Ship Classification in High-Resolution SAR Images Using Deep Learning of Small Datasets

With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolution...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 9; p. 2929
Main Authors Wang, Yuanyuan, Wang, Chao, Zhang, Hong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.09.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method.
AbstractList With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method.
With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method.With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method.
Author Wang, Yuanyuan
Wang, Chao
Zhang, Hong
AuthorAffiliation 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
1 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; wangyy2016@radi.ac.cn
AuthorAffiliation_xml – name: 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
– name: 1 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; wangyy2016@radi.ac.cn
Author_xml – sequence: 1
  givenname: Yuanyuan
  orcidid: 0000-0001-7700-7284
  surname: Wang
  fullname: Wang, Yuanyuan
– sequence: 2
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
– sequence: 3
  givenname: Hong
  orcidid: 0000-0002-0088-8148
  surname: Zhang
  fullname: Zhang, Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30177668$$D View this record in MEDLINE/PubMed
BookMark eNplkk1r3DAQhkVJaT7aQ_9AMfSSHtzoy7J8KYRN2iwsFLINPYqxJHu1aK2tZBf676PdTUKSooM0o3ceXmnmFB0NYbAIfST4K2MNvkhE4obm9QadEE55KSnFR8_Ox-g0pTXGlDEm36FjhkldCyFP0O_lym2LmYeUXOc0jC4MhRuKG9evylubgp_2qeXlbTHfQG9TcZfc0BdX1m6LhYU47KLQFcsNeF9cwQjJjuk9etuBT_bDw36G7r5f_5rdlIufP-azy0WpK1aNpaUdwZRrYyrKAHeiZbpqKslYJVtRya5uwGgDrcWN0NjUOr-G8LrVnGsGlJ2h-YFrAqzVNroNxH8qgFP7RIi9gjg67a3CWjPeGg0YDNeCN5Rb2bYSY2i4ITyzvh1Y26ndWKPtMEbwL6Avbwa3Un34qwTJtFpmwPkDIIY_k02j2rikrfcw2DAlRXHTcCaYwFn6-ZV0HaY45K9SlFAha4b5ztGn546erDz2LwsuDgIdQ0rRdkq7cd_EbNB5RbDaTYh6mpBc8eVVxSP0f-09Aty5ig
CitedBy_id crossref_primary_10_1109_TGRS_2020_3009284
crossref_primary_10_1016_j_cose_2024_103902
crossref_primary_10_1007_s11804_023_00367_1
crossref_primary_10_1109_JSTARS_2022_3142025
crossref_primary_10_1109_JSTARS_2024_3357171
crossref_primary_10_1109_MAES_2021_3117369
crossref_primary_10_3390_s19010063
crossref_primary_10_1016_j_procs_2022_09_026
crossref_primary_10_1109_TIM_2023_3268455
crossref_primary_10_1109_JSEN_2023_3323322
crossref_primary_10_1109_TGRS_2022_3178703
crossref_primary_10_1109_TGRS_2025_3528464
crossref_primary_10_3390_rs15082138
crossref_primary_10_1109_JSTARS_2024_3423377
crossref_primary_10_1109_TAES_2023_3297569
crossref_primary_10_1016_j_eswa_2023_120023
crossref_primary_10_11834_jig_230359
crossref_primary_10_3390_diagnostics10060417
crossref_primary_10_1109_TGRS_2022_3166174
crossref_primary_10_1080_01431161_2021_2008544
crossref_primary_10_1109_ACCESS_2021_3077592
crossref_primary_10_1109_TGRS_2023_3332137
crossref_primary_10_3390_app12146866
crossref_primary_10_1109_JSTARS_2023_3317489
crossref_primary_10_3390_rs15020440
crossref_primary_10_3390_rs15112904
crossref_primary_10_1109_LGRS_2022_3178080
crossref_primary_10_1109_JSTARS_2019_2949006
crossref_primary_10_1016_j_patcog_2021_108365
crossref_primary_10_1109_TGRS_2021_3082759
crossref_primary_10_3390_rs14246240
crossref_primary_10_1109_LGRS_2022_3183622
crossref_primary_10_3390_rs13040732
crossref_primary_10_1016_j_compeleceng_2024_110043
crossref_primary_10_1109_ACCESS_2020_2978880
crossref_primary_10_1007_s42421_020_00020_1
crossref_primary_10_1109_ACCESS_2021_3072623
crossref_primary_10_1088_1755_1315_569_1_012046
crossref_primary_10_3390_ijgi9090544
crossref_primary_10_1016_j_eswa_2022_119290
crossref_primary_10_1109_TAES_2023_3271283
crossref_primary_10_3389_fnins_2020_00858
crossref_primary_10_1515_em_2021_0047
crossref_primary_10_1080_2150704X_2019_1650982
crossref_primary_10_1109_LSP_2019_2919102
crossref_primary_10_1515_em_2021_0046
crossref_primary_10_3390_rs14061330
crossref_primary_10_3390_app9204209
crossref_primary_10_3390_electronics13010098
crossref_primary_10_1016_j_bbe_2022_05_005
crossref_primary_10_3390_rs12091443
crossref_primary_10_1109_TGRS_2023_3314501
crossref_primary_10_1155_2019_9140167
crossref_primary_10_3390_rs15204966
crossref_primary_10_1109_ACCESS_2022_3228046
crossref_primary_10_1109_JSTARS_2021_3049851
crossref_primary_10_3390_rs15245759
crossref_primary_10_1109_LGRS_2021_3119875
crossref_primary_10_1109_LGRS_2020_3016692
crossref_primary_10_1016_j_isprsjprs_2023_09_014
crossref_primary_10_1049_ipr2_12323
crossref_primary_10_1007_s11042_020_09574_2
crossref_primary_10_1109_TGRS_2023_3312766
crossref_primary_10_3390_rs14235986
crossref_primary_10_1109_LGRS_2021_3083262
crossref_primary_10_1155_2021_5556635
crossref_primary_10_1109_JSTARS_2024_3434448
crossref_primary_10_3390_rs16030557
crossref_primary_10_1109_TGRS_2024_3421269
crossref_primary_10_1109_ACCESS_2025_3546764
crossref_primary_10_1007_s12601_023_00131_0
Cites_doi 10.1038/nature14539
10.1109/IGARSS.2013.6723352
10.1109/LGRS.2017.2734889
10.1109/MGRS.2013.2248301
10.1109/TGRS.2008.2008721
10.1109/MGRS.2017.2762307
10.1016/j.patcog.2016.07.001
10.1007/978-1-4899-7488-4_293
10.1109/LGRS.2013.2268875
10.1109/LGRS.2015.2506570
10.1016/S0893-6080(98)00116-6
10.1002/0470854774
10.1007/3-540-49430-8
10.1155/2013/698370
10.1109/TGRS.2004.834654
10.1049/el.2016.4598
10.1109/72.788640
10.1109/JSTARS.2017.2665346
10.1109/MGRS.2016.2540798
10.1109/RADAR.2010.5494583
10.1109/BIGSARDATA.2017.8124924
10.1109/CVPR.2015.7298594
10.1126/science.1127647
10.1109/TKDE.2009.191
10.1109/CVPR.2017.195
10.1109/FUZZ-IEEE.2015.7337889
10.1109/CVPR.2016.308
10.1109/LGRS.2016.2514482
10.1109/JOE.2017.2767106
10.1126/science.1192788
10.1109/LGRS.2013.2262073
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s18092929
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0cc34bdca0ad4c64924e8bb800a94d14
PMC6164978
30177668
10_3390_s18092929
Genre Journal Article
GeographicLocations Beijing China
United States--US
China
Germany
GeographicLocations_xml – name: China
– name: Germany
– name: Beijing China
– name: United States--US
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2016YFB0501501
– fundername: the National Natural Science Foundation of China
  grantid: 41331176
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c535t-e2f1024cdd523a0f6b3c59583358b658f79adcdabe096c0d7c220147bc44c3a23
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:34 EDT 2025
Thu Aug 21 14:06:06 EDT 2025
Thu Jul 10 23:48:08 EDT 2025
Sat Aug 23 14:49:56 EDT 2025
Wed Feb 19 02:41:23 EST 2025
Tue Jul 01 01:37:02 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ship classification
fine tuning
transfer learning
convolutional neural networks
high-resolution SAR images
small datasets
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-e2f1024cdd523a0f6b3c59583358b658f79adcdabe096c0d7c220147bc44c3a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0088-8148
0000-0001-7700-7284
OpenAccessLink https://www.proquest.com/docview/2126873044?pq-origsite=%requestingapplication%
PMID 30177668
PQID 2126873044
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0cc34bdca0ad4c64924e8bb800a94d14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6164978
proquest_miscellaneous_2099436360
proquest_journals_2126873044
pubmed_primary_30177668
crossref_citationtrail_10_3390_s18092929
crossref_primary_10_3390_s18092929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-03
PublicationDateYYYYMMDD 2018-09-03
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-03
  day: 03
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_35
ref_34
ref_11
Zhang (ref_19) 2016; 4
ref_33
ref_32
ref_31
ref_30
Schreier (ref_6) 2015; Volume 47
Moreira (ref_25) 2013; 1
Oliveau (ref_5) 2017; 10
ref_39
Vapnik (ref_14) 1999; 10
ref_38
ref_15
ref_37
Jiang (ref_10) 2016; 13
Touzi (ref_12) 2004; 42
Bentes (ref_21) 2018; 43
Hinton (ref_16) 2006; 313
Lang (ref_8) 2016; 13
Nogueira (ref_20) 2017; 61
Pan (ref_27) 2010; 22
LeCun (ref_17) 2015; 521
Margarit (ref_13) 2009; 47
ref_24
ref_23
Zhao (ref_2) 2013; 2013
ref_22
ref_41
Leng (ref_7) 2017; 53
ref_40
Qian (ref_36) 1999; 12
Xing (ref_1) 2013; 10
ref_29
Zhu (ref_18) 2017; 5
Wang (ref_3) 2014; 11
ref_26
Lang (ref_9) 2017; 14
ref_4
Tenenbaum (ref_28) 2011; 331
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: ref_17
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_32
– ident: ref_24
– ident: ref_26
– ident: ref_34
– ident: ref_4
  doi: 10.1109/IGARSS.2013.6723352
– volume: 14
  start-page: 1765
  year: 2017
  ident: ref_9
  article-title: Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2734889
– volume: 1
  start-page: 6
  year: 2013
  ident: ref_25
  article-title: A tutorial on synthetic aperture radar
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2013.2248301
– volume: 47
  start-page: 1224
  year: 2009
  ident: ref_13
  article-title: Exploitation of ship scattering in polarimetric SAR for an improved classification under high clutter conditions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2008721
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_18
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 61
  start-page: 539
  year: 2017
  ident: ref_20
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.001
– ident: ref_41
  doi: 10.1007/978-1-4899-7488-4_293
– volume: 11
  start-page: 484
  year: 2014
  ident: ref_3
  article-title: A novel hierarchical ship classifier for COSMO-SkyMed sar data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2268875
– volume: 13
  start-page: 212
  year: 2016
  ident: ref_8
  article-title: Ship classification in SAR image by joint feature and classifier selection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2506570
– ident: ref_37
– volume: 12
  start-page: 145
  year: 1999
  ident: ref_36
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref_23
– ident: ref_39
  doi: 10.1002/0470854774
– ident: ref_35
  doi: 10.1007/3-540-49430-8
– volume: 2013
  start-page: 698370
  year: 2013
  ident: ref_2
  article-title: Ship classification with high resolution TerraSAR-X imagery based on analytic hierarchy process
  publication-title: Int. J. Antennas Propag.
  doi: 10.1155/2013/698370
– volume: 42
  start-page: 2039
  year: 2004
  ident: ref_12
  article-title: On the use of permanent symmetric scatterers for ship characterization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.834654
– volume: 53
  start-page: 500
  year: 2017
  ident: ref_7
  article-title: 2D comb feature for analysis of ship classification in high-resolution SAR imagery
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.4598
– volume: 10
  start-page: 988
  year: 1999
  ident: ref_14
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788640
– volume: 10
  start-page: 2830
  year: 2017
  ident: ref_5
  article-title: Learning attribute representations for remote sensing ship category classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2665346
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_19
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: ref_29
– ident: ref_11
  doi: 10.1109/RADAR.2010.5494583
– ident: ref_33
  doi: 10.1109/BIGSARDATA.2017.8124924
– ident: ref_38
  doi: 10.1109/CVPR.2015.7298594
– volume: Volume 47
  start-page: 975
  year: 2015
  ident: ref_6
  article-title: Vessel classification in cosmo-skymed SAR data using hierarchical feature selection
  publication-title: Proceedings of the 36th International Symposium on Remote Sensing of Environment
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_16
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 22
  start-page: 1345
  year: 2010
  ident: ref_27
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: ref_30
  doi: 10.1109/CVPR.2017.195
– ident: ref_40
  doi: 10.1109/FUZZ-IEEE.2015.7337889
– ident: ref_15
– ident: ref_31
  doi: 10.1109/CVPR.2016.308
– volume: 13
  start-page: 616
  year: 2016
  ident: ref_10
  article-title: Ship classification based on superstructure scattering features in SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2514482
– volume: 43
  start-page: 258
  year: 2018
  ident: ref_21
  article-title: Ship classification in TerraSAR-X images with convolutional neural networks
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2017.2767106
– volume: 331
  start-page: 1279
  year: 2011
  ident: ref_28
  article-title: How to grow a mind: Statistics, structure, and abstraction
  publication-title: Science
  doi: 10.1126/science.1192788
– ident: ref_22
– volume: 10
  start-page: 1562
  year: 2013
  ident: ref_1
  article-title: Ship classification in TerraSAR-X images with feature space based sparse representation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2262073
SSID ssj0023338
Score 2.554752
Snippet With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2929
SubjectTerms Algorithms
Classification
convolutional neural networks
Datasets
fine tuning
high-resolution SAR images
Methods
Neural networks
Pattern recognition
Remote sensing
Researchers
ship classification
small datasets
Training
transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqnugBAS0QKJWpOHCJGuKxnRwLpSqV2kOXit6i8RddaZtdsen_Z-xk011UiUuvsQ_OzNjzXjx5w9gnFRTqIEOOlVQ5aMDcOJQ5FsF5QsRC-nije3Gpzq7h_EberLX6ijVhvTxwb7ijwloBxlks0IFVQHzBV8YQzsEaXGphXVLOW5GpgWoJYl69jpAgUn-0jCpVZZ1w5EP2SSL9jyHLfwsk1zLO6Qv2fICK_Lhf4ku25dtXbGdNQHCX_ZrcThc8NbaMJT_Jynza8li9kccv831c8cnxFf9xR0fHkqcaAX7i_YIP2qq_-TzwyR3OZvwEO8pq3XKPXZ9-__ntLB9aJeRWCtnlvgyEFMA6R8SS7KyMsLJOf1RVhkBG0DU669B4oiy2cNqWlPlBGwtgBZbiNdtu561_y7j04AxCBA4esA4GtfcAwTmF8ouxGfu8MmFjBx3x2M5i1hCfiNZuRmtn7HCcuujFMx6b9DX6YZwQ9a7TA4qCZoiC5n9RkLH9lRebYRMuG8rKqqITDGj44zhM2yfeiWDr5_c0hxAyiCialrE3vdPHldDZp7VSVcb0RjhsLHVzpJ3eJoluRSyU-Pm7p3i39-wZ-SoVqRRin213f-79B0JCnTlIQf8XM50JPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOgB8dmmFGQQBy5W0_XYTk6oUKqCBAeWir1F_sp2pW2yNOn_79jxZruo4hr7YM2Mx-_ZkzeEfJC11KoWNdOFkAwUaGacFkzntfOIiLnw4UX3x095fgHfZ2KWLty6VFa5zokxUbvWhjvyI0yxssBwBPi0-stC16jwuppaaDwkj4J0WSjpUrMN4eLIvwY1IY7U_qgLWlWTMqLJzRkUpfrvw5f_lkneOXfOnpInCTDSk8HDz8gD3zwnu3dkBF-QP9PLxYrG9pah8Cfami4aGmo4WLifH6KLTk9-0W9XmEA6GisF6Kn3K5oUVue0ren0Si-X9FT3eLb13Utycfb195dzlhomMCu46Jmf1IgXwDqH9BKtLQ23ooz_VRUGoUatSu2s08YjcbG5U3aC5z8oYwEs1xP-iuw0beP3CRUenNEQ4IMHXdZGK-8BauekFsfGZuTj2oSVTWrioanFskJWEaxdjdbOyPtx6mqQ0Lhv0ufgh3FCUL2OH9rreZU2UZVby8E4q3PtwEpA7ugLYxDz6hLcMWTkcO3FKm3FrtoETkbejcO4icLLiG58e4NzECcDD9JpGdkbnD6uBDOgUlIWGVFb4bC11O2RZnEZhbolclFk6Qf_X9Zr8hi9EItQcn5IdvrrG_8GkU5v3sZwvgXR4wAJ
  priority: 102
  providerName: ProQuest
Title Ship Classification in High-Resolution SAR Images Using Deep Learning of Small Datasets
URI https://www.ncbi.nlm.nih.gov/pubmed/30177668
https://www.proquest.com/docview/2126873044
https://www.proquest.com/docview/2099436360
https://pubmed.ncbi.nlm.nih.gov/PMC6164978
https://doaj.org/article/0cc34bdca0ad4c64924e8bb800a94d14
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IaFyQOVVDCVaEAcuBtee9ToHVLW0oSC1Qg0RuVn7chspdULiSvDvmV0_lKCgSDlkR5E1M-v5Pu_4G4B3aZFKUfAilBlPQxQoQ2UkD2VUGEuIOOHWneheXqUXI_w25uMtaGdsNg5cbqR2bp7UaDH98PvXn2Pa8J8c4yTK_nHpNKhi-mzDLhUk4fbnJXaHCXFCNKwWFVo334MHlN5CpE5ndaUqefH-TYjz38bJlUo02IdHDYRkJ3XMH8OWLZ_AwxVhwafwc3g7mTM_8NK1Annvs0nJXFdH6J7Y1_nGhifX7Osd3VKWzPcOsDNr56zRXL1hs4IN7-R0ys5kRdWuWj6D0eD8x-eLsBmhEGqe8Cq0cUEIArUxRDjJ_6lKNO_7N60yReCjEH1ptJHKEpXRkRE6JkSAQmlEncg4eQ475ay0L4Bxi0ZJdIDCouwXSgprEQtjUsmPlA7gfevCXDf64m7MxTQnnuEcn3eOD-BtZzqvRTU2GZ26OHQGTgfb_zBb3OTNtsojrRNURstIGtQpEpu0mVKEgmUfzREGcNhGMW9zK6dqnWZ0Z0NaftMt07ZyZyWytLN7siHkjIkTUwvgoA56dyVt0gQg1tJh7VLXV8rJrZfuTomdEm9_-d__fAV7FADfkRIlh7BTLe7ta4I9lerBthgL-s4GX3qwe3p-9f265x8h9Hy6_wUQ8wW_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcUHmbFlgQSFysuvY-7ANChVAl9HEgrcjN3ZfbSKkd6lSIP8VvZHb9SIMqbr169zDaeX3jnf0G4B0vuBQFK0KZMh5SQWWojGShjApjEREnzLob3cMjPjyh3yZssgZ_urcwrq2yi4k-UJtKu3_k2xhieYrmSOmn-c_QTY1yt6vdCI3GLPbt719YstUfRwPU7_s43vt6_GUYtlMFQs0StghtXGBSpdoYrMFQJK4SzTL_-ChVmI8LkUmjjVQW0b2OjNAxJkkqlKZUJ9IRHWDIv4OJN3IeJSbLAi_Beq9hL0qSLNquHTdWnHn0usx5fjTATXj237bMa3lubwMetACV7DYW9RDWbPkI7l-jLXwMP8bn0znx4zRdo5HXLZmWxPWMhO4-oLFmMt79TkYXGLBq4jsTyMDaOWkZXc9IVZDxhZzNyEAuMJcu6idwcitH-RTWy6q0z4EwS42S1MEVS2VWKCmspbQwhku2o3QAH7ojzHXLXu6GaMxyrGLcaef9aQfwtt86byg7btr02emh3-BYtv2H6vIsb502j7ROqDJaRtJQzSnWqjZVCjG2zKjZoQFsdVrMW9ev86WhBvCmX0andTcxsrTVFe5BXE4TR9UWwLNG6b0kGHGF4DwNQKyYw4qoqyvl9NwTg3OsfTORvvi_WK_h7vD48CA_GB3tb8I91IhvgImSLVhfXF7Zl4iyFuqVN20Cp7ftS38Br8c84g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJwQLwxFFgQSFysON6XfUCoEKKGQoUIFbm5-2wjpU6oXSH-Gr-O2fUjDaq49erdw2jn9Y139huEXnHHpXDMxTJjPKaCylgZyWKZOGMBERNm_Y3ulwO-d0g_zdhsC_3p3sL4tsouJoZAbZba_yMfQIjlGZgjpQPXtkV8HY3frX7GfoKUv2ntxmk0JrJvf_-C8q16OxmBrl-n6fjj9w97cTthINaMsDq2qYMES7UxUI-BeFwRzfLwEClTkJudyKXRRioLSF8nRugUEiYVSlOqifSkBxD-rwnCht7HxGxd7BGo_RomI0LyZFB5nqw0D0h2nf_CmIDLsO2_LZoXct74NrrVglW821jXHbRly7vo5gUKw3vox_RkvsJhtKZvOgp6xvMS-_6R2N8NNJaNp7vf8OQUgleFQ5cCHlm7wi276zFeOjw9lYsFHska8mpd3UeHV3KUD9B2uSztI4SZpUZJ6qGLpTJ3SgprKXXGcMmGSkfoTXeEhW6ZzP1AjUUBFY0_7aI_7Qi97LeuGvqOyza993roN3jG7fBheXZctA5cJFoTqoyWiTRUcwp1q82UArwtc2qGNEI7nRaLNgxUxdpoI_SiXwYH9rcysrTLc9gDGJ0ST9sWoYeN0ntJIPoKwXkWIbFhDhuibq6U85NAEs6hDs5F9vj_Yj1H18GLis-Tg_0n6AYoJPTCJGQHbddn5_YpAK5aPQuWjdHRVbvSXzhfQRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+Classification+in+High-Resolution+SAR+Images+Using+Deep+Learning+of+Small+Datasets&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yuanyuan&rft.au=Wang%2C+Chao&rft.au=Zhang%2C+Hong&rft.date=2018-09-03&rft.eissn=1424-8220&rft.volume=18&rft.issue=9&rft_id=info:doi/10.3390%2Fs18092929&rft_id=info%3Apmid%2F30177668&rft.externalDocID=30177668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon