Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance
Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabo...
Saved in:
Published in | The Journal of clinical investigation Vol. 132; no. 9; pp. 1 - 20 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
02.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism. |
---|---|
AbstractList | Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism. Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2 -deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism. Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism. |
Author | Zhang, Haifeng Shulman, Gerald I. Zhou, Jenny H. Singh, Abhishek K. Fernandez-Hernando, Carlos Min, Wang Perry, Rachel J. Canfran-Duque, Alberto Huang, Yanrui |
AuthorAffiliation | 2 Interdepartmental Program in Vascular Biology and Therapeutics, Department of Comparative Medicine, and 3 Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA 1 Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology |
AuthorAffiliation_xml | – name: 3 Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA – name: 2 Interdepartmental Program in Vascular Biology and Therapeutics, Department of Comparative Medicine, and – name: 1 Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology |
Author_xml | – sequence: 1 givenname: Yanrui surname: Huang fullname: Huang, Yanrui – sequence: 2 givenname: Jenny H. orcidid: 0000-0003-3071-9473 surname: Zhou fullname: Zhou, Jenny H. – sequence: 3 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng – sequence: 4 givenname: Alberto surname: Canfran-Duque fullname: Canfran-Duque, Alberto – sequence: 5 givenname: Abhishek K. orcidid: 0000-0002-4474-1367 surname: Singh fullname: Singh, Abhishek K. – sequence: 6 givenname: Rachel J. orcidid: 0000-0003-0748-8064 surname: Perry fullname: Perry, Rachel J. – sequence: 7 givenname: Gerald I. surname: Shulman fullname: Shulman, Gerald I. – sequence: 8 givenname: Carlos orcidid: 0000-0002-3950-1924 surname: Fernandez-Hernando fullname: Fernandez-Hernando, Carlos – sequence: 9 givenname: Wang orcidid: 0000-0002-2479-6096 surname: Min fullname: Min, Wang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35202005$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAQgCNURB9w4A8gS1zgEOpHnDgXpLK8Fq0KqorELZrYk61XiR1sp6gn_jpZtqzaipOtmc-fZsZznB047zDLnjP6hrGKn35ZLFmhlOSPsiMmpcoVF-rgzv0wO45xQykrClk8yQ6F5JRTKo-y3--C_-UIGDv6iOTy4gcnBjurLTp9Q0Anew0JIxnS-_Oz_Hx18U2Q5IkdRrCBpCsMg1-jw2gjAWfIGHxCnQiswbqYiLGYcuvMpNGQOTL11pGwxRM4jU-zxx30EZ_dnifZ948fLhef89XXT8vF2SrXUsiUG5Sso9J0bS10ayrGtNK6rGhbYEcZmE52NVJRyVLWZSt4yQHbTkIpaAccxEm23HmNh00zBjtAuGk82OZvwId1AyFZ3WNTqJYj1KKFQheomVK0ZpIrzThTHbLZ9XbnGqd2QKPRpQD9Pen9jLNXzdpfNzWVVSn4LHh1Kwj-54QxNYONGvseHPopNrwUQhVVrYoZffkA3fgpuHlUMyVrQYVkYqZe3K1oX8q_f56B1ztABx9jwG6PMNpsd6jZ79DMnj5gtU2QrN82Y_v_vPgDp27JYA |
CitedBy_id | crossref_primary_10_1152_japplphysiol_00610_2023 crossref_primary_10_1016_j_intimp_2023_109878 crossref_primary_10_2174_1566524023666230731095431 crossref_primary_10_1016_j_phymed_2024_155773 crossref_primary_10_1146_annurev_biochem_032620_104401 crossref_primary_10_1186_s12964_023_01466_w crossref_primary_10_1038_s41467_022_35262_w crossref_primary_10_3389_fphar_2024_1474310 crossref_primary_10_3390_metabo13040519 crossref_primary_10_1016_j_abb_2022_109445 crossref_primary_10_1016_j_bbcan_2023_188896 crossref_primary_10_1016_j_bbcan_2024_189249 crossref_primary_10_1007_s44154_022_00068_9 crossref_primary_10_1038_s41598_024_76825_9 crossref_primary_10_3390_cells11193128 crossref_primary_10_1172_JCI159296 crossref_primary_10_3390_cells11223635 crossref_primary_10_1007_s11010_023_04812_1 crossref_primary_10_1016_j_bcp_2023_115938 crossref_primary_10_2337_db24_0501 crossref_primary_10_1007_s10522_024_10137_3 crossref_primary_10_1016_j_heliyon_2024_e24029 crossref_primary_10_3390_ijms232415462 crossref_primary_10_1186_s13098_023_01192_w crossref_primary_10_3390_ijms232113142 crossref_primary_10_3390_ijms241210015 crossref_primary_10_1002_mco2_418 crossref_primary_10_14348_molcells_2022_0092 crossref_primary_10_3168_jds_2023_23465 crossref_primary_10_3390_ijms232315166 crossref_primary_10_1016_j_molmet_2024_101884 crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_2147_IJN_S497081 crossref_primary_10_3389_fimmu_2025_1526390 crossref_primary_10_1186_s10020_023_00756_w crossref_primary_10_1111_obr_13691 crossref_primary_10_1016_j_molimm_2023_09_008 |
Cites_doi | 10.1016/j.cell.2012.09.010 10.1152/ajpendo.00237.2020 10.1038/srep34542 10.15252/embj.201899238 10.1038/s41577-019-0165-0 10.1038/nri2975 10.1016/j.ebiom.2018.11.041 10.1016/j.cell.2017.09.039 10.1016/j.celrep.2014.12.023 10.1016/j.molmet.2020.101097 10.1016/j.tcb.2014.08.005 10.1016/j.aanat.2016.11.013 10.1038/nm.3361 10.1139/y88-221 10.15252/embr.201846404 10.1074/jbc.M804268200 10.1038/nm.3806 10.1016/j.cmet.2017.09.004 10.1016/j.cmet.2018.01.018 10.1080/21623945.2015.1122857 10.1038/nm.2297 10.1038/nature14156 10.1016/j.cmet.2017.09.002 10.1016/j.celrep.2013.10.044 10.1126/scisignal.aab3357 10.1073/pnas.1708744114 10.1038/ni.1980 10.1056/NEJMoa0808718 10.1093/toxsci/kfj175 10.1038/s42255-018-0021-8 10.1016/j.molmet.2018.03.011 10.1172/jci.insight.97918 10.3389/fphys.2018.01487 10.1038/emm.2013.163 10.1074/jbc.M113.469270 10.1016/j.celrep.2018.08.024 10.1016/j.biochi.2017.01.007 10.1016/j.yfrne.2018.01.001 10.1016/j.molmed.2014.11.008 10.1056/NEJMoa0810780 10.1038/s41575-019-0250-7 10.1172/JCI78362 10.1093/gerona/glz239 10.1172/JCI62308 10.1016/j.it.2019.07.006 10.1038/ni.3558 10.1084/jem.20201416 10.1093/eurheartj/ehz785 10.1007/s00109-012-0858-3 10.1016/j.cmet.2015.05.013 10.1056/NEJMoa0808949 10.1016/j.celrep.2016.01.041 10.15252/embr.202050085 10.2337/db09-0530 10.1172/JCI77812 10.15252/embr.201643827 10.1164/rccm.201609-1830OC 10.1016/j.immuni.2012.01.009 |
ContentType | Journal Article |
Copyright | Copyright American Society for Clinical Investigation May 2022 2022 Huang et al. 2022 Huang et al. |
Copyright_xml | – notice: Copyright American Society for Clinical Investigation May 2022 – notice: 2022 Huang et al. 2022 Huang et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS S0X 7X8 5PM DOA |
DOI | 10.1172/JCI148852 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial elibrary ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-8238 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_48b2ea93ba4c4ec188091528c1218fe1 PMC9057632 35202005 10_1172_JCI148852 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK045735 – fundername: NIDDK NIH HHS grantid: R01 DK113984 – fundername: NIDDK NIH HHS grantid: P30 DK034989 – fundername: ; grantid: DK113984 |
GroupedDBID | --- -~X .55 .XZ 08G 08P 29K 354 36B 5GY 5RE 5RS 7RV 7X7 88E 8AO 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAWTL AAYXX ABOCM ABPMR ABUWG ACGFO ACIHN ACNCT ACPRK ADBBV AEAQA AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BCU BEC BENPR BHPHI BKEYQ BLC BPHCQ BVXVI CCPQU CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB EX3 F5P FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR IHW INH IOF IOV IPO ISR ITC KQ8 L7B LK8 M1P M5~ M7P NAPCQ OBH OCB ODZKP OFXIZ OGEVE OHH OK1 OVD OVIDX OVT P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPM S0X SJFOW SV3 TEORI TR2 TVE UKHRP VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZY1 ~H1 3V. 88A CGR CUY CVF ECM EIF INR M0L NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-de51f05dfb93cbd711c8cc670b4ef01adf5f9e03756596b3262aebf5a630fa2a3 |
IEDL.DBID | 7X7 |
ISSN | 1558-8238 0021-9738 |
IngestDate | Wed Aug 27 00:30:42 EDT 2025 Thu Aug 21 14:01:43 EDT 2025 Fri Jul 11 00:43:10 EDT 2025 Fri Jul 25 19:17:33 EDT 2025 Thu Jan 02 22:52:01 EST 2025 Thu Apr 24 23:13:07 EDT 2025 Tue Jul 01 00:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Innate immunity Mitochondria Inflammation Adipose tissue Metabolism |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-de51f05dfb93cbd711c8cc670b4ef01adf5f9e03756596b3262aebf5a630fa2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4474-1367 0000-0003-3071-9473 0000-0002-3950-1924 0000-0003-0748-8064 0000-0002-2479-6096 |
OpenAccessLink | https://doaj.org/article/48b2ea93ba4c4ec188091528c1218fe1 |
PMID | 35202005 |
PQID | 2659303513 |
PQPubID | 42166 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48b2ea93ba4c4ec188091528c1218fe1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9057632 proquest_miscellaneous_2633847984 proquest_journals_2659303513 pubmed_primary_35202005 crossref_primary_10_1172_JCI148852 crossref_citationtrail_10_1172_JCI148852 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-02 |
PublicationDateYYYYMMDD | 2022-05-02 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Ann Arbor |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 2022 |
Publisher | American Society for Clinical Investigation |
Publisher_xml | – name: American Society for Clinical Investigation |
References | B20 B21 B22 B23 B24 B25 B27 Chen (B19) 2018; 9 B28 B29 Escalona-Garrido (B26) 2020; 42 Riley (B45) 2018; 37 B30 B32 B33 Hankir (B35) 2018; 19 B36 B37 B38 B39 B1 B3 B4 B5 B6 B7 Wang (B58) 2015; 8 B8 Wang (B34) 2020; 21 B9 B40 B41 Ko (B31) 2020; 17 B42 B44 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 Lee (B2) 2014; 46 B11 B12 B56 B13 B57 B14 B15 B16 B17 B18 Lopez-Guadamillas (B43) 2016; 6 Lee (B55) 2015; 10 35499086 - J Clin Invest. 2022 May 2;132(9) |
References_xml | – ident: B15 doi: 10.1016/j.cell.2012.09.010 – ident: B39 doi: 10.1152/ajpendo.00237.2020 – volume: 6 year: 2016 ident: B43 article-title: p21(Cip1) plays a critical role in the physiological adaptation to fasting through activation of PPARalpha publication-title: Sci Rep doi: 10.1038/srep34542 – volume: 37 issue: 17 year: 2018 ident: B45 article-title: Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis publication-title: EMBO J doi: 10.15252/embj.201899238 – ident: B47 doi: 10.1038/s41577-019-0165-0 – ident: B20 doi: 10.1038/nri2975 – ident: B27 doi: 10.1016/j.ebiom.2018.11.041 – ident: B50 doi: 10.1016/j.cell.2017.09.039 – volume: 10 start-page: 266 issue: 2 year: 2015 ident: B55 article-title: Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.023 – volume: 42 year: 2020 ident: B26 article-title: Moderate SIRT1 overexpression protects against brown adipose tissue inflammation publication-title: Mol Metab doi: 10.1016/j.molmet.2020.101097 – ident: B18 doi: 10.1016/j.tcb.2014.08.005 – ident: B28 doi: 10.1016/j.aanat.2016.11.013 – ident: B4 doi: 10.1038/nm.3361 – ident: B41 doi: 10.1139/y88-221 – volume: 19 issue: 9 year: 2018 ident: B35 article-title: Brown adipocyte glucose metabolism: a heated subject publication-title: EMBO Rep doi: 10.15252/embr.201846404 – ident: B40 doi: 10.1074/jbc.M804268200 – ident: B52 doi: 10.1038/nm.3806 – ident: B42 doi: 10.1016/j.cmet.2017.09.004 – ident: B9 doi: 10.1016/j.cmet.2018.01.018 – ident: B38 doi: 10.1080/21623945.2015.1122857 – ident: B7 doi: 10.1038/nm.2297 – ident: B22 doi: 10.1038/nature14156 – ident: B51 doi: 10.1016/j.cmet.2017.09.002 – ident: B3 doi: 10.1016/j.celrep.2013.10.044 – volume: 8 issue: 407 year: 2015 ident: B58 article-title: Loss of FTO in adipose tissue decreases Angptl4 translation and alters triglyceride metabolism publication-title: Sci Signal doi: 10.1126/scisignal.aab3357 – ident: B24 doi: 10.1073/pnas.1708744114 – ident: B48 doi: 10.1038/ni.1980 – ident: B10 doi: 10.1056/NEJMoa0808718 – ident: B25 doi: 10.1093/toxsci/kfj175 – ident: B1 doi: 10.1038/s42255-018-0021-8 – ident: B57 doi: 10.1016/j.molmet.2018.03.011 – ident: B33 doi: 10.1172/jci.insight.97918 – volume: 9 year: 2018 ident: B19 article-title: Mitochondria, oxidative stress and innate immunity publication-title: Front Physiol doi: 10.3389/fphys.2018.01487 – volume: 46 year: 2014 ident: B2 article-title: Recent advance in brown adipose physiology and its therapeutic potential publication-title: Exp Mol Med doi: 10.1038/emm.2013.163 – ident: B56 doi: 10.1074/jbc.M113.469270 – ident: B6 doi: 10.1016/j.celrep.2018.08.024 – ident: B30 doi: 10.1016/j.biochi.2017.01.007 – ident: B16 doi: 10.1016/j.yfrne.2018.01.001 – ident: B21 doi: 10.1016/j.molmed.2014.11.008 – ident: B13 doi: 10.1056/NEJMoa0810780 – volume: 17 start-page: 169 issue: 3 year: 2020 ident: B31 article-title: Regulation of intestinal lipid metabolism: current concepts and relevance to disease publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-019-0250-7 – ident: B37 doi: 10.1172/JCI78362 – ident: B54 doi: 10.1093/gerona/glz239 – ident: B5 doi: 10.1172/JCI62308 – ident: B46 doi: 10.1016/j.it.2019.07.006 – ident: B23 doi: 10.1038/ni.3558 – ident: B29 doi: 10.1084/jem.20201416 – ident: B32 doi: 10.1093/eurheartj/ehz785 – ident: B14 doi: 10.1007/s00109-012-0858-3 – ident: B17 doi: 10.1016/j.cmet.2015.05.013 – ident: B11 doi: 10.1056/NEJMoa0808949 – ident: B44 doi: 10.1016/j.celrep.2016.01.041 – volume: 21 issue: 11 year: 2020 ident: B34 article-title: Chronic cold exposure enhances glucose oxidation in brown adipose tissue publication-title: EMBO Rep doi: 10.15252/embr.202050085 – ident: B12 doi: 10.2337/db09-0530 – ident: B36 doi: 10.1172/JCI77812 – ident: B8 doi: 10.15252/embr.201643827 – ident: B53 doi: 10.1164/rccm.201609-1830OC – ident: B49 doi: 10.1016/j.immuni.2012.01.009 – reference: 35499086 - J Clin Invest. 2022 May 2;132(9): |
SSID | ssj0014454 |
Score | 2.557035 |
Snippet | Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
SubjectTerms | Adipose tissue (brown) Adipose Tissue, Brown - metabolism Animals Biomedical research Body fat Diet Diet, High-Fat DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Energy Metabolism Hypertriglyceridemia Immune response Inflammasomes Inflammation Inflammation - genetics Inflammation - metabolism Innate immunity Insulin Insulin resistance Insulin Resistance - physiology Lipid metabolism Metabolism Mice Mice, Inbred C57BL Mitochondria - genetics Mitochondria - metabolism Mitochondrial DNA NLR Family, Pyrin Domain-Containing 3 Protein - genetics NLR Family, Pyrin Domain-Containing 3 Protein - metabolism Oxidative stress Reactive oxygen species Reactive Oxygen Species - metabolism Rodents Thermogenesis Thermogenesis - genetics Thioredoxin Thioredoxins - genetics Thioredoxins - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2gVAZx4BLV8SOPY1talYquUNVKe4v8LEE0qXZTJE789c443lUXVeLC1Z6D7ZnJfJPxfCbko_OhCFq5nDHjc8mrElwqmFw7QMs6KM9iU9jprDy-kCdzNb_z1BfeCZvogaeD25W14V43wmhppbdIH9ZAzKltAcEp-Jj4wMgqmUr1AymVTDxCEKF3f9gOYH-t-Eb0iST99yHLvy9I3ok4R0_I4wQV6d60xKfkge-fkYenqRj-nPyJKTTVrrselp6en805hUPporf-ptix8AuRJL0aP8_28tnXs2-CjgPFxshuQRH5XQ2X-K3rllT3jibOBqovdQeokbrOjznk7KB9R9OldbpA8RFt5QW5ODo8PzjO03sKuVVCjbnzqghMuWAaYY2risLW1pYVM9IHVmgXVGg8PopbqqY0AOy49iYoXQoWNNfiJdnqh96_JlRVgCttxbWVRgbhjQTgh027TDdNVaiMfFqdc2sT2Ti-efGzjUlHxduTgy-TSjLyYS16PTFs3Ce0j8paCyApdhwAU2mTqbT_MpWMbK9U3SZPXbYc9iqwnCoy8n49DT6GhRPd--EGZSCRl1VTy4y8mixjvRIAsAz_zGWk2rCZjaVuzvTd98jj3QBWLgV_8z_29pY84tiYgVcx-TbZGhc3_h3ApdHsRM-4BUuSFXk priority: 102 providerName: Directory of Open Access Journals |
Title | Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35202005 https://www.proquest.com/docview/2659303513 https://www.proquest.com/docview/2633847984 https://pubmed.ncbi.nlm.nih.gov/PMC9057632 https://doaj.org/article/48b2ea93ba4c4ec188091528c1218fe1 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXxJtAWRnEgUvUxI84PqE-1Ra6qlattLfIzyUSTZbdFIkTfx1P1hu6VcUx8Rwse8b-ZjzzDUKfrPO5V9ymWaZdyogogkl5nSob0LLy3GV9Udj5uDi5YmdTPo0Bt2VMq1yfif1BbVsDMfJdUnBJ4dmLfpn_TKFrFLyuxhYaD9E2UJdBSpeYDg5X8BV4ZGHOUyloGZmFwp29e3ZwGhyBkpON-6in7b8Pa95Nmbx1Bx0_RU8ieMR7q91-hh645jl6dB6fx1-gP71TjZWt5-3S4cvJlOCwTHVvv78x1DD8AmyJr7vD8V46_ja5oLhrMZRK1gsMWPC6ncHpVy-xaiyOLA5YzVQdcCS2tevS4MUHfbA4prHjBYh3oD0v0dXx0eXBSRo7LKSGU96l1vHcZ9x6LanRVuS5KY0pRKaZ81murOdeOmiTG1a_0AHqEeW056qgmVdE0Vdoq2kb9wZhLgLSNIIowzTz1GkWoCCU8WZKSpHzBH1er3NlIv04dMH4UfVuiCDVsCUJ-jiIzlecG_cJ7cNmDQJAk93_aBezKlpdxUpNnJJUK2aYM8A9JwNgKU0ekI13eYJ21ltdRdtdVv80LUEfhuFgdfCUohrX3oBMcO2ZkCVL0OuVZgwzCZA2g1hdgsSGzmxMdXOkqb_3zN4yoOeCkrf_n9Y79JhAEQakXZIdtNUtbtz7AI06Per1f4S294_GF5PwdXj6ddSHGf4CxfESRg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVAIuiB1DgQGBxMWqPYuXA0JdlbRJVEWplJuZNViidkhcUE_8I34j8xzbEFRx69XzZI_8lvnevA2hd9rY0Aqu_SCQxmckjpxKWekL7dCysNwEdVHYaBz1z9nJjM-20K-2FgbSKlubWBtqXSq4I98lEU8phL3op8U3H6ZGQXS1HaGxFotTc_XDuWyrj4NDx9_3hBwfTQ_6fjNVwFec8srXhoc24NrKlCqp4zBUiVJRHEhmbBAKbblNDYyGdV-MpIM3RBhpuYhoYAUR1L33Ftpm1LkyPbS9fzQ-m3RxC8Z40_c59NOYJk0vI4cSdk8OBs71SDjZOAHrQQHXodt_kzT_OvWO76N7DVzFe2v5eoC2TPEQ3R41AflH6GftxmOh80W5Mng6mRHsGJPXFuMKQ9XEd0Cz-KI6HO_54-HkjOKqxFCcmS8xoM-Lcg72Nl9hUWjc9I3AYi5yh1yxzk3l54V2EqhxkziPl0Begbw-Ruc38vefoF5RFuYZwjx22FbFRCgmmaVGMgc-oXA4EGkah9xDH9r_nKmm4TnM3fia1Y5PTLKOJR5625Eu1l0-riPaB2Z1BNCYu35QLudZo-cZSyQxIqVSMMWMgm53qYNIiQodlrIm9NBOy-qssRar7I9se-hNt-z0HII3ojDlJdBQ6pBEmjAPPV1LRrcTB6IDuB30ULwhMxtb3Vwp8i91L_HU4fWIkuf_39ZrdKc_HQ2z4WB8-gLdJVACAkmfZAf1quWleemAWSVfNdqA0eebVsDfh0lOiQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIlVcEHsNBQYEEhcr9ozHywGh0hA1XaKqaqXczKzBErVD4oJ64n_x63jPsQ1BFbdePU_2yG-Z783bCHljrAudFMYPAmX9iCUxqJRTvjSAlqUTNmiKwo4n8f55dDAV0w3yq6uFwbTKziY2htpUGu_IBywWGcewFx-4Ni3iZDj6MP_m4wQpjLR24zRWInJor36A-7Z8Px4Cr98yNvp0trfvtxMGfC24qH1jRegCYZzKuFYmCUOdah0ngYqsC0JpnHCZxTGx8PVYAdRh0ionZMwDJ5nk8N5b5HaC2wJdSqa9swd-img7QId-lvC07WoEeGFwsDcGJyQVbO0sbEYGXIdz_03X_Ov8G90jd1vgSndXknafbNjyAdk6bkPzD8nPxqGn0hTzamnp2emUUWBR0diOK4r1E98R19KLejjZ9SdHpyec1hXFMs1iQRGHXlQztLzFksrS0LaDBJUzWQCGpaawtV-UBmTR0DaFni6QvEbJfUTOb-TfPyabZVXabUJFAihXJ0zqSEWOWxUBDMUS4kBmWRIKj7zr_nOu29bnOIHja964QAnLe5Z45HVPOl_1-7iO6CMyqyfAFt3Ng2oxy1uNz6NUMSszrmSkI6ux710GYCnVIaAqZ0OP7HSszlu7scz_SLlHXvXLoPEYxpGlrS6RhnPAFFkaeeTJSjL6nQCcDvCe0CPJmsysbXV9pSy-NF3FM0DuMWdP_7-tl2QL1C4_Gk8On5E7DGtBMPuT7ZDNenFpnwNCq9WLRhUo-XzTuvcbQN1RWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brown+adipose+TRX2+deficiency+activates+mtDNA-NLRP3+to+impair+thermogenesis+and+protect+against+diet-induced+insulin+resistance&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Huang%2C+Yanrui&rft.au=Zhou%2C+Jenny+H.&rft.au=Zhang%2C+Haifeng&rft.au=Canfran-Duque%2C+Alberto&rft.date=2022-05-02&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.eissn=1558-8238&rft.volume=132&rft.issue=9&rft_id=info:doi/10.1172%2FJCI148852&rft_id=info%3Apmid%2F35202005&rft.externalDocID=PMC9057632 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8238&client=summon |