Ship Classification in High-Resolution SAR Images Using Deep Learning of Small Datasets
With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolution...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 9; p. 2929 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
03.09.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method. |
---|---|
AbstractList | With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method. With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method.With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method. |
Author | Wang, Yuanyuan Wang, Chao Zhang, Hong |
AuthorAffiliation | 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 1 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; wangyy2016@radi.ac.cn |
AuthorAffiliation_xml | – name: 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China – name: 1 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; wangyy2016@radi.ac.cn |
Author_xml | – sequence: 1 givenname: Yuanyuan orcidid: 0000-0001-7700-7284 surname: Wang fullname: Wang, Yuanyuan – sequence: 2 givenname: Chao surname: Wang fullname: Wang, Chao – sequence: 3 givenname: Hong orcidid: 0000-0002-0088-8148 surname: Zhang fullname: Zhang, Hong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30177668$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1r3DAQhkVJaT7aQ_9AMfSSHtzoy7J8KYRN2iwsFLINPYqxJHu1aK2tZBf676PdTUKSooM0o3ceXmnmFB0NYbAIfST4K2MNvkhE4obm9QadEE55KSnFR8_Ox-g0pTXGlDEm36FjhkldCyFP0O_lym2LmYeUXOc0jC4MhRuKG9evylubgp_2qeXlbTHfQG9TcZfc0BdX1m6LhYU47KLQFcsNeF9cwQjJjuk9etuBT_bDw36G7r5f_5rdlIufP-azy0WpK1aNpaUdwZRrYyrKAHeiZbpqKslYJVtRya5uwGgDrcWN0NjUOr-G8LrVnGsGlJ2h-YFrAqzVNroNxH8qgFP7RIi9gjg67a3CWjPeGg0YDNeCN5Rb2bYSY2i4ITyzvh1Y26ndWKPtMEbwL6Avbwa3Un34qwTJtFpmwPkDIIY_k02j2rikrfcw2DAlRXHTcCaYwFn6-ZV0HaY45K9SlFAha4b5ztGn546erDz2LwsuDgIdQ0rRdkq7cd_EbNB5RbDaTYh6mpBc8eVVxSP0f-09Aty5ig |
CitedBy_id | crossref_primary_10_1109_TGRS_2020_3009284 crossref_primary_10_1016_j_cose_2024_103902 crossref_primary_10_1007_s11804_023_00367_1 crossref_primary_10_1109_JSTARS_2022_3142025 crossref_primary_10_1109_JSTARS_2024_3357171 crossref_primary_10_1109_MAES_2021_3117369 crossref_primary_10_3390_s19010063 crossref_primary_10_1016_j_procs_2022_09_026 crossref_primary_10_1109_TIM_2023_3268455 crossref_primary_10_1109_JSEN_2023_3323322 crossref_primary_10_1109_TGRS_2022_3178703 crossref_primary_10_1109_TGRS_2025_3528464 crossref_primary_10_3390_rs15082138 crossref_primary_10_1109_JSTARS_2024_3423377 crossref_primary_10_1109_TAES_2023_3297569 crossref_primary_10_1016_j_eswa_2023_120023 crossref_primary_10_11834_jig_230359 crossref_primary_10_3390_diagnostics10060417 crossref_primary_10_1109_TGRS_2022_3166174 crossref_primary_10_1080_01431161_2021_2008544 crossref_primary_10_1109_ACCESS_2021_3077592 crossref_primary_10_1109_TGRS_2023_3332137 crossref_primary_10_3390_app12146866 crossref_primary_10_1109_JSTARS_2023_3317489 crossref_primary_10_3390_rs15020440 crossref_primary_10_3390_rs15112904 crossref_primary_10_1109_LGRS_2022_3178080 crossref_primary_10_1109_JSTARS_2019_2949006 crossref_primary_10_1016_j_patcog_2021_108365 crossref_primary_10_1109_TGRS_2021_3082759 crossref_primary_10_3390_rs14246240 crossref_primary_10_1109_LGRS_2022_3183622 crossref_primary_10_3390_rs13040732 crossref_primary_10_1016_j_compeleceng_2024_110043 crossref_primary_10_1109_ACCESS_2020_2978880 crossref_primary_10_1007_s42421_020_00020_1 crossref_primary_10_1109_ACCESS_2021_3072623 crossref_primary_10_1088_1755_1315_569_1_012046 crossref_primary_10_3390_ijgi9090544 crossref_primary_10_1016_j_eswa_2022_119290 crossref_primary_10_1109_TAES_2023_3271283 crossref_primary_10_3389_fnins_2020_00858 crossref_primary_10_1515_em_2021_0047 crossref_primary_10_1080_2150704X_2019_1650982 crossref_primary_10_1109_LSP_2019_2919102 crossref_primary_10_1515_em_2021_0046 crossref_primary_10_3390_rs14061330 crossref_primary_10_3390_app9204209 crossref_primary_10_3390_electronics13010098 crossref_primary_10_1016_j_bbe_2022_05_005 crossref_primary_10_3390_rs12091443 crossref_primary_10_1109_TGRS_2023_3314501 crossref_primary_10_1155_2019_9140167 crossref_primary_10_3390_rs15204966 crossref_primary_10_1109_ACCESS_2022_3228046 crossref_primary_10_1109_JSTARS_2021_3049851 crossref_primary_10_3390_rs15245759 crossref_primary_10_1109_LGRS_2021_3119875 crossref_primary_10_1109_LGRS_2020_3016692 crossref_primary_10_1016_j_isprsjprs_2023_09_014 crossref_primary_10_1049_ipr2_12323 crossref_primary_10_1007_s11042_020_09574_2 crossref_primary_10_1109_TGRS_2023_3312766 crossref_primary_10_3390_rs14235986 crossref_primary_10_1109_LGRS_2021_3083262 crossref_primary_10_1155_2021_5556635 crossref_primary_10_1109_JSTARS_2024_3434448 crossref_primary_10_3390_rs16030557 crossref_primary_10_1109_TGRS_2024_3421269 crossref_primary_10_1109_ACCESS_2025_3546764 crossref_primary_10_1007_s12601_023_00131_0 |
Cites_doi | 10.1038/nature14539 10.1109/IGARSS.2013.6723352 10.1109/LGRS.2017.2734889 10.1109/MGRS.2013.2248301 10.1109/TGRS.2008.2008721 10.1109/MGRS.2017.2762307 10.1016/j.patcog.2016.07.001 10.1007/978-1-4899-7488-4_293 10.1109/LGRS.2013.2268875 10.1109/LGRS.2015.2506570 10.1016/S0893-6080(98)00116-6 10.1002/0470854774 10.1007/3-540-49430-8 10.1155/2013/698370 10.1109/TGRS.2004.834654 10.1049/el.2016.4598 10.1109/72.788640 10.1109/JSTARS.2017.2665346 10.1109/MGRS.2016.2540798 10.1109/RADAR.2010.5494583 10.1109/BIGSARDATA.2017.8124924 10.1109/CVPR.2015.7298594 10.1126/science.1127647 10.1109/TKDE.2009.191 10.1109/CVPR.2017.195 10.1109/FUZZ-IEEE.2015.7337889 10.1109/CVPR.2016.308 10.1109/LGRS.2016.2514482 10.1109/JOE.2017.2767106 10.1126/science.1192788 10.1109/LGRS.2013.2262073 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s18092929 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_0cc34bdca0ad4c64924e8bb800a94d14 PMC6164978 30177668 10_3390_s18092929 |
Genre | Journal Article |
GeographicLocations | Beijing China United States--US China Germany |
GeographicLocations_xml | – name: China – name: Germany – name: Beijing China – name: United States--US |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2016YFB0501501 – fundername: the National Natural Science Foundation of China grantid: 41331176 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-e2f1024cdd523a0f6b3c59583358b658f79adcdabe096c0d7c220147bc44c3a23 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:34 EDT 2025 Thu Aug 21 14:06:06 EDT 2025 Thu Jul 10 23:48:08 EDT 2025 Sat Aug 23 14:49:56 EDT 2025 Wed Feb 19 02:41:23 EST 2025 Tue Jul 01 01:37:02 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | ship classification fine tuning transfer learning convolutional neural networks high-resolution SAR images small datasets |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-e2f1024cdd523a0f6b3c59583358b658f79adcdabe096c0d7c220147bc44c3a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0088-8148 0000-0001-7700-7284 |
OpenAccessLink | https://www.proquest.com/docview/2126873044?pq-origsite=%requestingapplication% |
PMID | 30177668 |
PQID | 2126873044 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0cc34bdca0ad4c64924e8bb800a94d14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6164978 proquest_miscellaneous_2099436360 proquest_journals_2126873044 pubmed_primary_30177668 crossref_citationtrail_10_3390_s18092929 crossref_primary_10_3390_s18092929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-03 |
PublicationDateYYYYMMDD | 2018-09-03 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_35 ref_34 ref_11 Zhang (ref_19) 2016; 4 ref_33 ref_32 ref_31 ref_30 Schreier (ref_6) 2015; Volume 47 Moreira (ref_25) 2013; 1 Oliveau (ref_5) 2017; 10 ref_39 Vapnik (ref_14) 1999; 10 ref_38 ref_15 ref_37 Jiang (ref_10) 2016; 13 Touzi (ref_12) 2004; 42 Bentes (ref_21) 2018; 43 Hinton (ref_16) 2006; 313 Lang (ref_8) 2016; 13 Nogueira (ref_20) 2017; 61 Pan (ref_27) 2010; 22 LeCun (ref_17) 2015; 521 Margarit (ref_13) 2009; 47 ref_24 ref_23 Zhao (ref_2) 2013; 2013 ref_22 ref_41 Leng (ref_7) 2017; 53 ref_40 Qian (ref_36) 1999; 12 Xing (ref_1) 2013; 10 ref_29 Zhu (ref_18) 2017; 5 Wang (ref_3) 2014; 11 ref_26 Lang (ref_9) 2017; 14 ref_4 Tenenbaum (ref_28) 2011; 331 |
References_xml | – volume: 521 start-page: 436 year: 2015 ident: ref_17 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_32 – ident: ref_24 – ident: ref_26 – ident: ref_34 – ident: ref_4 doi: 10.1109/IGARSS.2013.6723352 – volume: 14 start-page: 1765 year: 2017 ident: ref_9 article-title: Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2734889 – volume: 1 start-page: 6 year: 2013 ident: ref_25 article-title: A tutorial on synthetic aperture radar publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2013.2248301 – volume: 47 start-page: 1224 year: 2009 ident: ref_13 article-title: Exploitation of ship scattering in polarimetric SAR for an improved classification under high clutter conditions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2008721 – volume: 5 start-page: 8 year: 2017 ident: ref_18 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 61 start-page: 539 year: 2017 ident: ref_20 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.001 – ident: ref_41 doi: 10.1007/978-1-4899-7488-4_293 – volume: 11 start-page: 484 year: 2014 ident: ref_3 article-title: A novel hierarchical ship classifier for COSMO-SkyMed sar data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2268875 – volume: 13 start-page: 212 year: 2016 ident: ref_8 article-title: Ship classification in SAR image by joint feature and classifier selection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2506570 – ident: ref_37 – volume: 12 start-page: 145 year: 1999 ident: ref_36 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00116-6 – ident: ref_23 – ident: ref_39 doi: 10.1002/0470854774 – ident: ref_35 doi: 10.1007/3-540-49430-8 – volume: 2013 start-page: 698370 year: 2013 ident: ref_2 article-title: Ship classification with high resolution TerraSAR-X imagery based on analytic hierarchy process publication-title: Int. J. Antennas Propag. doi: 10.1155/2013/698370 – volume: 42 start-page: 2039 year: 2004 ident: ref_12 article-title: On the use of permanent symmetric scatterers for ship characterization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.834654 – volume: 53 start-page: 500 year: 2017 ident: ref_7 article-title: 2D comb feature for analysis of ship classification in high-resolution SAR imagery publication-title: Electron. Lett. doi: 10.1049/el.2016.4598 – volume: 10 start-page: 988 year: 1999 ident: ref_14 article-title: An overview of statistical learning theory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788640 – volume: 10 start-page: 2830 year: 2017 ident: ref_5 article-title: Learning attribute representations for remote sensing ship category classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2665346 – volume: 4 start-page: 22 year: 2016 ident: ref_19 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – ident: ref_29 – ident: ref_11 doi: 10.1109/RADAR.2010.5494583 – ident: ref_33 doi: 10.1109/BIGSARDATA.2017.8124924 – ident: ref_38 doi: 10.1109/CVPR.2015.7298594 – volume: Volume 47 start-page: 975 year: 2015 ident: ref_6 article-title: Vessel classification in cosmo-skymed SAR data using hierarchical feature selection publication-title: Proceedings of the 36th International Symposium on Remote Sensing of Environment – volume: 313 start-page: 504 year: 2006 ident: ref_16 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 22 start-page: 1345 year: 2010 ident: ref_27 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – ident: ref_30 doi: 10.1109/CVPR.2017.195 – ident: ref_40 doi: 10.1109/FUZZ-IEEE.2015.7337889 – ident: ref_15 – ident: ref_31 doi: 10.1109/CVPR.2016.308 – volume: 13 start-page: 616 year: 2016 ident: ref_10 article-title: Ship classification based on superstructure scattering features in SAR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2514482 – volume: 43 start-page: 258 year: 2018 ident: ref_21 article-title: Ship classification in TerraSAR-X images with convolutional neural networks publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2017.2767106 – volume: 331 start-page: 1279 year: 2011 ident: ref_28 article-title: How to grow a mind: Statistics, structure, and abstraction publication-title: Science doi: 10.1126/science.1192788 – ident: ref_22 – volume: 10 start-page: 1562 year: 2013 ident: ref_1 article-title: Ship classification in TerraSAR-X images with feature space based sparse representation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2262073 |
SSID | ssj0023338 |
Score | 2.554752 |
Snippet | With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2929 |
SubjectTerms | Algorithms Classification convolutional neural networks Datasets fine tuning high-resolution SAR images Methods Neural networks Pattern recognition Remote sensing Researchers ship classification small datasets Training transfer learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqnugBAS0QKJWpOHCJGuKxnRwLpSqV2kOXit6i8RddaZtdsen_Z-xk011UiUuvsQ_OzNjzXjx5w9gnFRTqIEOOlVQ5aMDcOJQ5FsF5QsRC-nije3Gpzq7h_EberLX6ijVhvTxwb7ijwloBxlks0IFVQHzBV8YQzsEaXGphXVLOW5GpgWoJYl69jpAgUn-0jCpVZZ1w5EP2SSL9jyHLfwsk1zLO6Qv2fICK_Lhf4ku25dtXbGdNQHCX_ZrcThc8NbaMJT_Jynza8li9kccv831c8cnxFf9xR0fHkqcaAX7i_YIP2qq_-TzwyR3OZvwEO8pq3XKPXZ9-__ntLB9aJeRWCtnlvgyEFMA6R8SS7KyMsLJOf1RVhkBG0DU669B4oiy2cNqWlPlBGwtgBZbiNdtu561_y7j04AxCBA4esA4GtfcAwTmF8ouxGfu8MmFjBx3x2M5i1hCfiNZuRmtn7HCcuujFMx6b9DX6YZwQ9a7TA4qCZoiC5n9RkLH9lRebYRMuG8rKqqITDGj44zhM2yfeiWDr5_c0hxAyiCialrE3vdPHldDZp7VSVcb0RjhsLHVzpJ3eJoluRSyU-Pm7p3i39-wZ-SoVqRRin213f-79B0JCnTlIQf8XM50JPA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOgB8dmmFGQQBy5W0_XYTk6oUKqCBAeWir1F_sp2pW2yNOn_79jxZruo4hr7YM2Mx-_ZkzeEfJC11KoWNdOFkAwUaGacFkzntfOIiLnw4UX3x095fgHfZ2KWLty6VFa5zokxUbvWhjvyI0yxssBwBPi0-stC16jwuppaaDwkj4J0WSjpUrMN4eLIvwY1IY7U_qgLWlWTMqLJzRkUpfrvw5f_lkneOXfOnpInCTDSk8HDz8gD3zwnu3dkBF-QP9PLxYrG9pah8Cfami4aGmo4WLifH6KLTk9-0W9XmEA6GisF6Kn3K5oUVue0ren0Si-X9FT3eLb13Utycfb195dzlhomMCu46Jmf1IgXwDqH9BKtLQ23ooz_VRUGoUatSu2s08YjcbG5U3aC5z8oYwEs1xP-iuw0beP3CRUenNEQ4IMHXdZGK-8BauekFsfGZuTj2oSVTWrioanFskJWEaxdjdbOyPtx6mqQ0Lhv0ufgh3FCUL2OH9rreZU2UZVby8E4q3PtwEpA7ugLYxDz6hLcMWTkcO3FKm3FrtoETkbejcO4icLLiG58e4NzECcDD9JpGdkbnD6uBDOgUlIWGVFb4bC11O2RZnEZhbolclFk6Qf_X9Zr8hi9EItQcn5IdvrrG_8GkU5v3sZwvgXR4wAJ priority: 102 providerName: ProQuest |
Title | Ship Classification in High-Resolution SAR Images Using Deep Learning of Small Datasets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30177668 https://www.proquest.com/docview/2126873044 https://www.proquest.com/docview/2099436360 https://pubmed.ncbi.nlm.nih.gov/PMC6164978 https://doaj.org/article/0cc34bdca0ad4c64924e8bb800a94d14 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IaFyQOVVDCVaEAcuBtee9ToHVLW0oSC1Qg0RuVn7chspdULiSvDvmV0_lKCgSDlkR5E1M-v5Pu_4G4B3aZFKUfAilBlPQxQoQ2UkD2VUGEuIOOHWneheXqUXI_w25uMtaGdsNg5cbqR2bp7UaDH98PvXn2Pa8J8c4yTK_nHpNKhi-mzDLhUk4fbnJXaHCXFCNKwWFVo334MHlN5CpE5ndaUqefH-TYjz38bJlUo02IdHDYRkJ3XMH8OWLZ_AwxVhwafwc3g7mTM_8NK1Annvs0nJXFdH6J7Y1_nGhifX7Osd3VKWzPcOsDNr56zRXL1hs4IN7-R0ys5kRdWuWj6D0eD8x-eLsBmhEGqe8Cq0cUEIArUxRDjJ_6lKNO_7N60yReCjEH1ptJHKEpXRkRE6JkSAQmlEncg4eQ475ay0L4Bxi0ZJdIDCouwXSgprEQtjUsmPlA7gfevCXDf64m7MxTQnnuEcn3eOD-BtZzqvRTU2GZ26OHQGTgfb_zBb3OTNtsojrRNURstIGtQpEpu0mVKEgmUfzREGcNhGMW9zK6dqnWZ0Z0NaftMt07ZyZyWytLN7siHkjIkTUwvgoA56dyVt0gQg1tJh7VLXV8rJrZfuTomdEm9_-d__fAV7FADfkRIlh7BTLe7ta4I9lerBthgL-s4GX3qwe3p-9f265x8h9Hy6_wUQ8wW_ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcUHmbFlgQSFysuvY-7ANChVAl9HEgrcjN3ZfbSKkd6lSIP8VvZHb9SIMqbr169zDaeX3jnf0G4B0vuBQFK0KZMh5SQWWojGShjApjEREnzLob3cMjPjyh3yZssgZ_urcwrq2yi4k-UJtKu3_k2xhieYrmSOmn-c_QTY1yt6vdCI3GLPbt719YstUfRwPU7_s43vt6_GUYtlMFQs0StghtXGBSpdoYrMFQJK4SzTL_-ChVmI8LkUmjjVQW0b2OjNAxJkkqlKZUJ9IRHWDIv4OJN3IeJSbLAi_Beq9hL0qSLNquHTdWnHn0usx5fjTATXj237bMa3lubwMetACV7DYW9RDWbPkI7l-jLXwMP8bn0znx4zRdo5HXLZmWxPWMhO4-oLFmMt79TkYXGLBq4jsTyMDaOWkZXc9IVZDxhZzNyEAuMJcu6idwcitH-RTWy6q0z4EwS42S1MEVS2VWKCmspbQwhku2o3QAH7ojzHXLXu6GaMxyrGLcaef9aQfwtt86byg7btr02emh3-BYtv2H6vIsb502j7ROqDJaRtJQzSnWqjZVCjG2zKjZoQFsdVrMW9ev86WhBvCmX0andTcxsrTVFe5BXE4TR9UWwLNG6b0kGHGF4DwNQKyYw4qoqyvl9NwTg3OsfTORvvi_WK_h7vD48CA_GB3tb8I91IhvgImSLVhfXF7Zl4iyFuqVN20Cp7ftS38Br8c84g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJwQLwxFFgQSFysON6XfUCoEKKGQoUIFbm5-2wjpU6oXSH-Gr-O2fUjDaq49erdw2jn9Y139huEXnHHpXDMxTJjPKaCylgZyWKZOGMBERNm_Y3ulwO-d0g_zdhsC_3p3sL4tsouJoZAbZba_yMfQIjlGZgjpQPXtkV8HY3frX7GfoKUv2ntxmk0JrJvf_-C8q16OxmBrl-n6fjj9w97cTthINaMsDq2qYMES7UxUI-BeFwRzfLwEClTkJudyKXRRioLSF8nRugUEiYVSlOqifSkBxD-rwnCht7HxGxd7BGo_RomI0LyZFB5nqw0D0h2nf_CmIDLsO2_LZoXct74NrrVglW821jXHbRly7vo5gUKw3vox_RkvsJhtKZvOgp6xvMS-_6R2N8NNJaNp7vf8OQUgleFQ5cCHlm7wi276zFeOjw9lYsFHska8mpd3UeHV3KUD9B2uSztI4SZpUZJ6qGLpTJ3SgprKXXGcMmGSkfoTXeEhW6ZzP1AjUUBFY0_7aI_7Qi97LeuGvqOyza993roN3jG7fBheXZctA5cJFoTqoyWiTRUcwp1q82UArwtc2qGNEI7nRaLNgxUxdpoI_SiXwYH9rcysrTLc9gDGJ0ST9sWoYeN0ntJIPoKwXkWIbFhDhuibq6U85NAEs6hDs5F9vj_Yj1H18GLis-Tg_0n6AYoJPTCJGQHbddn5_YpAK5aPQuWjdHRVbvSXzhfQRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+Classification+in+High-Resolution+SAR+Images+Using+Deep+Learning+of+Small+Datasets&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yuanyuan&rft.au=Wang%2C+Chao&rft.au=Zhang%2C+Hong&rft.date=2018-09-03&rft.eissn=1424-8220&rft.volume=18&rft.issue=9&rft_id=info:doi/10.3390%2Fs18092929&rft_id=info%3Apmid%2F30177668&rft.externalDocID=30177668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |