Receptor-mediated mitophagy in yeast and mammalian systems

Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDCI in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atgll on the surface...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 24; no. 7; pp. 787 - 795
Main Authors Liu, Lei, Sakakibara, Kaori, Chen, Quan, Okamoto, Koji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDCI in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atgll on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.
AbstractList Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDCI in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atgll on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.
Author Lei Liu Kaori Sakakibara Quan Chen Koji Okamoto
AuthorAffiliation State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
Author_xml – sequence: 1
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  organization: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences
– sequence: 2
  givenname: Kaori
  surname: Sakakibara
  fullname: Sakakibara, Kaori
  organization: Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University
– sequence: 3
  givenname: Quan
  surname: Chen
  fullname: Chen, Quan
  email: chenq@ioz.ac.cn
  organization: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences
– sequence: 4
  givenname: Koji
  surname: Okamoto
  fullname: Okamoto, Koji
  email: kokamoto@fbs.osaka-u.ac.jp
  organization: Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24903109$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7Ife-ANk0JuizHrynemFUIpfUBBEr0Mmm9lNmUm2SVbYf2-G3ZZaeuFVQvKch_ecc4qOQgwOodcYFhio-mjTggBmC8mfoRMsmWqlouqo3gFwCwLIMTrN-QaAcMbxC3RMWAcUQ3eCLn466zYlpnZyS2-KWzaTL3GzNqtd40OzcyaXxoT6bKbJjN6EJu9ycVN-iZ4PZszu1eE8Q7-_fP519a29_vH1-9XldWs55aUdJOkUJ7THuKeCUOl6KSiXjOCOWcADE4YK5rBVDku75IrL3gy9XDJMgQ_0DH3aezfbvoa0LpRkRr1JfjJpp6Px-t-f4Nd6Ff9oBlUluio4PwhSvN26XPTks3XjaIKL26wxF1AHKQX-D5RRIjsOtKLvHqE3cZtCncRMEapAdjP15mH4-9R3G6gA7AGbYs7JDdr6YoqPcy9-1Bj0vGRtk56XrCWvJe8fldxZn4Q_7OFcobBy6UHMp-i3B_U6htVtLbh3C4E7ApQo-hf4Vr8O
CitedBy_id crossref_primary_10_1038_nrm_2016_74
crossref_primary_10_1152_ajplung_00362_2023
crossref_primary_10_3389_fphar_2023_1118017
crossref_primary_10_1007_s13238_016_0328_8
crossref_primary_10_1021_acs_jmedchem_1c01690
crossref_primary_10_3389_fendo_2022_1079465
crossref_primary_10_3324_haematol_2020_257121
crossref_primary_10_1016_j_bbamcr_2015_02_024
crossref_primary_10_1007_s10565_020_09534_4
crossref_primary_10_1038_s41419_018_1017_8
crossref_primary_10_1007_s00018_021_03772_3
crossref_primary_10_1016_j_cub_2015_01_045
crossref_primary_10_1016_j_str_2017_05_020
crossref_primary_10_1016_j_cub_2017_12_017
crossref_primary_10_3389_fcell_2022_1065702
crossref_primary_10_3390_immuno2010012
crossref_primary_10_1016_j_isci_2023_106328
crossref_primary_10_1128_mBio_01597_18
crossref_primary_10_1002_1873_3468_14060
crossref_primary_10_1080_14728222_2018_1541318
crossref_primary_10_1016_j_bcp_2021_114891
crossref_primary_10_3389_fcvm_2022_837270
crossref_primary_10_1016_j_nbd_2018_04_019
crossref_primary_10_1002_2211_5463_12760
crossref_primary_10_1007_s12079_019_00507_9
crossref_primary_10_1080_02713683_2021_2021586
crossref_primary_10_1080_15548627_2019_1596482
crossref_primary_10_3389_fphar_2018_01121
crossref_primary_10_1097_HEP_0000000000000910
crossref_primary_10_3390_cells8111436
crossref_primary_10_1016_j_neuroscience_2023_07_029
crossref_primary_10_3389_fimmu_2022_966167
crossref_primary_10_1038_s41419_021_04198_2
crossref_primary_10_1016_j_bbrc_2024_149815
crossref_primary_10_1016_j_jmb_2016_11_027
crossref_primary_10_1016_j_toxlet_2023_05_002
crossref_primary_10_1155_2019_9825061
crossref_primary_10_3389_fcvm_2023_1212174
crossref_primary_10_1016_j_phymed_2024_155472
crossref_primary_10_1002_cam4_1112
crossref_primary_10_18632_aging_102972
crossref_primary_10_1126_sciadv_abk2376
crossref_primary_10_1136_svn_2023_002606
crossref_primary_10_1007_s12576_016_0440_9
crossref_primary_10_3390_biom14010012
crossref_primary_10_1016_j_bbrc_2018_05_123
crossref_primary_10_1038_s41467_024_50222_2
crossref_primary_10_1016_j_cellsig_2015_06_001
crossref_primary_10_1016_j_vetmic_2019_05_017
crossref_primary_10_1159_000533602
crossref_primary_10_1016_j_lfs_2019_03_027
crossref_primary_10_1016_j_phrs_2023_107054
crossref_primary_10_1016_j_matdes_2023_111808
crossref_primary_10_1039_D3SC03600F
crossref_primary_10_1016_j_pharmthera_2017_04_005
crossref_primary_10_1089_ars_2014_6206
crossref_primary_10_1146_annurev_nutr_082018_124643
crossref_primary_10_1371_journal_pone_0307358
crossref_primary_10_20517_jtgg_2023_38
crossref_primary_10_1002_adtp_202400078
crossref_primary_10_1038_s41531_022_00402_y
crossref_primary_10_1042_BST20170102
crossref_primary_10_1089_ars_2019_8013
crossref_primary_10_2147_DMSO_S336882
crossref_primary_10_15252_embj_2020106283
crossref_primary_10_1080_14728222_2020_1737015
crossref_primary_10_1111_jnc_13266
crossref_primary_10_15252_embr_202050629
crossref_primary_10_1007_s00592_024_02422_x
crossref_primary_10_1155_2021_6617256
crossref_primary_10_1007_s10863_016_9648_x
crossref_primary_10_1007_s10456_022_09835_8
crossref_primary_10_1080_15548627_2021_1975914
crossref_primary_10_1007_s10528_022_10233_4
crossref_primary_10_1155_2022_6459585
crossref_primary_10_1038_s41419_022_05418_z
crossref_primary_10_1080_15548627_2015_1060386
crossref_primary_10_1016_j_virusres_2021_198369
crossref_primary_10_3390_ijms241210061
crossref_primary_10_1007_s12264_015_1544_6
crossref_primary_10_1016_j_bbamcr_2015_01_013
crossref_primary_10_1016_j_brainresbull_2020_12_022
crossref_primary_10_1093_bib_bbae274
crossref_primary_10_1016_j_biochi_2025_01_012
crossref_primary_10_3389_fcell_2021_727822
crossref_primary_10_3389_fcell_2022_918943
crossref_primary_10_1080_15548627_2019_1668228
crossref_primary_10_3389_fnins_2020_00245
crossref_primary_10_1016_j_celrep_2018_03_127
crossref_primary_10_3389_fragi_2022_888190
crossref_primary_10_1182_bloodadvances_2019032334
crossref_primary_10_3389_fphys_2020_00252
crossref_primary_10_3389_fnagi_2021_698601
crossref_primary_10_1007_s12035_021_02365_2
crossref_primary_10_3389_fmicb_2019_01398
crossref_primary_10_3390_pathogens9080621
crossref_primary_10_3390_ijms23105311
crossref_primary_10_4274_balkanmedj_galenos_2024_2024_4_119
crossref_primary_10_1111_febs_17130
crossref_primary_10_1016_j_jbc_2021_101339
crossref_primary_10_1016_j_molcel_2015_07_021
crossref_primary_10_3389_fphys_2017_01076
crossref_primary_10_1016_j_exger_2021_111508
crossref_primary_10_2174_1381612827666211006150410
crossref_primary_10_1186_s12915_023_01514_4
crossref_primary_10_1152_ajpgi_00108_2015
crossref_primary_10_1016_j_mitoco_2023_07_001
crossref_primary_10_1016_j_tcb_2018_07_004
crossref_primary_10_1111_mpp_13439
crossref_primary_10_1080_15548627_2021_2012867
crossref_primary_10_1016_j_cellsig_2019_03_006
crossref_primary_10_1038_s42003_022_03666_5
crossref_primary_10_1016_j_nbd_2018_07_015
crossref_primary_10_7554_eLife_21407
crossref_primary_10_1007_s43032_024_01634_4
crossref_primary_10_1089_dna_2021_0529
crossref_primary_10_15252_embj_201591440
crossref_primary_10_1002_jcsm_13000
crossref_primary_10_3389_fimmu_2018_01283
crossref_primary_10_3390_cells8070712
crossref_primary_10_7554_eLife_64480
crossref_primary_10_1186_s12866_015_0358_z
crossref_primary_10_3390_biom14111370
crossref_primary_10_1038_s41581_020_00369_0
crossref_primary_10_1111_1462_2920_15088
crossref_primary_10_1096_fj_202100710RR
crossref_primary_10_18632_aging_103970
crossref_primary_10_31857_S0320972520120027
crossref_primary_10_1360_SSV_2021_0194
crossref_primary_10_1155_2016_9460462
crossref_primary_10_1152_physiol_00030_2017
crossref_primary_10_3389_fcell_2021_630248
crossref_primary_10_1002_ptr_8156
crossref_primary_10_3389_fcell_2021_788634
crossref_primary_10_3389_fphys_2024_1430230
crossref_primary_10_1002_ame2_12229
crossref_primary_10_1016_j_exger_2019_110824
crossref_primary_10_1080_1828051X_2024_2353853
crossref_primary_10_1016_j_freeradbiomed_2024_10_256
crossref_primary_10_1080_15548627_2019_1634944
crossref_primary_10_1016_j_aquatox_2023_106536
crossref_primary_10_1080_15548627_2016_1151580
crossref_primary_10_3390_cells11121909
crossref_primary_10_1016_j_arr_2020_101250
crossref_primary_10_1038_s41420_024_01843_5
crossref_primary_10_3389_fcell_2021_644346
crossref_primary_10_3389_fnagi_2022_986849
crossref_primary_10_1016_j_intimp_2023_111315
crossref_primary_10_3389_fcvm_2022_819454
crossref_primary_10_1016_j_bbadis_2019_05_007
crossref_primary_10_1007_s13577_023_00956_w
crossref_primary_10_3389_fphys_2022_1008517
crossref_primary_10_1016_j_canlet_2021_12_032
crossref_primary_10_3390_jcm9051440
crossref_primary_10_1155_2022_3617086
crossref_primary_10_3389_fphar_2024_1378358
crossref_primary_10_1007_s11064_024_04160_6
crossref_primary_10_1007_s43440_024_00609_1
crossref_primary_10_1016_j_biocel_2024_106569
crossref_primary_10_1016_j_phrs_2021_106038
crossref_primary_10_1042_BST20170291
crossref_primary_10_15252_embr_201643309
crossref_primary_10_15212_npt_2024_0005
crossref_primary_10_3389_fphar_2023_1093038
crossref_primary_10_1016_j_bbamcr_2022_119233
crossref_primary_10_1038_s41467_023_39811_9
crossref_primary_10_1038_onc_2016_302
crossref_primary_10_1093_abbs_gmv055
crossref_primary_10_1152_ajpregu_00212_2022
crossref_primary_10_1155_2024_5577506
crossref_primary_10_1016_j_bbabio_2015_04_010
crossref_primary_10_1038_s41419_019_1899_0
crossref_primary_10_1111_jcmm_16295
crossref_primary_10_20538_1682_0363_2019_2_195_214
crossref_primary_10_14336_AD_2020_0913
crossref_primary_10_1080_15548627_2015_1061849
crossref_primary_10_1016_j_vetmic_2019_108396
crossref_primary_10_1007_s13577_022_00833_y
crossref_primary_10_1016_j_jgg_2024_02_003
crossref_primary_10_1038_s41419_023_06251_8
crossref_primary_10_1089_dna_2022_0249
crossref_primary_10_12997_jla_2025_14_1_32
crossref_primary_10_1038_s41420_023_01465_3
crossref_primary_10_1155_2017_9028435
crossref_primary_10_1007_s13311_019_00742_3
crossref_primary_10_1016_j_yjmcc_2015_12_005
crossref_primary_10_1111_mpp_12822
crossref_primary_10_1002_rmb2_12577
crossref_primary_10_1161_CIRCRESAHA_124_325156
crossref_primary_10_1016_j_pharmthera_2021_107825
crossref_primary_10_1016_j_jmb_2016_02_027
crossref_primary_10_1080_21655979_2021_1997132
crossref_primary_10_1021_acs_jmedchem_4c01664
crossref_primary_10_1038_s41419_023_05595_5
crossref_primary_10_1038_s41556_018_0037_z
crossref_primary_10_3389_fphar_2022_897046
crossref_primary_10_3390_cells11020199
crossref_primary_10_3389_fcell_2021_723108
crossref_primary_10_1016_j_bbagen_2021_129932
crossref_primary_10_1186_s12929_023_00975_7
crossref_primary_10_1161_ATVBAHA_120_315485
crossref_primary_10_1016_j_phrs_2018_12_020
crossref_primary_10_3390_ijms25126793
crossref_primary_10_1016_j_biopha_2022_114171
crossref_primary_10_1016_j_lfs_2022_120595
crossref_primary_10_4103_1673_5374_379019
crossref_primary_10_1111_jpi_12427
crossref_primary_10_3389_fcell_2022_848214
crossref_primary_10_1371_journal_pgen_1009270
crossref_primary_10_1080_08927014_2022_2153332
crossref_primary_10_1093_jb_mvv125
crossref_primary_10_3390_life11030222
crossref_primary_10_1021_acsnano_6b06385
crossref_primary_10_1007_s10565_022_09756_8
crossref_primary_10_1016_j_drudis_2023_103547
crossref_primary_10_1021_acs_analchem_3c02623
crossref_primary_10_3390_ijms16035528
crossref_primary_10_1080_21624054_2015_1071763
crossref_primary_10_1186_s12964_024_02006_w
crossref_primary_10_3390_ijms232314890
crossref_primary_10_1016_j_lfs_2017_12_001
crossref_primary_10_12677_APS_2016_42007
crossref_primary_10_3389_fonc_2021_713721
crossref_primary_10_1016_j_aca_2021_338203
crossref_primary_10_1016_j_mitoco_2024_12_002
crossref_primary_10_1016_j_semcdb_2024_02_001
crossref_primary_10_1089_dna_2018_4348
crossref_primary_10_3390_biom13010015
crossref_primary_10_3389_fmicb_2022_1064045
crossref_primary_10_1016_j_toxlet_2023_01_010
crossref_primary_10_1080_15548627_2017_1405880
crossref_primary_10_1134_S0006297920120020
crossref_primary_10_1016_j_arr_2015_04_002
crossref_primary_10_1016_j_neuint_2021_105253
crossref_primary_10_3389_fonc_2017_00081
crossref_primary_10_1007_s10495_019_01535_x
crossref_primary_10_3389_fphys_2021_700585
crossref_primary_10_1080_15384101_2015_1026493
crossref_primary_10_1016_j_canlet_2016_11_018
crossref_primary_10_1016_j_jbc_2022_102533
crossref_primary_10_1038_s41422_018_0078_7
crossref_primary_10_1016_j_neulet_2018_04_004
crossref_primary_10_12997_jla_2025_14_1_40
crossref_primary_10_1002_jbt_23503
crossref_primary_10_3390_cells8111349
crossref_primary_10_1016_j_jbior_2024_101041
crossref_primary_10_1016_j_cell_2022_03_005
crossref_primary_10_1111_acel_14186
crossref_primary_10_3389_fphys_2021_807654
crossref_primary_10_1016_j_biocel_2016_07_020
crossref_primary_10_1016_j_ymthe_2023_10_016
crossref_primary_10_1016_j_jmb_2019_06_031
crossref_primary_10_3390_ijms21134714
crossref_primary_10_1007_s12035_020_02084_0
crossref_primary_10_1007_s43032_023_01316_7
crossref_primary_10_1016_j_semcancer_2017_06_007
crossref_primary_10_1083_jcb_202204021
crossref_primary_10_1089_ars_2020_8058
crossref_primary_10_1155_2022_6232902
crossref_primary_10_1016_j_preteyeres_2022_101136
crossref_primary_10_1080_15548627_2023_2259215
crossref_primary_10_1111_cpr_13525
crossref_primary_10_3389_fphys_2021_660068
crossref_primary_10_2478_jtim_2020_0013
crossref_primary_10_1242_jcs_188490
crossref_primary_10_1016_j_freeradbiomed_2016_03_030
crossref_primary_10_1016_j_phrs_2020_105240
crossref_primary_10_1152_ajpheart_00145_2017
crossref_primary_10_1186_s40035_021_00243_4
crossref_primary_10_1007_s12975_020_00806_z
crossref_primary_10_1080_15548627_2017_1338545
crossref_primary_10_1186_s12967_023_04498_5
crossref_primary_10_1016_j_molmet_2023_101717
crossref_primary_10_1016_j_joca_2024_09_013
crossref_primary_10_3389_fphar_2022_887045
crossref_primary_10_3389_fnmol_2022_1014251
crossref_primary_10_1111_bph_15401
crossref_primary_10_1016_j_neulet_2021_135967
crossref_primary_10_3390_cells9010150
crossref_primary_10_1172_JCI74942
crossref_primary_10_3390_biom5042619
crossref_primary_10_1080_15548627_2018_1476812
crossref_primary_10_1016_j_biopha_2022_113283
crossref_primary_10_1016_j_phrs_2024_107394
crossref_primary_10_1080_15548627_2020_1725377
crossref_primary_10_1016_j_phymed_2022_154494
crossref_primary_10_2131_jts_46_345
crossref_primary_10_1016_j_phrs_2015_09_020
crossref_primary_10_1007_s00210_023_02636_w
crossref_primary_10_1080_15548627_2022_2084862
crossref_primary_10_1111_cns_13140
crossref_primary_10_1155_2021_6635955
crossref_primary_10_1016_j_phrs_2021_105433
crossref_primary_10_1080_15384101_2023_2167949
crossref_primary_10_1097_HC9_0000000000000534
Cites_doi 10.1091/mbc.e11-02-0145
10.1091/mbc.e09-03-0225
10.1074/jbc.M110.119537
10.1161/CIRCRESAHA.112.268946
10.1084/jem.186.12.1975
10.1002/(SICI)1098-2264(199803)21:3<230::AID-GCC7>3.0.CO;2-0
10.1089/ars.2010.3768
10.1093/hmg/ddq419
10.1038/ncb2220
10.1016/j.bbrc.2005.11.044
10.4161/auto.21211
10.1038/nature08455
10.4161/auto.9065
10.1038/ncb2837
10.1038/35083620
10.1074/jbc.M111.322933
10.1074/jbc.M112.399345
10.1242/jcs.093849
10.4161/auto.26281
10.1073/pnas.0911055107
10.1074/jbc.M406960200
10.1016/j.devcel.2009.06.013
10.1083/jcb.201102092
10.1038/embor.2013.114
10.1126/science.1211878
10.1016/j.cell.2006.06.010
10.1146/annurev-genom-082410-101440
10.1242/jcs.076406
10.1074/jbc.M110.113670
10.1089/ars.2010.3779
10.1074/jbc.M112.371591
10.1242/jcs.111.16.2455
10.1126/science.283.5407.1482
10.1016/j.cell.2011.11.030
10.1083/jcb.200809125
10.1089/rej.2005.8.3
10.1016/j.bcp.2008.11.009
10.1073/pnas.1107402108
10.1074/jbc.M111.299917
10.1016/j.tox.2008.07.048
10.1074/jbc.M109.005181
10.1038/ncb2422
10.1074/jbc.M109.048140
10.4161/auto.7.3.14509
10.1371/journal.pbio.1000298
10.1074/jbc.M111.280156
10.1042/BST0391514
10.1042/BJ20051243
10.1016/j.febslet.2013.04.030
10.1172/JCI0216787
10.1074/jbc.M604900200
10.1038/ncomms3428
10.1126/science.1210333
10.1016/j.biocel.2005.05.013
10.1038/sj.emboj.7601963
10.1038/nature07006
10.1038/embor.2013.168
10.1016/j.molcel.2014.02.034
10.1111/febs.12468
10.1016/j.devcel.2013.05.024
10.1038/sj.cdd.4401697
10.1038/embor.2013.40
10.1016/j.devcel.2009.06.014
10.1074/jbc.M802403200
10.1083/jcb.201008084
10.1038/onc.2009.49
10.1152/physrev.1979.59.3.527
10.1111/j.1365-2443.2008.01238.x
10.1146/annurev.neuro.30.051606.094302
10.1016/j.molcel.2011.07.039
10.1038/emboj.2009.80
10.1073/pnas.91.23.10771
10.2174/138161211796904768
10.1002/hep.510290521
10.1074/jbc.M802182200
10.1016/j.cell.2010.12.015
10.18632/aging.100547
10.1002/biof.5520070303
10.1038/embor.2009.256
10.1016/j.bcp.2004.12.002
10.1074/jbc.M605940200
10.3389/fgene.2012.00297
10.1016/j.yexcr.2013.03.034
10.1016/j.cmet.2013.03.014
ContentType Journal Article
Copyright The Author(s) 2014
Copyright Nature Publishing Group Jul 2014
Copyright © 2014 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2014 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Copyright_xml – notice: The Author(s) 2014
– notice: Copyright Nature Publishing Group Jul 2014
– notice: Copyright © 2014 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2014 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
W94
WU4
~WA
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/cr.2014.75
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE
MEDLINE - Academic
ProQuest Central Student


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Receptor-mediated mitophagy in yeast and mammalian systems
Receptor-mediated mitophagy
EISSN 1748-7838
EndPage 795
ExternalDocumentID PMC4085769
3360083661
24903109
10_1038_cr_2014_75
661920328
Genre Journal Article
Review
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2B.
2C.
2RA
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
5XL
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92L
92M
92Q
93N
9D9
9DA
AADWK
AANZL
AATNV
AAWBL
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABUWG
ACAOD
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACIWK
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AESKC
AEVLU
AEXYK
AFKRA
AFNRJ
AFRAH
AFSHS
AFUIB
AGEZK
AGGBP
AGHAI
AHMBA
AHSBF
AILAN
AJCLW
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRJV
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
NXXTH
NYICJ
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
RPM
RT1
S..
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
W94
WFFXF
WU4
XSB
~88
~WA
AACDK
AAHBH
AASML
AAXDM
AAYZH
ABAKF
ABZZP
ACMJI
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AIGIU
ALIPV
C6C
FIGPU
LGEZI
LOTEE
NADUK
ROL
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c535t-f7298523b11b36237eb7635742194c01f46a364e1c8e17cd5857bafb7d41305f3
IEDL.DBID 7X7
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 14:02:47 EDT 2025
Fri Jul 11 15:14:32 EDT 2025
Fri Jul 11 10:24:06 EDT 2025
Fri Jul 25 09:12:44 EDT 2025
Mon Jul 21 06:01:23 EDT 2025
Tue Jul 01 03:41:32 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
Fri Feb 21 02:38:08 EST 2025
Wed Feb 14 10:36:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords protein phosphorylation
quality control
mitochondrial stress
mitochondria
mitophagy receptor
selective autophagy
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-f7298523b11b36237eb7635742194c01f46a364e1c8e17cd5857bafb7d41305f3
Notes mitochondria; quality control; mitophagy receptor; protein phosphorylation; mitochondrial stress; selective autophagy
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDCI in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atgll on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.
31-1568/Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.nature.com/articles/cr.2014.75
PMID 24903109
PQID 1542380793
PQPubID 536307
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4085769
proquest_miscellaneous_1560103761
proquest_miscellaneous_1543279503
proquest_journals_1542380793
pubmed_primary_24903109
crossref_citationtrail_10_1038_cr_2014_75
crossref_primary_10_1038_cr_2014_75
springer_journals_10_1038_cr_2014_75
chongqing_primary_661920328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Research
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chan (CR15) 2006; 125
Jezek, Hlavata (CR8) 2005; 37
Matsushima, Fujiwara, Takahashi (CR47) 1998; 21
Matsui, Yamamoto, Kuma, Ohsumi, Mizushima (CR54) 2006; 339
Wang, Yang, Liu, Mao, Nair, Klionsky (CR87) 2012; 287
Sato, Sato (CR82) 2011; 334
Mao, Wang, Zhao, Xu, Klionsky (CR34) 2011; 193
Takeda, Yoshida, Kikuchi (CR44) 2010; 107
Novak, Dikic (CR50) 2011; 7
Kanki, Klionsky (CR17) 2008; 283
DiMauro, Schon (CR14) 2008; 31
Bursch, Karwan, Mayer (CR49) 2008; 254
Tal, Winter, Ecker, Klionsky, Abeliovich (CR83) 2007; 282
Yamaguchi, Noda, Nakatogawa, Kumeta, Ohsumi, Inagaki (CR32) 2010; 285
Kim, Lemasters (CR71) 2011; 14
Journo, Mor, Abeliovich (CR84) 2009; 284
Eiyama, Kondo-Okamoto, Okamoto (CR24) 2013; 587
Shigenaga, Hagen, Ames (CR7) 1994; 91
Jin, Youle (CR62) 2012; 125
Twig, Elorza, Molina (CR40) 2008; 27
Sowter, Ratcliffe, Watson, Greenberg, Harris (CR48) 2001; 61
Galluzzi, Kepp, Trojel-Hansen, Kroemer (CR2) 2012; 111
Chen, Ray, Dubik (CR46) 1997; 186
Deffieu, Bhatia-Kissova, Salin, Galinier, Manon, Camougrand (CR27) 2009; 284
Priault, Salin, Schaeffer, Vallette, di Rago, Martinou (CR70) 2005; 12
Al Rawi, Louvet-Vallee, Djeddi (CR81) 2011; 334
Bartosz (CR9) 2009; 77
Chen, Han, Feng (CR58) 2014; 54
Aoki, Kanki, Hirota (CR21) 2011; 22
Satoo, Noda, Kumeta (CR31) 2009; 28
Gomes, Di Benedetto, Scorrano (CR38) 2011; 13
Feng, Liu, Zhu, Chen (CR45) 2013; 319
Kondo-Okamoto, Noda, Suzuki (CR22) 2012; 287
Matsumoto, Wada, Okuno, Kurosawa, Nukina (CR37) 2011; 44
Kanki, Wang, Baba (CR18) 2009; 20
Welter, Montino, Reinhold (CR26) 2013; 280
Wang (CR5) 2001; 15
Liu, Feng, Chen (CR23) 2012; 14
Narendra, Tanaka, Suen, Youle (CR66) 2008; 183
Wallace (CR4) 1999; 283
Chance, Sies, Boveris (CR6) 1979; 59
Wang, Nartiss, Steipe, McQuibban, Kim (CR75) 2012; 8
Sandoval, Thiagarajan, Dasgupta (CR53) 2008; 454
Jin, Lazarou, Wang, Kane, Narendra, Youle (CR59) 2010; 191
Allen, Toth, James, Ganley (CR79) 2013; 14
Nohl, Gille, Staniek (CR10) 2005; 69
Ding, Ni, Li (CR77) 2010; 285
Prick, Thumm, Kohrer, Haussinger, Vom Dahl (CR76) 2006; 394
Li, Luo, Wang (CR3) 2001; 412
Melser, Chatelain, Lavie (CR57) 2013; 17
Twig, Shirihai (CR65) 2011; 14
Schmidt, Harbauer, Rao (CR36) 2011; 144
Palikaras, Tavernarakis (CR12) 2012; 3
Okamoto, Kondo-Okamoto, Ohsumi (CR19) 2009; 17
Taylor, Goldman (CR13) 2011; 17
Farre, Burkenroad, Burnett, Subramani (CR33) 2013; 14
Richard, Leonov, Beach (CR43) 2013; 5
Martin, Dawson, Dawson (CR63) 2011; 12
Yang, Yang (CR67) 2013; 4
Wallace, Brown, Melov, Graham, Lott (CR1) 1998; 7
Hanna, Quinsay, Orogo, Giang, Rikka, Gustafsson (CR51) 2012; 287
Muller, Reichert (CR64) 2011; 39
Gegg, Cooper, Chau, Rojo, Schapira, Taanman (CR61) 2010; 19
Guo (CR80) 2012; 2.pii
Novak, Kirkin, McEwan (CR30) 2010; 11
Rambold, Kostelecky, Elia, Lippincott-Schwartz (CR39) 2011; 108
Chu, Ji, Dagda (CR78) 2013; 15
Nishida, Arakawa, Fujitani (CR55) 2009; 461
Campbell, Thorsness (CR16) 1998; 111(Pt 16)
Mendl, Occhipinti, Muller, Wild, Dikic, Reichert (CR86) 2011; 124
Zhu, Massen, Terenzio (CR52) 2013; 288
Chinnadurai, Vijayalingam, Gibson (CR56) 2008; 27(Suppl 1)
Kissova, Deffieu, Manon, Camougrand (CR85) 2004; 279
Cheng, Ma, Zhao, Rothery, Weiner (CR11) 2006; 281
Wang, Jiang, Chen, Du, Wang (CR68) 2012; 148
Byrne, Lemasters, Nieminen (CR69) 1999; 29
Ichimura, Kumanomidou, Sou (CR28) 2008; 283
Perlmutter (CR72) 2002; 110
Narendra, Jin, Tanaka (CR60) 2010; 8
Kanki, Wang, Cao, Baba, Klionsky (CR20) 2009; 17
Noda, Kumeta, Nakatogawa (CR29) 2008; 13
Mao, Wang, Liu, Klionsky (CR41) 2013; 26
Kurihara, Kanki, Aoki (CR42) 2012; 287
Kissova, Camougrand (CR74) 2009; 5
Kanki, Kurihara, Jin (CR35) 2013; 14
Wang, Jin, Liu, Klionsky (CR25) 2013; 9
Lemasters (CR73) 2005; 8
H Nohl (BFcr201475_CR10) 2005; 69
T Prick (BFcr201475_CR76) 2006; 394
GF Allen (BFcr201475_CR79) 2013; 14
I Kissova (BFcr201475_CR85) 2004; 279
H Sandoval (BFcr201475_CR53) 2008; 454
P Jezek (BFcr201475_CR8) 2005; 37
Y Ichimura (BFcr201475_CR28) 2008; 283
AS Rambold (BFcr201475_CR39) 2011; 108
N Mendl (BFcr201475_CR86) 2011; 124
G Chinnadurai (BFcr201475_CR56) 2008; 27(Suppl 1)
W Bursch (BFcr201475_CR49) 2008; 254
LC Gomes (BFcr201475_CR38) 2011; 13
M Matsushima (BFcr201475_CR47) 1998; 21
K Mao (BFcr201475_CR41) 2013; 26
I Novak (BFcr201475_CR50) 2011; 7
X Wang (BFcr201475_CR5) 2001; 15
M Matsui (BFcr201475_CR54) 2006; 339
M Muller (BFcr201475_CR64) 2011; 39
G Twig (BFcr201475_CR65) 2011; 14
Y Zhu (BFcr201475_CR52) 2013; 288
VW Cheng (BFcr201475_CR11) 2006; 281
CT Chu (BFcr201475_CR78) 2013; 15
T Kanki (BFcr201475_CR20) 2009; 17
D Narendra (BFcr201475_CR66) 2008; 183
K Satoo (BFcr201475_CR31) 2009; 28
K Palikaras (BFcr201475_CR12) 2012; 3
S DiMauro (BFcr201475_CR14) 2008; 31
G Chen (BFcr201475_CR58) 2014; 54
G Matsumoto (BFcr201475_CR37) 2011; 44
I Kim (BFcr201475_CR71) 2011; 14
DC Chan (BFcr201475_CR15) 2006; 125
T Kanki (BFcr201475_CR18) 2009; 20
VR Richard (BFcr201475_CR43) 2013; 5
B Chance (BFcr201475_CR6) 1979; 59
Y Nishida (BFcr201475_CR55) 2009; 461
N Kondo-Okamoto (BFcr201475_CR22) 2012; 287
JC Farre (BFcr201475_CR33) 2013; 14
L Liu (BFcr201475_CR23) 2012; 14
DP Narendra (BFcr201475_CR60) 2010; 8
K Takeda (BFcr201475_CR44) 2010; 107
K Okamoto (BFcr201475_CR19) 2009; 17
NN Noda (BFcr201475_CR29) 2008; 13
ME Gegg (BFcr201475_CR61) 2010; 19
CL Campbell (BFcr201475_CR16) 1998; 111(Pt 16)
G Twig (BFcr201475_CR40) 2008; 27
I Novak (BFcr201475_CR30) 2010; 11
O Schmidt (BFcr201475_CR36) 2011; 144
R Tal (BFcr201475_CR83) 2007; 282
M Priault (BFcr201475_CR70) 2005; 12
Y Aoki (BFcr201475_CR21) 2011; 22
E Welter (BFcr201475_CR26) 2013; 280
M Deffieu (BFcr201475_CR27) 2009; 284
JY Yang (BFcr201475_CR67) 2013; 4
K Wang (BFcr201475_CR25) 2013; 9
SM Jin (BFcr201475_CR59) 2010; 191
M Sato (BFcr201475_CR82) 2011; 334
M Yamaguchi (BFcr201475_CR32) 2010; 285
S Al Rawi (BFcr201475_CR81) 2011; 334
T Kanki (BFcr201475_CR35) 2013; 14
S Melser (BFcr201475_CR57) 2013; 17
JJ Lemasters (BFcr201475_CR73) 2005; 8
L Galluzzi (BFcr201475_CR2) 2012; 111
DC Wallace (BFcr201475_CR1) 1998; 7
IB Kissova (BFcr201475_CR74) 2009; 5
Y Kurihara (BFcr201475_CR42) 2012; 287
R Taylor (BFcr201475_CR13) 2011; 17
Y Wang (BFcr201475_CR75) 2012; 8
A Eiyama (BFcr201475_CR24) 2013; 587
K Wang (BFcr201475_CR87) 2012; 287
G Chen (BFcr201475_CR46) 1997; 186
M Guo (BFcr201475_CR80) 2012; 2.pii
DC Wallace (BFcr201475_CR4) 1999; 283
Z Wang (BFcr201475_CR68) 2012; 148
D Feng (BFcr201475_CR45) 2013; 319
AM Byrne (BFcr201475_CR69) 1999; 29
T Kanki (BFcr201475_CR17) 2008; 283
SM Jin (BFcr201475_CR62) 2012; 125
DH Perlmutter (BFcr201475_CR72) 2002; 110
D Journo (BFcr201475_CR84) 2009; 284
K Mao (BFcr201475_CR34) 2011; 193
MK Shigenaga (BFcr201475_CR7) 1994; 91
I Martin (BFcr201475_CR63) 2011; 12
LY Li (BFcr201475_CR3) 2001; 412
G Bartosz (BFcr201475_CR9) 2009; 77
WX Ding (BFcr201475_CR77) 2010; 285
HM Sowter (BFcr201475_CR48) 2001; 61
RA Hanna (BFcr201475_CR51) 2012; 287
21718245 - Curr Pharm Des. 2011;17(20):2056-73
18454133 - Nature. 2008 Jul 10;454(7201):232-5
19366696 - J Biol Chem. 2009 May 29;284(22):14828-37
22017874 - Mol Cell. 2011 Oct 21;44(2):279-89
20126261 - PLoS Biol. 2010 Jan;8(1):e1000298
16864590 - J Biol Chem. 2006 Sep 15;281(37):27662-8
23603281 - Exp Cell Res. 2013 Jul 15;319(12):1697-705
20573959 - J Biol Chem. 2010 Sep 3;285(36):27879-90
11452314 - Nature. 2001 Jul 5;412(6842):95-9
11559532 - Cancer Res. 2001 Sep 15;61(18):6669-73
9523198 - Genes Chromosomes Cancer. 1998 Mar;21(3):230-5
23660403 - FEBS Lett. 2013 Jun 19;587(12):1787-92
23810512 - Dev Cell. 2013 Jul 15;26(1):9-18
7971961 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10771-8
21215441 - Cell. 2011 Jan 21;144(2):227-39
24013556 - Nat Commun. 2013;4:2428
16300732 - Biochem Biophys Res Commun. 2006 Jan 13;339(2):485-9
22267086 - Nat Cell Biol. 2012 Feb;14(2):177-85
20871098 - Hum Mol Genet. 2010 Dec 15;19(24):4861-70
9683639 - J Cell Sci. 1998 Aug;111 ( Pt 16):2455-64
9568243 - Biofactors. 1998;7(3):187-90
23024178 - Cold Spring Harb Perspect Med. 2012 Nov;2(11). pii: a009944. doi: 10.1101/cshperspect.a009944
22308029 - J Biol Chem. 2012 Mar 23;287(13):10631-8
15947785 - Cell Death Differ. 2005 Dec;12(12):1613-21
16103002 - Int J Biochem Cell Biol. 2005 Dec;37(12):2478-503
21115803 - J Cell Biol. 2010 Nov 29;191(5):933-42
15247238 - J Biol Chem. 2004 Sep 10;279(37):39068-74
20615880 - J Biol Chem. 2010 Sep 17;285(38):29599-607
19029340 - J Cell Biol. 2008 Dec 1;183(5):795-803
12464659 - J Clin Invest. 2002 Dec;110(11):1579-83
23553280 - Aging (Albany NY). 2013 Apr;5(4):234-69
18333761 - Annu Rev Neurosci. 2008;31:91-123
16814712 - Cell. 2006 Jun 30;125(7):1241-52
21757540 - Mol Biol Cell. 2011 Sep;22(17):3206-17
20010802 - EMBO Rep. 2010 Jan;11(1):45-51
21639795 - Annu Rev Genomics Hum Genet. 2011;12:301-25
19021777 - Genes Cells. 2008 Dec;13(12):1211-8
22977244 - J Biol Chem. 2012 Nov 2;287(45):37964-72
21576396 - J Cell Biol. 2011 May 16;193(4):755-67
22033522 - Science. 2011 Nov 25;334(6059):1144-7
11711427 - Genes Dev. 2001 Nov 15;15(22):2922-33
21998252 - Science. 2011 Nov 25;334(6059):1141-4
24746696 - Mol Cell. 2014 May 8;54(3):362-77
23910823 - FEBS J. 2013 Oct;280(20):4970-82
19840933 - J Biol Chem. 2009 Dec 18;284(51):35885-95
21126216 - Antioxid Redox Signal. 2011 May 15;14(10):1919-28
20133687 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3540-5
15798367 - Rejuvenation Res. 2005 Spring;8(1):3-5
24025448 - Autophagy. 2013 Nov 1;9(11):1828-36
21128700 - Antioxid Redox Signal. 2011 May 15;14(10):1939-51
19794493 - Nature. 2009 Oct 1;461(7264):654-8
15710349 - Biochem Pharmacol. 2005 Mar 1;69(5):719-23
19322194 - EMBO J. 2009 May 6;28(9):1341-50
21478857 - Nat Cell Biol. 2011 May;13(5):589-98
23559066 - EMBO Rep. 2013 May;14(5):441-9
16321140 - Biochem J. 2006 Feb 15;394(Pt 1):153-61
18818209 - J Biol Chem. 2008 Nov 21;283(47):32386-93
23602449 - Cell Metab. 2013 May 7;17(5):719-30
37532 - Physiol Rev. 1979 Jul;59(3):527-605
19619494 - Dev Cell. 2009 Jul;17(1):87-97
24036476 - Nat Cell Biol. 2013 Oct;15(10):1197-205
9396766 - J Exp Med. 1997 Dec 15;186(12):1975-83
22505714 - J Biol Chem. 2012 Jun 1;287(23):19094-104
18694801 - Toxicology. 2008 Dec 30;254(3):147-57
21646527 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5
19793921 - Mol Biol Cell. 2009 Nov;20(22):4730-8
22889933 - Autophagy. 2012 Oct;8(10):1462-76
24176932 - EMBO Rep. 2013 Dec;14(12):1127-35
19619495 - Dev Cell. 2009 Jul;17(1):98-109
21936844 - Biochem Soc Trans. 2011 Oct;39(5):1514-9
23267366 - Front Genet. 2012 Dec 19;3:297
10216138 - Hepatology. 1999 May;29(5):1523-31
18200046 - EMBO J. 2008 Jan 23;27(2):433-46
19071092 - Biochem Pharmacol. 2009 Apr 15;77(8):1303-15
23209295 - J Biol Chem. 2013 Jan 11;288(2):1099-113
10066162 - Science. 1999 Mar 5;283(5407):1482-8
22265414 - Cell. 2012 Jan 20;148(1-2):228-43
17166847 - J Biol Chem. 2007 Feb 23;282(8):5617-24
22448035 - J Cell Sci. 2012 Feb 15;125(Pt 4):795-9
19641497 - Oncogene. 2008 Dec;27 Suppl 1:S114-27
22157017 - J Biol Chem. 2012 Jan 27;287(5):3265-72
21206218 - Autophagy. 2011 Mar;7(3):301-3
21429936 - J Cell Sci. 2011 Apr 15;124(Pt 8):1339-50
23065343 - Circ Res. 2012 Oct 12;111(9):1198-207
19502807 - Autophagy. 2009 Aug;5(6):872-3
23897086 - EMBO Rep. 2013 Sep;14(9):788-94
18524774 - J Biol Chem. 2008 Aug 15;283(33):22847-57
References_xml – volume: 5
  start-page: 872
  year: 2009
  end-page: 873
  ident: CR74
  article-title: Glutathione participates in the regulation of mitophagy in yeast
  publication-title: Autophagy
– volume: 14
  start-page: 1127
  year: 2013
  end-page: 1135
  ident: CR79
  article-title: Loss of iron triggers PINK1/Parkin-independent mitophagy
  publication-title: EMBO Rep
– volume: 186
  start-page: 1975
  year: 1997
  end-page: 1983
  ident: CR46
  article-title: The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis
  publication-title: J Exp Med
– volume: 7
  start-page: 187
  year: 1998
  end-page: 190
  ident: CR1
  article-title: Mitochondrial biology, degenerative diseases and aging
  publication-title: Biofactors
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  ident: CR66
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol
– volume: 287
  start-page: 19094
  year: 2012
  end-page: 19104
  ident: CR51
  article-title: Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
  publication-title: J Biol Chem
– volume: 461
  start-page: 654
  year: 2009
  end-page: 658
  ident: CR55
  article-title: Discovery of Atg5/Atg7-independent alternative macroautophagy
  publication-title: Nature
– volume: 111
  start-page: 1198
  year: 2012
  end-page: 1207
  ident: CR2
  article-title: Mitochondrial control of cellular life, stress, and death
  publication-title: Circ Res
– volume: 44
  start-page: 279
  year: 2011
  end-page: 289
  ident: CR37
  article-title: Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
  publication-title: Mol Cell
– volume: 148
  start-page: 228
  year: 2012
  end-page: 243
  ident: CR68
  article-title: The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways
  publication-title: Cell
– volume: 69
  start-page: 719
  year: 2005
  end-page: 723
  ident: CR10
  article-title: Intracellular generation of reactive oxygen species by mitochondria
  publication-title: Biochem Pharmacol
– volume: 15
  start-page: 2922
  year: 2001
  end-page: 2933
  ident: CR5
  article-title: The expanding role of mitochondria in apoptosis
  publication-title: Genes Dev
– volume: 9
  start-page: 1828
  year: 2013
  end-page: 1836
  ident: CR25
  article-title: Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy
  publication-title: Autophagy
– volume: 14
  start-page: 788
  year: 2013
  end-page: 794
  ident: CR35
  article-title: Casein kinase 2 is essential for mitophagy
  publication-title: EMBO Rep
– volume: 19
  start-page: 4861
  year: 2010
  end-page: 4870
  ident: CR61
  article-title: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
  publication-title: Hum Mol Genet
– volume: 14
  start-page: 1939
  year: 2011
  end-page: 1951
  ident: CR65
  article-title: The interplay between mitochondrial dynamics and mitophagy
  publication-title: Antioxid Redox Signal
– volume: 319
  start-page: 1697
  year: 2013
  end-page: 1705
  ident: CR45
  article-title: Molecular signaling toward mitophagy and its physiological significance
  publication-title: Exp Cell Res
– volume: 37
  start-page: 2478
  year: 2005
  end-page: 2503
  ident: CR8
  article-title: Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism
  publication-title: Int J Biochem Cell Biol
– volume: 108
  start-page: 10190
  year: 2011
  end-page: 10195
  ident: CR39
  article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 4730
  year: 2009
  end-page: 4738
  ident: CR18
  article-title: A genomic screen for yeast mutants defective in selective mitochondria autophagy
  publication-title: Mol Biol Cell
– volume: 5
  start-page: 234
  year: 2013
  end-page: 269
  ident: CR43
  article-title: Macromitophagy is a longevity assurance process that in chronologically aging yeast limited in calorie supply sustains functional mitochondria and maintains cellular lipid homeostasis
  publication-title: Aging
– volume: 59
  start-page: 527
  year: 1979
  end-page: 605
  ident: CR6
  article-title: Hydroperoxide metabolism in mammalian organs
  publication-title: Physiol Rev
– volume: 144
  start-page: 227
  year: 2011
  end-page: 239
  ident: CR36
  article-title: Regulation of mitochondrial protein import by cytosolic kinases
  publication-title: Cell
– volume: 4
  start-page: 2428
  year: 2013
  ident: CR67
  article-title: Bit-by-bit autophagic removal of parkin-labelled mitochondria
  publication-title: Nat Commun
– volume: 287
  start-page: 37964
  year: 2012
  end-page: 37972
  ident: CR87
  article-title: Phosphatidylinositol 4-kinases are required for autophagic membrane trafficking
  publication-title: J Biol Chem
– volume: 21
  start-page: 230
  year: 1998
  end-page: 235
  ident: CR47
  article-title: Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3
  publication-title: Genes Chromosomes Cancer
– volume: 281
  start-page: 27662
  year: 2006
  end-page: 27668
  ident: CR11
  article-title: The iron-sulfur clusters in succinate dehydrogenase direct electron flow
  publication-title: J Biol Chem
– volume: 8
  start-page: e1000298
  year: 2010
  ident: CR60
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol
– volume: 587
  start-page: 1787
  year: 2013
  end-page: 1792
  ident: CR24
  article-title: Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast
  publication-title: FEBS Lett
– volume: 454
  start-page: 232
  year: 2008
  end-page: 235
  ident: CR53
  article-title: Essential role for Nix in autophagic maturation of erythroid cells
  publication-title: Nature
– volume: 8
  start-page: 1462
  year: 2012
  end-page: 1476
  ident: CR75
  article-title: ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy
  publication-title: Autophagy
– volume: 125
  start-page: 795
  year: 2012
  end-page: 799
  ident: CR62
  article-title: PINK1- and Parkin-mediated mitophagy at a glance
  publication-title: J Cell Sci
– volume: 17
  start-page: 87
  year: 2009
  end-page: 97
  ident: CR19
  article-title: Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
  publication-title: Dev Cell
– volume: 284
  start-page: 14828
  year: 2009
  end-page: 14837
  ident: CR27
  article-title: Glutathione participates in the regulation of mitophagy in yeast
  publication-title: J Biol Chem
– volume: 27(Suppl 1)
  start-page: S114
  year: 2008
  end-page: 127
  ident: CR56
  article-title: BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions
  publication-title: Oncogene
– volume: 54
  start-page: 362
  year: 2014
  end-page: 377
  ident: CR58
  article-title: A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
  publication-title: Mol Cell
– volume: 14
  start-page: 177
  year: 2012
  end-page: 185
  ident: CR23
  article-title: Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
  publication-title: Nat Cell Biol
– volume: 125
  start-page: 1241
  year: 2006
  end-page: 1252
  ident: CR15
  article-title: Mitochondria: dynamic organelles in disease, aging, and development
  publication-title: Cell
– volume: 282
  start-page: 5617
  year: 2007
  end-page: 5624
  ident: CR83
  article-title: Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival
  publication-title: J Biol Chem
– volume: 3
  start-page: 297
  year: 2012
  ident: CR12
  article-title: Mitophagy in neurodegeneration and aging
  publication-title: Front Genet
– volume: 14
  start-page: 441
  year: 2013
  end-page: 449
  ident: CR33
  article-title: Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
  publication-title: EMBO Rep
– volume: 254
  start-page: 147
  year: 2008
  end-page: 157
  ident: CR49
  article-title: Cell death and autophagy: cytokines, drugs, and nutritional factors
  publication-title: Toxicology
– volume: 2.pii
  start-page: a009944
  year: 2012
  ident: CR80
  article-title: as a model to study mitochondrial dysfunction in Parkinson's disease
  publication-title: Cold Spring Harb Perspect Med
– volume: 283
  start-page: 22847
  year: 2008
  end-page: 22857
  ident: CR28
  article-title: Structural basis for sorting mechanism of p62 in selective autophagy
  publication-title: J Biol Chem
– volume: 11
  start-page: 45
  year: 2010
  end-page: 51
  ident: CR30
  article-title: Nix is a selective autophagy receptor for mitochondrial clearance
  publication-title: EMBO Rep
– volume: 193
  start-page: 755
  year: 2011
  end-page: 767
  ident: CR34
  article-title: Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
  publication-title: J Cell Biol
– volume: 15
  start-page: 1197
  year: 2013
  end-page: 1205
  ident: CR78
  article-title: Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
  publication-title: Nat Cell Biol
– volume: 31
  start-page: 91
  year: 2008
  end-page: 123
  ident: CR14
  article-title: Mitochondrial disorders in the nervous system
  publication-title: Annu Rev Neurosci
– volume: 279
  start-page: 39068
  year: 2004
  end-page: 39074
  ident: CR85
  article-title: Uth1p is involved in the autophagic degradation of mitochondria
  publication-title: J Biol Chem
– volume: 39
  start-page: 1514
  year: 2011
  end-page: 1519
  ident: CR64
  article-title: Mitophagy, mitochondrial dynamics and the general stress response in yeast
  publication-title: Biochem Soc Trans
– volume: 28
  start-page: 1341
  year: 2009
  end-page: 1350
  ident: CR31
  article-title: The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy
  publication-title: EMBO J
– volume: 12
  start-page: 1613
  year: 2005
  end-page: 1621
  ident: CR70
  article-title: Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast
  publication-title: Cell Death Differ
– volume: 107
  start-page: 3540
  year: 2010
  end-page: 3545
  ident: CR44
  article-title: Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast
  publication-title: Proc Natl Acad Sci USA
– volume: 61
  start-page: 6669
  year: 2001
  end-page: 6673
  ident: CR48
  article-title: HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors
  publication-title: Cancer Res
– volume: 91
  start-page: 10771
  year: 1994
  end-page: 10778
  ident: CR7
  article-title: Oxidative damage and mitochondrial decay in aging
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 1919
  year: 2011
  end-page: 1928
  ident: CR71
  article-title: Mitophagy selectively degrades individual damaged mitochondria after photoirradiation
  publication-title: Antioxid Redox Signal
– volume: 283
  start-page: 1482
  year: 1999
  end-page: 1488
  ident: CR4
  article-title: Mitochondrial diseases in man and mouse
  publication-title: Science
– volume: 283
  start-page: 32386
  year: 2008
  end-page: 32393
  ident: CR17
  article-title: Mitophagy in yeast occurs through a selective mechanism
  publication-title: J Biol Chem
– volume: 110
  start-page: 1579
  year: 2002
  end-page: 1583
  ident: CR72
  article-title: Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury
  publication-title: J Clin Invest
– volume: 12
  start-page: 301
  year: 2011
  end-page: 325
  ident: CR63
  article-title: Recent advances in the genetics of Parkinson's disease
  publication-title: Annu Rev Genomics Hum Genet
– volume: 280
  start-page: 4970
  year: 2013
  end-page: 4982
  ident: CR26
  article-title: Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy
  publication-title: FEBS J
– volume: 285
  start-page: 29599
  year: 2010
  end-page: 29607
  ident: CR32
  article-title: Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway
  publication-title: J Biol Chem
– volume: 7
  start-page: 301
  year: 2011
  end-page: 303
  ident: CR50
  article-title: Autophagy receptors in developmental clearance of mitochondria
  publication-title: Autophagy
– volume: 29
  start-page: 1523
  year: 1999
  end-page: 1531
  ident: CR69
  article-title: Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes
  publication-title: Hepatology
– volume: 13
  start-page: 589
  year: 2011
  end-page: 598
  ident: CR38
  article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
  publication-title: Nat Cell Biol
– volume: 394
  start-page: 153
  year: 2006
  end-page: 161
  ident: CR76
  article-title: In yeast, loss of Hog1 leads to osmosensitivity of autophagy
  publication-title: Biochem J
– volume: 111(Pt 16)
  start-page: 2455
  year: 1998
  end-page: 2464
  ident: CR16
  article-title: Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments
  publication-title: J Cell Sci
– volume: 287
  start-page: 10631
  year: 2012
  end-page: 10638
  ident: CR22
  article-title: Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
  publication-title: J Biol Chem
– volume: 13
  start-page: 1211
  year: 2008
  end-page: 1218
  ident: CR29
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Genes Cells
– volume: 26
  start-page: 9
  year: 2013
  end-page: 18
  ident: CR41
  article-title: The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
  publication-title: Dev Cell
– volume: 284
  start-page: 35885
  year: 2009
  end-page: 35895
  ident: CR84
  article-title: Aup1-mediated regulation of Rtg3 during mitophagy
  publication-title: J Biol Chem
– volume: 412
  start-page: 95
  year: 2001
  end-page: 99
  ident: CR3
  article-title: Endonuclease G is an apoptotic DNase when released from mitochondria
  publication-title: Nature
– volume: 17
  start-page: 2056
  year: 2011
  end-page: 2073
  ident: CR13
  article-title: Mitophagy and disease: new avenues for pharmacological intervention
  publication-title: Curr Pharm Des
– volume: 191
  start-page: 933
  year: 2010
  end-page: 942
  ident: CR59
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J Cell Biol
– volume: 334
  start-page: 1144
  year: 2011
  end-page: 1147
  ident: CR81
  article-title: Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission
  publication-title: Science
– volume: 285
  start-page: 27879
  year: 2010
  end-page: 27890
  ident: CR77
  article-title: Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
  publication-title: J Biol Chem
– volume: 124
  start-page: 1339
  year: 2011
  end-page: 1350
  ident: CR86
  article-title: Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2
  publication-title: J Cell Sci
– volume: 8
  start-page: 3
  year: 2005
  end-page: 5
  ident: CR73
  article-title: Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
  publication-title: Rejuvenation Res
– volume: 17
  start-page: 719
  year: 2013
  end-page: 730
  ident: CR57
  article-title: Rheb regulates mitophagy induced by mitochondrial energetic status
  publication-title: Cell Metab
– volume: 334
  start-page: 1141
  year: 2011
  end-page: 1144
  ident: CR82
  article-title: Degradation of paternal mitochondria by fertilization-triggered autophagy in embryos
  publication-title: Science
– volume: 339
  start-page: 485
  year: 2006
  end-page: 489
  ident: CR54
  article-title: Organelle degradation during the lens and erythroid differentiation is independent of autophagy
  publication-title: Biochem Biophys Res Commun
– volume: 77
  start-page: 1303
  year: 2009
  end-page: 1315
  ident: CR9
  article-title: Reactive oxygen species: destroyers or messengers?
  publication-title: Biochem Pharmacol
– volume: 27
  start-page: 433
  year: 2008
  end-page: 446
  ident: CR40
  article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
  publication-title: EMBO J
– volume: 17
  start-page: 98
  year: 2009
  end-page: 109
  ident: CR20
  article-title: Atg32 is a mitochondrial protein that confers selectivity during mitophagy
  publication-title: Dev Cell
– volume: 22
  start-page: 3206
  year: 2011
  end-page: 3217
  ident: CR21
  article-title: Phosphorylation of Serine 114 on Atg32 mediates mitophagy
  publication-title: Mol Biol Cell
– volume: 287
  start-page: 3265
  year: 2012
  end-page: 3272
  ident: CR42
  article-title: Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast
  publication-title: J Biol Chem
– volume: 288
  start-page: 1099
  year: 2013
  end-page: 1113
  ident: CR52
  article-title: Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
  publication-title: J Biol Chem
– volume: 22
  start-page: 3206
  year: 2011
  ident: BFcr201475_CR21
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e11-02-0145
– volume: 20
  start-page: 4730
  year: 2009
  ident: BFcr201475_CR18
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e09-03-0225
– volume: 285
  start-page: 27879
  year: 2010
  ident: BFcr201475_CR77
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.119537
– volume: 111
  start-page: 1198
  year: 2012
  ident: BFcr201475_CR2
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.268946
– volume: 15
  start-page: 2922
  year: 2001
  ident: BFcr201475_CR5
  publication-title: Genes Dev
– volume: 186
  start-page: 1975
  year: 1997
  ident: BFcr201475_CR46
  publication-title: J Exp Med
  doi: 10.1084/jem.186.12.1975
– volume: 21
  start-page: 230
  year: 1998
  ident: BFcr201475_CR47
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/(SICI)1098-2264(199803)21:3<230::AID-GCC7>3.0.CO;2-0
– volume: 14
  start-page: 1919
  year: 2011
  ident: BFcr201475_CR71
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2010.3768
– volume: 19
  start-page: 4861
  year: 2010
  ident: BFcr201475_CR61
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq419
– volume: 13
  start-page: 589
  year: 2011
  ident: BFcr201475_CR38
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2220
– volume: 339
  start-page: 485
  year: 2006
  ident: BFcr201475_CR54
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.11.044
– volume: 8
  start-page: 1462
  year: 2012
  ident: BFcr201475_CR75
  publication-title: Autophagy
  doi: 10.4161/auto.21211
– volume: 461
  start-page: 654
  year: 2009
  ident: BFcr201475_CR55
  publication-title: Nature
  doi: 10.1038/nature08455
– volume: 5
  start-page: 872
  year: 2009
  ident: BFcr201475_CR74
  publication-title: Autophagy
  doi: 10.4161/auto.9065
– volume: 15
  start-page: 1197
  year: 2013
  ident: BFcr201475_CR78
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2837
– volume: 412
  start-page: 95
  year: 2001
  ident: BFcr201475_CR3
  publication-title: Nature
  doi: 10.1038/35083620
– volume: 61
  start-page: 6669
  year: 2001
  ident: BFcr201475_CR48
  publication-title: Cancer Res
– volume: 287
  start-page: 19094
  year: 2012
  ident: BFcr201475_CR51
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.322933
– volume: 288
  start-page: 1099
  year: 2013
  ident: BFcr201475_CR52
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.399345
– volume: 125
  start-page: 795
  year: 2012
  ident: BFcr201475_CR62
  publication-title: J Cell Sci
  doi: 10.1242/jcs.093849
– volume: 9
  start-page: 1828
  year: 2013
  ident: BFcr201475_CR25
  publication-title: Autophagy
  doi: 10.4161/auto.26281
– volume: 107
  start-page: 3540
  year: 2010
  ident: BFcr201475_CR44
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0911055107
– volume: 279
  start-page: 39068
  year: 2004
  ident: BFcr201475_CR85
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M406960200
– volume: 17
  start-page: 87
  year: 2009
  ident: BFcr201475_CR19
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.06.013
– volume: 193
  start-page: 755
  year: 2011
  ident: BFcr201475_CR34
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201102092
– volume: 14
  start-page: 788
  year: 2013
  ident: BFcr201475_CR35
  publication-title: EMBO Rep
  doi: 10.1038/embor.2013.114
– volume: 334
  start-page: 1144
  year: 2011
  ident: BFcr201475_CR81
  publication-title: Science
  doi: 10.1126/science.1211878
– volume: 125
  start-page: 1241
  year: 2006
  ident: BFcr201475_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.010
– volume: 12
  start-page: 301
  year: 2011
  ident: BFcr201475_CR63
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-082410-101440
– volume: 124
  start-page: 1339
  year: 2011
  ident: BFcr201475_CR86
  publication-title: J Cell Sci
  doi: 10.1242/jcs.076406
– volume: 285
  start-page: 29599
  year: 2010
  ident: BFcr201475_CR32
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.113670
– volume: 14
  start-page: 1939
  year: 2011
  ident: BFcr201475_CR65
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2010.3779
– volume: 287
  start-page: 37964
  year: 2012
  ident: BFcr201475_CR87
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.371591
– volume: 111(Pt 16)
  start-page: 2455
  year: 1998
  ident: BFcr201475_CR16
  publication-title: J Cell Sci
  doi: 10.1242/jcs.111.16.2455
– volume: 283
  start-page: 1482
  year: 1999
  ident: BFcr201475_CR4
  publication-title: Science
  doi: 10.1126/science.283.5407.1482
– volume: 148
  start-page: 228
  year: 2012
  ident: BFcr201475_CR68
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.030
– volume: 183
  start-page: 795
  year: 2008
  ident: BFcr201475_CR66
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200809125
– volume: 8
  start-page: 3
  year: 2005
  ident: BFcr201475_CR73
  publication-title: Rejuvenation Res
  doi: 10.1089/rej.2005.8.3
– volume: 77
  start-page: 1303
  year: 2009
  ident: BFcr201475_CR9
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2008.11.009
– volume: 108
  start-page: 10190
  year: 2011
  ident: BFcr201475_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1107402108
– volume: 287
  start-page: 10631
  year: 2012
  ident: BFcr201475_CR22
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.299917
– volume: 254
  start-page: 147
  year: 2008
  ident: BFcr201475_CR49
  publication-title: Toxicology
  doi: 10.1016/j.tox.2008.07.048
– volume: 284
  start-page: 14828
  year: 2009
  ident: BFcr201475_CR27
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.005181
– volume: 14
  start-page: 177
  year: 2012
  ident: BFcr201475_CR23
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2422
– volume: 284
  start-page: 35885
  year: 2009
  ident: BFcr201475_CR84
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.048140
– volume: 7
  start-page: 301
  year: 2011
  ident: BFcr201475_CR50
  publication-title: Autophagy
  doi: 10.4161/auto.7.3.14509
– volume: 8
  start-page: e1000298
  year: 2010
  ident: BFcr201475_CR60
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000298
– volume: 287
  start-page: 3265
  year: 2012
  ident: BFcr201475_CR42
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.280156
– volume: 39
  start-page: 1514
  year: 2011
  ident: BFcr201475_CR64
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0391514
– volume: 394
  start-page: 153
  year: 2006
  ident: BFcr201475_CR76
  publication-title: Biochem J
  doi: 10.1042/BJ20051243
– volume: 587
  start-page: 1787
  year: 2013
  ident: BFcr201475_CR24
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2013.04.030
– volume: 110
  start-page: 1579
  year: 2002
  ident: BFcr201475_CR72
  publication-title: J Clin Invest
  doi: 10.1172/JCI0216787
– volume: 281
  start-page: 27662
  year: 2006
  ident: BFcr201475_CR11
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M604900200
– volume: 4
  start-page: 2428
  year: 2013
  ident: BFcr201475_CR67
  publication-title: Nat Commun
  doi: 10.1038/ncomms3428
– volume: 334
  start-page: 1141
  year: 2011
  ident: BFcr201475_CR82
  publication-title: Science
  doi: 10.1126/science.1210333
– volume: 37
  start-page: 2478
  year: 2005
  ident: BFcr201475_CR8
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2005.05.013
– volume: 27
  start-page: 433
  year: 2008
  ident: BFcr201475_CR40
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601963
– volume: 454
  start-page: 232
  year: 2008
  ident: BFcr201475_CR53
  publication-title: Nature
  doi: 10.1038/nature07006
– volume: 2.pii
  start-page: a009944
  year: 2012
  ident: BFcr201475_CR80
  publication-title: Cold Spring Harb Perspect Med
– volume: 14
  start-page: 1127
  year: 2013
  ident: BFcr201475_CR79
  publication-title: EMBO Rep
  doi: 10.1038/embor.2013.168
– volume: 54
  start-page: 362
  year: 2014
  ident: BFcr201475_CR58
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.02.034
– volume: 280
  start-page: 4970
  year: 2013
  ident: BFcr201475_CR26
  publication-title: FEBS J
  doi: 10.1111/febs.12468
– volume: 26
  start-page: 9
  year: 2013
  ident: BFcr201475_CR41
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2013.05.024
– volume: 12
  start-page: 1613
  year: 2005
  ident: BFcr201475_CR70
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4401697
– volume: 14
  start-page: 441
  year: 2013
  ident: BFcr201475_CR33
  publication-title: EMBO Rep
  doi: 10.1038/embor.2013.40
– volume: 17
  start-page: 98
  year: 2009
  ident: BFcr201475_CR20
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.06.014
– volume: 283
  start-page: 32386
  year: 2008
  ident: BFcr201475_CR17
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M802403200
– volume: 191
  start-page: 933
  year: 2010
  ident: BFcr201475_CR59
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201008084
– volume: 27(Suppl 1)
  start-page: S114
  year: 2008
  ident: BFcr201475_CR56
  publication-title: Oncogene
  doi: 10.1038/onc.2009.49
– volume: 59
  start-page: 527
  year: 1979
  ident: BFcr201475_CR6
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1979.59.3.527
– volume: 13
  start-page: 1211
  year: 2008
  ident: BFcr201475_CR29
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2008.01238.x
– volume: 31
  start-page: 91
  year: 2008
  ident: BFcr201475_CR14
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.30.051606.094302
– volume: 44
  start-page: 279
  year: 2011
  ident: BFcr201475_CR37
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.07.039
– volume: 28
  start-page: 1341
  year: 2009
  ident: BFcr201475_CR31
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.80
– volume: 91
  start-page: 10771
  year: 1994
  ident: BFcr201475_CR7
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.23.10771
– volume: 17
  start-page: 2056
  year: 2011
  ident: BFcr201475_CR13
  publication-title: Curr Pharm Des
  doi: 10.2174/138161211796904768
– volume: 29
  start-page: 1523
  year: 1999
  ident: BFcr201475_CR69
  publication-title: Hepatology
  doi: 10.1002/hep.510290521
– volume: 283
  start-page: 22847
  year: 2008
  ident: BFcr201475_CR28
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M802182200
– volume: 144
  start-page: 227
  year: 2011
  ident: BFcr201475_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.015
– volume: 5
  start-page: 234
  year: 2013
  ident: BFcr201475_CR43
  publication-title: Aging
  doi: 10.18632/aging.100547
– volume: 7
  start-page: 187
  year: 1998
  ident: BFcr201475_CR1
  publication-title: Biofactors
  doi: 10.1002/biof.5520070303
– volume: 11
  start-page: 45
  year: 2010
  ident: BFcr201475_CR30
  publication-title: EMBO Rep
  doi: 10.1038/embor.2009.256
– volume: 69
  start-page: 719
  year: 2005
  ident: BFcr201475_CR10
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2004.12.002
– volume: 282
  start-page: 5617
  year: 2007
  ident: BFcr201475_CR83
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M605940200
– volume: 3
  start-page: 297
  year: 2012
  ident: BFcr201475_CR12
  publication-title: Front Genet
  doi: 10.3389/fgene.2012.00297
– volume: 319
  start-page: 1697
  year: 2013
  ident: BFcr201475_CR45
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2013.03.034
– volume: 17
  start-page: 719
  year: 2013
  ident: BFcr201475_CR57
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.03.014
– reference: 9523198 - Genes Chromosomes Cancer. 1998 Mar;21(3):230-5
– reference: 16321140 - Biochem J. 2006 Feb 15;394(Pt 1):153-61
– reference: 7971961 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10771-8
– reference: 22033522 - Science. 2011 Nov 25;334(6059):1144-7
– reference: 23267366 - Front Genet. 2012 Dec 19;3:297
– reference: 10216138 - Hepatology. 1999 May;29(5):1523-31
– reference: 16814712 - Cell. 2006 Jun 30;125(7):1241-52
– reference: 15710349 - Biochem Pharmacol. 2005 Mar 1;69(5):719-23
– reference: 17166847 - J Biol Chem. 2007 Feb 23;282(8):5617-24
– reference: 23897086 - EMBO Rep. 2013 Sep;14(9):788-94
– reference: 19322194 - EMBO J. 2009 May 6;28(9):1341-50
– reference: 22889933 - Autophagy. 2012 Oct;8(10):1462-76
– reference: 16864590 - J Biol Chem. 2006 Sep 15;281(37):27662-8
– reference: 23603281 - Exp Cell Res. 2013 Jul 15;319(12):1697-705
– reference: 20871098 - Hum Mol Genet. 2010 Dec 15;19(24):4861-70
– reference: 11711427 - Genes Dev. 2001 Nov 15;15(22):2922-33
– reference: 21757540 - Mol Biol Cell. 2011 Sep;22(17):3206-17
– reference: 23559066 - EMBO Rep. 2013 May;14(5):441-9
– reference: 21936844 - Biochem Soc Trans. 2011 Oct;39(5):1514-9
– reference: 21128700 - Antioxid Redox Signal. 2011 May 15;14(10):1939-51
– reference: 23553280 - Aging (Albany NY). 2013 Apr;5(4):234-69
– reference: 22448035 - J Cell Sci. 2012 Feb 15;125(Pt 4):795-9
– reference: 22505714 - J Biol Chem. 2012 Jun 1;287(23):19094-104
– reference: 24025448 - Autophagy. 2013 Nov 1;9(11):1828-36
– reference: 24013556 - Nat Commun. 2013;4:2428
– reference: 21646527 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5
– reference: 22265414 - Cell. 2012 Jan 20;148(1-2):228-43
– reference: 18454133 - Nature. 2008 Jul 10;454(7201):232-5
– reference: 15798367 - Rejuvenation Res. 2005 Spring;8(1):3-5
– reference: 9396766 - J Exp Med. 1997 Dec 15;186(12):1975-83
– reference: 12464659 - J Clin Invest. 2002 Dec;110(11):1579-83
– reference: 9568243 - Biofactors. 1998;7(3):187-90
– reference: 22267086 - Nat Cell Biol. 2012 Feb;14(2):177-85
– reference: 11452314 - Nature. 2001 Jul 5;412(6842):95-9
– reference: 19502807 - Autophagy. 2009 Aug;5(6):872-3
– reference: 21639795 - Annu Rev Genomics Hum Genet. 2011;12:301-25
– reference: 21215441 - Cell. 2011 Jan 21;144(2):227-39
– reference: 19619495 - Dev Cell. 2009 Jul;17(1):98-109
– reference: 21718245 - Curr Pharm Des. 2011;17(20):2056-73
– reference: 11559532 - Cancer Res. 2001 Sep 15;61(18):6669-73
– reference: 19619494 - Dev Cell. 2009 Jul;17(1):87-97
– reference: 15247238 - J Biol Chem. 2004 Sep 10;279(37):39068-74
– reference: 21478857 - Nat Cell Biol. 2011 May;13(5):589-98
– reference: 9683639 - J Cell Sci. 1998 Aug;111 ( Pt 16):2455-64
– reference: 22308029 - J Biol Chem. 2012 Mar 23;287(13):10631-8
– reference: 22017874 - Mol Cell. 2011 Oct 21;44(2):279-89
– reference: 20615880 - J Biol Chem. 2010 Sep 17;285(38):29599-607
– reference: 22157017 - J Biol Chem. 2012 Jan 27;287(5):3265-72
– reference: 23660403 - FEBS Lett. 2013 Jun 19;587(12):1787-92
– reference: 22977244 - J Biol Chem. 2012 Nov 2;287(45):37964-72
– reference: 19794493 - Nature. 2009 Oct 1;461(7264):654-8
– reference: 18524774 - J Biol Chem. 2008 Aug 15;283(33):22847-57
– reference: 20010802 - EMBO Rep. 2010 Jan;11(1):45-51
– reference: 23910823 - FEBS J. 2013 Oct;280(20):4970-82
– reference: 23602449 - Cell Metab. 2013 May 7;17(5):719-30
– reference: 24176932 - EMBO Rep. 2013 Dec;14(12):1127-35
– reference: 23810512 - Dev Cell. 2013 Jul 15;26(1):9-18
– reference: 19793921 - Mol Biol Cell. 2009 Nov;20(22):4730-8
– reference: 19071092 - Biochem Pharmacol. 2009 Apr 15;77(8):1303-15
– reference: 19840933 - J Biol Chem. 2009 Dec 18;284(51):35885-95
– reference: 10066162 - Science. 1999 Mar 5;283(5407):1482-8
– reference: 21115803 - J Cell Biol. 2010 Nov 29;191(5):933-42
– reference: 20133687 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3540-5
– reference: 37532 - Physiol Rev. 1979 Jul;59(3):527-605
– reference: 18694801 - Toxicology. 2008 Dec 30;254(3):147-57
– reference: 24036476 - Nat Cell Biol. 2013 Oct;15(10):1197-205
– reference: 21998252 - Science. 2011 Nov 25;334(6059):1141-4
– reference: 18333761 - Annu Rev Neurosci. 2008;31:91-123
– reference: 16103002 - Int J Biochem Cell Biol. 2005 Dec;37(12):2478-503
– reference: 15947785 - Cell Death Differ. 2005 Dec;12(12):1613-21
– reference: 16300732 - Biochem Biophys Res Commun. 2006 Jan 13;339(2):485-9
– reference: 23065343 - Circ Res. 2012 Oct 12;111(9):1198-207
– reference: 19029340 - J Cell Biol. 2008 Dec 1;183(5):795-803
– reference: 21126216 - Antioxid Redox Signal. 2011 May 15;14(10):1919-28
– reference: 20126261 - PLoS Biol. 2010 Jan;8(1):e1000298
– reference: 21206218 - Autophagy. 2011 Mar;7(3):301-3
– reference: 18200046 - EMBO J. 2008 Jan 23;27(2):433-46
– reference: 21576396 - J Cell Biol. 2011 May 16;193(4):755-67
– reference: 19021777 - Genes Cells. 2008 Dec;13(12):1211-8
– reference: 23209295 - J Biol Chem. 2013 Jan 11;288(2):1099-113
– reference: 20573959 - J Biol Chem. 2010 Sep 3;285(36):27879-90
– reference: 21429936 - J Cell Sci. 2011 Apr 15;124(Pt 8):1339-50
– reference: 19641497 - Oncogene. 2008 Dec;27 Suppl 1:S114-27
– reference: 19366696 - J Biol Chem. 2009 May 29;284(22):14828-37
– reference: 18818209 - J Biol Chem. 2008 Nov 21;283(47):32386-93
– reference: 24746696 - Mol Cell. 2014 May 8;54(3):362-77
– reference: 23024178 - Cold Spring Harb Perspect Med. 2012 Nov;2(11). pii: a009944. doi: 10.1101/cshperspect.a009944
SSID ssj0025451
Score 2.5720623
SecondaryResourceType review_article
Snippet Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 787
SubjectTerms 631/80/39/2348
631/80/642/333
631/80/86
Animals
Apoptosis
Autophagy-Related Protein 8 Family
Autophagy-Related Proteins
Biomedical and Life Sciences
Casein Kinase II - metabolism
Cell Biology
Cell Hypoxia
Humans
Hypoxia
Life Sciences
Mammals
Membrane Proteins - physiology
Microtubule-Associated Proteins - metabolism
Mitochondria - metabolism
Mitochondrial Degradation
Mitochondrial Dynamics - physiology
Mitochondrial Proteins - physiology
Phosphorylation
Proto-Oncogene Proteins - physiology
Receptors, Cytoplasmic and Nuclear - biosynthesis
Receptors, Cytoplasmic and Nuclear - physiology
Review
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins - biosynthesis
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
src-Family Kinases - metabolism
Tumor Suppressor Proteins - physiology
Vesicular Transport Proteins - metabolism
Yeasts
去磷酸化
受体介导
哺乳动物细胞
系统
线粒体
蛋白质
酪蛋白激酶
酵母
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT-MwEIdHLAiJC-JNeClouXDIUtdOnHBDFQghwWmRuFm2Y0OlbQq0HPrfM-M8RLcrtLeqGVeO7XjmF0-_ATjzzhbCil7i88yiQBFFYnBdJMIUhmnbL0UoyXL_kN0-irun9KnB5EyatMoaaRm26TY77MISu5OJXzL9ASuEbCehNcgGnbjCSCCIq5AilFHWTo0i5fmXtgRQeBlXz2_oFuYd0UJ0uZgk-ddJaXBANxuw3kSO8VXd101YctUWrNa1JGfbcIkBoHtFBZ2EP4NgIBmPhkQN0M-zeFjFMyrSE-sKv9ajUXi7EdcY58kOPN5c_x7cJk1hhMSmPJ0mHiPiHBWkYcygA-LSmcCVE7j9CNtjXmSaZ8IxmzsmbYmSQBrtjSzJZaWe78JyNa7cPsR5boXOPSu85IK7nkmdE97ootB9XpZlBIfdiKnXGoChMlJdBOKL4LwdQ2UbpjiVtvijwtk2z5V9VzT2SqYR_Oxs2x_6l9VROxWqeZomCsO8PoHxCx7BaXcZnwM63NCVG38EG96XRdr71obkJ26pLIK9ena7rqAMDZTUCOTcvHcGxOGev1INXwKPmyBxMsOWZ-0K-dL1hTs8-D-zQ1ijT3Vm8BEsT98_3DHGP1NzEhb-J2tsAd4
  priority: 102
  providerName: Springer Nature
Title Receptor-mediated mitophagy in yeast and mammalian systems
URI http://lib.cqvip.com/qk/85240X/201407/661920328.html
https://link.springer.com/article/10.1038/cr.2014.75
https://www.ncbi.nlm.nih.gov/pubmed/24903109
https://www.proquest.com/docview/1542380793
https://www.proquest.com/docview/1543279503
https://www.proquest.com/docview/1560103761
https://pubmed.ncbi.nlm.nih.gov/PMC4085769
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8x0LS9TIOxLeNDQeOFh4y6duJkLxNUIIQEmqYh9c2yHRsqrWmh5aH__e6cD9YV8Zj4EsX2-e5-9uV3AIfe2UJY0Ut8nlkEKKJIDOpFIkxhmLb9UoSSLFfX2cWNuBymw2bDbdakVbY2MRjqcmJpj_wYXX2fyNEL_mN6n1DVKDpdbUpovIINoi4jrZbDJ8CF0UEAXCFtKKNMnpqelOfHlrhAmfhG-YVv0NBUt_foKpad00rEuZo4-d_paXBK5-_hXRNNxif19G_Cmqu24HVdX3LxAb5jUOimiKqT8IMIBpfxeERMAvp2EY-qeEGFe2Jd4W09Hocdj7imdp5tw8352e_BRdIUS0hsytN54jFKzhFVGsYMOiUunQlccwJNkrA95kWmeSYcs7lj0pYIE6TR3siS3Fjq-UdYryaV-wxxnluhc88KL7ngrmdS54Q3uih0n5dlGcFON2JqWpNiqIyQGJHzRXDUjqGyDc84lbv4o8J5N8-VfVA09kqmEXztZNsXPSe1206FalbYTD3pQwQHXTOuDTrw0JWbPAYZ3pdF2ntRhiApmlkWwad6drtPQWgamFMjkEvz3gkQN_dySzW6CxzdRBwnM3zysNWQfz59pYdfXu7hDrwlwTpLeBfW5w-Pbg9jobnZDwq_DxunZ9c_f-HVIBv8BbeMCaU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuiGcJbSGIcuCQNomdOEGqEAKqLX2cWmlvxnbsdiU2u-1uhfZP8RuZcTYpy6Leek0mUTIez8xnj78B2HbWlNzwOHJFbhCg8DLSaBcR16VOlEkr7luyHJ_kvTP-vZ_1V-B3exaGyipbn-gddTUytEa-i6E-JXL0kn0aX0bUNYp2V9sWGo1ZHNrZL4Rsk72Drzi-79N0_9vpl1407yoQmYxl08hhOlkg_NJJotF7M2G1J2XjOHe5iRPHc8VybhNT2ESYCvNpoZXToiJ_nzmG770H9zHwxgT2RP8G4GE24gGeL1PKqXKooUNlxa4h7tGE71A94xo6tvr8EkPTYjBcynCXCzX_2a31QXD_MTyaZ6_h58bcnsCKrZ_Cg6af5ewZfMQk1I4RxUf-QAoms-FwQMwF6nwWDupwRo2CQlXjZTUc-hWWsKGSnjyHsztR4wtYrUe1fQlhURiuCpeUTjDObKwza7nTqixVyqqqCmCj05gcNyQcMifkR2SAAXxodSjNnNec2mv8lH5_nRXSXEnSvRRZAO862fZF_5PabIdCzmf0RN7YXwBvu9s4F2mDRdV2dO1lWCrKLL5VhiAwuvUkgPVmdLtPQSjsmVoDEAvj3gkQF_jinXpw4TnBiahO5Pjkdmshf3360h--uv0P38Ba7_T4SB4dnBxuwEN6qKlQ3oTV6dW13cI8bKpfe-MP4cddz7Y_S2hB7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEG9CCwRRDhzCbmInTpAQAtpVS2FVISr1ZmzHLiux2W13K7R_jV_HjPOAsqi3XpOxldgz4_ns8TcAW86aghs-iFyeGQQovIg06kXEdaFjZZKS-5Isn0fZ7iH_eJQercGv9i4MpVW2PtE76nJqaI-8j0t9QuToBeu7Ji3iYHv4dnYSUQUpOmlty2nUKrJvlz8Rvs3f7G3jXL9IkuHO1w-7UVNhIDIpSxeRw9AyRyim41ijJ2fCak_QxtGOuRnEjmeKZdzGJrexMCXG1kIrp0VJvj91DPu9AuuCUFEP1t_vjA6-dHAPYxMP93zSUkZ5RDU5Ksv7hphIY_6Kshuvo5urjk9woTq_NK7Eu6tpm_-c3folcXgLbjaxbPiuVr7bsGarO3C1rm65vAuvMSS1M8T0kb-egqFtOBkTj4E6XobjKlxS2aBQVfhYTSZ-vyWsiaXn9-DwUgbyPvSqaWUfQpjnhqvcxYUTjDM70Km13GlVFCphZVkGsNGNmJzVlBwyIxxI1IABvGzHUJqG5ZyKbfyQ_rSd5dKcShp7KdIAnneybUf_k9psp0I29j2Xf7QxgGfda7RMOm5RlZ2eeRmWiCIdXChDgBidfBzAg3p2u09BYOx5WwMQ5-a9EyBm8PNvqvF3zxBOtHUiw5ZbrYb89ekrf_jo4j98CtfQ0uSnvdH-BtygNnW68ib0Fqdn9jEGZQv9pNH-EL5dtsH9BvGjR4o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Receptor-mediated+mitophagy+in+yeast+and+mammalian+systems&rft.jtitle=Cell+research&rft.au=Liu%2C+Lei&rft.au=Sakakibara%2C+Kaori&rft.au=Chen%2C+Quan&rft.au=Okamoto%2C+Koji&rft.date=2014-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=24&rft.issue=7&rft.spage=787&rft_id=info:doi/10.1038%2Fcr.2014.75&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3360083661
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg