Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding
Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology...
Saved in:
Published in | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 82; no. 2; pp. 521 - 540 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.04.2020
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables.We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we proposemultiply robust and locally efficient estimators when non-parametric estimation may not be feasible.We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children. |
---|---|
AbstractList | Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children. Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long‐standing tradition in laboratory sciences and epidemiology to rule out non‐causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non‐parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non‐parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non‐parametric model, and we propose multiply robust and locally efficient estimators when non‐parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post‐licensure surveillance of vaccine safety among children. Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children. Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables.We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we proposemultiply robust and locally efficient estimators when non-parametric estimation may not be feasible.We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children. |
Author | Tchetgen, Eric J. Tchetgen Shi, Xu Nelson, Jennifer C. Miao, Wang |
Author_xml | – sequence: 1 givenname: Xu surname: Shi fullname: Shi, Xu – sequence: 2 givenname: Wang surname: Miao fullname: Miao, Wang – sequence: 3 givenname: Jennifer C. surname: Nelson fullname: Nelson, Jennifer C. – sequence: 4 givenname: Eric J. Tchetgen surname: Tchetgen fullname: Tchetgen, Eric J. Tchetgen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33376449$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFTEUxYNU7Idu3CsDbkSYmkwyyWQjaPELKoLVdchk7rzmkUmeyaTl_fdm-tqHFhHvJoH8zuHc3HuMDnzwgNBTgk9Jqdcxpf6UNJSTB-iIMC5q2fHuoNwpl7VgpDlExymtcSku6CN0SCkVnDF5hMKX7Ga7cdsqhj6nuTI6J-0q60eI4A1U13a-rIaQewe1h5We7RVUJvg5BlfpYV1EE_i5GkMs4hlWIVpTHLKfQKccYVjoMWQ_WL96jB6O2iV4cnueoB8f3n8_-1Sff_34-ezteW3a0kfNSSsFpZoTyTD0nRAGBJcw9EQbyrRoDTWya2QLmJtxJFIwTFuQtOulaRk9QW92vpvcTzCYkjBqpzbRTjpuVdBW_fni7aVahSslBO-EXAxe3hrE8DNDmtVkkwHntIeQk2qYoBI3EuP_QKlkRMqbWC_uoeuQoy8_oRoqRNdwwbpCPf89_D713dgK8GoHmBhSijDuEYLVshNq2Ql1sxMFxvdgY-cyxmWE2rq_S8hOcm0dbP9hrr5dXLy70zzbadZpDnGvabikousY_QUu9dUV |
CitedBy_id | crossref_primary_10_1007_s40471_020_00243_4 crossref_primary_10_1002_sim_10175 crossref_primary_10_1038_s41467_024_52117_8 crossref_primary_10_1177_09622802231181230 crossref_primary_10_1093_aje_kwad201 crossref_primary_10_1093_jrsssb_qkad020 crossref_primary_10_1515_jci_2023_0020 crossref_primary_10_1093_aje_kwab263 crossref_primary_10_1093_biomet_asae008 crossref_primary_10_1097_EDE_0000000000001759 crossref_primary_10_1080_01621459_2023_2240053 crossref_primary_10_1093_jrsssb_qkae095 crossref_primary_10_1093_aje_kwae036 crossref_primary_10_1093_jrsssa_qnae039 crossref_primary_10_1097_EDE_0000000000001650 crossref_primary_10_1080_24754269_2023_2293554 crossref_primary_10_1214_23_STS911 crossref_primary_10_1111_biom_13783 crossref_primary_10_1038_s41467_022_28365_x crossref_primary_10_1186_s12874_023_02065_6 crossref_primary_10_1016_j_cgh_2022_05_017 crossref_primary_10_1080_02664763_2025_2474611 crossref_primary_10_1093_aje_kwac170 crossref_primary_10_1111_rssb_12538 crossref_primary_10_1111_sjos_12633 crossref_primary_10_1080_01621459_2022_2147841 crossref_primary_10_1111_insr_12518 crossref_primary_10_1287_opre_2021_0781 crossref_primary_10_1016_j_envres_2023_116203 crossref_primary_10_1016_j_jclinepi_2023_111228 crossref_primary_10_1093_jrsssb_qkad132 crossref_primary_10_1097_EDE_0000000000001528 crossref_primary_10_1017_cts_2023_688 crossref_primary_10_1001_jama_2023_4221 crossref_primary_10_1093_ectj_utae014 crossref_primary_10_3390_math12182801 crossref_primary_10_1001_jamainternmed_2024_1181 crossref_primary_10_1080_24754269_2024_2390748 crossref_primary_10_1002_sim_70025 crossref_primary_10_1002_pds_5037 crossref_primary_10_1080_01621459_2022_2110878 crossref_primary_10_1080_01621459_2023_2238942 crossref_primary_10_1016_j_spl_2023_109836 crossref_primary_10_1002_sim_10095 crossref_primary_10_1080_01621459_2021_2023551 crossref_primary_10_1080_00031305_2023_2250399 crossref_primary_10_1093_cid_ciae519 |
Cites_doi | 10.1097/EDE.0b013e31824d1f63 10.1093/biostatistics/kxr034 10.1097/EDE.0b013e3181d61eeb 10.1093/biomet/asy038 10.1080/01621459.1999.10473862 10.1097/EDE.0b013e318245912c 10.1093/aje/kwx012 10.1111/j.1742-7843.2007.00191.x 10.1214/16-AOS1511 10.1093/aje/kws317 10.1093/biomet/ast066 10.1007/978-1-4419-9782-1 10.1093/ije/dyi274 10.1007/978-0-387-21700-0 10.1214/16-AOS1536 10.2307/2531497 10.1198/016214508000001084 10.1080/03610929408831393 10.1017/CBO9780511802256 10.1214/10-AOS809 10.1093/biomet/79.2.367 10.1002/jae.3950050202 10.1198/016214506000000023 10.1016/0270-0255(86)90088-6 10.2307/3617665 10.1111/rssb.12262 10.1093/aje/kwx013 10.1097/00001648-200201000-00003 10.1002/sim.5925 10.1007/978-0-8176-4626-4_23 10.1093/aje/kwt303 10.1111/j.1541-0420.2005.00377.x 10.1080/01621459.1994.10476818 10.1097/EDE.0b013e3182460c23 10.1214/16-STS558 10.1097/EDE.0b013e3181fdcabe 10.1214/12-AOS990 |
ContentType | Journal Article |
Copyright | 2020 Royal Statistical Society Copyright © 2020 The Royal Statistical Society and Blackwell Publishing Ltd |
Copyright_xml | – notice: 2020 Royal Statistical Society – notice: Copyright © 2020 The Royal Statistical Society and Blackwell Publishing Ltd |
DBID | AAYXX CITATION NPM 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6 7X8 5PM |
DOI | 10.1111/rssb.12361 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic AGRICOLA International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1467-9868 |
EndPage | 540 |
ExternalDocumentID | PMC7768794 33376449 10_1111_rssb_12361 RSSB12361 26937884 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI104459 – fundername: NIAID NIH HHS grantid: R01 AI127271 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 10A 1OC 29L 2AX 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHBH AAONW AAPXW AASGY AAUAY AAXRX AAZKR ABBHK ABCQN ABCUV ABDFA ABEHJ ABEML ABFAN ABIVO ABLJU ABPFR ABPQP ABPTD ABPVW ABWST ABYWD ABZEH ACAHQ ACCZN ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACUBG ACXBN ACXQS ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADODI ADOZA ADRDM ADVEK ADZMN AEGXH AEIMD AEMOZ AEUPB AFBPY AFEBI AFGKR AFVYC AFXHP AFZJQ AHQJS AIURR AJAOE AJNCP AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMVHM AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EMK F00 F5P G-S G.N GODZA H.T H.X HQ6 HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NU- O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZL0 ZZTAW ~02 ~IA ~KM ~WT .Y3 3-9 31~ AAHHS AANHP AARHZ ABPQH ABXSQ ABYAD ACBWZ ACCFJ ACFRR ACRPL ACTWD ACYXJ ADNMO ADQBN ADULT AEEZP AELPN AEQDE AEUQT AFPWT AIWBW AJBDE ANFBD AS~ ATGXG AZFZN COF EJD FEDTE FVMVE H13 HF~ HGD HVGLF H~9 JSODD NHB RJQFR ZGI AAYXX CITATION AIHAF NPM 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c5361-6159733a61940eb877ce769edb1ac34a75c3c98295e06cff1974035e938b9c543 |
IEDL.DBID | DR2 |
ISSN | 1369-7412 |
IngestDate | Thu Aug 21 13:23:05 EDT 2025 Fri Jul 11 11:48:31 EDT 2025 Fri Jul 11 18:29:45 EDT 2025 Wed Aug 13 06:27:42 EDT 2025 Wed Feb 19 02:29:37 EST 2025 Thu Apr 24 22:51:35 EDT 2025 Tue Jul 01 03:43:11 EDT 2025 Wed Jan 22 16:34:18 EST 2025 Thu Jul 03 21:36:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Causal inference Semiparametric inference Unmeasured confounding Negative control |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5361-6159733a61940eb877ce769edb1ac34a75c3c98295e06cff1974035e938b9c543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/jrsssb/article-pdf/82/2/521/49321041/jrsssb_82_2_521.pdf |
PMID | 33376449 |
PQID | 2377826748 |
PQPubID | 39359 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768794 proquest_miscellaneous_2473902900 proquest_miscellaneous_2439419954 proquest_journals_2377826748 pubmed_primary_33376449 crossref_primary_10_1111_rssb_12361 crossref_citationtrail_10_1111_rssb_12361 wiley_primary_10_1111_rssb_12361_RSSB12361 jstor_primary_26937884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology |
PublicationTitleAlternate | J R Stat Soc Series B Stat Methodol |
PublicationYear | 2020 |
Publisher | Wiley Oxford University Press |
Publisher_xml | – name: Wiley – name: Oxford University Press |
References | 2010; 38 1989; 45 2018; 105 2011 2002; 13 2017; 45 1994; 23 1994; 89 1998 2008 2016; 31 2018; 80 2007 1992; 79 1993 2003 2008; 103 2005; 61 2008; 102 2012; 13 2010; 21 1986; 7 2000 1978; 62 2019 2013; 177 2011; 22 2017 2013; 179 2016 2017; 185 2014 2013 1999; 94 2001; 11 2012; 23 2006; 101 2014; 33 2005; 35 2014; 101 1990; 5 2012; 40 Robins (2023022408363235800_) 1994; 23 Robins (2023022408363235800_) 1994; 89 Van der Laan (2023022408363235800_) 2003 Miao (2023022408363235800_) 2017; 185 Scharfstein (2023022408363235800_) 1999; 94 Gómez (2023022408363235800_) 2008 Ogburn (2023022408363235800_) 2012; 23 Cheng (2023022408363235800_) 2010; 38 Gagnon-Bartsch (2023022408363235800_) 2012; 13 Bang (2023022408363235800_) 2005; 61 Glass (2023022408363235800_) 2014 Tchetgen Tchetgen (2023022408363235800_) 2013; 179 Choi (2023022408363235800_) 2017; 45 Rosenbaum (2023022408363235800_) 1992; 79 Vansteelandt (2023022408363235800_) 2008; 103 Weiss (2023022408363235800_) 2002; 13 Lipsitch (2023022408363235800_) 2010; 21 Wang (2023022408363235800_) 2018; 80 Richardson (2023022408363235800_) 2013 Sofer (2023022408363235800_) 2016; 31 Miao (2023022408363235800_) 2018; 105 Van der Vaart (2023022408363235800_) 1998 Tchetgen Tchetgen (2023022408363235800_) 2012; 40 Newey (2023022408363235800_) 1990; 5 Wang (2023022408363235800_) 2017; 45 Rotnitzky (2023022408363235800_) 2017 Chernozhukov (2023022408363235800_) 2016 Schuemie (2023022408363235800_) 2014; 33 Davey Smith (2023022408363235800_) 2008; 102 Van der Laan (2023022408363235800_) 2011 Lipsitch (2023022408363235800_) 2012; 23 James (2023022408363235800_) 1978; 62 Robins (2023022408363235800_) 2001; 11 Flanders (2023022408363235800_) 2011; 22 Nelson (2023022408363235800_) 2013; 177 Rosenbaum (2023022408363235800_) 1989; 45 Tan (2023022408363235800_) 2006; 101 Jackson (2023022408363235800_) 2005; 35 Robins (2023022408363235800_) 1986; 7 Kuroki (2023022408363235800_) 2014; 101 Miao (2023022408363235800_) 2019 Bickel (2023022408363235800_) 1993 Athey (2023022408363235800_) 2017 Davey Smith (2023022408363235800_) 2012; 23 Flanders (2023022408363235800_) 2017; 185 Tsiatis (2023022408363235800_) 2007 Robins (2023022408363235800_) 2000 |
References_xml | – volume: 33 start-page: 209 year: 2014 end-page: 218 article-title: Interpreting observational studies: why empirical calibration is needed to correct p‐values publication-title: Statist. Med. – year: 2011 – volume: 45 start-page: 1863 year: 2017 end-page: 1894 article-title: Confounder adjustment in multiple hypothesis testing publication-title: Ann. Statist. – volume: 101 start-page: 1619 year: 2006 end-page: 1637 article-title: A distributional approach for causal inference using propensity scores publication-title: J. Am. Statist. Ass. – volume: 35 start-page: 337 year: 2005 end-page: 344 article-title: Evidence of bias in estimates of influenza vaccine effectiveness in seniors publication-title: Int. J. Epidem. – volume: 23 start-page: 351 year: 2012 end-page: 352 article-title: Negative control exposures in epidemiologic studies (author reply) publication-title: Epidemiology – volume: 45 start-page: 2590 year: 2017 end-page: 2617 article-title: Selecting the number of principal components: estimation of the true rank of a noisy matrix publication-title: Ann. Statist. – volume: 102 start-page: 245 year: 2008 end-page: 256 article-title: Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? publication-title: Basic Clin. Pharmcol. Toxicol. – volume: 177 start-page: 131 year: 2013 end-page: 141 article-title: Adapting group sequential methods to observational postlicensure vaccine safety surveillance: results of a pentavalent combination DTaP‐IPV‐Hib vaccine safety study publication-title: Am. J. Epidem. – volume: 5 start-page: 99 year: 1990 end-page: 135 article-title: Semiparametric efficiency bounds publication-title: J. Appl. Econmetr. – volume: 79 start-page: 367 year: 1992 end-page: 374 article-title: Detecting bias with confidence in observational studies publication-title: Biometrika – volume: 179 start-page: 633 year: 2013 end-page: 640 article-title: The control outcome calibration approach for causal inference with unobserved confounding publication-title: Am. J. Epidem. – volume: 80 start-page: 531 year: 2018 end-page: 550 article-title: Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables publication-title: J. R. Statist. Soc. – year: 2007 – volume: 94 start-page: 1096 year: 1999 end-page: 1120 article-title: Adjusting for nonignorable drop‐out using semiparametric nonresponse models publication-title: J. Am. Statist. Ass. – year: 2003 – volume: 22 start-page: 59 year: 2011 end-page: 67 article-title: A method for detection of residual confounding in time‐series and other observational studies publication-title: Epidemiology – volume: 101 start-page: 423 year: 2014 end-page: 437 article-title: Measurement bias and effect restoration in causal inference publication-title: Biometrika – volume: 31 start-page: 348 year: 2016 end-page: 361 article-title: On negative outcome control of unobserved confounding as a generalization of difference‐in‐differences publication-title: Statist. Sci. – volume: 21 start-page: 383 year: 2010 end-page: 388 article-title: Negative controls: a tool for detecting confounding and bias in observational studies publication-title: Epidemiology – year: 2016 – volume: 61 start-page: 962 year: 2005 end-page: 973 article-title: Doubly robust estimation in missing data and causal inference models publication-title: Biometrics – volume: 23 start-page: 350 year: 2012 end-page: 351 article-title: Negative control exposures in epidemiologic studies: Comments on “Negative controls: a tool for detecting confounding and bias in observational studies” publication-title: Epidemiology – year: 2014 – volume: 62 start-page: 109 year: 1978 end-page: 114 article-title: The generalised inverse publication-title: Math. Gaz. – volume: 23 start-page: 2379 year: 1994 end-page: 2412 article-title: Correcting for non‐compliance in randomized trials using structural nested mean models publication-title: Communs Statist. Theory Meth. – year: 1998 – volume: 185 start-page: 950 year: 2017 end-page: 953 article-title: Bias attenuation and identification of causal effects with multiple negative controls publication-title: Am. J. Epidem. – volume: 105 start-page: 987 year: 2018 end-page: 993 article-title: Identifying causal effects with proxy variables of an unmeasured confounder publication-title: Biometrika – volume: 185 start-page: 941 year: 2017 end-page: 949 article-title: A new method for partial correction of residual confounding in time‐series and other observational studies publication-title: Am. J. Epidem. – start-page: 305 year: 2008 end-page: 315 – volume: 13 start-page: 6 year: 2002 end-page: 8 article-title: Can the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis publication-title: Epidemiology – volume: 40 start-page: 1816 year: 2012 end-page: 1845 article-title: Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis publication-title: Ann. Statist. – volume: 45 start-page: 557 year: 1989 end-page: 569 article-title: The role of known effects in observational studies publication-title: Biometrics – volume: 11 start-page: 920 year: 2001 end-page: 936 article-title: Comment on “Inference for semiparametric models: some questions and an answer” by P. J. Bickel and J. Kwon publication-title: Statist. Sin. – volume: 13 start-page: 539 year: 2012 end-page: 552 article-title: Using control genes to correct for unwanted variation in microarray data publication-title: Biostatistics – volume: 23 start-page: 433 year: 2012 end-page: 439 article-title: On the nondifferential misclassification of a binary confounder publication-title: Epidemiology – year: 2017 – volume: 7 start-page: 1393 year: 1986 end-page: 1512 article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect publication-title: Math. Modllng – volume: 89 start-page: 846 year: 1994 end-page: 866 article-title: Estimation of regression coefficients when some regressors are not always observed publication-title: J. Am. Statist. Ass. – year: 1993 – volume: 38 start-page: 2884 year: 2010 end-page: 2915 article-title: Bootstrap consistency for general semiparametric M‐estimation publication-title: Ann. Statist. – year: 2019 – start-page: 6 year: 2000 end-page: 10 article-title: Robust estimation in sequentially ignorable missing data and causal inference models publication-title: Proc. Baysn Statist. Sci. Sect. Am. Statist. Ass. – volume: 103 start-page: 1693 year: 2008 end-page: 1704 article-title: Multiply robust inference for statistical interactions publication-title: J. Am. Statist. Ass. – year: 2013 – volume: 23 start-page: 433 year: 2012 ident: 2023022408363235800_ article-title: On the nondifferential misclassification of a binary confounder publication-title: Epidemiology doi: 10.1097/EDE.0b013e31824d1f63 – volume: 13 start-page: 539 year: 2012 ident: 2023022408363235800_ article-title: Using control genes to correct for unwanted variation in microarray data publication-title: Biostatistics doi: 10.1093/biostatistics/kxr034 – volume: 21 start-page: 383 year: 2010 ident: 2023022408363235800_ article-title: Negative controls: a tool for detecting confounding and bias in observational studies publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181d61eeb – start-page: 6 year: 2000 ident: 2023022408363235800_ article-title: Robust estimation in sequentially ignorable missing data and causal inference models publication-title: Proc. Baysn Statist. Sci. Sect. Am. Statist. Ass. – volume: 105 start-page: 987 year: 2018 ident: 2023022408363235800_ article-title: Identifying causal effects with proxy variables of an unmeasured confounder publication-title: Biometrika doi: 10.1093/biomet/asy038 – volume: 94 start-page: 1096 year: 1999 ident: 2023022408363235800_ article-title: Adjusting for nonignorable drop-out using semiparametric nonresponse models publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1999.10473862 – volume: 23 start-page: 350 year: 2012 ident: 2023022408363235800_ article-title: Negative control exposures in epidemiologic studies: Comments on “Negative controls: a tool for detecting confounding and bias in observational studies” publication-title: Epidemiology doi: 10.1097/EDE.0b013e318245912c – volume: 185 start-page: 950 year: 2017 ident: 2023022408363235800_ article-title: Bias attenuation and identification of causal effects with multiple negative controls publication-title: Am. J. Epidem. doi: 10.1093/aje/kwx012 – volume-title: Semiparametric Theory and Missing Data year: 2007 ident: 2023022408363235800_ – volume: 102 start-page: 245 year: 2008 ident: 2023022408363235800_ article-title: Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? publication-title: Basic Clin. Pharmcol. Toxicol. doi: 10.1111/j.1742-7843.2007.00191.x – volume: 45 start-page: 1863 year: 2017 ident: 2023022408363235800_ article-title: Confounder adjustment in multiple hypothesis testing publication-title: Ann. Statist. doi: 10.1214/16-AOS1511 – volume-title: A confounding bridge approach for double negative control inference on causal effects year: 2019 ident: 2023022408363235800_ – volume: 177 start-page: 131 year: 2013 ident: 2023022408363235800_ article-title: Adapting group sequential methods to observational postlicensure vaccine safety surveillance: results of a pentavalent combination DTaP-IPV-Hib vaccine safety study publication-title: Am. J. Epidem. doi: 10.1093/aje/kws317 – volume: 11 start-page: 920 year: 2001 ident: 2023022408363235800_ article-title: Comment on “Inference for semiparametric models: some questions and an answer” by P. J. Bickel and J. Kwon publication-title: Statist. Sin. – volume: 101 start-page: 423 year: 2014 ident: 2023022408363235800_ article-title: Measurement bias and effect restoration in causal inference publication-title: Biometrika doi: 10.1093/biomet/ast066 – volume-title: Targeted Learning: Causal Inference for Observational and Experimental Data year: 2011 ident: 2023022408363235800_ doi: 10.1007/978-1-4419-9782-1 – volume: 35 start-page: 337 year: 2005 ident: 2023022408363235800_ article-title: Evidence of bias in estimates of influenza vaccine effectiveness in seniors publication-title: Int. J. Epidem. doi: 10.1093/ije/dyi274 – volume-title: Unified Methods for Censored Longitudinal Data and Causality year: 2003 ident: 2023022408363235800_ doi: 10.1007/978-0-387-21700-0 – volume: 45 start-page: 2590 year: 2017 ident: 2023022408363235800_ article-title: Selecting the number of principal components: estimation of the true rank of a noisy matrix publication-title: Ann. Statist. doi: 10.1214/16-AOS1536 – volume: 45 start-page: 557 year: 1989 ident: 2023022408363235800_ article-title: The role of known effects in observational studies publication-title: Biometrics doi: 10.2307/2531497 – volume: 103 start-page: 1693 year: 2008 ident: 2023022408363235800_ article-title: Multiply robust inference for statistical interactions publication-title: J. Am. Statist. Ass. doi: 10.1198/016214508000001084 – volume-title: Efficient policy learning year: 2017 ident: 2023022408363235800_ – volume-title: Locally robust semiparametric estimation year: 2016 ident: 2023022408363235800_ – volume-title: Experimental Design for Biologists year: 2014 ident: 2023022408363235800_ – volume: 23 start-page: 2379 year: 1994 ident: 2023022408363235800_ article-title: Correcting for non-compliance in randomized trials using structural nested mean models publication-title: Communs Statist. Theory Meth. doi: 10.1080/03610929408831393 – volume-title: Asymptotic Statistics year: 1998 ident: 2023022408363235800_ doi: 10.1017/CBO9780511802256 – volume: 38 start-page: 2884 year: 2010 ident: 2023022408363235800_ article-title: Bootstrap consistency for general semiparametric M-estimation publication-title: Ann. Statist. doi: 10.1214/10-AOS809 – volume: 79 start-page: 367 year: 1992 ident: 2023022408363235800_ article-title: Detecting bias with confidence in observational studies publication-title: Biometrika doi: 10.1093/biomet/79.2.367 – volume: 5 start-page: 99 year: 1990 ident: 2023022408363235800_ article-title: Semiparametric efficiency bounds publication-title: J. Appl. Econmetr. doi: 10.1002/jae.3950050202 – volume-title: On the multiply robust estimation of the mean of the g-functional year: 2017 ident: 2023022408363235800_ – volume: 101 start-page: 1619 year: 2006 ident: 2023022408363235800_ article-title: A distributional approach for causal inference using propensity scores publication-title: J. Am. Statist. Ass. doi: 10.1198/016214506000000023 – volume: 7 start-page: 1393 year: 1986 ident: 2023022408363235800_ article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect publication-title: Math. Modllng doi: 10.1016/0270-0255(86)90088-6 – volume: 62 start-page: 109 year: 1978 ident: 2023022408363235800_ article-title: The generalised inverse publication-title: Math. Gaz. doi: 10.2307/3617665 – volume: 80 start-page: 531 year: 2018 ident: 2023022408363235800_ article-title: Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables publication-title: J. R. Statist. Soc. doi: 10.1111/rssb.12262 – volume: 185 start-page: 941 year: 2017 ident: 2023022408363235800_ article-title: A new method for partial correction of residual confounding in time-series and other observational studies publication-title: Am. J. Epidem. doi: 10.1093/aje/kwx013 – volume: 13 start-page: 6 year: 2002 ident: 2023022408363235800_ article-title: Can the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis publication-title: Epidemiology doi: 10.1097/00001648-200201000-00003 – volume: 33 start-page: 209 year: 2014 ident: 2023022408363235800_ article-title: Interpreting observational studies: why empirical calibration is needed to correct p-values publication-title: Statist. Med. doi: 10.1002/sim.5925 – start-page: 305 volume-title: Advances in Mathematical and Statistical Modeling year: 2008 ident: 2023022408363235800_ doi: 10.1007/978-0-8176-4626-4_23 – volume: 179 start-page: 633 year: 2013 ident: 2023022408363235800_ article-title: The control outcome calibration approach for causal inference with unobserved confounding publication-title: Am. J. Epidem. doi: 10.1093/aje/kwt303 – volume: 61 start-page: 962 year: 2005 ident: 2023022408363235800_ article-title: Doubly robust estimation in missing data and causal inference models publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00377.x – volume: 89 start-page: 846 year: 1994 ident: 2023022408363235800_ article-title: Estimation of regression coefficients when some regressors are not always observed publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1994.10476818 – volume-title: Efficient and Adaptive Inference in Semiparametric Models year: 1993 ident: 2023022408363235800_ – volume: 23 start-page: 351 year: 2012 ident: 2023022408363235800_ article-title: Negative control exposures in epidemiologic studies (author reply) publication-title: Epidemiology doi: 10.1097/EDE.0b013e3182460c23 – volume-title: Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality year: 2013 ident: 2023022408363235800_ – volume: 31 start-page: 348 year: 2016 ident: 2023022408363235800_ article-title: On negative outcome control of unobserved confounding as a generalization of difference-in-differences publication-title: Statist. Sci. doi: 10.1214/16-STS558 – volume: 22 start-page: 59 year: 2011 ident: 2023022408363235800_ article-title: A method for detection of residual confounding in time-series and other observational studies publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181fdcabe – volume: 40 start-page: 1816 year: 2012 ident: 2023022408363235800_ article-title: Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis publication-title: Ann. Statist. doi: 10.1214/12-AOS990 |
SSID | ssj0000673 |
Score | 2.581409 |
Snippet | Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured... Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 521 |
SubjectTerms | Bias Causal inference children Computer simulation Epidemiology equations Inference Licensing monitoring Negative control Observational studies Original Articles Parameter estimation Popularity Regression analysis Robustness Semiparametric inference Simulation Statistical methods Statistics Surveillance Unmeasured confounding vaccines |
Title | Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding |
URI | https://www.jstor.org/stable/26937884 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12361 https://www.ncbi.nlm.nih.gov/pubmed/33376449 https://www.proquest.com/docview/2377826748 https://www.proquest.com/docview/2439419954 https://www.proquest.com/docview/2473902900 https://pubmed.ncbi.nlm.nih.gov/PMC7768794 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VPfVS_loIFGQEl1bKKhs78VriUhBVhVQO_ZF6qSLbcUqhZGGzOcCJR-gz9kk6YydhF6pKcIuSsRRnZzzfzM58A_A6VdnE5IbHVmYyFo4ob3UuYvTViXASb_hpDQcf8_0T8eE0O12BN30vTOCHGBJuZBn-vCYD16ZZMPJZ05iR5w7BA5iKtQgRHaaLxzAPTVcqRreZdtykVMbze-mSNwoFibdBzb8rJheRrHdFe_fgrN9EqED5MmrnZmR__sHv-L-7vA_rHUZlu0GpHsCKqx_CGsHSwOr8CL4fhDrEH2w2NW0zZ1a3DS656NsHGeV3WTltzaW7_nVVu3NPMM66ynimy8-4jDKTDFEzo7Ks88BWwtr6a8hbliRd0dgndK8bcLL3_vjdftwNb4hthm-LISmGKpxrypIkzkyktE7mypVmrC0XWmaWWzVBXXFJbqtqjIFNwjOn-MQomwm-Cav1tHZPgFXSSI1QKXOiEmZcGozZLEIPTtyDVVVFsN3_iIXtmM1pwMZl0Uc49BUL_xUjeDXIfgt8HrdKbXpdGETSXBHxvohgq1eOojP2pki5RJxFU1sieDk8RjOl_1507aYtylAHMrXDi7tkJFdJqpIkgsdB34YX4Bw9gRAqArmkiYMA0YQvP6kvPnm6cIkRJZ66Eex4Rbtj28Xh0dFbf_X0X4SfwVpKWQhfz7QFq_NZ654jVJubF94kbwAsjz24 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9kAvBQotgUKNygWkrLKxE6-PgKi2tNtDH1JvUew4pdBmYbM5wImfwG_klzBjZ8MurSrBLUrGUh4znke--QbgZaySgU41D41MZCgsUd7mqQjRV0fCSjzhpjWMDtPhqfhwlpy12BzqhfH8EF3BjSzD7ddk4FSQnrPySV3rniMPuQMrNNLbZVRH8fxGzH3blQrRccYtOykBef6sXfBHHpJ4U7B5HTM5H8s6Z7R7z09crR2HIWFQPveaqe6Z738xPP73c96HtTZMZW-8Xj2AJVutwypFpp7Y-SF8HXko4jc2GeumnjKTNzUuuZh1EDIq8bJi3OhL--vHz8qeO45x1oLjWV58wmVUnGQYODNCZp17whLWVFe-dFmQdEmTn9DDPoLT3fcn74ZhO78hNAneLWalmK1wnlOhJLJ6IKWxMlW20P3ccJHLxHCjBqguNkpNWfYxt4l4YhUfaGUSwTdguRpX9jGwUmqZY7SUWFEK3S80pm0Gow9O9INlWQbwavYVM9OSm9OMjctsluTQW8zcWwxgp5P94ik9bpTacMrQicSpIu59EcDWTDuy1t7rLOYSQy0a3BLAi-4yWir9fskrO25QhpqQqSNe3CYjuYpiFUUBbHqF626Ac3QGQqgA5IIqdgLEFL54pbr46BjDJSaVuPEG8Npp2i2PnR0dH791R0_-RXgb7g5PRgfZwd7h_lNYjako4eBNW7A8nTT2GUZuU_3c2edvzo5B0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIqFe-C8EChjBBaSssrETxxIXoKzKTyvUUqkXFMWOUwolWzabA5x4BJ6RJ2HGTsIuVJXgFiVjKc7OeL6ZnfkG4GGskkynmodGJjIUlihvi1SE6KsjYSXecNMatnfSrX3x6iA5WIEnfS-M54cYEm5kGe68JgM_KasFI581jR457pBzcF6kUUY6vbkbL57D3HddqRD9ZtyRk1Idz--1S-7IVySehjX_LplchLLOF00uwft-F74E5dOoneuR-fYHweP_bvMyXOxAKnvqteoKrNj6KqwRLvW0ztfgy7YvRPzKZlPdNnNmirbBJUd9_yCjBC8rp60-tj-__6jtoWMYZ11pPCvKj7iMUpMMYTOjuqxDT1fC2vqzT1yWJF3R3Cf0r9dhf_Li3fOtsJveEJoE3xZjUoxVOC8oTRJZnUlprEyVLfW4MFwUMjHcqAyVxUapqaoxRjYRT6zimVYmEXwdVutpbW8Cq6SWBWKlxIpK6HGpMWgziD04kQ9WVRXAo_5HzE1HbU4TNo7zPsShr5i7rxjAg0H2xBN6nCq17nRhEIlTRcz7IoCNXjnyztqbPOYSgRaNbQng_vAY7ZT-fClqO21RhlqQqR9enCUjuYpiFUUB3PD6NrwA5-gKhFAByCVNHASIJ3z5SX30wfGFSwwp8dgN4LFTtDO2ne_u7T1zV7f-RfgeXHi7OcnfvNx5fRvWYspIuNqmDVidz1p7B2HbXN911vkLBuxAiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiply+robust+causal+inference+with+double-negative+control+adjustment+for+categorical+unmeasured+confounding&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Shi%2C+Xu&rft.au=Miao%2C+Wang&rft.au=Nelson%2C+Jennifer+C.&rft.au=Tchetgen%2C+Eric+J.+Tchetgen&rft.date=2020-04-01&rft.issn=1369-7412&rft.volume=82&rft.issue=2&rft.spage=521&rft.epage=540&rft_id=info:doi/10.1111%2Frssb.12361&rft_id=info%3Apmid%2F33376449&rft.externalDocID=PMC7768794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |