Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications
Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapid...
Saved in:
Published in | Nanotechnology Vol. 27; no. 36; p. 365202 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
09.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 106 cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing. |
---|---|
AbstractList | Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 106 cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing. Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing. Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaO sub(x)) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10 improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10 super(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing. Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing. |
Author | Ge, Ning Dávila, Noraica Strachan, John Paul Merced-Grafals, Emmanuelle J Williams, R Stanley |
Author_xml | – sequence: 1 givenname: Emmanuelle J surname: Merced-Grafals fullname: Merced-Grafals, Emmanuelle J email: mercedem@hpe.com organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA – sequence: 2 givenname: Noraica surname: Dávila fullname: Dávila, Noraica organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA – sequence: 3 givenname: Ning surname: Ge fullname: Ge, Ning organization: HP Inc., 1501 Page Mill Rd, Palo Alto, CA 94304, USA – sequence: 4 givenname: R Stanley surname: Williams fullname: Williams, R Stanley organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA – sequence: 5 givenname: John Paul surname: Strachan fullname: Strachan, John Paul organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27479054$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkW1r1TAYhoNM3Nn0L4x8VLCePHlr-lGGbzAQxvwc0vTpWUbbxKR17Bf4t205cyAICoHkgeu-Q3KdkZMpTkjIBbB3wIzZs0bVlZRG7nm9F3pdijP-jOxAaKjWwZyQ3RN0Ss5KuWMMwHB4QU55LeuGKbkjP68xoZtdO-Bb6rxfspu309TR23C4pSUhdnRchjlUA_7AgaYcD9mNY5gONPZ0xDGHMsdM4QauqcvZPRTar3OK95gp9n3wAad57XRDPFAfx7TMW9qlNATv5hCn8pI8791Q8NXjfk6-ffxwc_m5uvr66cvl-6vKK6HmysteG9-i0M5rBCOaVjS-57X22ncogbcamDDgUKE23IPvjAEFtWqlRinOyetj7_qM7wuW2Y6heBwGN2FcigWjlDDM1Pw_UNCaN0Y2K6qPqM-xlIy9TTmMLj9YYHbzZTcVdlNheW2Ftkdfa_Di8Y6lHbF7iv0WtAL8CISY7F1c8vqJ5d-tb_4SmtwU_-Bs6nrxC18jsLE |
CODEN | NNOTER |
CitedBy_id | crossref_primary_10_1109_TNANO_2022_3181793 crossref_primary_10_3389_fnins_2021_717222 crossref_primary_10_1109_ACCESS_2023_3273899 crossref_primary_10_1109_TCSII_2020_3032282 crossref_primary_10_1002_adma_201705914 crossref_primary_10_1109_JPROC_2020_3003007 crossref_primary_10_1109_TCSI_2021_3126477 crossref_primary_10_1007_s10836_022_06001_2 crossref_primary_10_1016_j_physrep_2022_02_001 crossref_primary_10_1007_s40042_023_00950_3 crossref_primary_10_1145_3325067 crossref_primary_10_1038_s41598_022_18100_3 crossref_primary_10_1038_s41928_017_0006_8 crossref_primary_10_1002_aelm_202200656 crossref_primary_10_1147_JRD_2019_2947011 crossref_primary_10_1109_JSTQE_2019_2957443 crossref_primary_10_1016_j_mee_2023_112072 crossref_primary_10_1109_JETCAS_2023_3237836 crossref_primary_10_1002_adma_201702770 crossref_primary_10_1109_TED_2022_3214794 crossref_primary_10_1021_acsanm_1c02969 crossref_primary_10_1109_JXCDC_2020_2992228 crossref_primary_10_1002_aisy_202000014 crossref_primary_10_1002_adma_202205402 crossref_primary_10_1109_TED_2020_2979606 crossref_primary_10_1021_acsaelm_4c00428 crossref_primary_10_3389_fnins_2017_00538 crossref_primary_10_1063_1_5009439 crossref_primary_10_1080_00207217_2019_1692371 crossref_primary_10_3390_ma15238575 crossref_primary_10_1109_TC_2020_2998456 crossref_primary_10_1109_TCSI_2019_2926811 crossref_primary_10_3390_mi14020309 crossref_primary_10_1002_aelm_202200642 crossref_primary_10_1039_D3MA00069A crossref_primary_10_1038_s41598_020_80121_7 crossref_primary_10_1002_aisy_201900156 crossref_primary_10_1016_j_mejo_2020_104965 crossref_primary_10_1007_s12274_022_4437_9 crossref_primary_10_1002_aisy_202200292 crossref_primary_10_1063_1_4978757 crossref_primary_10_1021_acsnano_1c06980 crossref_primary_10_1080_03067319_2019_1637859 crossref_primary_10_1002_aelm_201900756 crossref_primary_10_1063_5_0045257 crossref_primary_10_1002_aisy_202200298 crossref_primary_10_1016_j_aeue_2019_01_003 crossref_primary_10_1038_s41467_017_02572_3 crossref_primary_10_1080_15287394_2019_1663458 crossref_primary_10_1002_adma_201904599 crossref_primary_10_1109_TVLSI_2018_2837908 crossref_primary_10_1088_2634_4386_acfbf3 crossref_primary_10_1109_TCSI_2021_3072210 crossref_primary_10_1109_TNANO_2019_2936239 crossref_primary_10_1063_1_5138193 crossref_primary_10_1063_1_5143815 crossref_primary_10_1038_s41598_017_17785_1 crossref_primary_10_3390_mi13020273 crossref_primary_10_3390_mi11040427 crossref_primary_10_1038_s41699_022_00328_2 crossref_primary_10_1002_pssa_201700875 crossref_primary_10_1109_TCSII_2022_3168404 crossref_primary_10_1109_TCAD_2020_3006188 crossref_primary_10_1109_TED_2022_3172400 crossref_primary_10_1021_acsami_9b06855 crossref_primary_10_1109_LED_2019_2931947 crossref_primary_10_3389_fnins_2020_00240 crossref_primary_10_1145_3461667 crossref_primary_10_1002_admt_201900080 crossref_primary_10_1038_s41563_021_01153_6 crossref_primary_10_1134_S1063739721050024 crossref_primary_10_1007_s10462_024_10787_2 crossref_primary_10_1016_j_vlsi_2022_07_005 crossref_primary_10_1002_aelm_201800876 crossref_primary_10_3390_mi10020141 crossref_primary_10_1002_aelm_201901411 crossref_primary_10_1021_acs_jpcc_8b09793 crossref_primary_10_1021_acsnano_1c07065 crossref_primary_10_1109_JETCAS_2019_2933774 crossref_primary_10_1016_j_chip_2024_100093 crossref_primary_10_1109_ACCESS_2020_2974015 crossref_primary_10_1145_3544974 crossref_primary_10_1021_acs_nanolett_8b01526 crossref_primary_10_1002_cta_3101 crossref_primary_10_1007_s11571_024_10069_1 crossref_primary_10_1080_03602559_2018_1542729 crossref_primary_10_1109_TVLSI_2019_2907096 crossref_primary_10_1021_acsami_8b20035 crossref_primary_10_1515_ntrev_2018_0045 crossref_primary_10_1515_teme_2020_0024 crossref_primary_10_1088_1361_6528_aad2fa crossref_primary_10_1002_adfm_202405544 crossref_primary_10_1109_TED_2023_3268253 crossref_primary_10_1038_s41928_018_0115_z crossref_primary_10_1109_LED_2020_2968388 crossref_primary_10_1109_TETCI_2022_3214582 crossref_primary_10_1109_TCAD_2018_2819366 |
Cites_doi | 10.1109/MAP.2015.2397153 10.1166/sam.2011.1177 10.1063/1.3236506 10.1109/JSSC.2013.2280296 10.1038/srep20085 10.1038/srep10492 10.1038/srep13311 10.1109/TNNLS.2013.2296777 10.1038/nature06932 10.1038/nature14539 10.1016/j.procs.2010.12.022 10.1111/dgd.12054 10.1002/adfm.201101117 10.1038/ncomms3072 10.1038/nnano.2012.240 10.1109/TED.2013.2264476 10.1088/0957-4484/23/7/075201 10.1109/JSSC.2008.2006439 10.1039/C3NR05016E 10.1088/0957-4484/24/38/383001 10.1038/nature14441 10.1002/adma.201202031 10.1109/TVLSI.2010.2049867 10.1007/BF00293853 10.1109/JSSC.2012.2215121 10.1021/nl904092h 10.1016/j.procs.2015.08.137 10.3103/S1060992X15020125 10.1021/nl901874j 10.1002/aelm.201500095 10.1038/nmat3510 10.1109/JSSC.2012.2222811 10.1038/nature08940 |
ContentType | Journal Article |
Copyright | 2016 IOP Publishing Ltd |
Copyright_xml | – notice: 2016 IOP Publishing Ltd |
DBID | O3W TSCCA NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1088/0957-4484/27/36/365202 |
DatabaseName | IOP_英国物理学会OA刊 IOPscience (Open Access) PubMed CrossRef MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: O3W name: Open Access: IOP Publishing Free Content url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications |
EISSN | 1361-6528 |
EndPage | 365202 |
ExternalDocumentID | 10_1088_0957_4484_27_36_365202 27479054 nanoaa3105 |
Genre | Journal Article |
GrantInformation_xml | – fundername: IARPA grantid: 2014-14080800008 |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 TSCCA W28 XPP ZMT NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c535t-c4f68cbe36ac6e1839b39cf276c6cde412b610381ae5e682c1cd8815175b46e43 |
IEDL.DBID | IOP |
ISSN | 0957-4484 |
IngestDate | Fri Jun 28 05:01:48 EDT 2024 Sat Jun 22 21:00:26 EDT 2024 Fri Aug 23 00:55:05 EDT 2024 Sat Sep 28 08:47:21 EDT 2024 Wed Aug 21 03:41:46 EDT 2024 Thu Jan 07 13:50:19 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-c4f68cbe36ac6e1839b39cf276c6cde412b610381ae5e682c1cd8815175b46e43 |
Notes | NANO-110551.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/0957-4484/27/36/365202 |
PMID | 27479054 |
PQID | 1816629849 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1855380872 pubmed_primary_27479054 iop_journals_10_1088_0957_4484_27_36_365202 crossref_primary_10_1088_0957_4484_27_36_365202 proquest_miscellaneous_1816629849 |
PublicationCentury | 2000 |
PublicationDate | 2016-09-09 |
PublicationDateYYYYMMDD | 2016-09-09 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanotechnology |
PublicationTitleAbbrev | NANO |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2016 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 23 24 25 26 28 29 Hu M (16) 2015 30 31 10 32 33 Chua L (8) 2013; 24 34 13 35 14 36 15 37 Alibart F (1) 2012; 23 Gokmen T (12) 2016 38 17 18 19 Nise N (27) 2015 Gao L (11) 2015; 26 2 3 4 5 6 7 20 Davila N (9) 21 |
References_xml | – ident: 13 doi: 10.1109/MAP.2015.2397153 – ident: 23 doi: 10.1166/sam.2011.1177 – ident: 29 doi: 10.1063/1.3236506 – ident: 24 doi: 10.1109/JSSC.2013.2280296 – ident: 21 doi: 10.1038/srep20085 – ident: 6 doi: 10.1038/srep10492 – ident: 25 doi: 10.1038/srep13311 – ident: 15 doi: 10.1109/TNNLS.2013.2296777 – ident: 34 doi: 10.1038/nature06932 – ident: 22 doi: 10.1038/nature14539 – ident: 3 doi: 10.1016/j.procs.2010.12.022 – ident: 36 doi: 10.1111/dgd.12054 – ident: 9 contributor: fullname: Davila N – ident: 26 doi: 10.1002/adfm.201101117 – ident: 2 doi: 10.1038/ncomms3072 – ident: 38 doi: 10.1038/nnano.2012.240 – volume: 26 issn: 0957-4484 year: 2015 ident: 11 publication-title: Nanotechnology contributor: fullname: Gao L – year: 2015 ident: 27 publication-title: Control Systems Engineering contributor: fullname: Nise N – ident: 33 doi: 10.1109/TED.2013.2264476 – volume: 23 issn: 0957-4484 year: 2012 ident: 1 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/7/075201 contributor: fullname: Alibart F – ident: 4 doi: 10.1109/JSSC.2008.2006439 – ident: 7 doi: 10.1039/C3NR05016E – volume: 24 year: 2013 ident: 8 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/383001 contributor: fullname: Chua L – year: 2016 ident: 12 publication-title: Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices contributor: fullname: Gokmen T – ident: 30 doi: 10.1038/nature14441 – ident: 31 doi: 10.1002/adma.201202031 – ident: 10 doi: 10.1109/TVLSI.2010.2049867 – ident: 32 doi: 10.1007/BF00293853 – ident: 19 doi: 10.1109/JSSC.2012.2215121 – ident: 17 doi: 10.1021/nl904092h – ident: 18 doi: 10.1016/j.procs.2015.08.137 – ident: 35 doi: 10.3103/S1060992X15020125 – ident: 37 doi: 10.1021/nl901874j – ident: 20 doi: 10.1002/aelm.201500095 – year: 2015 ident: 16 publication-title: Int. Conf. on Computer-Aided Design (ICCAD) contributor: fullname: Hu M – ident: 28 doi: 10.1038/nmat3510 – ident: 14 doi: 10.1109/JSSC.2012.2222811 – ident: 5 doi: 10.1038/nature08940 |
SSID | ssj0011821 |
Score | 2.5946662 |
Snippet | Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of... |
SourceID | proquest crossref pubmed iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 365202 |
SubjectTerms | accelerators algorithm Algorithms analog computing Arrays Conductance dot product engine Gates Memory devices memristor multi-level cell Programming Resistors Transistors |
Title | Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications |
URI | https://iopscience.iop.org/article/10.1088/0957-4484/27/36/365202 https://www.ncbi.nlm.nih.gov/pubmed/27479054 https://search.proquest.com/docview/1816629849 https://search.proquest.com/docview/1855380872 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9UwEA66IuiDl_V2vBHFN-05bZMm6aOIyyroiuyibyGdJi_racu5POgf8G87k7TLHmEVEUrJQzLNfb5mZr4w9iIe7YNzWVCNyKTMIatF8BkiVwqL1LV2FCj84aM6PJHvv1aTN2GMhemHceufYzIRBacuHB3izAJBgUapRi7wt10ofKqS6CSvCFwwNLHfHX06MyQgfC4S3V4qMwUJXyhnRz9dxjpcDD2jCjq4yZqp8snz5HS-3TRz-PEbr-N_te4WuzECVP46FbjNLvlun10_R1u4z65Gt1FY32E_Eb_jZk7hV6-4A9gS8QSmupYTDzJfD6gceXRazL6RexIf_cGWKIj3gS_9MpIbrHhxXHzmbrVy39ccgTQf6Po27iPDBSpGlEnHTBziLRRU-rzp_S47OXh7_OYwG692yKAS1SYDGZSBxgvlQHlCaY2oIZRagYLWy6JsFFG3F85XXpkSCmiNQXSiq0YqL8U9ttf1nX_AuHZFGSC4vNU0t0yd1x4CSG-clJA3M7aYBtQOicHDRsu7MZY621Jn21JboWzq7Bl7iaNjx8W8_mvu5zu5O9f1Oxns0IYZezZNIovrl4wyrvP9FoWT4basjaz_lKdCvZQbjR-7n2bgWVPoVKFG3P3wnyr9iF1D5Keis1z9mO1tVlv_BNHVpnka1w--j8SXX1HSF48 |
link.rule.ids | 315,783,787,27938,27939,38879,38904,53856,53882 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61RSA4ICiv5WkQNwibxI4fRwRdlVdBqBW9Wc7EPrFJtI8Dv4C_zdjJrrqHgpBy8MGeOB47_uyZ-QbgZbraR-eyIGueCZFjZnjwGSHXGBapjHIxUPjLiTw-Ex_Pq_M9ONrGwnT9-Ot_Q8WBKHgYwtEhTk8JFCiSqsWUju1c0lPRCX7aN2EfrtD61TGRwVf-Y2tMIAhdDJR7Q7tNoPClsnb2qH3qx-XwM21Ds1twc8SP7O3Q29uw59tDuHGBVfAQriavTlzegd8Er-lfG6OjXjOHuI68EFRqGxZpitmyp72LJZ_C7Gf0HmKju9acBLEusLmfJ-6BBStOi-_MLRbu15IRzmV9zK7GfCKgoH2LZMZbIIYpSURsfdEyfhfOZken746zMfNChhWvVhmKIDXWnkuH0kcQVXODoVQSJTZeFGUtI7N64XzlpS6xwEZrAg-qqoX0gt-Dg7Zr_QNgyhVlwODyRkXVa5MbjwGF104IzOsJTDdjbfuBYMMmw7jWNmrHRu3YUlku7aCdCbwildhxrS3_WfvFTu3Wtd1OBUsTZwLPN_q1tLyizcS1vluT8GhXLY0W5m91Kpp2uVb0svvD5Nh-Sjz0G4LFD_-r08_g2rf3M_v5w8mnR3CdMJpMbm3mMRysFmv_hHDQqn6aZvkfbYf6lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repeatable%2C+accurate%2C+and+high+speed+multi-level+programming+of+memristor+1T1R+arrays+for+power+efficient+analog+computing+applications&rft.jtitle=Nanotechnology&rft.au=Merced-Grafals%2C+Emmanuelle+J&rft.au=Davila%2C+Noraica&rft.au=Ge%2C+Ning&rft.au=Williams%2C+R+Stanley&rft.date=2016-09-09&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=27&rft.issue=36&rft.spage=365202&rft.epage=365210&rft_id=info:doi/10.1088%2F0957-4484%2F27%2F36%2F365202&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |