Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding

Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series B, Statistical methodology Vol. 82; no. 2; pp. 521 - 540
Main Authors Shi, Xu, Miao, Wang, Nelson, Jennifer C., Tchetgen, Eric J. Tchetgen
Format Journal Article
LanguageEnglish
Published England Wiley 01.04.2020
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables.We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we proposemultiply robust and locally efficient estimators when non-parametric estimation may not be feasible.We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.
AbstractList Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.
Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long‐standing tradition in laboratory sciences and epidemiology to rule out non‐causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non‐parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non‐parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non‐parametric model, and we propose multiply robust and locally efficient estimators when non‐parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post‐licensure surveillance of vaccine safety among children.
Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.
Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables.We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we proposemultiply robust and locally efficient estimators when non-parametric estimation may not be feasible.We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.
Author Tchetgen, Eric J. Tchetgen
Shi, Xu
Nelson, Jennifer C.
Miao, Wang
Author_xml – sequence: 1
  givenname: Xu
  surname: Shi
  fullname: Shi, Xu
– sequence: 2
  givenname: Wang
  surname: Miao
  fullname: Miao, Wang
– sequence: 3
  givenname: Jennifer C.
  surname: Nelson
  fullname: Nelson, Jennifer C.
– sequence: 4
  givenname: Eric J. Tchetgen
  surname: Tchetgen
  fullname: Tchetgen, Eric J. Tchetgen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33376449$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEUxYNU7Idu3CsDbkSYmkwyyWQjaPELKoLVdchk7rzmkUmeyaTl_fdm-tqHFhHvJoH8zuHc3HuMDnzwgNBTgk9Jqdcxpf6UNJSTB-iIMC5q2fHuoNwpl7VgpDlExymtcSku6CN0SCkVnDF5hMKX7Ga7cdsqhj6nuTI6J-0q60eI4A1U13a-rIaQewe1h5We7RVUJvg5BlfpYV1EE_i5GkMs4hlWIVpTHLKfQKccYVjoMWQ_WL96jB6O2iV4cnueoB8f3n8_-1Sff_34-ezteW3a0kfNSSsFpZoTyTD0nRAGBJcw9EQbyrRoDTWya2QLmJtxJFIwTFuQtOulaRk9QW92vpvcTzCYkjBqpzbRTjpuVdBW_fni7aVahSslBO-EXAxe3hrE8DNDmtVkkwHntIeQk2qYoBI3EuP_QKlkRMqbWC_uoeuQoy8_oRoqRNdwwbpCPf89_D713dgK8GoHmBhSijDuEYLVshNq2Ql1sxMFxvdgY-cyxmWE2rq_S8hOcm0dbP9hrr5dXLy70zzbadZpDnGvabikousY_QUu9dUV
CitedBy_id crossref_primary_10_1007_s40471_020_00243_4
crossref_primary_10_1002_sim_10175
crossref_primary_10_1038_s41467_024_52117_8
crossref_primary_10_1177_09622802231181230
crossref_primary_10_1093_aje_kwad201
crossref_primary_10_1093_jrsssb_qkad020
crossref_primary_10_1515_jci_2023_0020
crossref_primary_10_1093_aje_kwab263
crossref_primary_10_1093_biomet_asae008
crossref_primary_10_1097_EDE_0000000000001759
crossref_primary_10_1080_01621459_2023_2240053
crossref_primary_10_1093_jrsssb_qkae095
crossref_primary_10_1093_aje_kwae036
crossref_primary_10_1093_jrsssa_qnae039
crossref_primary_10_1097_EDE_0000000000001650
crossref_primary_10_1080_24754269_2023_2293554
crossref_primary_10_1214_23_STS911
crossref_primary_10_1111_biom_13783
crossref_primary_10_1038_s41467_022_28365_x
crossref_primary_10_1186_s12874_023_02065_6
crossref_primary_10_1016_j_cgh_2022_05_017
crossref_primary_10_1080_02664763_2025_2474611
crossref_primary_10_1093_aje_kwac170
crossref_primary_10_1111_rssb_12538
crossref_primary_10_1111_sjos_12633
crossref_primary_10_1080_01621459_2022_2147841
crossref_primary_10_1111_insr_12518
crossref_primary_10_1287_opre_2021_0781
crossref_primary_10_1016_j_envres_2023_116203
crossref_primary_10_1016_j_jclinepi_2023_111228
crossref_primary_10_1093_jrsssb_qkad132
crossref_primary_10_1097_EDE_0000000000001528
crossref_primary_10_1017_cts_2023_688
crossref_primary_10_1001_jama_2023_4221
crossref_primary_10_1093_ectj_utae014
crossref_primary_10_3390_math12182801
crossref_primary_10_1001_jamainternmed_2024_1181
crossref_primary_10_1080_24754269_2024_2390748
crossref_primary_10_1002_sim_70025
crossref_primary_10_1002_pds_5037
crossref_primary_10_1080_01621459_2022_2110878
crossref_primary_10_1080_01621459_2023_2238942
crossref_primary_10_1016_j_spl_2023_109836
crossref_primary_10_1002_sim_10095
crossref_primary_10_1080_01621459_2021_2023551
crossref_primary_10_1080_00031305_2023_2250399
crossref_primary_10_1093_cid_ciae519
Cites_doi 10.1097/EDE.0b013e31824d1f63
10.1093/biostatistics/kxr034
10.1097/EDE.0b013e3181d61eeb
10.1093/biomet/asy038
10.1080/01621459.1999.10473862
10.1097/EDE.0b013e318245912c
10.1093/aje/kwx012
10.1111/j.1742-7843.2007.00191.x
10.1214/16-AOS1511
10.1093/aje/kws317
10.1093/biomet/ast066
10.1007/978-1-4419-9782-1
10.1093/ije/dyi274
10.1007/978-0-387-21700-0
10.1214/16-AOS1536
10.2307/2531497
10.1198/016214508000001084
10.1080/03610929408831393
10.1017/CBO9780511802256
10.1214/10-AOS809
10.1093/biomet/79.2.367
10.1002/jae.3950050202
10.1198/016214506000000023
10.1016/0270-0255(86)90088-6
10.2307/3617665
10.1111/rssb.12262
10.1093/aje/kwx013
10.1097/00001648-200201000-00003
10.1002/sim.5925
10.1007/978-0-8176-4626-4_23
10.1093/aje/kwt303
10.1111/j.1541-0420.2005.00377.x
10.1080/01621459.1994.10476818
10.1097/EDE.0b013e3182460c23
10.1214/16-STS558
10.1097/EDE.0b013e3181fdcabe
10.1214/12-AOS990
ContentType Journal Article
Copyright 2020 Royal Statistical Society
Copyright © 2020 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: 2020 Royal Statistical Society
– notice: Copyright © 2020 The Royal Statistical Society and Blackwell Publishing Ltd
DBID AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
7X8
5PM
DOI 10.1111/rssb.12361
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic
AGRICOLA

International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 540
ExternalDocumentID PMC7768794
33376449
10_1111_rssb_12361
RSSB12361
26937884
Genre article
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI104459
– fundername: NIAID NIH HHS
  grantid: R01 AI127271
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAONW
AAPXW
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQP
ABPTD
ABPVW
ABWST
ABYWD
ABZEH
ACAHQ
ACCZN
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AHQJS
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZL0
ZZTAW
~02
~IA
~KM
~WT
.Y3
3-9
31~
AAHHS
AANHP
AARHZ
ABPQH
ABXSQ
ABYAD
ACBWZ
ACCFJ
ACFRR
ACRPL
ACTWD
ACYXJ
ADNMO
ADQBN
ADULT
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ANFBD
AS~
ATGXG
AZFZN
COF
EJD
FEDTE
FVMVE
H13
HF~
HGD
HVGLF
H~9
JSODD
NHB
RJQFR
ZGI
AAYXX
CITATION
AIHAF
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c5361-6159733a61940eb877ce769edb1ac34a75c3c98295e06cff1974035e938b9c543
IEDL.DBID DR2
ISSN 1369-7412
IngestDate Thu Aug 21 13:23:05 EDT 2025
Fri Jul 11 11:48:31 EDT 2025
Fri Jul 11 18:29:45 EDT 2025
Wed Aug 13 06:27:42 EDT 2025
Wed Feb 19 02:29:37 EST 2025
Thu Apr 24 22:51:35 EDT 2025
Tue Jul 01 03:43:11 EDT 2025
Wed Jan 22 16:34:18 EST 2025
Thu Jul 03 21:36:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Causal inference
Semiparametric inference
Unmeasured confounding
Negative control
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5361-6159733a61940eb877ce769edb1ac34a75c3c98295e06cff1974035e938b9c543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://academic.oup.com/jrsssb/article-pdf/82/2/521/49321041/jrsssb_82_2_521.pdf
PMID 33376449
PQID 2377826748
PQPubID 39359
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768794
proquest_miscellaneous_2473902900
proquest_miscellaneous_2439419954
proquest_journals_2377826748
pubmed_primary_33376449
crossref_primary_10_1111_rssb_12361
crossref_citationtrail_10_1111_rssb_12361
wiley_primary_10_1111_rssb_12361_RSSB12361
jstor_primary_26937884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationTitleAlternate J R Stat Soc Series B Stat Methodol
PublicationYear 2020
Publisher Wiley
Oxford University Press
Publisher_xml – name: Wiley
– name: Oxford University Press
References 2010; 38
1989; 45
2018; 105
2011
2002; 13
2017; 45
1994; 23
1994; 89
1998
2008
2016; 31
2018; 80
2007
1992; 79
1993
2003
2008; 103
2005; 61
2008; 102
2012; 13
2010; 21
1986; 7
2000
1978; 62
2019
2013; 177
2011; 22
2017
2013; 179
2016
2017; 185
2014
2013
1999; 94
2001; 11
2012; 23
2006; 101
2014; 33
2005; 35
2014; 101
1990; 5
2012; 40
Robins (2023022408363235800_) 1994; 23
Robins (2023022408363235800_) 1994; 89
Van der Laan (2023022408363235800_) 2003
Miao (2023022408363235800_) 2017; 185
Scharfstein (2023022408363235800_) 1999; 94
Gómez (2023022408363235800_) 2008
Ogburn (2023022408363235800_) 2012; 23
Cheng (2023022408363235800_) 2010; 38
Gagnon-Bartsch (2023022408363235800_) 2012; 13
Bang (2023022408363235800_) 2005; 61
Glass (2023022408363235800_) 2014
Tchetgen Tchetgen (2023022408363235800_) 2013; 179
Choi (2023022408363235800_) 2017; 45
Rosenbaum (2023022408363235800_) 1992; 79
Vansteelandt (2023022408363235800_) 2008; 103
Weiss (2023022408363235800_) 2002; 13
Lipsitch (2023022408363235800_) 2010; 21
Wang (2023022408363235800_) 2018; 80
Richardson (2023022408363235800_) 2013
Sofer (2023022408363235800_) 2016; 31
Miao (2023022408363235800_) 2018; 105
Van der Vaart (2023022408363235800_) 1998
Tchetgen Tchetgen (2023022408363235800_) 2012; 40
Newey (2023022408363235800_) 1990; 5
Wang (2023022408363235800_) 2017; 45
Rotnitzky (2023022408363235800_) 2017
Chernozhukov (2023022408363235800_) 2016
Schuemie (2023022408363235800_) 2014; 33
Davey Smith (2023022408363235800_) 2008; 102
Van der Laan (2023022408363235800_) 2011
Lipsitch (2023022408363235800_) 2012; 23
James (2023022408363235800_) 1978; 62
Robins (2023022408363235800_) 2001; 11
Flanders (2023022408363235800_) 2011; 22
Nelson (2023022408363235800_) 2013; 177
Rosenbaum (2023022408363235800_) 1989; 45
Tan (2023022408363235800_) 2006; 101
Jackson (2023022408363235800_) 2005; 35
Robins (2023022408363235800_) 1986; 7
Kuroki (2023022408363235800_) 2014; 101
Miao (2023022408363235800_) 2019
Bickel (2023022408363235800_) 1993
Athey (2023022408363235800_) 2017
Davey Smith (2023022408363235800_) 2012; 23
Flanders (2023022408363235800_) 2017; 185
Tsiatis (2023022408363235800_) 2007
Robins (2023022408363235800_) 2000
References_xml – volume: 33
  start-page: 209
  year: 2014
  end-page: 218
  article-title: Interpreting observational studies: why empirical calibration is needed to correct p‐values
  publication-title: Statist. Med.
– year: 2011
– volume: 45
  start-page: 1863
  year: 2017
  end-page: 1894
  article-title: Confounder adjustment in multiple hypothesis testing
  publication-title: Ann. Statist.
– volume: 101
  start-page: 1619
  year: 2006
  end-page: 1637
  article-title: A distributional approach for causal inference using propensity scores
  publication-title: J. Am. Statist. Ass.
– volume: 35
  start-page: 337
  year: 2005
  end-page: 344
  article-title: Evidence of bias in estimates of influenza vaccine effectiveness in seniors
  publication-title: Int. J. Epidem.
– volume: 23
  start-page: 351
  year: 2012
  end-page: 352
  article-title: Negative control exposures in epidemiologic studies (author reply)
  publication-title: Epidemiology
– volume: 45
  start-page: 2590
  year: 2017
  end-page: 2617
  article-title: Selecting the number of principal components: estimation of the true rank of a noisy matrix
  publication-title: Ann. Statist.
– volume: 102
  start-page: 245
  year: 2008
  end-page: 256
  article-title: Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings?
  publication-title: Basic Clin. Pharmcol. Toxicol.
– volume: 177
  start-page: 131
  year: 2013
  end-page: 141
  article-title: Adapting group sequential methods to observational postlicensure vaccine safety surveillance: results of a pentavalent combination DTaP‐IPV‐Hib vaccine safety study
  publication-title: Am. J. Epidem.
– volume: 5
  start-page: 99
  year: 1990
  end-page: 135
  article-title: Semiparametric efficiency bounds
  publication-title: J. Appl. Econmetr.
– volume: 79
  start-page: 367
  year: 1992
  end-page: 374
  article-title: Detecting bias with confidence in observational studies
  publication-title: Biometrika
– volume: 179
  start-page: 633
  year: 2013
  end-page: 640
  article-title: The control outcome calibration approach for causal inference with unobserved confounding
  publication-title: Am. J. Epidem.
– volume: 80
  start-page: 531
  year: 2018
  end-page: 550
  article-title: Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables
  publication-title: J. R. Statist. Soc.
– year: 2007
– volume: 94
  start-page: 1096
  year: 1999
  end-page: 1120
  article-title: Adjusting for nonignorable drop‐out using semiparametric nonresponse models
  publication-title: J. Am. Statist. Ass.
– year: 2003
– volume: 22
  start-page: 59
  year: 2011
  end-page: 67
  article-title: A method for detection of residual confounding in time‐series and other observational studies
  publication-title: Epidemiology
– volume: 101
  start-page: 423
  year: 2014
  end-page: 437
  article-title: Measurement bias and effect restoration in causal inference
  publication-title: Biometrika
– volume: 31
  start-page: 348
  year: 2016
  end-page: 361
  article-title: On negative outcome control of unobserved confounding as a generalization of difference‐in‐differences
  publication-title: Statist. Sci.
– volume: 21
  start-page: 383
  year: 2010
  end-page: 388
  article-title: Negative controls: a tool for detecting confounding and bias in observational studies
  publication-title: Epidemiology
– year: 2016
– volume: 61
  start-page: 962
  year: 2005
  end-page: 973
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
– volume: 23
  start-page: 350
  year: 2012
  end-page: 351
  article-title: Negative control exposures in epidemiologic studies: Comments on “Negative controls: a tool for detecting confounding and bias in observational studies”
  publication-title: Epidemiology
– year: 2014
– volume: 62
  start-page: 109
  year: 1978
  end-page: 114
  article-title: The generalised inverse
  publication-title: Math. Gaz.
– volume: 23
  start-page: 2379
  year: 1994
  end-page: 2412
  article-title: Correcting for non‐compliance in randomized trials using structural nested mean models
  publication-title: Communs Statist. Theory Meth.
– year: 1998
– volume: 185
  start-page: 950
  year: 2017
  end-page: 953
  article-title: Bias attenuation and identification of causal effects with multiple negative controls
  publication-title: Am. J. Epidem.
– volume: 105
  start-page: 987
  year: 2018
  end-page: 993
  article-title: Identifying causal effects with proxy variables of an unmeasured confounder
  publication-title: Biometrika
– volume: 185
  start-page: 941
  year: 2017
  end-page: 949
  article-title: A new method for partial correction of residual confounding in time‐series and other observational studies
  publication-title: Am. J. Epidem.
– start-page: 305
  year: 2008
  end-page: 315
– volume: 13
  start-page: 6
  year: 2002
  end-page: 8
  article-title: Can the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis
  publication-title: Epidemiology
– volume: 40
  start-page: 1816
  year: 2012
  end-page: 1845
  article-title: Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis
  publication-title: Ann. Statist.
– volume: 45
  start-page: 557
  year: 1989
  end-page: 569
  article-title: The role of known effects in observational studies
  publication-title: Biometrics
– volume: 11
  start-page: 920
  year: 2001
  end-page: 936
  article-title: Comment on “Inference for semiparametric models: some questions and an answer” by P. J. Bickel and J. Kwon
  publication-title: Statist. Sin.
– volume: 13
  start-page: 539
  year: 2012
  end-page: 552
  article-title: Using control genes to correct for unwanted variation in microarray data
  publication-title: Biostatistics
– volume: 23
  start-page: 433
  year: 2012
  end-page: 439
  article-title: On the nondifferential misclassification of a binary confounder
  publication-title: Epidemiology
– year: 2017
– volume: 7
  start-page: 1393
  year: 1986
  end-page: 1512
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect
  publication-title: Math. Modllng
– volume: 89
  start-page: 846
  year: 1994
  end-page: 866
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Am. Statist. Ass.
– year: 1993
– volume: 38
  start-page: 2884
  year: 2010
  end-page: 2915
  article-title: Bootstrap consistency for general semiparametric M‐estimation
  publication-title: Ann. Statist.
– year: 2019
– start-page: 6
  year: 2000
  end-page: 10
  article-title: Robust estimation in sequentially ignorable missing data and causal inference models
  publication-title: Proc. Baysn Statist. Sci. Sect. Am. Statist. Ass.
– volume: 103
  start-page: 1693
  year: 2008
  end-page: 1704
  article-title: Multiply robust inference for statistical interactions
  publication-title: J. Am. Statist. Ass.
– year: 2013
– volume: 23
  start-page: 433
  year: 2012
  ident: 2023022408363235800_
  article-title: On the nondifferential misclassification of a binary confounder
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31824d1f63
– volume: 13
  start-page: 539
  year: 2012
  ident: 2023022408363235800_
  article-title: Using control genes to correct for unwanted variation in microarray data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr034
– volume: 21
  start-page: 383
  year: 2010
  ident: 2023022408363235800_
  article-title: Negative controls: a tool for detecting confounding and bias in observational studies
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181d61eeb
– start-page: 6
  year: 2000
  ident: 2023022408363235800_
  article-title: Robust estimation in sequentially ignorable missing data and causal inference models
  publication-title: Proc. Baysn Statist. Sci. Sect. Am. Statist. Ass.
– volume: 105
  start-page: 987
  year: 2018
  ident: 2023022408363235800_
  article-title: Identifying causal effects with proxy variables of an unmeasured confounder
  publication-title: Biometrika
  doi: 10.1093/biomet/asy038
– volume: 94
  start-page: 1096
  year: 1999
  ident: 2023022408363235800_
  article-title: Adjusting for nonignorable drop-out using semiparametric nonresponse models
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1999.10473862
– volume: 23
  start-page: 350
  year: 2012
  ident: 2023022408363235800_
  article-title: Negative control exposures in epidemiologic studies: Comments on “Negative controls: a tool for detecting confounding and bias in observational studies”
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e318245912c
– volume: 185
  start-page: 950
  year: 2017
  ident: 2023022408363235800_
  article-title: Bias attenuation and identification of causal effects with multiple negative controls
  publication-title: Am. J. Epidem.
  doi: 10.1093/aje/kwx012
– volume-title: Semiparametric Theory and Missing Data
  year: 2007
  ident: 2023022408363235800_
– volume: 102
  start-page: 245
  year: 2008
  ident: 2023022408363235800_
  article-title: Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings?
  publication-title: Basic Clin. Pharmcol. Toxicol.
  doi: 10.1111/j.1742-7843.2007.00191.x
– volume: 45
  start-page: 1863
  year: 2017
  ident: 2023022408363235800_
  article-title: Confounder adjustment in multiple hypothesis testing
  publication-title: Ann. Statist.
  doi: 10.1214/16-AOS1511
– volume-title: A confounding bridge approach for double negative control inference on causal effects
  year: 2019
  ident: 2023022408363235800_
– volume: 177
  start-page: 131
  year: 2013
  ident: 2023022408363235800_
  article-title: Adapting group sequential methods to observational postlicensure vaccine safety surveillance: results of a pentavalent combination DTaP-IPV-Hib vaccine safety study
  publication-title: Am. J. Epidem.
  doi: 10.1093/aje/kws317
– volume: 11
  start-page: 920
  year: 2001
  ident: 2023022408363235800_
  article-title: Comment on “Inference for semiparametric models: some questions and an answer” by P. J. Bickel and J. Kwon
  publication-title: Statist. Sin.
– volume: 101
  start-page: 423
  year: 2014
  ident: 2023022408363235800_
  article-title: Measurement bias and effect restoration in causal inference
  publication-title: Biometrika
  doi: 10.1093/biomet/ast066
– volume-title: Targeted Learning: Causal Inference for Observational and Experimental Data
  year: 2011
  ident: 2023022408363235800_
  doi: 10.1007/978-1-4419-9782-1
– volume: 35
  start-page: 337
  year: 2005
  ident: 2023022408363235800_
  article-title: Evidence of bias in estimates of influenza vaccine effectiveness in seniors
  publication-title: Int. J. Epidem.
  doi: 10.1093/ije/dyi274
– volume-title: Unified Methods for Censored Longitudinal Data and Causality
  year: 2003
  ident: 2023022408363235800_
  doi: 10.1007/978-0-387-21700-0
– volume: 45
  start-page: 2590
  year: 2017
  ident: 2023022408363235800_
  article-title: Selecting the number of principal components: estimation of the true rank of a noisy matrix
  publication-title: Ann. Statist.
  doi: 10.1214/16-AOS1536
– volume: 45
  start-page: 557
  year: 1989
  ident: 2023022408363235800_
  article-title: The role of known effects in observational studies
  publication-title: Biometrics
  doi: 10.2307/2531497
– volume: 103
  start-page: 1693
  year: 2008
  ident: 2023022408363235800_
  article-title: Multiply robust inference for statistical interactions
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214508000001084
– volume-title: Efficient policy learning
  year: 2017
  ident: 2023022408363235800_
– volume-title: Locally robust semiparametric estimation
  year: 2016
  ident: 2023022408363235800_
– volume-title: Experimental Design for Biologists
  year: 2014
  ident: 2023022408363235800_
– volume: 23
  start-page: 2379
  year: 1994
  ident: 2023022408363235800_
  article-title: Correcting for non-compliance in randomized trials using structural nested mean models
  publication-title: Communs Statist. Theory Meth.
  doi: 10.1080/03610929408831393
– volume-title: Asymptotic Statistics
  year: 1998
  ident: 2023022408363235800_
  doi: 10.1017/CBO9780511802256
– volume: 38
  start-page: 2884
  year: 2010
  ident: 2023022408363235800_
  article-title: Bootstrap consistency for general semiparametric M-estimation
  publication-title: Ann. Statist.
  doi: 10.1214/10-AOS809
– volume: 79
  start-page: 367
  year: 1992
  ident: 2023022408363235800_
  article-title: Detecting bias with confidence in observational studies
  publication-title: Biometrika
  doi: 10.1093/biomet/79.2.367
– volume: 5
  start-page: 99
  year: 1990
  ident: 2023022408363235800_
  article-title: Semiparametric efficiency bounds
  publication-title: J. Appl. Econmetr.
  doi: 10.1002/jae.3950050202
– volume-title: On the multiply robust estimation of the mean of the g-functional
  year: 2017
  ident: 2023022408363235800_
– volume: 101
  start-page: 1619
  year: 2006
  ident: 2023022408363235800_
  article-title: A distributional approach for causal inference using propensity scores
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214506000000023
– volume: 7
  start-page: 1393
  year: 1986
  ident: 2023022408363235800_
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect
  publication-title: Math. Modllng
  doi: 10.1016/0270-0255(86)90088-6
– volume: 62
  start-page: 109
  year: 1978
  ident: 2023022408363235800_
  article-title: The generalised inverse
  publication-title: Math. Gaz.
  doi: 10.2307/3617665
– volume: 80
  start-page: 531
  year: 2018
  ident: 2023022408363235800_
  article-title: Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/rssb.12262
– volume: 185
  start-page: 941
  year: 2017
  ident: 2023022408363235800_
  article-title: A new method for partial correction of residual confounding in time-series and other observational studies
  publication-title: Am. J. Epidem.
  doi: 10.1093/aje/kwx013
– volume: 13
  start-page: 6
  year: 2002
  ident: 2023022408363235800_
  article-title: Can the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis
  publication-title: Epidemiology
  doi: 10.1097/00001648-200201000-00003
– volume: 33
  start-page: 209
  year: 2014
  ident: 2023022408363235800_
  article-title: Interpreting observational studies: why empirical calibration is needed to correct p-values
  publication-title: Statist. Med.
  doi: 10.1002/sim.5925
– start-page: 305
  volume-title: Advances in Mathematical and Statistical Modeling
  year: 2008
  ident: 2023022408363235800_
  doi: 10.1007/978-0-8176-4626-4_23
– volume: 179
  start-page: 633
  year: 2013
  ident: 2023022408363235800_
  article-title: The control outcome calibration approach for causal inference with unobserved confounding
  publication-title: Am. J. Epidem.
  doi: 10.1093/aje/kwt303
– volume: 61
  start-page: 962
  year: 2005
  ident: 2023022408363235800_
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00377.x
– volume: 89
  start-page: 846
  year: 1994
  ident: 2023022408363235800_
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1994.10476818
– volume-title: Efficient and Adaptive Inference in Semiparametric Models
  year: 1993
  ident: 2023022408363235800_
– volume: 23
  start-page: 351
  year: 2012
  ident: 2023022408363235800_
  article-title: Negative control exposures in epidemiologic studies (author reply)
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3182460c23
– volume-title: Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality
  year: 2013
  ident: 2023022408363235800_
– volume: 31
  start-page: 348
  year: 2016
  ident: 2023022408363235800_
  article-title: On negative outcome control of unobserved confounding as a generalization of difference-in-differences
  publication-title: Statist. Sci.
  doi: 10.1214/16-STS558
– volume: 22
  start-page: 59
  year: 2011
  ident: 2023022408363235800_
  article-title: A method for detection of residual confounding in time-series and other observational studies
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181fdcabe
– volume: 40
  start-page: 1816
  year: 2012
  ident: 2023022408363235800_
  article-title: Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis
  publication-title: Ann. Statist.
  doi: 10.1214/12-AOS990
SSID ssj0000673
Score 2.581409
Snippet Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured...
Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 521
SubjectTerms Bias
Causal inference
children
Computer simulation
Epidemiology
equations
Inference
Licensing
monitoring
Negative control
Observational studies
Original Articles
Parameter estimation
Popularity
Regression analysis
Robustness
Semiparametric inference
Simulation
Statistical methods
Statistics
Surveillance
Unmeasured confounding
vaccines
Title Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding
URI https://www.jstor.org/stable/26937884
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12361
https://www.ncbi.nlm.nih.gov/pubmed/33376449
https://www.proquest.com/docview/2377826748
https://www.proquest.com/docview/2439419954
https://www.proquest.com/docview/2473902900
https://pubmed.ncbi.nlm.nih.gov/PMC7768794
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VPfVS_loIFGQEl1bKKhs78VriUhBVhVQO_ZF6qSLbcUqhZGGzOcCJR-gz9kk6YydhF6pKcIuSsRRnZzzfzM58A_A6VdnE5IbHVmYyFo4ob3UuYvTViXASb_hpDQcf8_0T8eE0O12BN30vTOCHGBJuZBn-vCYD16ZZMPJZ05iR5w7BA5iKtQgRHaaLxzAPTVcqRreZdtykVMbze-mSNwoFibdBzb8rJheRrHdFe_fgrN9EqED5MmrnZmR__sHv-L-7vA_rHUZlu0GpHsCKqx_CGsHSwOr8CL4fhDrEH2w2NW0zZ1a3DS656NsHGeV3WTltzaW7_nVVu3NPMM66ynimy8-4jDKTDFEzo7Ks88BWwtr6a8hbliRd0dgndK8bcLL3_vjdftwNb4hthm-LISmGKpxrypIkzkyktE7mypVmrC0XWmaWWzVBXXFJbqtqjIFNwjOn-MQomwm-Cav1tHZPgFXSSI1QKXOiEmZcGozZLEIPTtyDVVVFsN3_iIXtmM1pwMZl0Uc49BUL_xUjeDXIfgt8HrdKbXpdGETSXBHxvohgq1eOojP2pki5RJxFU1sieDk8RjOl_1507aYtylAHMrXDi7tkJFdJqpIkgsdB34YX4Bw9gRAqArmkiYMA0YQvP6kvPnm6cIkRJZ66Eex4Rbtj28Xh0dFbf_X0X4SfwVpKWQhfz7QFq_NZ654jVJubF94kbwAsjz24
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9kAvBQotgUKNygWkrLKxE6-PgKi2tNtDH1JvUew4pdBmYbM5wImfwG_klzBjZ8MurSrBLUrGUh4znke--QbgZaySgU41D41MZCgsUd7mqQjRV0fCSjzhpjWMDtPhqfhwlpy12BzqhfH8EF3BjSzD7ddk4FSQnrPySV3rniMPuQMrNNLbZVRH8fxGzH3blQrRccYtOykBef6sXfBHHpJ4U7B5HTM5H8s6Z7R7z09crR2HIWFQPveaqe6Z738xPP73c96HtTZMZW-8Xj2AJVutwypFpp7Y-SF8HXko4jc2GeumnjKTNzUuuZh1EDIq8bJi3OhL--vHz8qeO45x1oLjWV58wmVUnGQYODNCZp17whLWVFe-dFmQdEmTn9DDPoLT3fcn74ZhO78hNAneLWalmK1wnlOhJLJ6IKWxMlW20P3ccJHLxHCjBqguNkpNWfYxt4l4YhUfaGUSwTdguRpX9jGwUmqZY7SUWFEK3S80pm0Gow9O9INlWQbwavYVM9OSm9OMjctsluTQW8zcWwxgp5P94ik9bpTacMrQicSpIu59EcDWTDuy1t7rLOYSQy0a3BLAi-4yWir9fskrO25QhpqQqSNe3CYjuYpiFUUBbHqF626Ac3QGQqgA5IIqdgLEFL54pbr46BjDJSaVuPEG8Npp2i2PnR0dH791R0_-RXgb7g5PRgfZwd7h_lNYjako4eBNW7A8nTT2GUZuU_3c2edvzo5B0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIqFe-C8EChjBBaSssrETxxIXoKzKTyvUUqkXFMWOUwolWzabA5x4BJ6RJ2HGTsIuVJXgFiVjKc7OeL6ZnfkG4GGskkynmodGJjIUlihvi1SE6KsjYSXecNMatnfSrX3x6iA5WIEnfS-M54cYEm5kGe68JgM_KasFI581jR457pBzcF6kUUY6vbkbL57D3HddqRD9ZtyRk1Idz--1S-7IVySehjX_LplchLLOF00uwft-F74E5dOoneuR-fYHweP_bvMyXOxAKnvqteoKrNj6KqwRLvW0ztfgy7YvRPzKZlPdNnNmirbBJUd9_yCjBC8rp60-tj-__6jtoWMYZ11pPCvKj7iMUpMMYTOjuqxDT1fC2vqzT1yWJF3R3Cf0r9dhf_Li3fOtsJveEJoE3xZjUoxVOC8oTRJZnUlprEyVLfW4MFwUMjHcqAyVxUapqaoxRjYRT6zimVYmEXwdVutpbW8Cq6SWBWKlxIpK6HGpMWgziD04kQ9WVRXAo_5HzE1HbU4TNo7zPsShr5i7rxjAg0H2xBN6nCq17nRhEIlTRcz7IoCNXjnyztqbPOYSgRaNbQng_vAY7ZT-fClqO21RhlqQqR9enCUjuYpiFUUB3PD6NrwA5-gKhFAByCVNHASIJ3z5SX30wfGFSwwp8dgN4LFTtDO2ne_u7T1zV7f-RfgeXHi7OcnfvNx5fRvWYspIuNqmDVidz1p7B2HbXN911vkLBuxAiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiply+robust+causal+inference+with+double-negative+control+adjustment+for+categorical+unmeasured+confounding&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Shi%2C+Xu&rft.au=Miao%2C+Wang&rft.au=Nelson%2C+Jennifer+C.&rft.au=Tchetgen%2C+Eric+J.+Tchetgen&rft.date=2020-04-01&rft.issn=1369-7412&rft.volume=82&rft.issue=2&rft.spage=521&rft.epage=540&rft_id=info:doi/10.1111%2Frssb.12361&rft_id=info%3Apmid%2F33376449&rft.externalDocID=PMC7768794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon