE. Plant Design and Economics for Chemical Engineers, 5th ed. London: McGraw-Hill Chemical Engineering Series, 2003.
– reference: Lawal A, Wang M, Stephenson P, Obi O. Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation. Fuel. 2012;101:115-128.
– reference: Sharifzadeh M, Thornhill NF. Optimal selection of control structures using a steady-state inversely controlled process model. Comput Chem Eng. 2012;38:126-138.
– reference: Delarue E, Martens P, D'haeseleer W. Market opportunities for power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2012;6:12-20.
– reference: Oyenekan BA, Rochelle GT. Energy performance of stripper configurations for CO2 capture by aqueous amines. Ind Eng Chem Res. 2006;45:2457-2464.
– reference: Damartzis T, Papadopoulos AI, Seferlis P. Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants. J Clean Prod. 2015; In press. doi:10.1016/j.jclepro.2015.04.129.
– reference: Bravo JL, Rocha JA, Fair JR. A comprehensive model for the performance of columns containing structured packings. Inst Chem Eng Symp Ser. 1992;128:A489-A507.
– reference: Sharifzadeh M. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chem Eng Sci. 2013;92:21-39.
– reference: Karimi M, Hillestad M, Svendsen HF. Investigation of the dynamic behavior of different stripper configurations for post-combustion CO2 capture. Int J Greenhouse Gas Control. 2012;7:230-239.
– reference: Mac Dowell N, Llovell F, Adjiman CS, Jackson G, Galindo A. Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach. Ind Eng Chem Res. 2010;49:1883-1899.
– reference: Mac Dowell N, Shah N. The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation. Comput Chem Eng. 2015;74:169-183.
– reference: Chalmers H, Gibbins J. Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance. Fuel. 2007;86:2109-2123.
– reference: Manzolini G, Sanchez Fernandez E, Rezvani S, Macchi E, Goetheer ELV, Vlugt TJH. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology. Appl Energy. 2015;138:546-558.
– reference: International Energy Agency (IEA). World Energy Outlook. Paris: International Energy Agency (IEA), 2014.
– reference: Karimi M, Hillestad M, Svendsen HF. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chem Eng Res Des. 2011;89:1229-1236.
– reference: Li H, Ditaranto M, Berstad D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture. Energy. 2011;36:1124-1133.
– reference: Khalilpour R, Abbas A. HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture. Int J Greenhouse Gas Control. 2011;5:189-199.
– reference: Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn. 1968;1:56-62.
– reference: Billet R, Schultes M. Predicting mass transfer in packed columns. Chem Eng Technol. 1993;16:1-9.
– reference: Haslbeck L, Kuehn NJ, Lewis EG, Pinkerton LL, Simpson J, Turner MJ, Varghese E, Woods MC. Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity. Revision 2. Pittsburgh, PA: National Energy Technology Laboratory (NETL). Report number DOE/NETL-2010/1397, Nov 2010.
– reference: Weber PT. Modeling gas turbine engine performance at part-load. A Thesis for UTSR Gas Turbine Industrial Fellowship Program. Electric Power Research Institute, Southwest Research Institute, University of Wyoming. Available at: http://www.swri.org/utsr/presentations/WeberPatrickRept.pdf. Accessed 15 September 2015.
– reference: Jonshagen K, Sipöcz N, Genrup M. A novel approach of retrofitting a combined cycle with post combustion CO2 capture. J Eng Gas Turbine Power. 2010;133:011703-011703-7. Available at: http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1425741&resultClick=3.
– reference: Ahn H, Luberti M, Liu Z, Brandani S. Process configuration studies of the amine capture process for coal-fired power plants. Int J Greenhouse Gas Control. 2013:16;29-40.
– volume: 138
  start-page: 546
  year: 2015
  end-page: 558
  article-title: Economic assessment of novel amine based CO capture technologies integrated in power plants based on European Benchmarking Task Force methodology
  publication-title: Appl Energy.
– volume: 91
  start-page: 2515
  year: 2013
  end-page: 2549
  article-title: Integration of process design and control: a review
  publication-title: Chem Eng Res Des.
– volume: 19
  start-page: 396
  year: 2013
  end-page: 405
  article-title: Evaluation of natural gas combined cycle power plant for post‐combustion CO capture integration
  publication-title: Int J Greenhouse Gas Control.
– volume: 101
  start-page: 115
  year: 2012
  end-page: 128
  article-title: Demonstrating full‐scale post‐combustion CO capture for coal‐fired power plants through dynamic modelling and simulation
  publication-title: Fuel.
– volume: 5
  start-page: 189
  year: 2011
  end-page: 199
  article-title: HEN optimization for efficient retrofitting of coal‐fired power plants with post‐combustion carbon capture
  publication-title: Int J Greenhouse Gas Control.
– volume: 49
  start-page: 1883
  year: 2010
  end-page: 1899
  article-title: Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT‐VR approach
  publication-title: Ind Eng Chem Res.
– volume: 113
  start-page: 66
  year: 2006
  end-page: 69
  article-title: How to estimate utility costs
  publication-title: Chem Eng.
– volume: 12
  start-page: 247
  year: 2013
  end-page: 258
  article-title: Dynamic modelling and analysis of an amine‐based post‐combustion CO capture absorption column
  publication-title: Int J Greenhouse Gas Control.
– volume: 1
  start-page: 56
  year: 1968
  end-page: 62
  article-title: Mass transfer coefficients between gas and liquid phases in packed columns
  publication-title: J Chem Eng Jpn.
– volume: 38
  start-page: 126
  year: 2012
  end-page: 138
  article-title: Optimal selection of control structures using a steady‐state inversely controlled process model
  publication-title: Comput Chem Eng.
– volume: 4
  start-page: 2604
  year: 2011
  end-page: 2611
  article-title: Optimal operation of flexible post‐combustion CO capture in response to volatile electricity prices
  publication-title: Energy Procedia.
– year: 2003
– volume: 74
  start-page: 169
  year: 2015
  end-page: 183
  article-title: The multi‐period optimisation of an amine‐based CO capture process integrated with a super‐critical coal‐fired power station for flexible operation
  publication-title: Comput Chem Eng.
– article-title: Comparative studies of CO capture solvents for gas‐fired power plants: integrated modelling and pilot plant assessments
  publication-title: Int J Greenhouse Gas Control
– volume: 89
  start-page: 1229
  year: 2011
  end-page: 1236
  article-title: Capital costs and energy considerations of different alternative stripper configurations for post combustion CO capture
  publication-title: Chem Eng Res Des.
– volume: 21
  start-page: 162
  year: 1982
  end-page: 170
  article-title: Generalized correlation for mass transfer in packed distillation columns
  publication-title: Ind Eng Chem Process Des Dev.
– volume: 64
  start-page: 56
  year: 1985
  end-page: 60
  article-title: Mass transfer in Gauze Packings
  publication-title: Hydrocarbon Process.
– year: 2014
– volume: 151
  start-page: 110
  year: 2015
  end-page: 117
  article-title: Heat integration of natural gas combined cycle power plant integrated with post‐combustion CO capture and compression
  publication-title: Fuel.
– volume: 47
  start-page: 2
  year: 2012
  end-page: 18
  article-title: Advances in mathematical programming models for enterprise‐wide optimization
  publication-title: Comput Chem Eng.
– year: 2010
– volume: 45
  start-page: 2457
  year: 2006
  end-page: 2464
  article-title: Energy performance of stripper configurations for CO capture by aqueous amines
  publication-title: Ind Eng Chem Res.
– volume: 7
  start-page: 230
  year: 2012
  end-page: 239
  article-title: Investigation of the dynamic behavior of different stripper configurations for post‐combustion CO capture
  publication-title: Int J Greenhouse Gas Control.
– year: 2012
– volume: 29
  start-page: 1744
  year: 2009
  end-page: 1751
  article-title: Optimization of intercooling compression in CO capture systems
  publication-title: Appl Therm Eng.
– volume: 133
  start-page: 011703
  year: 2010
  end-page: 011703‐7
  article-title: A novel approach of retrofitting a combined cycle with post combustion CO capture
  publication-title: J Eng Gas Turbine Power.
– volume: 36
  start-page: 1124
  year: 2011
  end-page: 1133
  article-title: Technologies for increasing CO concentration in exhaust gas from natural gas‐fired power production with post‐combustion, amine‐based CO capture
  publication-title: Energy.
– volume: 16
  start-page: 29
  year: 2013
  end-page: 40
  article-title: Process configuration studies of the amine capture process for coal‐fired power plants
  publication-title: Int J Greenhouse Gas Control.
– volume: 89
  start-page: 1553
  year: 2011
  end-page: 1571
  article-title: On the integration of CO capture with coal‐fired power plants: a methodology to assess and optimise solvent‐based post‐combustion capture systems
  publication-title: Chem Eng Res Des.
– volume: 31
  start-page: 96
  year: 2014
  end-page: 112
  article-title: Process modifications for solvent‐based post‐combustion CO capture
  publication-title: Int J Greenhouse Gas Control.
– volume: 6
  start-page: 12
  year: 2012
  end-page: 20
  article-title: Market opportunities for power plants with post‐combustion carbon capture
  publication-title: Int J Greenhouse Gas Control.
– volume: 86
  start-page: 2109
  year: 2007
  end-page: 2123
  article-title: Initial evaluation of the impact of post‐combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance
  publication-title: Fuel.
– volume: 48
  start-page: 121
  year: 2013
  end-page: 134
  article-title: Integrated design and control using a dynamic inversely controlled process model
  publication-title: Comput Chem Eng.
– volume: 35
  start-page: 4030
  year: 2010
  end-page: 4041
  article-title: Optimised integration of post‐combustion CO capture process in greenfield power plants
  publication-title: Energy.
– volume: 92
  start-page: 21
  year: 2013
  end-page: 39
  article-title: Implementation of a steady‐state inversely controlled process model for integrated design and control of an ETBE reactive distillation
  publication-title: Chem Eng Sci.
– volume: 128
  start-page: A489
  year: 1992
  end-page: A507
  article-title: A comprehensive model for the performance of columns containing structured packings
  publication-title: Inst Chem Eng Symp Ser.
– year: 2015
  article-title: Process flowsheet design optimization for various amine‐based solvents in post‐combustion CO capture plants
  publication-title: J Clean Prod.
– year: 2013
– volume: 16
  start-page: 1
  year: 1993
  end-page: 9
  article-title: Predicting mass transfer in packed columns
  publication-title: Chem Eng Technol.
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ijggc.2013.03.002
– ident: e_1_2_7_6_1
  doi: 10.1016/j.apenergy.2014.04.066
– volume-title: Separation Process Principles
  year: 2013
  ident: e_1_2_7_28_1
– ident: e_1_2_7_43_1
  doi: 10.1016/j.compchemeng.2012.08.009
– ident: e_1_2_7_11_1
  doi: 10.1115/1.4001988
– ident: e_1_2_7_25_1
  doi: 10.1016/j.fuel.2007.01.028
– ident: e_1_2_7_3_1
– ident: e_1_2_7_16_1
  doi: 10.1021/ie050548k
– volume: 113
  start-page: 66
  year: 2006
  ident: e_1_2_7_39_1
  article-title: How to estimate utility costs
  publication-title: Chem Eng.
– volume-title: Plant Design and Economics for Chemical Engineers
  year: 2003
  ident: e_1_2_7_37_1
– volume-title: gSAFT software tool
  ident: e_1_2_7_46_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.energy.2010.06.004
– ident: e_1_2_7_15_1
  doi: 10.1016/j.energy.2010.11.037
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ijggc.2014.09.024
– volume: 128
  start-page: A489
  year: 1992
  ident: e_1_2_7_33_1
  article-title: A comprehensive model for the performance of columns containing structured packings
  publication-title: Inst Chem Eng Symp Ser.
– volume-title: World Energy Outlook
  year: 2014
  ident: e_1_2_7_2_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.fuel.2015.01.030
– ident: e_1_2_7_22_1
  doi: 10.1016/j.compchemeng.2015.01.006
– ident: e_1_2_7_4_1
– ident: e_1_2_7_40_1
  doi: 10.1016/j.compchemeng.2012.06.038
– ident: e_1_2_7_8_1
  doi: 10.1016/j.applthermaleng.2008.08.010
– ident: e_1_2_7_35_1
  doi: 10.1021/ie901014t
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ijggc.2011.10.008
– volume-title: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity. Revision 2
  year: 2010
  ident: e_1_2_7_5_1
– volume-title: Chemical Process Equipment Selection and Design
  year: 2012
  ident: e_1_2_7_36_1
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ijggc.2010.10.006
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ijggc.2013.10.003
– volume: 64
  start-page: 56
  year: 1985
  ident: e_1_2_7_32_1
  article-title: Mass transfer in Gauze Packings
  publication-title: Hydrocarbon Process.
– ident: e_1_2_7_30_1
  doi: 10.1021/i200016a028
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ijggc.2011.10.004
– ident: e_1_2_7_41_1
  doi: 10.1016/j.compchemeng.2011.12.007
– volume-title: Electricity wholesale market
  ident: e_1_2_7_38_1
– ident: e_1_2_7_7_1
  doi: 10.1016/j.cherd.2011.03.003
– ident: e_1_2_7_42_1
  doi: 10.1016/j.ces.2013.01.026
– ident: e_1_2_7_29_1
  doi: 10.1252/jcej.1.56
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ijggc.2015.10.009
– ident: e_1_2_7_26_1
  doi: 10.1016/j.egypro.2011.02.159
– volume-title: gCCS: Whole chain CCS systems modelling software tool
  ident: e_1_2_7_44_1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.cherd.2011.03.005
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ijggc.2012.10.013
– ident: e_1_2_7_24_1
  doi: 10.1016/j.fuel.2010.10.056
– ident: e_1_2_7_21_1
  doi: 10.1016/j.cherd.2013.05.007
– volume-title: Modeling gas turbine engine performance at part‐load. A Thesis for UTSR Gas Turbine Industrial Fellowship Program
  ident: e_1_2_7_47_1
– ident: e_1_2_7_31_1
  doi: 10.1002/ceat.270160102
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jclepro.2015.04.129
– volume-title: Advanced Model Library ‐ Gas‐Liquid Contactors (AML:GLC) software tool
  ident: e_1_2_7_45_1
SSID ssj0012782
Score 2.232814
Snippet Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Carbon
carbon capture
Carbon capture and storage
Carbon sequestration
CO2
Combined cycle
Combined cycle engines
Combined cycle power generation
Design analysis
Design engineering
Design optimization
Electric power generation
Electric power plants
Energy
energy efficiency
Flow rates
Flow velocity
Flue gas
Gas flow
GCCmax
Industrial plants
integrated process design and control
Monoethanolamine (MEA)
Natural gas
natural gas combined cycle (NGCC) power plant
Power plants
Regeneration
Solvents
Steam electric power generation
Upstream
Title Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale
URI https://api.istex.fr/ark:/67375/WNG-4F30PT6M-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15072
https://www.proquest.com/docview/1755491113
https://www.proquest.com/docview/1907225385
https://www.proquest.com/docview/1800477266
https://www.proquest.com/docview/1877811148
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5FX_TBW6wXUUR8ad07jT5JsR5QEQ_0QQhJNivFsl16gPrrndlLK1XEt4XMHsnOZL4kM98QsgdGJGVgqZrFDB4zemBSoYlqBsApi8DfBiFmI7evgvN77_LRf6yQ4yIXJuOHKDfc0DLS-RoNXKrB4SdpqOzoOqIZnH8xVgsB0U1JHWU7rJExhcNyGWCCXbAKWc5heeeYL5rGYX0dA5pf4Wrqb1rz5Kn40izM5KU-Gqq6fv9G4vjPriyQuRyH0pNMcRZJxcRLZPYLO-Ey6TdlX_ViqmWCxwwUM1FoSgQKNz7LAYXXwLrahFS_wTNoggXXaNLFyJojetvrYiglTT4zE6guix5SOaQypp2ycAgdgLKYFXLfOr1rntfyEg017WO-lY4AEnLJOSzTbOX5rtNQ3LhhECEtPjPggiOlmA6wnFlgIk9z21cNBqrgGoQaq2Qq7sVmjVAeAdhi0ljahF4gNddMR9p27BBAZujzKjkofpbQOX85ltHoiox52REwjCIdxirZLUWTjLRjktB--sdLCdl_wSg35ouHqzPhtVzr-i5oCxDcLFRC5AY-EIC6YGUNjsKd3MzhDQ44E79KdspmsFw8jpGx6Y1ApoFUnQwQ0m8yDFOBwYSg-6kK_dwhcXLRTC_W_y66QWYAAeZ7SptkatgfmS1AWUO1nZrTB5OxIhc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZTxsxEB4heGh5aGkLIhytW1UVLwl7O0Z9QWnT0JKogiB4QZbt9VaIaLPKIRV-PTN7ARUg1LeVdvawd76dz8d8A_AZQaRU5Oimwy0tMwYIqdgmTYvklCcYb6OYspH7g6h3Evw8C88W4GuVC1PoQ9QTboSM_H9NAKcJ6d1b1VB1YVpEZ_AHvEQVvQmW345q8SjX4-1CKxwHzEgU3EpXyPF260vvRaMl6ti_96jmXcKaR5zuaziv3rXYaHLZms90y1z_I-P4v41ZgVclFWX7he-8gQWbvoXlOwKF72DSURM9TplRGa00MEpGYbkWKF74R00ZPgeH1jZm5grvwTKqucayEW2u2WPH4xHtpmTZbXICM3XdQ6ZmTKXsoq4dwqboL3YVTrrfh51es6zS0DQhpVyZBFmhUELgSM3VQeh7bS2sH0cJKeNzi1E40ZqbiCqaRTYJjHBD3eboDb4ltrEGi-k4tevARIJ8iyvrGBsHkTLCcJMY13Nj5JlxKBqwU30taUoJc6qkMZKF-LInsRtl3o0N-FSbZoVux0NGX_JPXluoySVtdOOhPB38kEHXd34Po75Ew63KJ2SJ8alE4oWDa4wV_sOnBT7Bw3gSNuBjfRrBSysyKrXjOdq0Sa2TI0l6yoZTNjCiCJuf-9DjDZL7B538YOP5ph_gRW_YP5SHB4Nfm_ASCWE5xbQFi7PJ3G4j6Zrp9zm2bgCW2CYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KC6IffIunfUQR8ctd95ls6qdy9WzVHkVb7IdCSLKJlB57yz1A_eud2VdbqSJ-W8jsI9mZzG-SzG8AXqERac0D0w-Eo23GBE0qd77vEJwKj_6W55SNfDjm-yfJh9P0dAXetrkwNT9Et-BGllHN12TgZe63L0lD9bkdEJrB-Xct4UFGkdfe5447KoxEVlOFY7yMOCFsaYWCaLu79ZozWqNx_X4NaV7Fq5XDGd2Ds_ZT63MmF4Plwgzsz99YHP-zL_fhbgNE2W6tOQ9gxRUP4c4VesJHMBvqmZkWzOqS9hkYpaKwigkUb_ym5wxfg4G1y5n9gc9gJVVcY-WEjtbssC_TCZ2lZOVlagKzXdVDphdMF-y8qxzC5qgt7jGcjN4dD_f7TY2Gvk0p4cp6xIRSS4lxWmiSNI4yI12cc0-8-MKhD_bGCMupnhl3PrEyTE0mUBdiR1jjCawW08I9BSY9oi2hXWBdnnBtpRXW2zAKc0SZeSp78Kb9Wco2BOZUR2OiaurlSOEwqmoYe_CyEy1r1o6bhF5Xf7yT0LMLOuYmUvV1_F4lozg4OuaHCgXXW5VQjYXPFcIuDK3RU8Q3N0t8Q4TeJO3Bi64ZTZf2Y3ThpkuUyYirUyBE-puMoFxgtCHsfqVCf-6Q2j0YVhfP_l10C24d7Y3Up4Pxx-dwG9Fgs760DquL2dJtIOJamM3Ksn4BJXUk6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+capture+from+natural+gas+combined+cycle+power+plants%3A+Solvent+performance+comparison+at+an+industrial+scale&rft.jtitle=AIChE+journal&rft.au=Sharifzadeh%2C+Mahdi&rft.au=Shah%2C+Nilay&rft.date=2016-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=62&rft.issue=1&rft.spage=166&rft.epage=179&rft_id=info:doi/10.1002%2Faic.15072&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_4F30PT6M_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon