Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications

Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapid...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 27; no. 36; p. 365202
Main Authors Merced-Grafals, Emmanuelle J, Dávila, Noraica, Ge, Ning, Williams, R Stanley, Strachan, John Paul
Format Journal Article
LanguageEnglish
Published England IOP Publishing 09.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 106 cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.
AbstractList Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 106 cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.
Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with &lt;0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.
Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaO sub(x)) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10 improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10 super(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.
Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.
Author Ge, Ning
Dávila, Noraica
Strachan, John Paul
Merced-Grafals, Emmanuelle J
Williams, R Stanley
Author_xml – sequence: 1
  givenname: Emmanuelle J
  surname: Merced-Grafals
  fullname: Merced-Grafals, Emmanuelle J
  email: mercedem@hpe.com
  organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA
– sequence: 2
  givenname: Noraica
  surname: Dávila
  fullname: Dávila, Noraica
  organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA
– sequence: 3
  givenname: Ning
  surname: Ge
  fullname: Ge, Ning
  organization: HP Inc., 1501 Page Mill Rd, Palo Alto, CA 94304, USA
– sequence: 4
  givenname: R Stanley
  surname: Williams
  fullname: Williams, R Stanley
  organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA
– sequence: 5
  givenname: John Paul
  surname: Strachan
  fullname: Strachan, John Paul
  organization: Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27479054$$D View this record in MEDLINE/PubMed
BookMark eNqNkW1r1TAYhoNM3Nn0L4x8VLCePHlr-lGGbzAQxvwc0vTpWUbbxKR17Bf4t205cyAICoHkgeu-Q3KdkZMpTkjIBbB3wIzZs0bVlZRG7nm9F3pdijP-jOxAaKjWwZyQ3RN0Ss5KuWMMwHB4QU55LeuGKbkjP68xoZtdO-Bb6rxfspu309TR23C4pSUhdnRchjlUA_7AgaYcD9mNY5gONPZ0xDGHMsdM4QauqcvZPRTar3OK95gp9n3wAad57XRDPFAfx7TMW9qlNATv5hCn8pI8791Q8NXjfk6-ffxwc_m5uvr66cvl-6vKK6HmysteG9-i0M5rBCOaVjS-57X22ncogbcamDDgUKE23IPvjAEFtWqlRinOyetj7_qM7wuW2Y6heBwGN2FcigWjlDDM1Pw_UNCaN0Y2K6qPqM-xlIy9TTmMLj9YYHbzZTcVdlNheW2Ftkdfa_Di8Y6lHbF7iv0WtAL8CISY7F1c8vqJ5d-tb_4SmtwU_-Bs6nrxC18jsLE
CODEN NNOTER
CitedBy_id crossref_primary_10_1109_TNANO_2022_3181793
crossref_primary_10_3389_fnins_2021_717222
crossref_primary_10_1109_ACCESS_2023_3273899
crossref_primary_10_1109_TCSII_2020_3032282
crossref_primary_10_1002_adma_201705914
crossref_primary_10_1109_JPROC_2020_3003007
crossref_primary_10_1109_TCSI_2021_3126477
crossref_primary_10_1007_s10836_022_06001_2
crossref_primary_10_1016_j_physrep_2022_02_001
crossref_primary_10_1007_s40042_023_00950_3
crossref_primary_10_1145_3325067
crossref_primary_10_1038_s41598_022_18100_3
crossref_primary_10_1038_s41928_017_0006_8
crossref_primary_10_1002_aelm_202200656
crossref_primary_10_1147_JRD_2019_2947011
crossref_primary_10_1109_JSTQE_2019_2957443
crossref_primary_10_1016_j_mee_2023_112072
crossref_primary_10_1109_JETCAS_2023_3237836
crossref_primary_10_1002_adma_201702770
crossref_primary_10_1109_TED_2022_3214794
crossref_primary_10_1021_acsanm_1c02969
crossref_primary_10_1109_JXCDC_2020_2992228
crossref_primary_10_1002_aisy_202000014
crossref_primary_10_1002_adma_202205402
crossref_primary_10_1109_TED_2020_2979606
crossref_primary_10_1021_acsaelm_4c00428
crossref_primary_10_3389_fnins_2017_00538
crossref_primary_10_1063_1_5009439
crossref_primary_10_1080_00207217_2019_1692371
crossref_primary_10_3390_ma15238575
crossref_primary_10_1109_TC_2020_2998456
crossref_primary_10_1109_TCSI_2019_2926811
crossref_primary_10_3390_mi14020309
crossref_primary_10_1002_aelm_202200642
crossref_primary_10_1039_D3MA00069A
crossref_primary_10_1038_s41598_020_80121_7
crossref_primary_10_1002_aisy_201900156
crossref_primary_10_1016_j_mejo_2020_104965
crossref_primary_10_1007_s12274_022_4437_9
crossref_primary_10_1002_aisy_202200292
crossref_primary_10_1063_1_4978757
crossref_primary_10_1021_acsnano_1c06980
crossref_primary_10_1080_03067319_2019_1637859
crossref_primary_10_1002_aelm_201900756
crossref_primary_10_1063_5_0045257
crossref_primary_10_1002_aisy_202200298
crossref_primary_10_1016_j_aeue_2019_01_003
crossref_primary_10_1038_s41467_017_02572_3
crossref_primary_10_1080_15287394_2019_1663458
crossref_primary_10_1002_adma_201904599
crossref_primary_10_1109_TVLSI_2018_2837908
crossref_primary_10_1088_2634_4386_acfbf3
crossref_primary_10_1109_TCSI_2021_3072210
crossref_primary_10_1109_TNANO_2019_2936239
crossref_primary_10_1063_1_5138193
crossref_primary_10_1063_1_5143815
crossref_primary_10_1038_s41598_017_17785_1
crossref_primary_10_3390_mi13020273
crossref_primary_10_3390_mi11040427
crossref_primary_10_1038_s41699_022_00328_2
crossref_primary_10_1002_pssa_201700875
crossref_primary_10_1109_TCSII_2022_3168404
crossref_primary_10_1109_TCAD_2020_3006188
crossref_primary_10_1109_TED_2022_3172400
crossref_primary_10_1021_acsami_9b06855
crossref_primary_10_1109_LED_2019_2931947
crossref_primary_10_3389_fnins_2020_00240
crossref_primary_10_1145_3461667
crossref_primary_10_1002_admt_201900080
crossref_primary_10_1038_s41563_021_01153_6
crossref_primary_10_1134_S1063739721050024
crossref_primary_10_1007_s10462_024_10787_2
crossref_primary_10_1016_j_vlsi_2022_07_005
crossref_primary_10_1002_aelm_201800876
crossref_primary_10_3390_mi10020141
crossref_primary_10_1002_aelm_201901411
crossref_primary_10_1021_acs_jpcc_8b09793
crossref_primary_10_1021_acsnano_1c07065
crossref_primary_10_1109_JETCAS_2019_2933774
crossref_primary_10_1016_j_chip_2024_100093
crossref_primary_10_1109_ACCESS_2020_2974015
crossref_primary_10_1145_3544974
crossref_primary_10_1021_acs_nanolett_8b01526
crossref_primary_10_1002_cta_3101
crossref_primary_10_1007_s11571_024_10069_1
crossref_primary_10_1080_03602559_2018_1542729
crossref_primary_10_1109_TVLSI_2019_2907096
crossref_primary_10_1021_acsami_8b20035
crossref_primary_10_1515_ntrev_2018_0045
crossref_primary_10_1515_teme_2020_0024
crossref_primary_10_1088_1361_6528_aad2fa
crossref_primary_10_1002_adfm_202405544
crossref_primary_10_1109_TED_2023_3268253
crossref_primary_10_1038_s41928_018_0115_z
crossref_primary_10_1109_LED_2020_2968388
crossref_primary_10_1109_TETCI_2022_3214582
crossref_primary_10_1109_TCAD_2018_2819366
Cites_doi 10.1109/MAP.2015.2397153
10.1166/sam.2011.1177
10.1063/1.3236506
10.1109/JSSC.2013.2280296
10.1038/srep20085
10.1038/srep10492
10.1038/srep13311
10.1109/TNNLS.2013.2296777
10.1038/nature06932
10.1038/nature14539
10.1016/j.procs.2010.12.022
10.1111/dgd.12054
10.1002/adfm.201101117
10.1038/ncomms3072
10.1038/nnano.2012.240
10.1109/TED.2013.2264476
10.1088/0957-4484/23/7/075201
10.1109/JSSC.2008.2006439
10.1039/C3NR05016E
10.1088/0957-4484/24/38/383001
10.1038/nature14441
10.1002/adma.201202031
10.1109/TVLSI.2010.2049867
10.1007/BF00293853
10.1109/JSSC.2012.2215121
10.1021/nl904092h
10.1016/j.procs.2015.08.137
10.3103/S1060992X15020125
10.1021/nl901874j
10.1002/aelm.201500095
10.1038/nmat3510
10.1109/JSSC.2012.2222811
10.1038/nature08940
ContentType Journal Article
Copyright 2016 IOP Publishing Ltd
Copyright_xml – notice: 2016 IOP Publishing Ltd
DBID O3W
TSCCA
NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1088/0957-4484/27/36/365202
DatabaseName IOP_英国物理学会OA刊
IOPscience (Open Access)
PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Open Access: IOP Publishing Free Content
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications
EISSN 1361-6528
EndPage 365202
ExternalDocumentID 10_1088_0957_4484_27_36_365202
27479054
nanoaa3105
Genre Journal Article
GrantInformation_xml – fundername: IARPA
  grantid: 2014-14080800008
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
W28
XPP
ZMT
NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c535t-c4f68cbe36ac6e1839b39cf276c6cde412b610381ae5e682c1cd8815175b46e43
IEDL.DBID IOP
ISSN 0957-4484
IngestDate Fri Jun 28 05:01:48 EDT 2024
Sat Jun 22 21:00:26 EDT 2024
Fri Aug 23 00:55:05 EDT 2024
Sat Sep 28 08:47:21 EDT 2024
Wed Aug 21 03:41:46 EDT 2024
Thu Jan 07 13:50:19 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-c4f68cbe36ac6e1839b39cf276c6cde412b610381ae5e682c1cd8815175b46e43
Notes NANO-110551.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/0957-4484/27/36/365202
PMID 27479054
PQID 1816629849
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1855380872
pubmed_primary_27479054
iop_journals_10_1088_0957_4484_27_36_365202
crossref_primary_10_1088_0957_4484_27_36_365202
proquest_miscellaneous_1816629849
PublicationCentury 2000
PublicationDate 2016-09-09
PublicationDateYYYYMMDD 2016-09-09
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-09
  day: 09
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev NANO
PublicationTitleAlternate Nanotechnology
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
25
26
28
29
Hu M (16) 2015
30
31
10
32
33
Chua L (8) 2013; 24
34
13
35
14
36
15
37
Alibart F (1) 2012; 23
Gokmen T (12) 2016
38
17
18
19
Nise N (27) 2015
Gao L (11) 2015; 26
2
3
4
5
6
7
20
Davila N (9)
21
References_xml – ident: 13
  doi: 10.1109/MAP.2015.2397153
– ident: 23
  doi: 10.1166/sam.2011.1177
– ident: 29
  doi: 10.1063/1.3236506
– ident: 24
  doi: 10.1109/JSSC.2013.2280296
– ident: 21
  doi: 10.1038/srep20085
– ident: 6
  doi: 10.1038/srep10492
– ident: 25
  doi: 10.1038/srep13311
– ident: 15
  doi: 10.1109/TNNLS.2013.2296777
– ident: 34
  doi: 10.1038/nature06932
– ident: 22
  doi: 10.1038/nature14539
– ident: 3
  doi: 10.1016/j.procs.2010.12.022
– ident: 36
  doi: 10.1111/dgd.12054
– ident: 9
  contributor:
    fullname: Davila N
– ident: 26
  doi: 10.1002/adfm.201101117
– ident: 2
  doi: 10.1038/ncomms3072
– ident: 38
  doi: 10.1038/nnano.2012.240
– volume: 26
  issn: 0957-4484
  year: 2015
  ident: 11
  publication-title: Nanotechnology
  contributor:
    fullname: Gao L
– year: 2015
  ident: 27
  publication-title: Control Systems Engineering
  contributor:
    fullname: Nise N
– ident: 33
  doi: 10.1109/TED.2013.2264476
– volume: 23
  issn: 0957-4484
  year: 2012
  ident: 1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/7/075201
  contributor:
    fullname: Alibart F
– ident: 4
  doi: 10.1109/JSSC.2008.2006439
– ident: 7
  doi: 10.1039/C3NR05016E
– volume: 24
  year: 2013
  ident: 8
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/383001
  contributor:
    fullname: Chua L
– year: 2016
  ident: 12
  publication-title: Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices
  contributor:
    fullname: Gokmen T
– ident: 30
  doi: 10.1038/nature14441
– ident: 31
  doi: 10.1002/adma.201202031
– ident: 10
  doi: 10.1109/TVLSI.2010.2049867
– ident: 32
  doi: 10.1007/BF00293853
– ident: 19
  doi: 10.1109/JSSC.2012.2215121
– ident: 17
  doi: 10.1021/nl904092h
– ident: 18
  doi: 10.1016/j.procs.2015.08.137
– ident: 35
  doi: 10.3103/S1060992X15020125
– ident: 37
  doi: 10.1021/nl901874j
– ident: 20
  doi: 10.1002/aelm.201500095
– year: 2015
  ident: 16
  publication-title: Int. Conf. on Computer-Aided Design (ICCAD)
  contributor:
    fullname: Hu M
– ident: 28
  doi: 10.1038/nmat3510
– ident: 14
  doi: 10.1109/JSSC.2012.2222811
– ident: 5
  doi: 10.1038/nature08940
SSID ssj0011821
Score 2.5946662
Snippet Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 365202
SubjectTerms accelerators
algorithm
Algorithms
analog computing
Arrays
Conductance
dot product engine
Gates
Memory devices
memristor
multi-level cell
Programming
Resistors
Transistors
Title Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications
URI https://iopscience.iop.org/article/10.1088/0957-4484/27/36/365202
https://www.ncbi.nlm.nih.gov/pubmed/27479054
https://search.proquest.com/docview/1816629849
https://search.proquest.com/docview/1855380872
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9UwEA66IuiDl_V2vBHFN-05bZMm6aOIyyroiuyibyGdJi_racu5POgf8G87k7TLHmEVEUrJQzLNfb5mZr4w9iIe7YNzWVCNyKTMIatF8BkiVwqL1LV2FCj84aM6PJHvv1aTN2GMhemHceufYzIRBacuHB3izAJBgUapRi7wt10ofKqS6CSvCFwwNLHfHX06MyQgfC4S3V4qMwUJXyhnRz9dxjpcDD2jCjq4yZqp8snz5HS-3TRz-PEbr-N_te4WuzECVP46FbjNLvlun10_R1u4z65Gt1FY32E_Eb_jZk7hV6-4A9gS8QSmupYTDzJfD6gceXRazL6RexIf_cGWKIj3gS_9MpIbrHhxXHzmbrVy39ccgTQf6Po27iPDBSpGlEnHTBziLRRU-rzp_S47OXh7_OYwG692yKAS1SYDGZSBxgvlQHlCaY2oIZRagYLWy6JsFFG3F85XXpkSCmiNQXSiq0YqL8U9ttf1nX_AuHZFGSC4vNU0t0yd1x4CSG-clJA3M7aYBtQOicHDRsu7MZY621Jn21JboWzq7Bl7iaNjx8W8_mvu5zu5O9f1Oxns0IYZezZNIovrl4wyrvP9FoWT4basjaz_lKdCvZQbjR-7n2bgWVPoVKFG3P3wnyr9iF1D5Keis1z9mO1tVlv_BNHVpnka1w--j8SXX1HSF48
link.rule.ids 315,783,787,27938,27939,38879,38904,53856,53882
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61RSA4ICiv5WkQNwibxI4fRwRdlVdBqBW9Wc7EPrFJtI8Dv4C_zdjJrrqHgpBy8MGeOB47_uyZ-QbgZbraR-eyIGueCZFjZnjwGSHXGBapjHIxUPjLiTw-Ex_Pq_M9ONrGwnT9-Ot_Q8WBKHgYwtEhTk8JFCiSqsWUju1c0lPRCX7aN2EfrtD61TGRwVf-Y2tMIAhdDJR7Q7tNoPClsnb2qH3qx-XwM21Ds1twc8SP7O3Q29uw59tDuHGBVfAQriavTlzegd8Er-lfG6OjXjOHuI68EFRqGxZpitmyp72LJZ_C7Gf0HmKju9acBLEusLmfJ-6BBStOi-_MLRbu15IRzmV9zK7GfCKgoH2LZMZbIIYpSURsfdEyfhfOZken746zMfNChhWvVhmKIDXWnkuH0kcQVXODoVQSJTZeFGUtI7N64XzlpS6xwEZrAg-qqoX0gt-Dg7Zr_QNgyhVlwODyRkXVa5MbjwGF104IzOsJTDdjbfuBYMMmw7jWNmrHRu3YUlku7aCdCbwildhxrS3_WfvFTu3Wtd1OBUsTZwLPN_q1tLyizcS1vluT8GhXLY0W5m91Kpp2uVb0svvD5Nh-Sjz0G4LFD_-r08_g2rf3M_v5w8mnR3CdMJpMbm3mMRysFmv_hHDQqn6aZvkfbYf6lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repeatable%2C+accurate%2C+and+high+speed+multi-level+programming+of+memristor+1T1R+arrays+for+power+efficient+analog+computing+applications&rft.jtitle=Nanotechnology&rft.au=Merced-Grafals%2C+Emmanuelle+J&rft.au=Davila%2C+Noraica&rft.au=Ge%2C+Ning&rft.au=Williams%2C+R+Stanley&rft.date=2016-09-09&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=27&rft.issue=36&rft.spage=365202&rft.epage=365210&rft_id=info:doi/10.1088%2F0957-4484%2F27%2F36%2F365202&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon