Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet
Emotion recognition and monitoring based on commonly used wearable devices can play an important role in psychological health monitoring and human-computer interaction. However, the existing methods cannot rely on the common smart bracelets or watches for emotion monitoring in daily life. To address...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 3; p. 718 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.01.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition and monitoring based on commonly used wearable devices can play an important role in psychological health monitoring and human-computer interaction. However, the existing methods cannot rely on the common smart bracelets or watches for emotion monitoring in daily life. To address this issue, our study proposes a method for emotional recognition using heart rate data from a wearable smart bracelet. A ‘neutral + target’ pair emotion stimulation experimental paradigm was presented, and a dataset of heart rate from 25 subjects was established, where neutral plus target emotion (neutral, happy, and sad) stimulation video pairs from China’s standard Emotional Video Stimuli materials (CEVS) were applied to the recruited subjects. Normalized features from the data of target emotions normalized by the baseline data of neutral mood were adopted. Emotion recognition experiment results approved the effectiveness of ‘neutral + target’ video pair simulation experimental paradigm, the baseline setting using neutral mood data, and the normalized features, as well as the classifiers of Adaboost and GBDT on this dataset. This method will promote the development of wearable consumer electronic devices for monitoring human emotional moods. |
---|---|
AbstractList | Emotion recognition and monitoring based on commonly used wearable devices can play an important role in psychological health monitoring and human-computer interaction. However, the existing methods cannot rely on the common smart bracelets or watches for emotion monitoring in daily life. To address this issue, our study proposes a method for emotional recognition using heart rate data from a wearable smart bracelet. A 'neutral + target' pair emotion stimulation experimental paradigm was presented, and a dataset of heart rate from 25 subjects was established, where neutral plus target emotion (neutral, happy, and sad) stimulation video pairs from China's standard Emotional Video Stimuli materials (CEVS) were applied to the recruited subjects. Normalized features from the data of target emotions normalized by the baseline data of neutral mood were adopted. Emotion recognition experiment results approved the effectiveness of 'neutral + target' video pair simulation experimental paradigm, the baseline setting using neutral mood data, and the normalized features, as well as the classifiers of Adaboost and GBDT on this dataset. This method will promote the development of wearable consumer electronic devices for monitoring human emotional moods. Emotion recognition and monitoring based on commonly used wearable devices can play an important role in psychological health monitoring and human-computer interaction. However, the existing methods cannot rely on the common smart bracelets or watches for emotion monitoring in daily life. To address this issue, our study proposes a method for emotional recognition using heart rate data from a wearable smart bracelet. A 'neutral + target' pair emotion stimulation experimental paradigm was presented, and a dataset of heart rate from 25 subjects was established, where neutral plus target emotion (neutral, happy, and sad) stimulation video pairs from China's standard Emotional Video Stimuli materials (CEVS) were applied to the recruited subjects. Normalized features from the data of target emotions normalized by the baseline data of neutral mood were adopted. Emotion recognition experiment results approved the effectiveness of 'neutral + target' video pair simulation experimental paradigm, the baseline setting using neutral mood data, and the normalized features, as well as the classifiers of Adaboost and GBDT on this dataset. This method will promote the development of wearable consumer electronic devices for monitoring human emotional moods.Emotion recognition and monitoring based on commonly used wearable devices can play an important role in psychological health monitoring and human-computer interaction. However, the existing methods cannot rely on the common smart bracelets or watches for emotion monitoring in daily life. To address this issue, our study proposes a method for emotional recognition using heart rate data from a wearable smart bracelet. A 'neutral + target' pair emotion stimulation experimental paradigm was presented, and a dataset of heart rate from 25 subjects was established, where neutral plus target emotion (neutral, happy, and sad) stimulation video pairs from China's standard Emotional Video Stimuli materials (CEVS) were applied to the recruited subjects. Normalized features from the data of target emotions normalized by the baseline data of neutral mood were adopted. Emotion recognition experiment results approved the effectiveness of 'neutral + target' video pair simulation experimental paradigm, the baseline setting using neutral mood data, and the normalized features, as well as the classifiers of Adaboost and GBDT on this dataset. This method will promote the development of wearable consumer electronic devices for monitoring human emotional moods. |
Author | Chen, Wenzhuo Hua, Haoqiang Shu, Lin Yu, Yang Xu, Xiangmin Jin, Jianxiu Li, Qin |
AuthorAffiliation | 3 School of Software Engineering, the Shenzhen Institute of Information Technology, Shenzhen 518172, China; liqin@sziit.edu.cn 1 School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China; shul@scut.edu.cn (L.S.); 201720212333@mail.scut.edu.cn (Y.Y.); 201821011745@mail.scut.edu.cn (W.C.); 201810101923@mail.scut.edu.cn (H.H.); xmxu@scut.edu.cn (X.X.) 2 Institute of Modern Industrial Technology of SCUT in Zhongshan, Zhongshan 528400, China |
AuthorAffiliation_xml | – name: 3 School of Software Engineering, the Shenzhen Institute of Information Technology, Shenzhen 518172, China; liqin@sziit.edu.cn – name: 2 Institute of Modern Industrial Technology of SCUT in Zhongshan, Zhongshan 528400, China – name: 1 School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China; shul@scut.edu.cn (L.S.); 201720212333@mail.scut.edu.cn (Y.Y.); 201821011745@mail.scut.edu.cn (W.C.); 201810101923@mail.scut.edu.cn (H.H.); xmxu@scut.edu.cn (X.X.) |
Author_xml | – sequence: 1 givenname: Lin surname: Shu fullname: Shu, Lin – sequence: 2 givenname: Yang surname: Yu fullname: Yu, Yang – sequence: 3 givenname: Wenzhuo surname: Chen fullname: Chen, Wenzhuo – sequence: 4 givenname: Haoqiang surname: Hua fullname: Hua, Haoqiang – sequence: 5 givenname: Qin surname: Li fullname: Li, Qin – sequence: 6 givenname: Jianxiu surname: Jin fullname: Jin, Jianxiu – sequence: 7 givenname: Xiangmin surname: Xu fullname: Xu, Xiangmin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32012920$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuFDEQRS0URB6w4AdQS2xgMaT86nFvkCAEJlIkpEDE0vKjevCoux1sDxJ_jzsTRknEyqXy8a3rqjomB1OckJCXFN5x3sFpZgAcllQ9IUdUMLFQjMHBvfiQHOe8AWCcc_WMHHIGlHUMjsjqB5pk7IDN-RhLiFNzhS6up3AbX-cwrZtVRUpzZQo2n0wxTZ_i2Jjm2zinPybjcMDynDztzZDxxd15Qq4_n38_Wy0uv365OPtwuXCSy7KwvsW-5a3te8GoY94rDsoIablTXnjTGesBwXDOUDqEtne0454qywCF5SfkYqfro9nomxSqiz86mqBvEzGtdbUV3IC6g37pbQteYSvA9pZ7v2TSCE9xrlS13u-0brZ2RO9wKskMD0Qf3kzhp17H33oJXAklq8CbO4EUf20xFz2GXNsxmAnjNmvGJXTQUckq-voRuonbNNVWaSYlCMmZmKlX9x3trfwbWAXe7gCXYs4J-z1CQc_LoPfLUNnTR6wLxcyDrZ8Jw39e_AUk5LTn |
CitedBy_id | crossref_primary_10_1007_s10772_020_09792_x crossref_primary_10_1111_coin_12659 crossref_primary_10_1016_j_jobe_2023_106272 crossref_primary_10_1109_JSEN_2022_3204586 crossref_primary_10_1109_JIOT_2024_3430297 crossref_primary_10_1109_TAFFC_2022_3176135 crossref_primary_10_3390_app13020807 crossref_primary_10_20965_jaciii_2022_p0521 crossref_primary_10_1038_s41597_022_01262_0 crossref_primary_10_1016_j_jad_2024_06_042 crossref_primary_10_3390_s22155611 crossref_primary_10_32604_csse_2024_052710 crossref_primary_10_1038_s41598_023_30458_6 crossref_primary_10_3390_a17090408 crossref_primary_10_3390_s20123510 crossref_primary_10_3390_s23218694 crossref_primary_10_1007_s12652_021_03367_7 crossref_primary_10_1007_s11633_022_1352_1 crossref_primary_10_3390_s24248024 crossref_primary_10_1007_s10586_024_04804_w crossref_primary_10_3389_fpubh_2022_880207 crossref_primary_10_1007_s13246_022_01117_3 crossref_primary_10_3390_app11188470 crossref_primary_10_3390_app13095637 crossref_primary_10_3390_s23062920 crossref_primary_10_1145_3471902 crossref_primary_10_1021_acsami_2c14094 crossref_primary_10_54097_hset_v62i_10416 crossref_primary_10_1145_3546738 crossref_primary_10_1177_09287329241291376 crossref_primary_10_30935_cedtech_11668 crossref_primary_10_3390_jtaer19040130 crossref_primary_10_3390_s22145311 crossref_primary_10_1016_j_measurement_2020_108747 crossref_primary_10_3390_s22072538 crossref_primary_10_20517_ss_2023_13 crossref_primary_10_1145_3643538 crossref_primary_10_3390_s23146572 crossref_primary_10_3390_s25030761 crossref_primary_10_3390_app13010387 crossref_primary_10_3390_buildings11050204 crossref_primary_10_1109_ACCESS_2022_3193778 crossref_primary_10_3390_app132413322 crossref_primary_10_32604_cmc_2023_033431 crossref_primary_10_3389_fpsyt_2021_799029 crossref_primary_10_3389_fnins_2021_719869 crossref_primary_10_1155_2021_1978111 crossref_primary_10_3390_s20144037 crossref_primary_10_2196_33952 crossref_primary_10_1109_ACCESS_2020_3048311 crossref_primary_10_1016_j_jestch_2021_03_012 crossref_primary_10_1109_ACCESS_2021_3110773 crossref_primary_10_1016_j_eswa_2023_120883 crossref_primary_10_1016_j_aej_2024_07_081 crossref_primary_10_1038_s44159_024_00334_9 crossref_primary_10_3389_frvir_2022_968312 crossref_primary_10_1145_3550307 crossref_primary_10_1109_ACCESS_2021_3056007 crossref_primary_10_1186_s40537_020_00401_x crossref_primary_10_3390_s20154194 crossref_primary_10_1007_s11042_020_09576_0 crossref_primary_10_1016_j_nanoen_2025_110821 crossref_primary_10_1007_s11082_023_06156_y crossref_primary_10_3390_s24123771 crossref_primary_10_1108_IJCHM_01_2021_0102 crossref_primary_10_1371_journal_pone_0290259 crossref_primary_10_3390_s23052839 crossref_primary_10_1007_s10439_023_03341_8 crossref_primary_10_1016_j_smhl_2024_100459 crossref_primary_10_3390_s23198092 crossref_primary_10_1155_2022_1079097 crossref_primary_10_3390_s21031018 crossref_primary_10_1155_2021_8347261 |
Cites_doi | 10.1109/BIBM.2017.8217815 10.7717/peerj.2258 10.1016/S0167-8760(99)00101-4 10.1109/T-AFFC.2011.15 10.1109/EMBC.2015.7319792 10.1109/TSMCA.2012.2210408 10.1109/CCDC.2013.6561487 10.1016/j.compbiomed.2015.09.019 10.1109/ICIIBMS.2015.7439542 10.1109/CINC.2009.126 10.1109/EMBC.2015.7318418 10.1109/TAFFC.2015.2432810 10.3390/s18072074 10.1016/j.ijhcs.2007.10.011 10.1080/02699939208411068 10.1109/MeMeA.2013.6549705 10.1109/TCYB.2018.2797176 10.22489/CinC.2017.317-457 10.1109/CARE.2013.6733748 10.3390/s18061905 10.1109/BIBE.2016.40 10.1109/CoDIT.2014.6996980 10.7717/peerj.2364 10.1145/3123024.3125614 10.1109/EMBC.2017.8037328 10.1109/ACCESS.2019.2891579 10.1016/j.amjcard.2007.03.056 10.1109/TAFFC.2014.2327617 10.1007/s10772-017-9396-2 10.1109/CINC.2009.102 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s20030718 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : directory of open access journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_90f7db60d8e640bfb3dd725a4d1e4da9 PMC7038485 32012920 10_3390_s20030718 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U180120050 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-bd6ef636bff421c2dd8308a45b3c8d4da9abd0e0a332e5ce06fc193d18b20e4b3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:41 EDT 2025 Thu Aug 21 14:10:32 EDT 2025 Fri Jul 11 15:13:05 EDT 2025 Fri Jul 25 20:40:06 EDT 2025 Wed Feb 19 02:05:28 EST 2025 Tue Jul 01 00:42:17 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | heart rate wearable smart bracelet emotion recognition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-bd6ef636bff421c2dd8308a45b3c8d4da9abd0e0a332e5ce06fc193d18b20e4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20030718 |
PMID | 32012920 |
PQID | 2550453242 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_90f7db60d8e640bfb3dd725a4d1e4da9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7038485 proquest_miscellaneous_2350909152 proquest_journals_2550453242 pubmed_primary_32012920 crossref_primary_10_3390_s20030718 crossref_citationtrail_10_3390_s20030718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200128 |
PublicationDateYYYYMMDD | 2020-01-28 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200128 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Song (ref_15) 2019; 7 Li (ref_5) 2016; 4 ref_14 ref_13 Noroozi (ref_26) 2017; 20 ref_11 ref_10 ref_32 ref_31 ref_30 Carels (ref_33) 2000; 36 Britton (ref_7) 2007; 100 Koelstra (ref_17) 2012; 3 ref_19 ref_16 Khetrapal (ref_2) 2007; 5 ref_24 ref_23 Akar (ref_3) 2015; 67 Zheng (ref_18) 2019; 49 ref_22 Wen (ref_25) 2014; 5 ref_1 Zhang (ref_12) 2016; 4 Ekman (ref_6) 1992; 6 ref_28 Nardelli (ref_29) 2015; 6 ref_27 ref_9 Xu (ref_20) 2010; 24 ref_8 Swangnetr (ref_21) 2013; 43 Bailenson (ref_4) 2008; 66 |
References_xml | – ident: ref_27 doi: 10.1109/BIBM.2017.8217815 – volume: 4 start-page: e2258 year: 2016 ident: ref_12 article-title: Emotion recognition based on customized smart bracelet with built-in accelerometer publication-title: PeerJ doi: 10.7717/peerj.2258 – volume: 24 start-page: 551 year: 2010 ident: ref_20 article-title: Preliminary Compilation and Evaluation of Chinese Emotional Image Library publication-title: Chin. J. Mental Health – volume: 5 start-page: 968 year: 2007 ident: ref_2 article-title: Detection of Negative Emotions in Autistics: Questioning the ‘Amygdala Hypothesis’ publication-title: New Sch. Psychol. Bull. – volume: 36 start-page: 25 year: 2000 ident: ref_33 article-title: Emotional responsivity during daily life: Relationship to psychosocial functioning and ambulatory blood pressure publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(99)00101-4 – volume: 3 start-page: 18 year: 2012 ident: ref_17 article-title: DEAP: A Database for Emotion Analysis; using Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: ref_8 doi: 10.1109/EMBC.2015.7319792 – ident: ref_14 – volume: 43 start-page: 63 year: 2013 ident: ref_21 article-title: Emotional State Classification in Patient–Robot Interaction Using Wavelet Analysis and Statistics-Based Feature Selection publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/TSMCA.2012.2210408 – ident: ref_24 doi: 10.1109/CCDC.2013.6561487 – volume: 67 start-page: 49 year: 2015 ident: ref_3 article-title: Nonlinear analysis of EEGs of patients with major depression during different emotional states publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.09.019 – ident: ref_22 doi: 10.1109/ICIIBMS.2015.7439542 – ident: ref_16 doi: 10.1109/CINC.2009.126 – ident: ref_30 doi: 10.1109/EMBC.2015.7318418 – volume: 6 start-page: 385 year: 2015 ident: ref_29 article-title: Recognizing Emotions Induced by Affective Sounds through Heart Rate Variability publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2015.2432810 – ident: ref_32 doi: 10.3390/s18072074 – volume: 66 start-page: 303 year: 2008 ident: ref_4 article-title: Real-time classification of evoked emotions using facial feature tracking and physiological responses publication-title: Int. J. Hum. Comput. Stud. doi: 10.1016/j.ijhcs.2007.10.011 – volume: 6 start-page: 169 year: 1992 ident: ref_6 article-title: An argument for basic emotions publication-title: Cognit. Emotion doi: 10.1080/02699939208411068 – ident: ref_13 doi: 10.1109/MeMeA.2013.6549705 – volume: 49 start-page: 1110 year: 2019 ident: ref_18 article-title: EmotionMeter: A Multimodal Framework for Recognizing Human Emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – ident: ref_23 doi: 10.22489/CinC.2017.317-457 – ident: ref_28 doi: 10.1109/CARE.2013.6733748 – ident: ref_31 doi: 10.3390/s18061905 – ident: ref_19 doi: 10.1109/BIBE.2016.40 – ident: ref_1 doi: 10.1109/CoDIT.2014.6996980 – volume: 4 start-page: e2364 year: 2016 ident: ref_5 article-title: Emotion recognition using kinect motion capture data of human gaits publication-title: PeerJ doi: 10.7717/peerj.2364 – ident: ref_10 doi: 10.1145/3123024.3125614 – ident: ref_11 doi: 10.1109/EMBC.2017.8037328 – volume: 7 start-page: 12177 year: 2019 ident: ref_15 article-title: MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – volume: 100 start-page: 524 year: 2007 ident: ref_7 article-title: Changes in Heart Rate and Heart Rate Variability Over Time in Middle-Aged Men and Women in the General Population (from the Whitehall II Cohort Study) publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2007.03.056 – volume: 5 start-page: 126 year: 2014 ident: ref_25 article-title: Emotion Recognition Based on Multi-Variant Correlation of Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2327617 – volume: 20 start-page: 239 year: 2017 ident: ref_26 article-title: Vocal-based emotion recognition using random forests and decision tree publication-title: Int. J. Speech Technol. doi: 10.1007/s10772-017-9396-2 – ident: ref_9 doi: 10.1109/CINC.2009.102 |
SSID | ssj0023338 |
Score | 2.566035 |
Snippet | Emotion recognition and monitoring based on commonly used wearable devices can play an important role in psychological health monitoring and human-computer... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 718 |
SubjectTerms | Accuracy Adult Algorithms China emotion recognition Emotions Emotions - physiology Endocrine system Experiments Facial Expression Female Happiness Heart rate Heart Rate - physiology Humans Male Nervous system Physiology Recognition, Psychology - physiology Sensors smart bracelet wearable Wearable computers Wearable Electronic Devices Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ : directory of open access journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQFRQIOB45HvIhCpoIx694S7hbtLriCh6CLhq_BBJkEWT__42TbLSLkGjoImcUOTNO5vuS8TeEnBYeIggtc1eYUS4VjHKkQT4vi6gA4a43rq22-Kcnd_Lvg3pYaPWVasI6eeDOcecjFktvNfMmaMlstML7kuN1fBGkh3brHua8OZnqqZZA5tXpCAkk9efvvF3MqbPHQvZpRfo_Q5YfCyQXMs7VJtnooSK96Ka4RVZCvU3WFwQEf5DJPS7UtPmJjrt2PPR6XhCEx205AJ2gSUOvEVPSP9AATRtKKNCblzR8-QYOE0-zQ-6uxre_J3nfGyF3Sqgmt16HqIW2MUpeOO69EcyAVFY445NjwHoWGAjBg3KB6egQq_nCWM6CtGKXrNbTOuwTWiaZOYfXGykvAQmHkwJcNKAlYHI3GTmb-6xyvXB46l_xXCGBSO6tBvdm5GQwfe3UMj4zukyOHwySwHU7gGGv-rBXX4U9I4fzsFX9U_deIT1ChJogYkZ-DafxeUk_QaAO0xnaCIRIuGAU2ux1UR5mInj6LMdZRsql-C9NdflM_fTYanLji9NIo35-x70dkDWeWD0rcm4OyWrzNgtHCH0ae9yu8v_ffwN1 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAgAINFGQqDlysOn7FOSEKrVYcOPQh9hb5CUhttt1N_z8zSTbdRRW3yBlFjmfs-cYef0PIxzK67KRRLJS2Zkq7mkEYFFlVZu0A7kYb-myLH2Z2ob7P9XzccFuNaZXrNbFfqOMi4B75IUBfQB_o_j9f3zCsGoWnq2MJjYfkEVKXYUpXNb8LuCTEXwObkITQ_nAlepPG-h4bPqin6r8PX_6bJrnhd06ekacjYKRfBg0_Jw9S-4I82aAR3CWzn2CueAWKHg9FeejpOi0InvukADoDkY6eArKk31znKF4roY6eXWHz0dIFcD_dS3Jxcnz-dcbGCgksaKk75qNJ2Ujjc1aiDCJGK7l1SnsZbFTR1c5HnriTUiQdEjc5AGKLpfWCJ-XlK7LTLtq0R2iFZHMBvlfrqByEHUFJF7J1Rjlw8bYgn9Zj1oSRPhyrWFw2EEbg8DbT8BbkYBK9Hjgz7hM6woGfBJDmum9YLH8146xpap6r6A2PNhnFffYyxkqAEcUy4d8VZH-ttmace6vmzlIK8mF6DbMGj0Jcmxa3ICMBKAFU0iDzetDy1BMpcHNO8IJUW_rf6ur2m_bP756ZG5ZPq6x-8_9uvSWPBUbtvGTC7pOdbnmb3gG06fz73n7_Ak7C-Z8 priority: 102 providerName: ProQuest |
Title | Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32012920 https://www.proquest.com/docview/2550453242 https://www.proquest.com/docview/2350909152 https://pubmed.ncbi.nlm.nih.gov/PMC7038485 https://doaj.org/article/90f7db60d8e640bfb3dd725a4d1e4da9 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zj9MwEB7tIaHlAXEugaUyiAdeAo6PxHlYrSi0VEisUKGib5GvANKSQjcr7f57xrnUovISRfbIcsbjzPf5mAF4mThdap6K2CYqj4XUeYw0yMVZUkqNcNcp25y2OE9nC_FxKZd70OfY7BR4uZPahXxSi_XF6-s_N2c44U8D40TK_uaSNaaaqH04RIeUhfn5SQybCYwjDWuDCm2LH8EtzsJCTEj2veGVmuD9uxDnvwcnNzzR9C7c6SAkeduO-T3Y89V9uL0RWPABzL6hAYdLUWTSpukh8_6gEL43xwTIDEVqMkesSd7rWpNw0YRo8uVXKB6vtUWHVD-ExXTy9d0s7nImxFZyWcfGpb5MeWrKUrDEMucUp0oLabhVTjida-Oop5pz5qX1NC0tYjiXKMOoF4Y_goNqVfnHQLIQfs5ie7l0QiMRsYJrWyqdCo1OX0XwqtdZYbuA4iGvxUWBxCJouhg0HcGLQfR3G0Vjl9A4KH4QCIGvm4LV-nvRzaMip2XmTEqd8qmgpjTcuYyhWbnEh6-L4KQftqI3pgJpEyLXAB0jeD5U4zwKmyO68qsrlOEInRA8SZQ5bkd56ElvJRFkW-O_1dXtmurnjyZWN_5QlVDyyX_bfApHLFB4msRMncBBvb7yzxDn1GYE-9kyw6eafhjB4Xhy_nk-atYMRo19_wVsd_8m |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCWq40fiHBCitFVKSw-lFXtL_QqtBNmymwrxp_iNjPPqLqq49RbZI8sZz3i-scczAK8TpyvNUxHbROWxkDqP0Q1ycZZUUiPcdcq20Rb7aXEkPk3kZAX-DG9hQljlsCe2G7Wb2nBGvo7QF9FHMP_vz37GoWpUuF0dSmh0YrHrf_9Cl23-bmcT1_cNY9tbhx-LuK8qEFvJZRMbl_oq5ampKsESy5xTnCotpOFWOeF0ro2jnmrOmZfW07SyiHJcogyjXhiO416D62h4adCobHLh4HH097rsRZzndH3OWhUK9UQWbF5bGuAyPPtvWOaCndu-A7d7gEo-dBJ1F1Z8fQ9uLaQtvA_FV-RDeHJFtroiQORgCEPC7zYIgRRI0pADRLJkUzeahGcsRJMvP0LzxkxbNHfNAzi6Et49hNV6WvvHQLKQ3M7ieLl0QqObYwXXtlI6FRohhYrg7cCz0vbpykPVjO8lui2BveXI3ghejaRnXY6Oy4g2AuNHgpBWu22Yzr6VvZaWOa0yZ1LqlE8FNZXhzmUMhdYlPvxdBGvDspW9rs_LC8mM4OXYjVoarl507afnSMMRmCE0k0jzqFvlcSachcNARiPIltZ_aarLPfXpSZsJHLdrJZR88v9pvYAbxeHnvXJvZ3_3Kdxk4cSAJjFTa7DazM79M4RVjXneyjKB46tWnr-QYThZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEEpdoHT8S54AQZbvaUlShQsXeUr9CK0G27KZC_DV-HeO8uosqbr1F9shy5mF_Y49nAF4mTpeapyK2icpjIXUeoxvk4iwppUa465Rtoi320-mh-DCTsw3407-FCWGV_ZrYLNRubsMZ-QihL6KPsP2Pyi4s4tN48vb0ZxwqSIWb1r6cRqsie_73L3Tflm92xyjrV4xNdr68n8ZdhYHYSi7r2LjUlylPTVkKlljmnOJUaSENt8oJp3NtHPVUc868tJ6mpUXE4xJlGPXCcBz3ClzNuEyCjWWzc2ePo-_XZjLiPKejJWvMKdQWWdn_mjIBF2Hbf0M0V_a8yS242YFV8q7Vrtuw4as7cGMlheFdmH5FPoTnV2SnLQhEDvqQJPxuAhLIFElqcoColox1rUl40kI0-fwjNG8vtMWtr74Hh5fCu_uwWc0r_xBIFhLdWRwvl05odHms4NqWSqdCI7xQEbzueVbYLnV5qKDxvUAXJrC3GNgbwYuB9LTN13ER0XZg_EAQUmw3DfPFt6Kz2CKnZeZMSp3yqaCmNNy5jKECu8SHv4tgqxdb0dn9sjjX0gieD91oseEaRld-foY0HEEawjSJNA9aKQ8z4SwcDDIaQbYm_7WprvdUJ8dNVnBcupVQ8tH_p_UMrqHZFB939_cew3UWDg9oEjO1BZv14sw_QYRVm6eNKhM4umzb-QvSvjyP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Emotion+Recognition+Using+Heart+Rate+Data+from+a+Smart+Bracelet&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shu%2C+Lin&rft.au=Yu%2C+Yang&rft.au=Chen%2C+Wenzhuo&rft.au=Hua%2C+Haoqiang&rft.date=2020-01-28&rft.eissn=1424-8220&rft.volume=20&rft.issue=3&rft_id=info:doi/10.3390%2Fs20030718&rft_id=info%3Apmid%2F32012920&rft.externalDocID=32012920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |