Linking soil organic carbon mineralization to soil physicochemical properties and bacterial alpha diversity at different depths following land use changes
Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mine...
Saved in:
Published in | Ecological processes Vol. 12; no. 1; p. 39 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W).
Results
LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation.
Conclusions
LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation. |
---|---|
AbstractList | Abstract Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W). Results LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation. Conclusions LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation. BackgroundAnthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W).ResultsLUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation.ConclusionsLUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation. BACKGROUND: Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W). RESULTS: LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation. CONCLUSIONS: LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation. Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as “source” or “sink” in the global carbon budget. Therefore, understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial. An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties, soil enzyme activity, SOC fractions, and bacterial alpha diversity. The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park, including four that were converted from wheat–corn rotation systems [a gingko plantation (G), a metasequoia plantation (M), a gingko–wheat–corn agroforestry system (GW), and a gingko–metasequoia system (GM)] and a traditional wheat–corn system (W). Results LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity. The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0–20 cm depth and higher in the G system than in the GW system at 20–40 cm depth after 60-day incubation. The mineralization ratio was highest in the W system and lowest in the GW system. The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization, while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization. Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units (OTUs). The GW system had lower potentially mineralizable SOC and higher SOC stability. Additionally, the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation. Conclusions LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling, which contributes to the fundamental understanding of SOC turnover regulation. |
ArticleNumber | 39 |
Author | Wang, Guibin Qiu, Jian Guo, Jing Xiong, Wulai |
Author_xml | – sequence: 1 givenname: Jing surname: Guo fullname: Guo, Jing organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University – sequence: 2 givenname: Wulai surname: Xiong fullname: Xiong, Wulai organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University – sequence: 3 givenname: Jian surname: Qiu fullname: Qiu, Jian organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University – sequence: 4 givenname: Guibin surname: Wang fullname: Wang, Guibin email: guibinwang99@163.com organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University |
BookMark | eNp9UsuO1DAQjNAisSz7A5wiceES8COOnSNa8VhpJC5wtjpOe-IhYwfbA5r5FL4WzwQE2sP6YHfbVa2udj2vrnzwWFUvKXlDqereJsollQ1hvCGkFaQ5PamuGe1ZQyXpr_6Ln1W3Ke1IWX1L215eV782zn9zflun4OY6xC14Z2oDcQi-3juPEWZ3guxKmsOKWqZjciaYCffOQMljWDBmh6kGP9YDmIzRlQeYlwnq0f3AmFw-1pBLYi1G9CXCJU-ptmGew89zB_OZfEhYmwn8FtOL6qmFOeHtn_Om-vrh_Ze7T83m88f7u3ebxgguctl7a6DtrOCWWiKxQz5Y7GGQqlcclRgopyMjyG1L-ECIBN520NMOrCCS31T3a90xwE4v0e0hHnUApy8XZSYaijozo-5AigG4spz2rRqM4mxUaBE7wpApLLVer7XKTL4fMGW9d8ngXLRhOCTNqeCSdFTxAn31ALoLh-iLUs2UkJII1tGCUivKxJBSRKuNy5fvyBHcrCnRZw_o1QO6eEBfPKBPhcoeUP9qe5TEV1Iq4PIL8V9Xj7B-A0ZVyfs |
CitedBy_id | crossref_primary_10_1016_j_still_2023_105977 crossref_primary_10_3390_agriculture14101821 crossref_primary_10_1111_1758_2229_70044 crossref_primary_10_1016_j_fcr_2024_109549 crossref_primary_10_55250_Jo_vnuf_9_2_2024_032_042 crossref_primary_10_3390_agriculture14101774 crossref_primary_10_1016_j_agee_2024_109186 |
Cites_doi | 10.1023/b:agfo.0000029005.92691.79 10.1016/j.catena.2018.07.032 10.1038/srep22411 10.1016/j.jclepro.2020.123338 10.1016/j.soilbio.2019.107660 10.1016/j.geoderma.2010.04.015 10.1016/j.agee.2018.05.008 10.1007/s11368-017-1870-6 10.1016/j.scitotenv.2019.07.286 10.1111/gcbb.12644 10.1016/j.geoderma.2020.114444 10.1093/femsec/fiz194 10.1038/ismej.2016.131 10.1093/jpe/rtt034 10.1016/j.still.2020.104712 10.1002/ldr.4708 10.1016/j.agrformet.2019.03.001 10.1126/science.aaw2741 10.1016/j.geoderma.2012.08.003 10.1007/s00374-020-01468-7 10.1016/B978-0-12-814104-5.00001-6 10.1007/s42729-020-00400-0 10.1111/gcb.15998 10.1002/ece3.969 10.5194/essd-12-3269-2020 10.1016/j.soilbio.2020.108062 10.1016/j.soilbio.2008.08.001 10.1038/s41467-022-33278-w 10.1007/s11104-018-3826-z 10.1111/gcb.13767 10.1111/1462-2920.16146 10.1016/j.catena.2021.105405 10.1111/nph.12235 10.3390/su13137212 10.1016/j.rser.2011.10.004 10.1007/s10021-015-9941-2 10.1016/j.still.2016.01.003 10.1038/nature10386 10.1016/j.catena.2022.106783 10.1016/j.scitotenv.2022.154378 10.1016/j.still.2021.105203 10.1016/j.scitotenv.2021.149717 10.1016/j.geoderma.2017.06.002 10.1016/j.agee.2016.05.003 10.1007/s10533-016-0198-4 10.5194/soil-8-253-2022 10.4155/cmt.13.77 10.1038/s41467-017-01998-z 10.1002/ep.13041 10.1016/j.soilbio.2016.01.004 10.1016/j.soilbio.2015.08.010 10.1016/j.catena.2021.105226 10.1002/ece3.3708 10.1016/j.foreco.2022.120238 10.1016/j.apsoil.2017.06.018 10.1038/nclimate3071 10.1016/j.geoderma.2023.116393 10.1016/j.agrformet.2019.107654 10.1007/s42729-021-00664-0 10.1016/j.soilbio.2015.11.007 10.1038/nclimate2870 10.1016/j.biombioe.2018.04.002 10.1111/gcb.14394 10.1007/s00374-008-0334-y 10.1016/j.geoderma.2019.03.012 10.1016/j.agee.2017.03.023 10.1111/j.1365-2486.2010.02336.x 10.1016/j.soilbio.2021.108312 10.1016/j.gecco.2021.e01923 10.1016/j.soilbio.2021.108427 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7S9 L.6 DOA |
DOI | 10.1186/s13717-023-00450-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Biological Science Database Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Environmental Science Collection (NC LIVE) AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Agriculture |
EISSN | 2192-1709 |
EndPage | 39 |
ExternalDocumentID | oai_doaj_org_article_6a75ba38f31948bc832d8efee602e28e 10_1186_s13717_023_00450_z |
GeographicLocations | Yellow Sea |
GeographicLocations_xml | – name: Yellow Sea |
GrantInformation_xml | – fundername: Basic Research Program of Jiangsu Province grantid: No. BK20210609 funderid: http://dx.doi.org/10.13039/501100005145 |
GroupedDBID | -A0 0R~ 4.4 40G 5VS 7XC 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFO ACGFS ACPRK ACULB ADBBV ADINQ AEGXH AEUYN AFGXO AFKRA AFPKN AFRAH AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BBNVY BCNDV BENPR BHPHI C24 C6C CCPQU EBLON EBS EDH GROUPED_DOAJ GX1 HCIFZ IAO IEP ISR ITC KQ8 LK8 M7P M~E OK1 PATMY PIMPY PROAC PYCSY RNS RSV SEV SOJ -SB -S~ AASML AAXDM AAYXX CAJEB CITATION PHGZM PHGZT Q-- U1G U5L ABUWG AZQEC DWQXO F1W GNUQQ H95 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c535t-c59fca46f53f1f07e6e3bfe9ab78983e85b131d20e3f403b007a346a916af5073 |
IEDL.DBID | BENPR |
ISSN | 2192-1709 |
IngestDate | Wed Aug 27 01:25:46 EDT 2025 Thu Jul 10 22:09:16 EDT 2025 Tue Aug 12 10:41:00 EDT 2025 Tue Jul 01 00:51:52 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Fri Feb 21 02:41:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bacterial alpha diversity Soil enzyme activity Indoor incubation Land use change Soil organic carbon mineralization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-c59fca46f53f1f07e6e3bfe9ab78983e85b131d20e3f403b007a346a916af5073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2857705261?pq-origsite=%requestingapplication% |
PQID | 2857705261 |
PQPubID | 2034775 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6a75ba38f31948bc832d8efee602e28e proquest_miscellaneous_3153706183 proquest_journals_2857705261 crossref_citationtrail_10_1186_s13717_023_00450_z crossref_primary_10_1186_s13717_023_00450_z springer_journals_10_1186_s13717_023_00450_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Ecological processes |
PublicationTitleAbbrev | Ecol Process |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Li, Han, Han (CR34) 2010; 157 Zhang, Ge, Liao, Wang, Wei, Jia (CR70) 2021; 204 Guo, Wang, Wang, Wu, Cao (CR21) 2018; 171 Liang, Elsgaard, Nicolaisen, Lyhne-Kjærbye, Olesen (CR37) 2018; 433 Huang, Liu, Shao, Xu (CR27) 2012; 16 Wang, Zeng, Zhong (CR60) 2016; 19 Smith, Davis, Creutzig (CR56) 2016; 6 Chen, Chen, Robinson, Yang, Guo, Xie, Fu, Zhou, Yang (CR11) 2016; 95 Barnett, Youngblut, Buckley (CR4) 2020; 96 Kuzyakov, Xu (CR32) 2013; 198 Schlüter, Roussety, Rohe, Guliyev, Blagodatskaya, Reitz (CR54) 2022; 8 Garcia-Pausas, Casals, Camarero, Huguet, Thompson, Sebastià, Romanyà (CR19) 2008; 40 Wang, Guo, Zhang, Xiao, Mishra, Yang, Zhu, Wang, Mao, Qian, Jiang, Shi, Luo (CR62) 2022; 13 Letcher, Letcher (CR33) 2019 Chia, Kim, Yimer (CR13) 2017; 242 Scharlemann, Tanner, Hiederer, Kapos (CR53) 2014; 5 Roy, Biswas, Sarkar, Jha, Sharma, Mishra, Patra (CR51) 2022; 22 Fanin, Bertrand (CR17) 2016; 94 Jin, Ping, Wong (CR31) 2020; 277 Jeewani, Van Zwieten, Zhu, Ge, Guggenberger, Luo, Xu (CR30) 2021; 160 CR130 Wang, Zhang, Vinay, Wang, Mo, Liao, Wen (CR120) 2023; 34 Neculman, Matus, Godoy, MdlL, Rumpel (CR46) 2021; 21 Rong, Zhang, Wu, Ge, Yao, Wei (CR50) 2021; 202 Guan (CR20) 1986 Anderson, DeFries, Litterman, Matson, Nepstad, Pacala, Schlesinger, Shaw, Smith, Weber, Field (CR2) 2019; 363 Yang, Jansen, Absalah, Kalbitz, Castro, Cammeraat (CR66) 2022; 215 Fabian, Zlatanovic, Mutz, Premke (CR16) 2017; 11 Tang, Sun, Luo, He, Sun (CR57) 2018; 8 You, Wang, Sun, Tang, Zhou, Sun (CR68) 2016; 6 Li, Wu, Zong, Wang, Chen, Liu, Li, Fang (CR35) 2022; 516 Zhou, Jiang, Du, Hu, Li, Chen, Fang (CR71) 2013; 6 Xiao, Li, Chang, Huang, Nie, Liu, Liu, Wang, Dong, Jiang (CR65) 2017; 119 Munda, Bhaduri, Mohanty, Chatterjee, Tripathi, Shahid, Kumar, Bhattacharyya, Kumar, Adak, Jangde, Nayak (CR44) 2018; 115 Bradford, Wieder, Bonan, Fierer, Raymond, Crowther (CR8) 2016; 6 Rahman, Bárcena, Vesterdal (CR49) 2017; 305 Huang, Hall (CR26) 2017; 8 Lu, Li, Wang, Singh, Hu, Luo, Li, Xiao, Cai, Li (CR39) 2020; 271 Zhang, Fang, Luo (CR69) 2021; 801 Poeplau, Don (CR48) 2013; 192 Blagodatskaya, Kuzyakov (CR7) 2008; 45 Caddeo, Marras, Sallustio, Spano, Sirca (CR9) 2019; 278 Li, Wang, Camps-Arbestain, Whitby (CR36) 2022; 828 Luo, Feng, Luo, Baldock, Wang (CR40) 2017; 23 Nadal-Romero, Cammeraat, Pérez-Cardiel, Lasanta (CR45) 2016; 228 Beillouin, Cardinael, Berre, Boyer, Corbeels, Fallot, Feder, Demenois (CR6) 2022; 28 Dong, Liu, Wu, Man, Wu, Ma, Li, Zang (CR15) 2023; 221 Patel, Smith, Bond-Lamberty, Fansler, Tfaily, Bramer, Varga, Bailey (CR47) 2021; 162 Hontoria, Gómez-Paccard, Mariscal-Sancho, Benito, Pérez, Espejo (CR24) 2016; 160 Huang, Lin, Xiong, Yang, Liu, Chen, Xie, Li, Yang (CR28) 2019; 344 Autret, Guillier, Pouteau, Mary, Chenu (CR3) 2020; 204 Sarkar, Sinha, Mukhopadhyay, Danish, Fahad, Datta (CR52) 2021; 13 Friedlingstein, O'Sullivan, Jones (CR18) 2020; 12 Guo, Wu, Wu, Ren, Wang (CR23) 2021; 32 Ma, Chen, Zhang, Zhu, Kalkhajeh, Chai, Ye, Gao, Chu, Mao, Thompson (CR41) 2019; 692 Schmidt, Torn, Abiven (CR55) 2011; 478 Tardy, Spor, Mathieu (CR58) 2015; 90 Wu, Ren, Ren, Tian, Li, Wu, Li (CR64) 2023; 432 Al-Ghussain (CR1) 2019; 38 Wang, Bian, Jiang, Zhu, Chen, Liang, Sun (CR61) 2021; 153 Chavarria, Pérez-Brandan, Serri, Meriles, Restovich, Andriulo, Jacquelin, Vargas-Gil (CR10) 2018; 264 Tian, Yang, Wang, Liao, Li, Wang, Wu, Liu (CR59) 2016; 128 Barnett, Youngblut, Buckley (CR5) 2022; 24 CR29 You, Wang, Huang, Tang, Liu, Sun (CR67) 2014; 4 Guo, Wang, Geng, Wu, Cao (CR22) 2018; 18 Wei, Zhu, Liu, Luo, Deng, Xu, Liu, Richter, Shibistova, Guggenberger, Wu, Ge (CR63) 2020; 56 Montagnini, Nair (CR43) 2004; 61–62 Moinet, Millard (CR42) 2020; 374 Liu, Zhu, Wang (CR38) 2019; 11 Chen, Luo, García-Palacios, Cao, Daca, Zhou, Li, Xia, Niu, Yang, Shelton, Guo, van Groenigen (CR12) 2018; 24 Hu, Zheng, Noll, Zhang, Wanek (CR25) 2020; 141 Don, Schumacher, Freibauer (CR14) 2011; 17 ZP Li (450_CR34) 2010; 157 M Wang (450_CR62) 2022; 13 DN Chavarria (450_CR10) 2018; 264 Y Kuzyakov (450_CR32) 2013; 198 D Beillouin (450_CR6) 2022; 28 TM Letcher (450_CR33) 2019 SE Barnett (450_CR4) 2020; 96 J Guo (450_CR23) 2021; 32 J Fabian (450_CR16) 2017; 11 E Nadal-Romero (450_CR45) 2016; 228 F Montagnini (450_CR43) 2004; 61–62 T Roy (450_CR51) 2022; 22 P Smith (450_CR56) 2016; 6 S Munda (450_CR44) 2018; 115 B Autret (450_CR3) 2020; 204 V Tardy (450_CR58) 2015; 90 WQ Li (450_CR35) 2022; 516 SY Guan (450_CR20) 1986 C Poeplau (450_CR48) 2013; 192 D Wu (450_CR64) 2023; 432 C Hontoria (450_CR24) 2016; 160 450_CR130 S Schlüter (450_CR54) 2022; 8 Z Tang (450_CR57) 2018; 8 A Don (450_CR14) 2011; 17 Z Luo (450_CR40) 2017; 23 JPW Scharlemann (450_CR53) 2014; 5 Z Liu (450_CR38) 2019; 11 X Wei (450_CR63) 2020; 56 MA Bradford (450_CR8) 2016; 6 GYK Moinet (450_CR42) 2020; 374 Z Liang (450_CR37) 2018; 433 A Caddeo (450_CR9) 2019; 278 X Dong (450_CR15) 2023; 221 G Rong (450_CR50) 2021; 202 W Wang (450_CR120) 2023; 34 PH Jeewani (450_CR30) 2021; 160 Z Jin (450_CR31) 2020; 277 J Chen (450_CR12) 2018; 24 Y You (450_CR67) 2014; 4 CM Anderson (450_CR2) 2019; 363 W Huang (450_CR26) 2017; 8 L Huang (450_CR27) 2012; 16 450_CR29 MM Rahman (450_CR49) 2017; 305 H Xiao (450_CR65) 2017; 119 Q Tian (450_CR59) 2016; 128 Q Wang (450_CR60) 2016; 19 J Huang (450_CR28) 2019; 344 KF Patel (450_CR47) 2021; 162 S Yang (450_CR66) 2022; 215 MWI Schmidt (450_CR55) 2011; 478 L Al-Ghussain (450_CR1) 2019; 38 X Wang (450_CR61) 2021; 153 RW Chia (450_CR13) 2017; 242 R Neculman (450_CR46) 2021; 21 Y Li (450_CR36) 2022; 828 Y You (450_CR68) 2016; 6 J Guo (450_CR21) 2018; 171 SE Barnett (450_CR5) 2022; 24 N Fanin (450_CR17) 2016; 94 C Ma (450_CR41) 2019; 692 D Sarkar (450_CR52) 2021; 13 Y Zhang (450_CR70) 2021; 204 E Blagodatskaya (450_CR7) 2008; 45 J Garcia-Pausas (450_CR19) 2008; 40 S Zhang (450_CR69) 2021; 801 Y Hu (450_CR25) 2020; 141 Y Chen (450_CR11) 2016; 95 J Guo (450_CR22) 2018; 18 P Friedlingstein (450_CR18) 2020; 12 X Lu (450_CR39) 2020; 271 Z Zhou (450_CR71) 2013; 6 |
References_xml | – volume: 61–62 start-page: 281 year: 2004 end-page: 295 ident: CR43 article-title: Carbon sequestration: an underexploited environmental benefit of agroforestry systems publication-title: Agrofor Syst doi: 10.1023/b:agfo.0000029005.92691.79 – volume: 171 start-page: 450 year: 2018 end-page: 459 ident: CR21 article-title: Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China publication-title: Catena doi: 10.1016/j.catena.2018.07.032 – volume: 6 start-page: 22411 year: 2016 ident: CR68 article-title: Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem publication-title: Sci Rep doi: 10.1038/srep22411 – volume: 277 start-page: 123338 year: 2020 ident: CR31 article-title: Systematic relationship between soil properties and organic carbon mineralization based on structural equation modeling analysis publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123338 – volume: 141 start-page: 107660 year: 2020 ident: CR25 article-title: Direct measurement of the in situ decomposition of microbial-derived soil organic matter publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107660 – volume: 157 start-page: 206 year: 2010 end-page: 213 ident: CR34 article-title: Organic C and N mineralization as affected by dissolved organic matter in paddy soils of subtropical China publication-title: Geoderma doi: 10.1016/j.geoderma.2010.04.015 – volume: 264 start-page: 1 year: 2018 end-page: 8 ident: CR10 article-title: Response of soil microbial communities to agroecological versus conventional systems of extensive agriculture publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2018.05.008 – volume: 18 start-page: 1424 year: 2018 end-page: 1431 ident: CR22 article-title: Decomposition of tree leaf litter and crop residues from ginkgo agroforestry systems in Eastern China: an in situ study publication-title: J Soils Sediments doi: 10.1007/s11368-017-1870-6 – volume: 692 start-page: 930 year: 2019 end-page: 939 ident: CR41 article-title: Linking chemical structure of dissolved organic carbon and microbial community composition with submergence-induced soil organic carbon mineralization publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.07.286 – volume: 11 start-page: 1408 year: 2019 end-page: 1420 ident: CR38 article-title: The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments publication-title: GCB Bioenergy doi: 10.1111/gcbb.12644 – volume: 374 start-page: 114444 year: 2020 ident: CR42 article-title: Temperature sensitivity of decomposition: discrepancy between field and laboratory estimates is not due to sieving the soil publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114444 – volume: 96 start-page: fiz194 year: 2020 ident: CR4 article-title: Soil characteristics and land-use drive bacterial community assembly patterns publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiz194 – volume: 11 start-page: 415 year: 2017 end-page: 425 ident: CR16 article-title: Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality publication-title: ISME J doi: 10.1038/ismej.2016.131 – volume: 6 start-page: 325 year: 2013 end-page: 334 ident: CR71 article-title: Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China publication-title: J Plant Ecol doi: 10.1093/jpe/rtt034 – ident: CR29 – volume: 204 start-page: 104712 year: 2020 ident: CR3 article-title: Similar specific mineralization rates of organic carbon and nitrogen in incubated soils under contrasted arable cropping systems publication-title: Soil Tillage Res doi: 10.1016/j.still.2020.104712 – volume: 34 start-page: 3618 year: 2023 end-page: 3635 ident: CR120 article-title: Microbial functional genes within soil aggregates drive organic carbon mineralization under contrasting tillage practices publication-title: Land Degrad Dev doi: 10.1002/ldr.4708 – volume: 271 start-page: 168 year: 2020 end-page: 179 ident: CR39 article-title: Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2019.03.001 – volume: 363 start-page: 933 year: 2019 end-page: 934 ident: CR2 article-title: Natural climate solutions are not enough publication-title: Science doi: 10.1126/science.aaw2741 – volume: 192 start-page: 189 year: 2013 end-page: 201 ident: CR48 article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.003 – volume: 56 start-page: 1093 year: 2020 end-page: 1107 ident: CR63 article-title: C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01468-7 – start-page: 3 year: 2019 end-page: 15 ident: CR33 article-title: Why do we have global warming? publication-title: Managing global warming doi: 10.1016/B978-0-12-814104-5.00001-6 – volume: 21 start-page: 780 year: 2021 end-page: 790 ident: CR46 article-title: Carbon mineralization controls in top- and subsoil horizons of two andisols under temperate old-growth rain forest publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-020-00400-0 – volume: 28 start-page: 1690 year: 2022 end-page: 1702 ident: CR6 article-title: A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon publication-title: Glob Change Biol doi: 10.1111/gcb.15998 – volume: 4 start-page: 633 year: 2014 end-page: 647 ident: CR67 article-title: Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover publication-title: Ecol Evol doi: 10.1002/ece3.969 – volume: 12 start-page: 3269 year: 2020 end-page: 3340 ident: CR18 article-title: Global carbon budget 2020 publication-title: Earth Syst Sci Data doi: 10.5194/essd-12-3269-2020 – volume: 153 start-page: 108062 year: 2021 ident: CR61 article-title: Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.108062 – volume: 40 start-page: 2803 year: 2008 end-page: 2810 ident: CR19 article-title: Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.08.001 – volume: 13 start-page: 5514 year: 2022 ident: CR62 article-title: Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate publication-title: Nat Commun doi: 10.1038/s41467-022-33278-w – volume: 433 start-page: 65 year: 2018 end-page: 82 ident: CR37 article-title: Carbon mineralization and microbial activity in agricultural topsoil and subsoil as regulated by root nitrogen and recalcitrant carbon concentrations publication-title: Plant Soil doi: 10.1007/s11104-018-3826-z – volume: 23 start-page: 4430 year: 2017 end-page: 4439 ident: CR40 article-title: Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions publication-title: Glob Change Biol doi: 10.1111/gcb.13767 – volume: 24 start-page: 5230 year: 2022 end-page: 5247 ident: CR5 article-title: Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history publication-title: Environ Microbiol doi: 10.1111/1462-2920.16146 – volume: 204 start-page: 105405 year: 2021 ident: CR70 article-title: Long-term afforestation accelerated soil organic carbon accumulation but decreased its mineralization loss and temperature sensitivity in the bulk soils and aggregates publication-title: Catena doi: 10.1016/j.catena.2021.105405 – volume: 198 start-page: 656 year: 2013 end-page: 669 ident: CR32 article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance publication-title: New Phytol doi: 10.1111/nph.12235 – volume: 13 start-page: 7212 year: 2021 ident: CR52 article-title: Carbon mineralization rates and kinetics of surface-applied and incorporated rice and maize residues in entisol and inceptisol soil types publication-title: Sustainability doi: 10.3390/su13137212 – volume: 16 start-page: 1291 year: 2012 end-page: 1299 ident: CR27 article-title: Carbon sequestration by forestation across China: past, present, and future publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.10.004 – volume: 19 start-page: 450 year: 2016 end-page: 460 ident: CR60 article-title: Soil moisture alters the response of soil organic carbon mineralization to litter addition publication-title: Ecosystems doi: 10.1007/s10021-015-9941-2 – volume: 160 start-page: 42 year: 2016 end-page: 52 ident: CR24 article-title: Aggregate size distribution and associated organic C and N under different tillage systems and Ca-amendment in a degraded Ultisol publication-title: Soil Tillage Res doi: 10.1016/j.still.2016.01.003 – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: CR55 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 221 start-page: 106783 year: 2023 ident: CR15 article-title: Linking soil organic carbon mineralization with soil variables and bacterial communities in a permafrost-affected tussock wetland during laboratory incubation publication-title: Catena doi: 10.1016/j.catena.2022.106783 – volume: 828 start-page: 154378 year: 2022 ident: CR36 article-title: The regulators of soil organic carbon mineralization upon lime and/or phosphate addition vary with depth publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.154378 – volume: 215 start-page: 105203 year: 2022 ident: CR66 article-title: Soil organic carbon content and mineralization controlled by the composition, origin and molecular diversity of organic matter: a study in tropical alpine grasslands publication-title: Soil Tillage Res doi: 10.1016/j.still.2021.105203 – volume: 801 start-page: 149717 year: 2021 ident: CR69 article-title: Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.149717 – volume: 305 start-page: 153 year: 2017 end-page: 161 ident: CR49 article-title: Tree species and time since afforestation drive soil C and N mineralization on former cropland publication-title: Geoderma doi: 10.1016/j.geoderma.2017.06.002 – volume: 228 start-page: 91 year: 2016 end-page: 100 ident: CR45 article-title: Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.05.003 – volume: 128 start-page: 125 year: 2016 end-page: 139 ident: CR59 article-title: Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil publication-title: Biogeochemistry doi: 10.1007/s10533-016-0198-4 – volume: 8 start-page: 253 year: 2022 end-page: 267 ident: CR54 article-title: Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure publication-title: Soil doi: 10.5194/soil-8-253-2022 – volume: 5 start-page: 81 year: 2014 end-page: 91 ident: CR53 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manag doi: 10.4155/cmt.13.77 – volume: 8 start-page: 1774 year: 2017 ident: CR26 article-title: Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter publication-title: Nat Commun doi: 10.1038/s41467-017-01998-z – volume: 38 start-page: 13 year: 2019 end-page: 21 ident: CR1 article-title: Global warming: review on driving forces and mitigation publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.13041 – volume: 95 start-page: 233 year: 2016 end-page: 242 ident: CR11 article-title: Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.01.004 – volume: 90 start-page: 204 year: 2015 end-page: 213 ident: CR58 article-title: Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.08.010 – volume: 202 start-page: 105226 year: 2021 ident: CR50 article-title: Changes in soil organic carbon and nitrogen mineralization and their temperature sensitivity in response to afforestation across China’s Loess Plateau publication-title: Catena doi: 10.1016/j.catena.2021.105226 – volume: 8 start-page: 879 year: 2018 end-page: 891 ident: CR57 article-title: Effects of temperature, soil substrate, and microbial community on carbon mineralization across three climatically contrasting forest sites publication-title: Ecol Evol doi: 10.1002/ece3.3708 – volume: 516 start-page: 120238 year: 2022 ident: CR35 article-title: Tree species mixing enhances rhizosphere soil organic carbon mineralization of conifers in subtropical plantations publication-title: For Ecol Manag doi: 10.1016/j.foreco.2022.120238 – volume: 119 start-page: 205 year: 2017 end-page: 213 ident: CR65 article-title: Soil erosion-related dynamics of soil bacterial communities and microbial respiration publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.06.018 – volume: 6 start-page: 751 year: 2016 end-page: 758 ident: CR8 article-title: Managing uncertainty in soil carbon feedbacks to climate change publication-title: Nat Clim Change doi: 10.1038/nclimate3071 – volume: 432 start-page: 116393 year: 2023 ident: CR64 article-title: New insights into carbon mineralization in tropical paddy soil under land use conversion: coupled roles of soil microbial community, metabolism, and dissolved organic matter chemodiversity publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116393 – volume: 278 start-page: 107654 year: 2019 ident: CR9 article-title: Soil organic carbon in Italian forests and agroecosystems: estimating current stock and future changes with a spatial modelling approach publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2019.107654 – ident: CR130 – volume: 22 start-page: 501 year: 2022 end-page: 514 ident: CR51 article-title: Impact of varied levels of N, P, and S stoichiometry on C mineralization from three contrasting soils with or without wheat straw amendment: a laboratory study publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-021-00664-0 – volume: 94 start-page: 48 year: 2016 end-page: 60 ident: CR17 article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.11.007 – volume: 6 start-page: 42 year: 2016 end-page: 50 ident: CR56 article-title: Biophysical and economic limits to negative CO emissions publication-title: Nat Clim Change doi: 10.1038/nclimate2870 – volume: 115 start-page: 1 year: 2018 end-page: 9 ident: CR44 article-title: Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.04.002 – volume: 24 start-page: 4816 year: 2018 end-page: 4826 ident: CR12 article-title: Differential responses of carbon-degrading enzymes activities to warming: implications for soil respiration publication-title: Global Change Biol doi: 10.1111/gcb.14394 – volume: 45 start-page: 115 year: 2008 end-page: 131 ident: CR7 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biol Fertil Soils doi: 10.1007/s00374-008-0334-y – year: 1986 ident: CR20 publication-title: Soil enzymology and research method – volume: 344 start-page: 119 year: 2019 end-page: 126 ident: CR28 article-title: Organic carbon mineralization in soils of a natural forest and a forest plantation of southeastern China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.03.012 – volume: 242 start-page: 67 year: 2017 end-page: 75 ident: CR13 article-title: Can afforestation with restore soil C and N stocks depleted by crop cultivation to levels observed under native systems? publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.03.023 – volume: 17 start-page: 1658 year: 2011 end-page: 1670 ident: CR14 article-title: Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2010.02336.x – volume: 160 start-page: 108312 year: 2021 ident: CR30 article-title: Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108312 – volume: 32 start-page: e01923 year: 2021 ident: CR23 article-title: Soil bacterial community composition and diversity response to land conversion is depth-dependent publication-title: Glob Ecol Conserv doi: 10.1016/j.gecco.2021.e01923 – volume: 162 start-page: 108427 year: 2021 ident: CR47 article-title: Spatial access and resource limitations control carbon mineralization in soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108427 – volume: 221 start-page: 106783 year: 2023 ident: 450_CR15 publication-title: Catena doi: 10.1016/j.catena.2022.106783 – volume: 171 start-page: 450 year: 2018 ident: 450_CR21 publication-title: Catena doi: 10.1016/j.catena.2018.07.032 – volume: 12 start-page: 3269 year: 2020 ident: 450_CR18 publication-title: Earth Syst Sci Data doi: 10.5194/essd-12-3269-2020 – start-page: 3 volume-title: Managing global warming year: 2019 ident: 450_CR33 doi: 10.1016/B978-0-12-814104-5.00001-6 – volume: 432 start-page: 116393 year: 2023 ident: 450_CR64 publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116393 – volume: 45 start-page: 115 year: 2008 ident: 450_CR7 publication-title: Biol Fertil Soils doi: 10.1007/s00374-008-0334-y – volume: 40 start-page: 2803 year: 2008 ident: 450_CR19 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.08.001 – volume: 22 start-page: 501 year: 2022 ident: 450_CR51 publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-021-00664-0 – volume: 32 start-page: e01923 year: 2021 ident: 450_CR23 publication-title: Glob Ecol Conserv doi: 10.1016/j.gecco.2021.e01923 – volume: 128 start-page: 125 year: 2016 ident: 450_CR59 publication-title: Biogeochemistry doi: 10.1007/s10533-016-0198-4 – volume: 56 start-page: 1093 year: 2020 ident: 450_CR63 publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01468-7 – volume: 344 start-page: 119 year: 2019 ident: 450_CR28 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.03.012 – volume: 157 start-page: 206 year: 2010 ident: 450_CR34 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.04.015 – volume: 160 start-page: 108312 year: 2021 ident: 450_CR30 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108312 – volume: 19 start-page: 450 year: 2016 ident: 450_CR60 publication-title: Ecosystems doi: 10.1007/s10021-015-9941-2 – volume: 516 start-page: 120238 year: 2022 ident: 450_CR35 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2022.120238 – volume: 96 start-page: fiz194 year: 2020 ident: 450_CR4 publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiz194 – volume: 8 start-page: 253 year: 2022 ident: 450_CR54 publication-title: Soil doi: 10.5194/soil-8-253-2022 – volume: 61–62 start-page: 281 year: 2004 ident: 450_CR43 publication-title: Agrofor Syst doi: 10.1023/b:agfo.0000029005.92691.79 – volume: 90 start-page: 204 year: 2015 ident: 450_CR58 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.08.010 – volume: 801 start-page: 149717 year: 2021 ident: 450_CR69 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.149717 – volume: 277 start-page: 123338 year: 2020 ident: 450_CR31 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123338 – volume: 8 start-page: 1774 year: 2017 ident: 450_CR26 publication-title: Nat Commun doi: 10.1038/s41467-017-01998-z – volume: 11 start-page: 1408 year: 2019 ident: 450_CR38 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12644 – volume: 278 start-page: 107654 year: 2019 ident: 450_CR9 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2019.107654 – volume-title: Soil enzymology and research method year: 1986 ident: 450_CR20 – volume: 34 start-page: 3618 year: 2023 ident: 450_CR120 publication-title: Land Degrad Dev doi: 10.1002/ldr.4708 – volume: 478 start-page: 49 year: 2011 ident: 450_CR55 publication-title: Nature doi: 10.1038/nature10386 – volume: 6 start-page: 751 year: 2016 ident: 450_CR8 publication-title: Nat Clim Change doi: 10.1038/nclimate3071 – volume: 95 start-page: 233 year: 2016 ident: 450_CR11 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.01.004 – volume: 38 start-page: 13 year: 2019 ident: 450_CR1 publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.13041 – volume: 271 start-page: 168 year: 2020 ident: 450_CR39 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2019.03.001 – volume: 119 start-page: 205 year: 2017 ident: 450_CR65 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.06.018 – volume: 264 start-page: 1 year: 2018 ident: 450_CR10 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2018.05.008 – volume: 94 start-page: 48 year: 2016 ident: 450_CR17 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.11.007 – volume: 17 start-page: 1658 year: 2011 ident: 450_CR14 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2010.02336.x – volume: 192 start-page: 189 year: 2013 ident: 450_CR48 publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.003 – volume: 363 start-page: 933 year: 2019 ident: 450_CR2 publication-title: Science doi: 10.1126/science.aaw2741 – volume: 242 start-page: 67 year: 2017 ident: 450_CR13 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.03.023 – volume: 13 start-page: 7212 year: 2021 ident: 450_CR52 publication-title: Sustainability doi: 10.3390/su13137212 – ident: 450_CR130 – volume: 18 start-page: 1424 year: 2018 ident: 450_CR22 publication-title: J Soils Sediments doi: 10.1007/s11368-017-1870-6 – volume: 13 start-page: 5514 year: 2022 ident: 450_CR62 publication-title: Nat Commun doi: 10.1038/s41467-022-33278-w – volume: 6 start-page: 325 year: 2013 ident: 450_CR71 publication-title: J Plant Ecol doi: 10.1093/jpe/rtt034 – volume: 374 start-page: 114444 year: 2020 ident: 450_CR42 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114444 – volume: 11 start-page: 415 year: 2017 ident: 450_CR16 publication-title: ISME J doi: 10.1038/ismej.2016.131 – volume: 204 start-page: 105405 year: 2021 ident: 450_CR70 publication-title: Catena doi: 10.1016/j.catena.2021.105405 – volume: 24 start-page: 4816 year: 2018 ident: 450_CR12 publication-title: Global Change Biol doi: 10.1111/gcb.14394 – volume: 162 start-page: 108427 year: 2021 ident: 450_CR47 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108427 – volume: 215 start-page: 105203 year: 2022 ident: 450_CR66 publication-title: Soil Tillage Res doi: 10.1016/j.still.2021.105203 – volume: 115 start-page: 1 year: 2018 ident: 450_CR44 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.04.002 – volume: 24 start-page: 5230 year: 2022 ident: 450_CR5 publication-title: Environ Microbiol doi: 10.1111/1462-2920.16146 – volume: 8 start-page: 879 year: 2018 ident: 450_CR57 publication-title: Ecol Evol doi: 10.1002/ece3.3708 – volume: 141 start-page: 107660 year: 2020 ident: 450_CR25 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107660 – volume: 6 start-page: 22411 year: 2016 ident: 450_CR68 publication-title: Sci Rep doi: 10.1038/srep22411 – ident: 450_CR29 – volume: 16 start-page: 1291 year: 2012 ident: 450_CR27 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.10.004 – volume: 5 start-page: 81 year: 2014 ident: 450_CR53 publication-title: Carbon Manag doi: 10.4155/cmt.13.77 – volume: 204 start-page: 104712 year: 2020 ident: 450_CR3 publication-title: Soil Tillage Res doi: 10.1016/j.still.2020.104712 – volume: 160 start-page: 42 year: 2016 ident: 450_CR24 publication-title: Soil Tillage Res doi: 10.1016/j.still.2016.01.003 – volume: 228 start-page: 91 year: 2016 ident: 450_CR45 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.05.003 – volume: 202 start-page: 105226 year: 2021 ident: 450_CR50 publication-title: Catena doi: 10.1016/j.catena.2021.105226 – volume: 28 start-page: 1690 year: 2022 ident: 450_CR6 publication-title: Glob Change Biol doi: 10.1111/gcb.15998 – volume: 23 start-page: 4430 year: 2017 ident: 450_CR40 publication-title: Glob Change Biol doi: 10.1111/gcb.13767 – volume: 6 start-page: 42 year: 2016 ident: 450_CR56 publication-title: Nat Clim Change doi: 10.1038/nclimate2870 – volume: 305 start-page: 153 year: 2017 ident: 450_CR49 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.06.002 – volume: 433 start-page: 65 year: 2018 ident: 450_CR37 publication-title: Plant Soil doi: 10.1007/s11104-018-3826-z – volume: 692 start-page: 930 year: 2019 ident: 450_CR41 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.07.286 – volume: 198 start-page: 656 year: 2013 ident: 450_CR32 publication-title: New Phytol doi: 10.1111/nph.12235 – volume: 21 start-page: 780 year: 2021 ident: 450_CR46 publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-020-00400-0 – volume: 4 start-page: 633 year: 2014 ident: 450_CR67 publication-title: Ecol Evol doi: 10.1002/ece3.969 – volume: 153 start-page: 108062 year: 2021 ident: 450_CR61 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.108062 – volume: 828 start-page: 154378 year: 2022 ident: 450_CR36 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.154378 |
SSID | ssj0000941497 |
Score | 2.3043597 |
Snippet | Background
Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC... BackgroundAnthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC... BACKGROUND: Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning SOC... Abstract Background Anthropogenic land use changes (LUCs) impart intensifying impacts on soil organic carbon (SOC) turnover, leading to uncertainty concerning... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 39 |
SubjectTerms | Agricultural practices Agriculture Agroforestry Anthropogenic factors Bacteria Bacterial alpha diversity bacterial communities Bulk density Carbon Carbon cycle Corn Correlation Crop rotation Depth Earth and Environmental Science Environment Enzymatic activity Enzyme activity Enzymes equations forests global carbon budget Human influences Incubation period Indoor incubation Kinetic equations Land use Land use change Mineralization Organic carbon Physicochemical processes Physicochemical properties Plantations Regression analysis Soil soil bacteria Soil chemistry Soil enzyme activity soil enzymes Soil microorganisms soil organic carbon Soil organic carbon mineralization Soil pH Soil properties Soils species diversity uncertainty Wheat Yellow Sea |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF6kIHgRrYrRWlbwpqHJ_s7RlpYi6slCb8tks4uVmjxe8hD7p_Sv7exu8mwF9eIlhOwmLDszmW-SmW8IeWMaJxuG0YmsuS9FJ3lpGkDDk02H-J4Lr2Kh8KfP6vRMfDiX57dafcWcsEwPnDfuQIGWLXATUFeEaR1qYGd88F5VzDPj49sXfd6tYOpbzpdD6K-XKhmjDsaaY-RSoosqI4ypyqs7nigR9t9Bmb_9GE3-5uQReTgDRfo-L_Axuef7XXL_OJFM_3xCrj_mpgd0HC4uae7N5KiDdTv09PtF4pKeSyzpNORZ-StGbJGVOALoKn6IX0dGVQp9R9tM3IwDqQCXdkvKBoWJLo1U8Myvpq8jDahAw4-4gpgbSTejp7mIeHxKzk6OvxydlnOfhdJJLic8NsGBUEHyUIdKo3h4G3wDrTaN4d7ItuZ1xyrPg6g4GqoGLhQgsoSAeJI_Izv90PvnhGpgQlXa1RicYiwlwDEGEqQG7aFqTEHqZc-tm0nIYy-MS5uCEaNslpNFOdkkJ3tVkLfbe1aZguOvsw-jKLczI312uoCSsLNS2X8pVUH2FkWws02PlhmpdaTHqQvyejuM1hh_sUDvh81oOToQjRDJ8IK8WxTo1yP-vOwX_2PZL8kDFhU8ZdvskZ1pvfGvEDNN7X4yjxuschQh priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFA5zQ_BFdCrWbZKBb1psm599nGNjiNuTg72F0zTByWwvt72M7U_ZX7uTpL2yoYIvpTRpCT05yXdyzvkOIR90bUVdoXUiSuZy3gqW6xpQ8UTdIr5n3MmQKHx6Jk_O-dcLcTElhQ1ztPvskowrdVRrLT8PJUPTI8c9Jg84pMhvn5AtEWz34KKdchx-plg5hP1qzpD546sPdqFI1v8AYT5yisa95vgFeT6BRHqQpPqSbLhumzw9igTTN6_I3bdU8IAO_eUVTXWZLLWwbPqO_rqMPNJTeiUd-9QrnWCE8liRH4AuwiH8MrCpUuha2iTSZmyIybe0ncM1KIx0LqKCd24x_hiox8nTX4cRhLhIuhocTQnEw2tyfnz0_fAkn2os5FYwMeK19ha49IL50hcKRcMa72polK41c1o0JSvbqnDM84KhkipgXAKiSvCIJdkbstn1nXtLqIKKy0LZEg1TtKM42KoCAUKBclDUOiPl_M-NnQjIQx2MKxMNES1NkpNBOZkoJ3ObkY_rdxaJfuOfvb8EUa57Burs-AAlYSZNNBKUaIBpj4sP143FJa3Vzjsni8pV2mVkd54IZtLnwVRaKBWoccqM7K-bURODewU6168Gw3DzUAiPNMvIp3kC_f7E34f97v-675BnoeZ9iqnZJZvjcuX2EBmNzfuoCPchfwhH priority: 102 providerName: Springer Nature |
Title | Linking soil organic carbon mineralization to soil physicochemical properties and bacterial alpha diversity at different depths following land use changes |
URI | https://link.springer.com/article/10.1186/s13717-023-00450-z https://www.proquest.com/docview/2857705261 https://www.proquest.com/docview/3153706183 https://doaj.org/article/6a75ba38f31948bc832d8efee602e28e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEB-8XQR9ED0Vq-cSwTct1zZJkz7J3rLnsegh6sG9hTRN9eBs120X8T6Kn9ZJmu5xgvcSSpK2gfmTmUnmNwCvZWF4kaF3wlNqY1ZxGstCo-DxokL7njKbu0Thj6f5yRlbnfPzEHDrwrXKUSd6RV21xsXIDzPJhXDgJOm79c_YVY1yp6uhhMYeTFEFSzmB6dHy9NPnXZQFnRd0AcSYLSPzwy6l6MHEuFXFzpxJ4qsbO5IH7r9hbf5zQOr3neOH8CAYjGQ-UPgR3LHNPtyff9sE0Ay7D3eXHnr692P482EohUC69uKSDBWbDDF6U7YN-XHhEaZD4iXp22HWENtwhbM8cgBZu_D8xuGsEt1UpBzgnHHAp-WSarzIQXRPxvIq-GTX_feO1MhW7S-3Andjkmw7S4bU4u4JnB0vvy5O4lB9ITac8h7bojaa5TWndVonAolGy9oWuhSykNRKXqY0rbLE0polFMVXaMpyjfamrtHKpE9h0rSNfQZE6IzliTApuqzoYTFtskxzzYUWVieFjCAdKaBMgCZ3FTIulXdRZK4GqimkmvJUU1cRvNm9sx6AOW6dfeQIu5vpQLV9B1JCBRlVuRa81FTWqJaYLA0qu0ra2to8yWwmbQQHI1uoIOmduubLCF7thlFG3cGLbmy77RTFbUWg4SRpBG9Hdrr-xP-X_fz2P76Ae5ljZH-75gAm_WZrX6KN1Jcz2GPJ-xlM5_PVl9UsiAX2LjLm2nwx89GHv9uHFhA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VrRBwQFBALBQwEpwgamLHsXNAqIWttnS7QqiVenMdx6GV2mTZZFW1n8JH8I2MnWSrItFbL1EUO4mlGY9nPJ73AN7J1PCUYnTCI2aDOOcskKnGicfTHP17FtvEFQrvTZPxQfztkB-uwJ--FsYdq-xtojfUeWXcHvkGlVwIB04SfZ79ChxrlMuu9hQarVrs2otzDNnqTztfUb7vKd0e7X8ZBx2rQGA44w1e08LoOCk4K6IiFDgYlhU21ZmQqWRW8ixiUU5Dy4o4ZKiWQrM40ehH6QK9J4bfvQOrMUtCOoDVrdH0-4_lrg4GSxhyiL46RyYbdcQwYgpwaQyc-xQGl9dWQE8UcM27_Sch69e57UfwsHNQyWarUY9hxZZr8GDz57wD6bBrcHfkoa4vnsDvSUu9QOrq5JS0DFGGGD3PqpKcnXhE667QkzRV26vdS3FEXR6pgMxcOmDucF2JLnOStfDR2ODLgEneHxwhuiE9nQve2VlzXJMC1bg6dyNwJzTJorakLWWun8LBrcjlGQzKqrTPgQhN4yQUJsIQGSO6WBtKNddcaGF1mMohRL0ElOmg0B0jx6nyIZFMVCs1hVJTXmrqcggflu_MWiCQG3tvOcEuezoQb_8AJaE6m6ASLXimmSzQDMYyM2hcc2kLa1GzLJV2COu9WqjOstTqah4M4e2yGW2CS_To0laLWjFcxgQ6apIN4WOvTlef-P-wX9z8xzdwb7y_N1GTnenuS7hPnVL7kz3rMGjmC_sK_bMme91NCgJHtz0P_wKAbU3B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBwQFBALBQwEpwg2sSOY-eAUEt31dKyqhCVenOdxKaV2mTZZFW1j8Kj8HSMnWSrItFbL6to4ySW5sfz2TPfALyTac5TiuiER8wEccFZIFONhsfTAuN7FpvEFQp_mybbB_HXQ364An_6WhiXVtn7RO-oiyp3e-QjKrkQjpwkGtkuLWJ_a_J59itwHaTcSWvfTqNVkV1zcY7wrf60s4Wyfk_pZPzjy3bQdRgIcs54g7-pzXWcWM5sZEOBE2OZNanOhEwlM5JnEYsKGhpm45ChigrN4kRjTKUtRlIM33sHVoVDRQNY3RxP978vd3gQOCH8EH2ljkxGdcQQPQW4TAYulAqDy2uroW8acC3S_edw1q95k0fwsAtWyUarXY9hxZRr8GDj57wj7DBrcHfsaa8vnsDvvbYNA6mrk1PSdovKSa7nWVWSsxPPbt0VfZKmake1-yquaZdnLSAzdzQwdxyvRJcFyVoqabzhS4JJ0SeREN2QvrULXplZc1wTiypdnbsZuGxNsqgNacua66dwcCtyeQaDsirNcyBC0zgJRR4hXEZ0F-ucUs01F1oYHaZyCFEvAZV3tOiuO8ep8vBIJqqVmkKpKS81dTmED8tnZi0pyI2jN51glyMdobf_AyWhOv-gEi14ppm06BJjmeXoaAtprDFJSA2VZgjrvVqozsvU6somhvB2eRv9gzv00aWpFrViuKQJDNokG8LHXp2uXvH_ab-4-Ytv4B7an9rbme6-hPvU6bRP8lmHQTNfmFcYqjXZ684mCBzdthn-BfiiUfY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+soil+organic+carbon+mineralization+to+soil+physicochemical+properties+and+bacterial+alpha+diversity+at+different+depths+following+land+use+changes&rft.jtitle=Ecological+processes&rft.au=Guo%2C+Jing&rft.au=Xiong%2C+Wulai&rft.au=Qiu%2C+Jian&rft.au=Wang%2C+Guibin&rft.date=2023-12-01&rft.issn=2192-1709&rft.eissn=2192-1709&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-023-00450-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13717_023_00450_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon |