Linking soil organic carbon mineralization to soil physicochemical properties and bacterial alpha diversity at different depths following land use changes

Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mine...

Full description

Saved in:
Bibliographic Details
Published inEcological processes Vol. 12; no. 1; p. 39
Main Authors Guo, Jing, Xiong, Wulai, Qiu, Jian, Wang, Guibin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W). Results LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation. Conclusions LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation.
AbstractList Abstract Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W). Results LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation. Conclusions LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation.
BackgroundAnthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W).ResultsLUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation.ConclusionsLUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation.
BACKGROUND: Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W). RESULTS: LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation. CONCLUSIONS: LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation.
Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W). Results LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation. Conclusions LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation.
ArticleNumber 39
Author Wang, Guibin
Qiu, Jian
Guo, Jing
Xiong, Wulai
Author_xml – sequence: 1
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University
– sequence: 2
  givenname: Wulai
  surname: Xiong
  fullname: Xiong, Wulai
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University
– sequence: 3
  givenname: Jian
  surname: Qiu
  fullname: Qiu, Jian
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University
– sequence: 4
  givenname: Guibin
  surname: Wang
  fullname: Wang, Guibin
  email: guibinwang99@163.com
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University
BookMark eNp9UsuO1DAQjNAisSz7A5wiceES8COOnSNa8VhpJC5wtjpOe-IhYwfbA5r5FL4WzwQE2sP6YHfbVa2udj2vrnzwWFUvKXlDqereJsollQ1hvCGkFaQ5PamuGe1ZQyXpr_6Ln1W3Ke1IWX1L215eV782zn9zflun4OY6xC14Z2oDcQi-3juPEWZ3guxKmsOKWqZjciaYCffOQMljWDBmh6kGP9YDmIzRlQeYlwnq0f3AmFw-1pBLYi1G9CXCJU-ptmGew89zB_OZfEhYmwn8FtOL6qmFOeHtn_Om-vrh_Ze7T83m88f7u3ebxgguctl7a6DtrOCWWiKxQz5Y7GGQqlcclRgopyMjyG1L-ECIBN520NMOrCCS31T3a90xwE4v0e0hHnUApy8XZSYaijozo-5AigG4spz2rRqM4mxUaBE7wpApLLVer7XKTL4fMGW9d8ngXLRhOCTNqeCSdFTxAn31ALoLh-iLUs2UkJII1tGCUivKxJBSRKuNy5fvyBHcrCnRZw_o1QO6eEBfPKBPhcoeUP9qe5TEV1Iq4PIL8V9Xj7B-A0ZVyfs
CitedBy_id crossref_primary_10_1016_j_still_2023_105977
crossref_primary_10_3390_agriculture14101821
crossref_primary_10_1111_1758_2229_70044
crossref_primary_10_1016_j_fcr_2024_109549
crossref_primary_10_55250_Jo_vnuf_9_2_2024_032_042
crossref_primary_10_3390_agriculture14101774
crossref_primary_10_1016_j_agee_2024_109186
Cites_doi 10.1023/b:agfo.0000029005.92691.79
10.1016/j.catena.2018.07.032
10.1038/srep22411
10.1016/j.jclepro.2020.123338
10.1016/j.soilbio.2019.107660
10.1016/j.geoderma.2010.04.015
10.1016/j.agee.2018.05.008
10.1007/s11368-017-1870-6
10.1016/j.scitotenv.2019.07.286
10.1111/gcbb.12644
10.1016/j.geoderma.2020.114444
10.1093/femsec/fiz194
10.1038/ismej.2016.131
10.1093/jpe/rtt034
10.1016/j.still.2020.104712
10.1002/ldr.4708
10.1016/j.agrformet.2019.03.001
10.1126/science.aaw2741
10.1016/j.geoderma.2012.08.003
10.1007/s00374-020-01468-7
10.1016/B978-0-12-814104-5.00001-6
10.1007/s42729-020-00400-0
10.1111/gcb.15998
10.1002/ece3.969
10.5194/essd-12-3269-2020
10.1016/j.soilbio.2020.108062
10.1016/j.soilbio.2008.08.001
10.1038/s41467-022-33278-w
10.1007/s11104-018-3826-z
10.1111/gcb.13767
10.1111/1462-2920.16146
10.1016/j.catena.2021.105405
10.1111/nph.12235
10.3390/su13137212
10.1016/j.rser.2011.10.004
10.1007/s10021-015-9941-2
10.1016/j.still.2016.01.003
10.1038/nature10386
10.1016/j.catena.2022.106783
10.1016/j.scitotenv.2022.154378
10.1016/j.still.2021.105203
10.1016/j.scitotenv.2021.149717
10.1016/j.geoderma.2017.06.002
10.1016/j.agee.2016.05.003
10.1007/s10533-016-0198-4
10.5194/soil-8-253-2022
10.4155/cmt.13.77
10.1038/s41467-017-01998-z
10.1002/ep.13041
10.1016/j.soilbio.2016.01.004
10.1016/j.soilbio.2015.08.010
10.1016/j.catena.2021.105226
10.1002/ece3.3708
10.1016/j.foreco.2022.120238
10.1016/j.apsoil.2017.06.018
10.1038/nclimate3071
10.1016/j.geoderma.2023.116393
10.1016/j.agrformet.2019.107654
10.1007/s42729-021-00664-0
10.1016/j.soilbio.2015.11.007
10.1038/nclimate2870
10.1016/j.biombioe.2018.04.002
10.1111/gcb.14394
10.1007/s00374-008-0334-y
10.1016/j.geoderma.2019.03.012
10.1016/j.agee.2017.03.023
10.1111/j.1365-2486.2010.02336.x
10.1016/j.soilbio.2021.108312
10.1016/j.gecco.2021.e01923
10.1016/j.soilbio.2021.108427
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FH
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M7P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOA
DOI 10.1186/s13717-023-00450-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Biological Science Database
Environmental Science Database (subscripiton)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Environmental Science Collection (NC LIVE)
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Agriculture
EISSN 2192-1709
EndPage 39
ExternalDocumentID oai_doaj_org_article_6a75ba38f31948bc832d8efee602e28e
10_1186_s13717_023_00450_z
GeographicLocations Yellow Sea
GeographicLocations_xml – name: Yellow Sea
GrantInformation_xml – fundername: Basic Research Program of Jiangsu Province
  grantid: No. BK20210609
  funderid: http://dx.doi.org/10.13039/501100005145
GroupedDBID -A0
0R~
4.4
40G
5VS
7XC
8FE
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFO
ACGFS
ACPRK
ACULB
ADBBV
ADINQ
AEGXH
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ATCPS
BAPOH
BBNVY
BCNDV
BENPR
BHPHI
C24
C6C
CCPQU
EBLON
EBS
EDH
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEP
ISR
ITC
KQ8
LK8
M7P
M~E
OK1
PATMY
PIMPY
PROAC
PYCSY
RNS
RSV
SEV
SOJ
-SB
-S~
AASML
AAXDM
AAYXX
CAJEB
CITATION
PHGZM
PHGZT
Q--
U1G
U5L
ABUWG
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c535t-c59fca46f53f1f07e6e3bfe9ab78983e85b131d20e3f403b007a346a916af5073
IEDL.DBID BENPR
ISSN 2192-1709
IngestDate Wed Aug 27 01:25:46 EDT 2025
Thu Jul 10 22:09:16 EDT 2025
Tue Aug 12 10:41:00 EDT 2025
Tue Jul 01 00:51:52 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 21 02:41:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bacterial alpha diversity
Soil enzyme activity
Indoor incubation
Land use change
Soil organic carbon mineralization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-c59fca46f53f1f07e6e3bfe9ab78983e85b131d20e3f403b007a346a916af5073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2857705261?pq-origsite=%requestingapplication%
PQID 2857705261
PQPubID 2034775
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6a75ba38f31948bc832d8efee602e28e
proquest_miscellaneous_3153706183
proquest_journals_2857705261
crossref_citationtrail_10_1186_s13717_023_00450_z
crossref_primary_10_1186_s13717_023_00450_z
springer_journals_10_1186_s13717_023_00450_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Ecological processes
PublicationTitleAbbrev Ecol Process
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Li, Han, Han (CR34) 2010; 157
Zhang, Ge, Liao, Wang, Wei, Jia (CR70) 2021; 204
Guo, Wang, Wang, Wu, Cao (CR21) 2018; 171
Liang, Elsgaard, Nicolaisen, Lyhne-Kjærbye, Olesen (CR37) 2018; 433
Huang, Liu, Shao, Xu (CR27) 2012; 16
Wang, Zeng, Zhong (CR60) 2016; 19
Smith, Davis, Creutzig (CR56) 2016; 6
Chen, Chen, Robinson, Yang, Guo, Xie, Fu, Zhou, Yang (CR11) 2016; 95
Barnett, Youngblut, Buckley (CR4) 2020; 96
Kuzyakov, Xu (CR32) 2013; 198
Schlüter, Roussety, Rohe, Guliyev, Blagodatskaya, Reitz (CR54) 2022; 8
Garcia-Pausas, Casals, Camarero, Huguet, Thompson, Sebastià, Romanyà (CR19) 2008; 40
Wang, Guo, Zhang, Xiao, Mishra, Yang, Zhu, Wang, Mao, Qian, Jiang, Shi, Luo (CR62) 2022; 13
Letcher, Letcher (CR33) 2019
Chia, Kim, Yimer (CR13) 2017; 242
Scharlemann, Tanner, Hiederer, Kapos (CR53) 2014; 5
Roy, Biswas, Sarkar, Jha, Sharma, Mishra, Patra (CR51) 2022; 22
Fanin, Bertrand (CR17) 2016; 94
Jin, Ping, Wong (CR31) 2020; 277
Jeewani, Van Zwieten, Zhu, Ge, Guggenberger, Luo, Xu (CR30) 2021; 160
CR130
Wang, Zhang, Vinay, Wang, Mo, Liao, Wen (CR120) 2023; 34
Neculman, Matus, Godoy, MdlL, Rumpel (CR46) 2021; 21
Rong, Zhang, Wu, Ge, Yao, Wei (CR50) 2021; 202
Guan (CR20) 1986
Anderson, DeFries, Litterman, Matson, Nepstad, Pacala, Schlesinger, Shaw, Smith, Weber, Field (CR2) 2019; 363
Yang, Jansen, Absalah, Kalbitz, Castro, Cammeraat (CR66) 2022; 215
Fabian, Zlatanovic, Mutz, Premke (CR16) 2017; 11
Tang, Sun, Luo, He, Sun (CR57) 2018; 8
You, Wang, Sun, Tang, Zhou, Sun (CR68) 2016; 6
Li, Wu, Zong, Wang, Chen, Liu, Li, Fang (CR35) 2022; 516
Zhou, Jiang, Du, Hu, Li, Chen, Fang (CR71) 2013; 6
Xiao, Li, Chang, Huang, Nie, Liu, Liu, Wang, Dong, Jiang (CR65) 2017; 119
Munda, Bhaduri, Mohanty, Chatterjee, Tripathi, Shahid, Kumar, Bhattacharyya, Kumar, Adak, Jangde, Nayak (CR44) 2018; 115
Bradford, Wieder, Bonan, Fierer, Raymond, Crowther (CR8) 2016; 6
Rahman, Bárcena, Vesterdal (CR49) 2017; 305
Huang, Hall (CR26) 2017; 8
Lu, Li, Wang, Singh, Hu, Luo, Li, Xiao, Cai, Li (CR39) 2020; 271
Zhang, Fang, Luo (CR69) 2021; 801
Poeplau, Don (CR48) 2013; 192
Blagodatskaya, Kuzyakov (CR7) 2008; 45
Caddeo, Marras, Sallustio, Spano, Sirca (CR9) 2019; 278
Li, Wang, Camps-Arbestain, Whitby (CR36) 2022; 828
Luo, Feng, Luo, Baldock, Wang (CR40) 2017; 23
Nadal-Romero, Cammeraat, Pérez-Cardiel, Lasanta (CR45) 2016; 228
Beillouin, Cardinael, Berre, Boyer, Corbeels, Fallot, Feder, Demenois (CR6) 2022; 28
Dong, Liu, Wu, Man, Wu, Ma, Li, Zang (CR15) 2023; 221
Patel, Smith, Bond-Lamberty, Fansler, Tfaily, Bramer, Varga, Bailey (CR47) 2021; 162
Hontoria, Gómez-Paccard, Mariscal-Sancho, Benito, Pérez, Espejo (CR24) 2016; 160
Huang, Lin, Xiong, Yang, Liu, Chen, Xie, Li, Yang (CR28) 2019; 344
Autret, Guillier, Pouteau, Mary, Chenu (CR3) 2020; 204
Sarkar, Sinha, Mukhopadhyay, Danish, Fahad, Datta (CR52) 2021; 13
Friedlingstein, O'Sullivan, Jones (CR18) 2020; 12
Guo, Wu, Wu, Ren, Wang (CR23) 2021; 32
Ma, Chen, Zhang, Zhu, Kalkhajeh, Chai, Ye, Gao, Chu, Mao, Thompson (CR41) 2019; 692
Schmidt, Torn, Abiven (CR55) 2011; 478
Tardy, Spor, Mathieu (CR58) 2015; 90
Wu, Ren, Ren, Tian, Li, Wu, Li (CR64) 2023; 432
Al-Ghussain (CR1) 2019; 38
Wang, Bian, Jiang, Zhu, Chen, Liang, Sun (CR61) 2021; 153
Chavarria, Pérez-Brandan, Serri, Meriles, Restovich, Andriulo, Jacquelin, Vargas-Gil (CR10) 2018; 264
Tian, Yang, Wang, Liao, Li, Wang, Wu, Liu (CR59) 2016; 128
Barnett, Youngblut, Buckley (CR5) 2022; 24
CR29
You, Wang, Huang, Tang, Liu, Sun (CR67) 2014; 4
Guo, Wang, Geng, Wu, Cao (CR22) 2018; 18
Wei, Zhu, Liu, Luo, Deng, Xu, Liu, Richter, Shibistova, Guggenberger, Wu, Ge (CR63) 2020; 56
Montagnini, Nair (CR43) 2004; 61–62
Moinet, Millard (CR42) 2020; 374
Liu, Zhu, Wang (CR38) 2019; 11
Chen, Luo, García-Palacios, Cao, Daca, Zhou, Li, Xia, Niu, Yang, Shelton, Guo, van Groenigen (CR12) 2018; 24
Hu, Zheng, Noll, Zhang, Wanek (CR25) 2020; 141
Don, Schumacher, Freibauer (CR14) 2011; 17
ZP Li (450_CR34) 2010; 157
M Wang (450_CR62) 2022; 13
DN Chavarria (450_CR10) 2018; 264
Y Kuzyakov (450_CR32) 2013; 198
D Beillouin (450_CR6) 2022; 28
TM Letcher (450_CR33) 2019
SE Barnett (450_CR4) 2020; 96
J Guo (450_CR23) 2021; 32
J Fabian (450_CR16) 2017; 11
E Nadal-Romero (450_CR45) 2016; 228
F Montagnini (450_CR43) 2004; 61–62
T Roy (450_CR51) 2022; 22
P Smith (450_CR56) 2016; 6
S Munda (450_CR44) 2018; 115
B Autret (450_CR3) 2020; 204
V Tardy (450_CR58) 2015; 90
WQ Li (450_CR35) 2022; 516
SY Guan (450_CR20) 1986
C Poeplau (450_CR48) 2013; 192
D Wu (450_CR64) 2023; 432
C Hontoria (450_CR24) 2016; 160
450_CR130
S Schlüter (450_CR54) 2022; 8
Z Tang (450_CR57) 2018; 8
A Don (450_CR14) 2011; 17
Z Luo (450_CR40) 2017; 23
JPW Scharlemann (450_CR53) 2014; 5
Z Liu (450_CR38) 2019; 11
X Wei (450_CR63) 2020; 56
MA Bradford (450_CR8) 2016; 6
GYK Moinet (450_CR42) 2020; 374
Z Liang (450_CR37) 2018; 433
A Caddeo (450_CR9) 2019; 278
X Dong (450_CR15) 2023; 221
G Rong (450_CR50) 2021; 202
W Wang (450_CR120) 2023; 34
PH Jeewani (450_CR30) 2021; 160
Z Jin (450_CR31) 2020; 277
J Chen (450_CR12) 2018; 24
Y You (450_CR67) 2014; 4
CM Anderson (450_CR2) 2019; 363
W Huang (450_CR26) 2017; 8
L Huang (450_CR27) 2012; 16
450_CR29
MM Rahman (450_CR49) 2017; 305
H Xiao (450_CR65) 2017; 119
Q Tian (450_CR59) 2016; 128
Q Wang (450_CR60) 2016; 19
J Huang (450_CR28) 2019; 344
KF Patel (450_CR47) 2021; 162
S Yang (450_CR66) 2022; 215
MWI Schmidt (450_CR55) 2011; 478
L Al-Ghussain (450_CR1) 2019; 38
X Wang (450_CR61) 2021; 153
RW Chia (450_CR13) 2017; 242
R Neculman (450_CR46) 2021; 21
Y Li (450_CR36) 2022; 828
Y You (450_CR68) 2016; 6
J Guo (450_CR21) 2018; 171
SE Barnett (450_CR5) 2022; 24
N Fanin (450_CR17) 2016; 94
C Ma (450_CR41) 2019; 692
D Sarkar (450_CR52) 2021; 13
Y Zhang (450_CR70) 2021; 204
E Blagodatskaya (450_CR7) 2008; 45
J Garcia-Pausas (450_CR19) 2008; 40
S Zhang (450_CR69) 2021; 801
Y Hu (450_CR25) 2020; 141
Y Chen (450_CR11) 2016; 95
J Guo (450_CR22) 2018; 18
P Friedlingstein (450_CR18) 2020; 12
X Lu (450_CR39) 2020; 271
Z Zhou (450_CR71) 2013; 6
References_xml – volume: 61–62
  start-page: 281
  year: 2004
  end-page: 295
  ident: CR43
  article-title: Carbon sequestration: an underexploited environmental benefit of agroforestry systems
  publication-title: Agrofor Syst
  doi: 10.1023/b:agfo.0000029005.92691.79
– volume: 171
  start-page: 450
  year: 2018
  end-page: 459
  ident: CR21
  article-title: Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China
  publication-title: Catena
  doi: 10.1016/j.catena.2018.07.032
– volume: 6
  start-page: 22411
  year: 2016
  ident: CR68
  article-title: Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem
  publication-title: Sci Rep
  doi: 10.1038/srep22411
– volume: 277
  start-page: 123338
  year: 2020
  ident: CR31
  article-title: Systematic relationship between soil properties and organic carbon mineralization based on structural equation modeling analysis
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123338
– volume: 141
  start-page: 107660
  year: 2020
  ident: CR25
  article-title: Direct measurement of the in situ decomposition of microbial-derived soil organic matter
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.107660
– volume: 157
  start-page: 206
  year: 2010
  end-page: 213
  ident: CR34
  article-title: Organic C and N mineralization as affected by dissolved organic matter in paddy soils of subtropical China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.04.015
– volume: 264
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR10
  article-title: Response of soil microbial communities to agroecological versus conventional systems of extensive agriculture
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2018.05.008
– volume: 18
  start-page: 1424
  year: 2018
  end-page: 1431
  ident: CR22
  article-title: Decomposition of tree leaf litter and crop residues from ginkgo agroforestry systems in Eastern China: an in situ study
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-017-1870-6
– volume: 692
  start-page: 930
  year: 2019
  end-page: 939
  ident: CR41
  article-title: Linking chemical structure of dissolved organic carbon and microbial community composition with submergence-induced soil organic carbon mineralization
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.07.286
– volume: 11
  start-page: 1408
  year: 2019
  end-page: 1420
  ident: CR38
  article-title: The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12644
– volume: 374
  start-page: 114444
  year: 2020
  ident: CR42
  article-title: Temperature sensitivity of decomposition: discrepancy between field and laboratory estimates is not due to sieving the soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114444
– volume: 96
  start-page: fiz194
  year: 2020
  ident: CR4
  article-title: Soil characteristics and land-use drive bacterial community assembly patterns
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiz194
– volume: 11
  start-page: 415
  year: 2017
  end-page: 425
  ident: CR16
  article-title: Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality
  publication-title: ISME J
  doi: 10.1038/ismej.2016.131
– volume: 6
  start-page: 325
  year: 2013
  end-page: 334
  ident: CR71
  article-title: Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China
  publication-title: J Plant Ecol
  doi: 10.1093/jpe/rtt034
– ident: CR29
– volume: 204
  start-page: 104712
  year: 2020
  ident: CR3
  article-title: Similar specific mineralization rates of organic carbon and nitrogen in incubated soils under contrasted arable cropping systems
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2020.104712
– volume: 34
  start-page: 3618
  year: 2023
  end-page: 3635
  ident: CR120
  article-title: Microbial functional genes within soil aggregates drive organic carbon mineralization under contrasting tillage practices
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.4708
– volume: 271
  start-page: 168
  year: 2020
  end-page: 179
  ident: CR39
  article-title: Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2019.03.001
– volume: 363
  start-page: 933
  year: 2019
  end-page: 934
  ident: CR2
  article-title: Natural climate solutions are not enough
  publication-title: Science
  doi: 10.1126/science.aaw2741
– volume: 192
  start-page: 189
  year: 2013
  end-page: 201
  ident: CR48
  article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.08.003
– volume: 56
  start-page: 1093
  year: 2020
  end-page: 1107
  ident: CR63
  article-title: C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-020-01468-7
– start-page: 3
  year: 2019
  end-page: 15
  ident: CR33
  article-title: Why do we have global warming?
  publication-title: Managing global warming
  doi: 10.1016/B978-0-12-814104-5.00001-6
– volume: 21
  start-page: 780
  year: 2021
  end-page: 790
  ident: CR46
  article-title: Carbon mineralization controls in top- and subsoil horizons of two andisols under temperate old-growth rain forest
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-020-00400-0
– volume: 28
  start-page: 1690
  year: 2022
  end-page: 1702
  ident: CR6
  article-title: A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.15998
– volume: 4
  start-page: 633
  year: 2014
  end-page: 647
  ident: CR67
  article-title: Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover
  publication-title: Ecol Evol
  doi: 10.1002/ece3.969
– volume: 12
  start-page: 3269
  year: 2020
  end-page: 3340
  ident: CR18
  article-title: Global carbon budget 2020
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-12-3269-2020
– volume: 153
  start-page: 108062
  year: 2021
  ident: CR61
  article-title: Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.108062
– volume: 40
  start-page: 2803
  year: 2008
  end-page: 2810
  ident: CR19
  article-title: Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.08.001
– volume: 13
  start-page: 5514
  year: 2022
  ident: CR62
  article-title: Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-33278-w
– volume: 433
  start-page: 65
  year: 2018
  end-page: 82
  ident: CR37
  article-title: Carbon mineralization and microbial activity in agricultural topsoil and subsoil as regulated by root nitrogen and recalcitrant carbon concentrations
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3826-z
– volume: 23
  start-page: 4430
  year: 2017
  end-page: 4439
  ident: CR40
  article-title: Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13767
– volume: 24
  start-page: 5230
  year: 2022
  end-page: 5247
  ident: CR5
  article-title: Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.16146
– volume: 204
  start-page: 105405
  year: 2021
  ident: CR70
  article-title: Long-term afforestation accelerated soil organic carbon accumulation but decreased its mineralization loss and temperature sensitivity in the bulk soils and aggregates
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105405
– volume: 198
  start-page: 656
  year: 2013
  end-page: 669
  ident: CR32
  article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance
  publication-title: New Phytol
  doi: 10.1111/nph.12235
– volume: 13
  start-page: 7212
  year: 2021
  ident: CR52
  article-title: Carbon mineralization rates and kinetics of surface-applied and incorporated rice and maize residues in entisol and inceptisol soil types
  publication-title: Sustainability
  doi: 10.3390/su13137212
– volume: 16
  start-page: 1291
  year: 2012
  end-page: 1299
  ident: CR27
  article-title: Carbon sequestration by forestation across China: past, present, and future
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.10.004
– volume: 19
  start-page: 450
  year: 2016
  end-page: 460
  ident: CR60
  article-title: Soil moisture alters the response of soil organic carbon mineralization to litter addition
  publication-title: Ecosystems
  doi: 10.1007/s10021-015-9941-2
– volume: 160
  start-page: 42
  year: 2016
  end-page: 52
  ident: CR24
  article-title: Aggregate size distribution and associated organic C and N under different tillage systems and Ca-amendment in a degraded Ultisol
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2016.01.003
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  ident: CR55
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 221
  start-page: 106783
  year: 2023
  ident: CR15
  article-title: Linking soil organic carbon mineralization with soil variables and bacterial communities in a permafrost-affected tussock wetland during laboratory incubation
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106783
– volume: 828
  start-page: 154378
  year: 2022
  ident: CR36
  article-title: The regulators of soil organic carbon mineralization upon lime and/or phosphate addition vary with depth
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.154378
– volume: 215
  start-page: 105203
  year: 2022
  ident: CR66
  article-title: Soil organic carbon content and mineralization controlled by the composition, origin and molecular diversity of organic matter: a study in tropical alpine grasslands
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2021.105203
– volume: 801
  start-page: 149717
  year: 2021
  ident: CR69
  article-title: Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.149717
– volume: 305
  start-page: 153
  year: 2017
  end-page: 161
  ident: CR49
  article-title: Tree species and time since afforestation drive soil C and N mineralization on former cropland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.06.002
– volume: 228
  start-page: 91
  year: 2016
  end-page: 100
  ident: CR45
  article-title: Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.05.003
– volume: 128
  start-page: 125
  year: 2016
  end-page: 139
  ident: CR59
  article-title: Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0198-4
– volume: 8
  start-page: 253
  year: 2022
  end-page: 267
  ident: CR54
  article-title: Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
  publication-title: Soil
  doi: 10.5194/soil-8-253-2022
– volume: 5
  start-page: 81
  year: 2014
  end-page: 91
  ident: CR53
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manag
  doi: 10.4155/cmt.13.77
– volume: 8
  start-page: 1774
  year: 2017
  ident: CR26
  article-title: Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01998-z
– volume: 38
  start-page: 13
  year: 2019
  end-page: 21
  ident: CR1
  article-title: Global warming: review on driving forces and mitigation
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.13041
– volume: 95
  start-page: 233
  year: 2016
  end-page: 242
  ident: CR11
  article-title: Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.01.004
– volume: 90
  start-page: 204
  year: 2015
  end-page: 213
  ident: CR58
  article-title: Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.08.010
– volume: 202
  start-page: 105226
  year: 2021
  ident: CR50
  article-title: Changes in soil organic carbon and nitrogen mineralization and their temperature sensitivity in response to afforestation across China’s Loess Plateau
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105226
– volume: 8
  start-page: 879
  year: 2018
  end-page: 891
  ident: CR57
  article-title: Effects of temperature, soil substrate, and microbial community on carbon mineralization across three climatically contrasting forest sites
  publication-title: Ecol Evol
  doi: 10.1002/ece3.3708
– volume: 516
  start-page: 120238
  year: 2022
  ident: CR35
  article-title: Tree species mixing enhances rhizosphere soil organic carbon mineralization of conifers in subtropical plantations
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2022.120238
– volume: 119
  start-page: 205
  year: 2017
  end-page: 213
  ident: CR65
  article-title: Soil erosion-related dynamics of soil bacterial communities and microbial respiration
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2017.06.018
– volume: 6
  start-page: 751
  year: 2016
  end-page: 758
  ident: CR8
  article-title: Managing uncertainty in soil carbon feedbacks to climate change
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate3071
– volume: 432
  start-page: 116393
  year: 2023
  ident: CR64
  article-title: New insights into carbon mineralization in tropical paddy soil under land use conversion: coupled roles of soil microbial community, metabolism, and dissolved organic matter chemodiversity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116393
– volume: 278
  start-page: 107654
  year: 2019
  ident: CR9
  article-title: Soil organic carbon in Italian forests and agroecosystems: estimating current stock and future changes with a spatial modelling approach
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2019.107654
– ident: CR130
– volume: 22
  start-page: 501
  year: 2022
  end-page: 514
  ident: CR51
  article-title: Impact of varied levels of N, P, and S stoichiometry on C mineralization from three contrasting soils with or without wheat straw amendment: a laboratory study
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-021-00664-0
– volume: 94
  start-page: 48
  year: 2016
  end-page: 60
  ident: CR17
  article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.11.007
– volume: 6
  start-page: 42
  year: 2016
  end-page: 50
  ident: CR56
  article-title: Biophysical and economic limits to negative CO emissions
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate2870
– volume: 115
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR44
  article-title: Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2018.04.002
– volume: 24
  start-page: 4816
  year: 2018
  end-page: 4826
  ident: CR12
  article-title: Differential responses of carbon-degrading enzymes activities to warming: implications for soil respiration
  publication-title: Global Change Biol
  doi: 10.1111/gcb.14394
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  ident: CR7
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-008-0334-y
– year: 1986
  ident: CR20
  publication-title: Soil enzymology and research method
– volume: 344
  start-page: 119
  year: 2019
  end-page: 126
  ident: CR28
  article-title: Organic carbon mineralization in soils of a natural forest and a forest plantation of southeastern China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.03.012
– volume: 242
  start-page: 67
  year: 2017
  end-page: 75
  ident: CR13
  article-title: Can afforestation with restore soil C and N stocks depleted by crop cultivation to levels observed under native systems?
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2017.03.023
– volume: 17
  start-page: 1658
  year: 2011
  end-page: 1670
  ident: CR14
  article-title: Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2010.02336.x
– volume: 160
  start-page: 108312
  year: 2021
  ident: CR30
  article-title: Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2021.108312
– volume: 32
  start-page: e01923
  year: 2021
  ident: CR23
  article-title: Soil bacterial community composition and diversity response to land conversion is depth-dependent
  publication-title: Glob Ecol Conserv
  doi: 10.1016/j.gecco.2021.e01923
– volume: 162
  start-page: 108427
  year: 2021
  ident: CR47
  article-title: Spatial access and resource limitations control carbon mineralization in soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2021.108427
– volume: 221
  start-page: 106783
  year: 2023
  ident: 450_CR15
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106783
– volume: 171
  start-page: 450
  year: 2018
  ident: 450_CR21
  publication-title: Catena
  doi: 10.1016/j.catena.2018.07.032
– volume: 12
  start-page: 3269
  year: 2020
  ident: 450_CR18
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-12-3269-2020
– start-page: 3
  volume-title: Managing global warming
  year: 2019
  ident: 450_CR33
  doi: 10.1016/B978-0-12-814104-5.00001-6
– volume: 432
  start-page: 116393
  year: 2023
  ident: 450_CR64
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116393
– volume: 45
  start-page: 115
  year: 2008
  ident: 450_CR7
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-008-0334-y
– volume: 40
  start-page: 2803
  year: 2008
  ident: 450_CR19
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.08.001
– volume: 22
  start-page: 501
  year: 2022
  ident: 450_CR51
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-021-00664-0
– volume: 32
  start-page: e01923
  year: 2021
  ident: 450_CR23
  publication-title: Glob Ecol Conserv
  doi: 10.1016/j.gecco.2021.e01923
– volume: 128
  start-page: 125
  year: 2016
  ident: 450_CR59
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0198-4
– volume: 56
  start-page: 1093
  year: 2020
  ident: 450_CR63
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-020-01468-7
– volume: 344
  start-page: 119
  year: 2019
  ident: 450_CR28
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.03.012
– volume: 157
  start-page: 206
  year: 2010
  ident: 450_CR34
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.04.015
– volume: 160
  start-page: 108312
  year: 2021
  ident: 450_CR30
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2021.108312
– volume: 19
  start-page: 450
  year: 2016
  ident: 450_CR60
  publication-title: Ecosystems
  doi: 10.1007/s10021-015-9941-2
– volume: 516
  start-page: 120238
  year: 2022
  ident: 450_CR35
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2022.120238
– volume: 96
  start-page: fiz194
  year: 2020
  ident: 450_CR4
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiz194
– volume: 8
  start-page: 253
  year: 2022
  ident: 450_CR54
  publication-title: Soil
  doi: 10.5194/soil-8-253-2022
– volume: 61–62
  start-page: 281
  year: 2004
  ident: 450_CR43
  publication-title: Agrofor Syst
  doi: 10.1023/b:agfo.0000029005.92691.79
– volume: 90
  start-page: 204
  year: 2015
  ident: 450_CR58
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.08.010
– volume: 801
  start-page: 149717
  year: 2021
  ident: 450_CR69
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.149717
– volume: 277
  start-page: 123338
  year: 2020
  ident: 450_CR31
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123338
– volume: 8
  start-page: 1774
  year: 2017
  ident: 450_CR26
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01998-z
– volume: 11
  start-page: 1408
  year: 2019
  ident: 450_CR38
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12644
– volume: 278
  start-page: 107654
  year: 2019
  ident: 450_CR9
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2019.107654
– volume-title: Soil enzymology and research method
  year: 1986
  ident: 450_CR20
– volume: 34
  start-page: 3618
  year: 2023
  ident: 450_CR120
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.4708
– volume: 478
  start-page: 49
  year: 2011
  ident: 450_CR55
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 6
  start-page: 751
  year: 2016
  ident: 450_CR8
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate3071
– volume: 95
  start-page: 233
  year: 2016
  ident: 450_CR11
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.01.004
– volume: 38
  start-page: 13
  year: 2019
  ident: 450_CR1
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.13041
– volume: 271
  start-page: 168
  year: 2020
  ident: 450_CR39
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2019.03.001
– volume: 119
  start-page: 205
  year: 2017
  ident: 450_CR65
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2017.06.018
– volume: 264
  start-page: 1
  year: 2018
  ident: 450_CR10
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2018.05.008
– volume: 94
  start-page: 48
  year: 2016
  ident: 450_CR17
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.11.007
– volume: 17
  start-page: 1658
  year: 2011
  ident: 450_CR14
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2010.02336.x
– volume: 192
  start-page: 189
  year: 2013
  ident: 450_CR48
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.08.003
– volume: 363
  start-page: 933
  year: 2019
  ident: 450_CR2
  publication-title: Science
  doi: 10.1126/science.aaw2741
– volume: 242
  start-page: 67
  year: 2017
  ident: 450_CR13
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2017.03.023
– volume: 13
  start-page: 7212
  year: 2021
  ident: 450_CR52
  publication-title: Sustainability
  doi: 10.3390/su13137212
– ident: 450_CR130
– volume: 18
  start-page: 1424
  year: 2018
  ident: 450_CR22
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-017-1870-6
– volume: 13
  start-page: 5514
  year: 2022
  ident: 450_CR62
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-33278-w
– volume: 6
  start-page: 325
  year: 2013
  ident: 450_CR71
  publication-title: J Plant Ecol
  doi: 10.1093/jpe/rtt034
– volume: 374
  start-page: 114444
  year: 2020
  ident: 450_CR42
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114444
– volume: 11
  start-page: 415
  year: 2017
  ident: 450_CR16
  publication-title: ISME J
  doi: 10.1038/ismej.2016.131
– volume: 204
  start-page: 105405
  year: 2021
  ident: 450_CR70
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105405
– volume: 24
  start-page: 4816
  year: 2018
  ident: 450_CR12
  publication-title: Global Change Biol
  doi: 10.1111/gcb.14394
– volume: 162
  start-page: 108427
  year: 2021
  ident: 450_CR47
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2021.108427
– volume: 215
  start-page: 105203
  year: 2022
  ident: 450_CR66
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2021.105203
– volume: 115
  start-page: 1
  year: 2018
  ident: 450_CR44
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2018.04.002
– volume: 24
  start-page: 5230
  year: 2022
  ident: 450_CR5
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.16146
– volume: 8
  start-page: 879
  year: 2018
  ident: 450_CR57
  publication-title: Ecol Evol
  doi: 10.1002/ece3.3708
– volume: 141
  start-page: 107660
  year: 2020
  ident: 450_CR25
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.107660
– volume: 6
  start-page: 22411
  year: 2016
  ident: 450_CR68
  publication-title: Sci Rep
  doi: 10.1038/srep22411
– ident: 450_CR29
– volume: 16
  start-page: 1291
  year: 2012
  ident: 450_CR27
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.10.004
– volume: 5
  start-page: 81
  year: 2014
  ident: 450_CR53
  publication-title: Carbon Manag
  doi: 10.4155/cmt.13.77
– volume: 204
  start-page: 104712
  year: 2020
  ident: 450_CR3
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2020.104712
– volume: 160
  start-page: 42
  year: 2016
  ident: 450_CR24
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2016.01.003
– volume: 228
  start-page: 91
  year: 2016
  ident: 450_CR45
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.05.003
– volume: 202
  start-page: 105226
  year: 2021
  ident: 450_CR50
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105226
– volume: 28
  start-page: 1690
  year: 2022
  ident: 450_CR6
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.15998
– volume: 23
  start-page: 4430
  year: 2017
  ident: 450_CR40
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13767
– volume: 6
  start-page: 42
  year: 2016
  ident: 450_CR56
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate2870
– volume: 305
  start-page: 153
  year: 2017
  ident: 450_CR49
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.06.002
– volume: 433
  start-page: 65
  year: 2018
  ident: 450_CR37
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3826-z
– volume: 692
  start-page: 930
  year: 2019
  ident: 450_CR41
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.07.286
– volume: 198
  start-page: 656
  year: 2013
  ident: 450_CR32
  publication-title: New Phytol
  doi: 10.1111/nph.12235
– volume: 21
  start-page: 780
  year: 2021
  ident: 450_CR46
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-020-00400-0
– volume: 4
  start-page: 633
  year: 2014
  ident: 450_CR67
  publication-title: Ecol Evol
  doi: 10.1002/ece3.969
– volume: 153
  start-page: 108062
  year: 2021
  ident: 450_CR61
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.108062
– volume: 828
  start-page: 154378
  year: 2022
  ident: 450_CR36
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.154378
SSID ssj0000941497
Score 2.3043597
Snippet Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC...
BackgroundAnthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC...
BACKGROUND: Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC...
Abstract Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Agricultural practices
Agriculture
Agroforestry
Anthropogenic factors
Bacteria
Bacterial alpha diversity
bacterial communities
Bulk density
Carbon
Carbon cycle
Corn
Correlation
Crop rotation
Depth
Earth and Environmental Science
Environment
Enzymatic activity
Enzyme activity
Enzymes
equations
forests
global carbon budget
Human influences
Incubation period
Indoor incubation
Kinetic equations
Land use
Land use change
Mineralization
Organic carbon
Physicochemical processes
Physicochemical properties
Plantations
Regression analysis
Soil
soil bacteria
Soil chemistry
Soil enzyme activity
soil enzymes
Soil microorganisms
soil organic carbon
Soil organic carbon mineralization
Soil pH
Soil properties
Soils
species diversity
uncertainty
Wheat
Yellow Sea
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF6kIHgRrYrRWlbwpqHJ_s7RlpYi6slCb8tks4uVmjxe8hD7p_Sv7exu8mwF9eIlhOwmLDszmW-SmW8IeWMaJxuG0YmsuS9FJ3lpGkDDk02H-J4Lr2Kh8KfP6vRMfDiX57dafcWcsEwPnDfuQIGWLXATUFeEaR1qYGd88F5VzDPj49sXfd6tYOpbzpdD6K-XKhmjDsaaY-RSoosqI4ypyqs7nigR9t9Bmb_9GE3-5uQReTgDRfo-L_Axuef7XXL_OJFM_3xCrj_mpgd0HC4uae7N5KiDdTv09PtF4pKeSyzpNORZ-StGbJGVOALoKn6IX0dGVQp9R9tM3IwDqQCXdkvKBoWJLo1U8Myvpq8jDahAw4-4gpgbSTejp7mIeHxKzk6OvxydlnOfhdJJLic8NsGBUEHyUIdKo3h4G3wDrTaN4d7ItuZ1xyrPg6g4GqoGLhQgsoSAeJI_Izv90PvnhGpgQlXa1RicYiwlwDEGEqQG7aFqTEHqZc-tm0nIYy-MS5uCEaNslpNFOdkkJ3tVkLfbe1aZguOvsw-jKLczI312uoCSsLNS2X8pVUH2FkWws02PlhmpdaTHqQvyejuM1hh_sUDvh81oOToQjRDJ8IK8WxTo1yP-vOwX_2PZL8kDFhU8ZdvskZ1pvfGvEDNN7X4yjxuschQh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFA5zQ_BFdCrWbZKBb1psm599nGNjiNuTg72F0zTByWwvt72M7U_ZX7uTpL2yoYIvpTRpCT05yXdyzvkOIR90bUVdoXUiSuZy3gqW6xpQ8UTdIr5n3MmQKHx6Jk_O-dcLcTElhQ1ztPvskowrdVRrLT8PJUPTI8c9Jg84pMhvn5AtEWz34KKdchx-plg5hP1qzpD546sPdqFI1v8AYT5yisa95vgFeT6BRHqQpPqSbLhumzw9igTTN6_I3bdU8IAO_eUVTXWZLLWwbPqO_rqMPNJTeiUd-9QrnWCE8liRH4AuwiH8MrCpUuha2iTSZmyIybe0ncM1KIx0LqKCd24x_hiox8nTX4cRhLhIuhocTQnEw2tyfnz0_fAkn2os5FYwMeK19ha49IL50hcKRcMa72polK41c1o0JSvbqnDM84KhkipgXAKiSvCIJdkbstn1nXtLqIKKy0LZEg1TtKM42KoCAUKBclDUOiPl_M-NnQjIQx2MKxMNES1NkpNBOZkoJ3ObkY_rdxaJfuOfvb8EUa57Burs-AAlYSZNNBKUaIBpj4sP143FJa3Vzjsni8pV2mVkd54IZtLnwVRaKBWoccqM7K-bURODewU6168Gw3DzUAiPNMvIp3kC_f7E34f97v-675BnoeZ9iqnZJZvjcuX2EBmNzfuoCPchfwhH
  priority: 102
  providerName: Springer Nature
Title Linking soil organic carbon mineralization to soil physicochemical properties and bacterial alpha diversity at different depths following land use changes
URI https://link.springer.com/article/10.1186/s13717-023-00450-z
https://www.proquest.com/docview/2857705261
https://www.proquest.com/docview/3153706183
https://doaj.org/article/6a75ba38f31948bc832d8efee602e28e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEB-8XQR9ED0Vq-cSwTct1zZJkz7J3rLnsegh6sG9hTRN9eBs120X8T6Kn9ZJmu5xgvcSSpK2gfmTmUnmNwCvZWF4kaF3wlNqY1ZxGstCo-DxokL7njKbu0Thj6f5yRlbnfPzEHDrwrXKUSd6RV21xsXIDzPJhXDgJOm79c_YVY1yp6uhhMYeTFEFSzmB6dHy9NPnXZQFnRd0AcSYLSPzwy6l6MHEuFXFzpxJ4qsbO5IH7r9hbf5zQOr3neOH8CAYjGQ-UPgR3LHNPtyff9sE0Ay7D3eXHnr692P482EohUC69uKSDBWbDDF6U7YN-XHhEaZD4iXp22HWENtwhbM8cgBZu_D8xuGsEt1UpBzgnHHAp-WSarzIQXRPxvIq-GTX_feO1MhW7S-3Andjkmw7S4bU4u4JnB0vvy5O4lB9ITac8h7bojaa5TWndVonAolGy9oWuhSykNRKXqY0rbLE0polFMVXaMpyjfamrtHKpE9h0rSNfQZE6IzliTApuqzoYTFtskxzzYUWVieFjCAdKaBMgCZ3FTIulXdRZK4GqimkmvJUU1cRvNm9sx6AOW6dfeQIu5vpQLV9B1JCBRlVuRa81FTWqJaYLA0qu0ra2to8yWwmbQQHI1uoIOmduubLCF7thlFG3cGLbmy77RTFbUWg4SRpBG9Hdrr-xP-X_fz2P76Ae5ljZH-75gAm_WZrX6KN1Jcz2GPJ-xlM5_PVl9UsiAX2LjLm2nwx89GHv9uHFhA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VrRBwQFBALBQwEpwgamLHsXNAqIWttnS7QqiVenMdx6GV2mTZZFW1n8JH8I2MnWSrItFbL1EUO4mlGY9nPJ73AN7J1PCUYnTCI2aDOOcskKnGicfTHP17FtvEFQrvTZPxQfztkB-uwJ--FsYdq-xtojfUeWXcHvkGlVwIB04SfZ79ChxrlMuu9hQarVrs2otzDNnqTztfUb7vKd0e7X8ZBx2rQGA44w1e08LoOCk4K6IiFDgYlhU21ZmQqWRW8ixiUU5Dy4o4ZKiWQrM40ehH6QK9J4bfvQOrMUtCOoDVrdH0-4_lrg4GSxhyiL46RyYbdcQwYgpwaQyc-xQGl9dWQE8UcM27_Sch69e57UfwsHNQyWarUY9hxZZr8GDz57wD6bBrcHfkoa4vnsDvSUu9QOrq5JS0DFGGGD3PqpKcnXhE667QkzRV26vdS3FEXR6pgMxcOmDucF2JLnOStfDR2ODLgEneHxwhuiE9nQve2VlzXJMC1bg6dyNwJzTJorakLWWun8LBrcjlGQzKqrTPgQhN4yQUJsIQGSO6WBtKNddcaGF1mMohRL0ElOmg0B0jx6nyIZFMVCs1hVJTXmrqcggflu_MWiCQG3tvOcEuezoQb_8AJaE6m6ASLXimmSzQDMYyM2hcc2kLa1GzLJV2COu9WqjOstTqah4M4e2yGW2CS_To0laLWjFcxgQ6apIN4WOvTlef-P-wX9z8xzdwb7y_N1GTnenuS7hPnVL7kz3rMGjmC_sK_bMme91NCgJHtz0P_wKAbU3B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBwQFBALBQwEpwg2sSOY-eAUEt31dKyqhCVenOdxKaV2mTZZFW1j8Kj8HSMnWSrItFbL6to4ySW5sfz2TPfALyTac5TiuiER8wEccFZIFONhsfTAuN7FpvEFQp_mybbB_HXQ364An_6WhiXVtn7RO-oiyp3e-QjKrkQjpwkGtkuLWJ_a_J59itwHaTcSWvfTqNVkV1zcY7wrf60s4Wyfk_pZPzjy3bQdRgIcs54g7-pzXWcWM5sZEOBE2OZNanOhEwlM5JnEYsKGhpm45ChigrN4kRjTKUtRlIM33sHVoVDRQNY3RxP978vd3gQOCH8EH2ljkxGdcQQPQW4TAYulAqDy2uroW8acC3S_edw1q95k0fwsAtWyUarXY9hxZRr8GDj57wj7DBrcHfsaa8vnsDvvbYNA6mrk1PSdovKSa7nWVWSsxPPbt0VfZKmake1-yquaZdnLSAzdzQwdxyvRJcFyVoqabzhS4JJ0SeREN2QvrULXplZc1wTiypdnbsZuGxNsqgNacua66dwcCtyeQaDsirNcyBC0zgJRR4hXEZ0F-ucUs01F1oYHaZyCFEvAZV3tOiuO8ep8vBIJqqVmkKpKS81dTmED8tnZi0pyI2jN51glyMdobf_AyWhOv-gEi14ppm06BJjmeXoaAtprDFJSA2VZgjrvVqozsvU6somhvB2eRv9gzv00aWpFrViuKQJDNokG8LHXp2uXvH_ab-4-Ytv4B7an9rbme6-hPvU6bRP8lmHQTNfmFcYqjXZ684mCBzdthn-BfiiUfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+soil+organic+carbon+mineralization+to+soil+physicochemical+properties+and+bacterial+alpha+diversity+at+different+depths+following+land+use+changes&rft.jtitle=Ecological+processes&rft.au=Guo%2C+Jing&rft.au=Xiong%2C+Wulai&rft.au=Qiu%2C+Jian&rft.au=Wang%2C+Guibin&rft.date=2023-12-01&rft.issn=2192-1709&rft.eissn=2192-1709&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-023-00450-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13717_023_00450_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon