Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 16; no. 10; p. 1695
Main Authors Jiang, Peng, Hu, Zhixin, Liu, Jun, Yu, Shanen, Wu, Feng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.10.2016
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s16101695

Cover

Loading…
Abstract Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.
AbstractList Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.
Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.
Author Yu, Shanen
Wu, Feng
Hu, Zhixin
Liu, Jun
Jiang, Peng
AuthorAffiliation 2 State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, 310027 Hangzhou, China; liujun@163.com
1 College of Automation, Hangzhou Dianzi University, 310018 Hangzhou, China; hduhzx@163.com (Z.H.); shanen_yu@hdu.edu.cn (S.Y.); fengwu@hdu.edu.cn (F.W.)
AuthorAffiliation_xml – name: 1 College of Automation, Hangzhou Dianzi University, 310018 Hangzhou, China; hduhzx@163.com (Z.H.); shanen_yu@hdu.edu.cn (S.Y.); fengwu@hdu.edu.cn (F.W.)
– name: 2 State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, 310027 Hangzhou, China; liujun@163.com
Author_xml – sequence: 1
  givenname: Peng
  surname: Jiang
  fullname: Jiang, Peng
– sequence: 2
  givenname: Zhixin
  orcidid: 0000-0001-6627-4598
  surname: Hu
  fullname: Hu, Zhixin
– sequence: 3
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
– sequence: 4
  givenname: Shanen
  surname: Yu
  fullname: Yu, Shanen
– sequence: 5
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27754386$$D View this record in MEDLINE/PubMed
BookMark eNqNks9vFCEUxyemxv7y4D9gSLzoYS3Dg4G5mNRdW5s0rYl6JgzzZpd1dtgC08b_XrbbNm299EAg8Hmf8M17-8XO4Acsincl_QxQ06NYViUtq1q8KvZKzvhEMUZ3Hp13i_0Yl5QyAFBvil0mpeCgqr3ix4kZ-0RmzswHH10kX03ElviBTBe4ctb05CcO0QcyM8mQG5cWxAzk2CZ3jWSGuCYXOIaMXWC68eHPYfG6M33Et3f7QfH75Nuv6ffJ-eXp2fT4fGIFiDQxlVJAJZWiES0wzN_hHIVoW1tVLUBjZWVVB1JWNbdNXXa0tJa2DKypOs7goDjbeltvlnod3MqEv9obp28vfJhrE5KzPWoraAPMQtMwxauaKma7xjRMKLQoVZtdX7au9dissLU4pJzoifTpy-AWeu6vtaBKcgVZ8PFOEPzViDHplYsW-94M6MeoSyUEyLzqF6AggUHNXmIFwXmdG5zRD8_QpR_DkBuwoUolN1Cm3j_O-RDwfhwycLQFbPAxBuy0dckk5zexXa9LqjcDpx8GLld8elZxL_2f_Qfd0dHQ
CitedBy_id crossref_primary_10_1016_j_cjche_2024_09_026
crossref_primary_10_2166_ws_2023_164
crossref_primary_10_1016_j_measurement_2024_116025
crossref_primary_10_3390_s19092131
crossref_primary_10_3390_s21238075
crossref_primary_10_4015_S1016237218500370
crossref_primary_10_3390_electronics11233884
crossref_primary_10_1016_j_ifacol_2024_08_440
crossref_primary_10_1016_j_isatra_2021_04_042
crossref_primary_10_1007_s11432_018_9564_6
crossref_primary_10_3390_s19071633
crossref_primary_10_1016_j_chemolab_2022_104719
crossref_primary_10_1007_s11356_019_05116_y
crossref_primary_10_1016_j_neucom_2020_04_075
crossref_primary_10_1155_2017_1320780
crossref_primary_10_1177_1475921719850576
crossref_primary_10_1016_j_jii_2021_100216
crossref_primary_10_1080_00207543_2021_1968061
crossref_primary_10_1016_j_eswa_2023_121159
crossref_primary_10_1007_s00170_018_2607_4
crossref_primary_10_1016_j_eswa_2022_118508
crossref_primary_10_1016_j_isatra_2019_07_001
crossref_primary_10_1016_j_neucom_2021_11_067
crossref_primary_10_3390_math9233035
crossref_primary_10_3390_a11020021
crossref_primary_10_1002_cjce_24087
crossref_primary_10_1007_s12065_023_00842_2
crossref_primary_10_1109_TIE_2018_2798633
crossref_primary_10_1007_s10489_020_02087_3
crossref_primary_10_1016_j_chemolab_2022_104624
crossref_primary_10_1016_j_knosys_2021_107350
crossref_primary_10_1109_TII_2021_3084911
crossref_primary_10_3390_s17081786
crossref_primary_10_1016_j_conengprac_2021_104811
crossref_primary_10_3390_s20092458
crossref_primary_10_1109_JSYST_2017_2753851
crossref_primary_10_1155_2022_8626722
crossref_primary_10_1002_cite_202100134
crossref_primary_10_1016_j_jprocont_2020_01_004
crossref_primary_10_1016_j_compchemeng_2019_106669
crossref_primary_10_3390_s18030782
crossref_primary_10_1142_S021800141858003X
Cites_doi 10.1016/j.ins.2016.01.082
10.1016/j.ress.2013.02.022
10.1016/j.eswa.2011.02.078
10.1016/j.compchemeng.2009.12.008
10.1016/j.arcontrol.2004.12.002
10.1109/CCDC.2015.7162328
10.1016/j.asoc.2012.06.020
10.1016/j.ymssp.2015.10.025
10.3390/s150202774
10.1016/j.jprocont.2009.07.011
10.1109/ICMLA.2015.208
10.1186/s40537-014-0007-7
10.1214/aoms/1177729694
10.1162/neco.2006.18.7.1527
10.1016/j.jpdc.2014.01.003
10.1002/jmri.23600
10.1109/TII.2013.2243743
10.1561/2200000006
10.1016/j.asoc.2010.04.012
10.1016/j.ymssp.2013.07.006
10.1016/j.ymssp.2011.08.002
10.1016/j.ress.2015.05.025
10.1109/TPAMI.2013.30
10.1016/0098-1354(93)80018-I
10.1016/j.jprocont.2014.01.012
10.1016/j.compchemeng.2008.08.008
10.1016/j.measurement.2016.04.007
10.1016/j.rse.2011.04.022
10.1016/j.ymssp.2015.11.014
10.1016/S0098-1354(00)00371-9
10.1016/j.isatra.2008.10.014
10.1109/TIE.2014.2327555
ContentType Journal Article
Copyright Copyright MDPI AG 2016
2016 by the authors; licensee MDPI, Basel, Switzerland. 2016
Copyright_xml – notice: Copyright MDPI AG 2016
– notice: 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7QO
8FD
FR3
P64
7SP
7TB
7U5
L7M
5PM
DOA
DOI 10.3390/s16101695
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
MEDLINE - Academic
PubMed
Publicly Available Content Database
CrossRef

Solid State and Superconductivity Abstracts
Engineering Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 1695
ExternalDocumentID oai_doaj_org_article_c50b32c3bb28469082cfbab258ece78d
PMC5087483
4226755421
27754386
10_3390_s16101695
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
7QO
8FD
FR3
P64
7SP
7TB
7U5
L7M
5PM
PUEGO
ID FETCH-LOGICAL-c535t-a688307075b5d32e54344e55ddc66d33bc76c8f377694cb91f01cc0d23ca6f423
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:21 EDT 2025
Thu Aug 21 17:51:45 EDT 2025
Fri Jul 11 08:31:34 EDT 2025
Fri Jul 11 09:55:35 EDT 2025
Fri Jul 11 06:07:45 EDT 2025
Fri Jul 25 07:31:21 EDT 2025
Wed Feb 19 02:41:06 EST 2025
Tue Jul 01 01:36:25 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords deep learning
active learning
fault diagnosis
big sensor data
deep neural network
Language English
License https://creativecommons.org/licenses/by/4.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-a688307075b5d32e54344e55ddc66d33bc76c8f377694cb91f01cc0d23ca6f423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6627-4598
OpenAccessLink https://www.proquest.com/docview/1831878223?pq-origsite=%requestingapplication%
PMID 27754386
PQID 1831878223
PQPubID 2032333
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c50b32c3bb28469082cfbab258ece78d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5087483
proquest_miscellaneous_1855375539
proquest_miscellaneous_1837323923
proquest_miscellaneous_1835449822
proquest_journals_1831878223
pubmed_primary_27754386
crossref_citationtrail_10_3390_s16101695
crossref_primary_10_3390_s16101695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-13
PublicationDateYYYYMMDD 2016-10-13
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-13
  day: 13
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2016
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Escudero (ref_1) 2009; 33
Tamilselvan (ref_3) 2013; 115
Tuia (ref_28) 2011; 115
Vincent (ref_35) 2010; 11
Dai (ref_5) 2013; 9
Eslamloueyan (ref_11) 2011; 11
Monroy (ref_2) 2010; 34
Zhu (ref_26) 2008; 37
Isermann (ref_6) 2005; 29
Azadeh (ref_13) 2013; 13
ref_30
Rumelhart (ref_38) 1988; 5
Downs (ref_40) 1993; 17
ref_19
Zhang (ref_8) 2015; 142
Bordes (ref_27) 2005; 6
Bengio (ref_33) 2009; 2
Kambatla (ref_4) 2014; 74
Hinton (ref_18) 2006; 18
Zhang (ref_12) 2013; 41
Jia (ref_9) 2016; 72
Bazi (ref_29) 2016; 345
Larochelle (ref_36) 2009; 10
Ellingson (ref_39) 2012; 35
Najafabadi (ref_34) 2015; 2
Li (ref_7) 2009; 48
Bin (ref_15) 2012; 27
Bellala (ref_31) 2013; 35
ref_25
Gan (ref_23) 2016; 72
Kullback (ref_37) 1951; 22
ref_22
ref_21
ref_20
Amar (ref_14) 2015; 62
Molina (ref_16) 2015; 15
Shang (ref_17) 2014; 24
Mahadevan (ref_10) 2009; 19
Ruiz (ref_41) 2000; 24
Zhao (ref_32) 2011; 38
Sun (ref_24) 2016; 89
25633599 - Sensors (Basel). 2015 Jan 27;15(2):2774-97
19084227 - ISA Trans. 2009 Apr;48(2):213-9
16764513 - Neural Comput. 2006 Jul;18(7):1527-54
22281731 - J Magn Reson Imaging. 2012 Jun;35(6):1472-7
23868771 - IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2078-90
References_xml – ident: ref_30
– volume: 345
  start-page: 340
  year: 2016
  ident: ref_29
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.082
– volume: 10
  start-page: 1
  year: 2009
  ident: ref_36
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 115
  start-page: 124
  year: 2013
  ident: ref_3
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.02.022
– volume: 38
  start-page: 10199
  year: 2011
  ident: ref_32
  article-title: An effective procedure exploiting unlabeled data to build monitoring system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.078
– volume: 34
  start-page: 631
  year: 2010
  ident: ref_2
  article-title: A semi-supervised approach to fault diagnosis for chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.12.008
– volume: 29
  start-page: 71
  year: 2005
  ident: ref_6
  article-title: Model-based fault-detection and diagnosis–status and applications
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2004.12.002
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_35
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref_19
  doi: 10.1109/CCDC.2015.7162328
– volume: 13
  start-page: 1478
  year: 2013
  ident: ref_13
  article-title: A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.06.020
– volume: 72
  start-page: 303
  year: 2016
  ident: ref_9
  article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 15
  start-page: 2774
  year: 2015
  ident: ref_16
  article-title: Anomaly detection based on sensor data in petroleum industry applications
  publication-title: Sensors
  doi: 10.3390/s150202774
– volume: 19
  start-page: 1627
  year: 2009
  ident: ref_10
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.07.011
– ident: ref_21
– ident: ref_25
  doi: 10.1109/ICMLA.2015.208
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_34
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 22
  start-page: 79
  year: 1951
  ident: ref_37
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 6
  start-page: 1579
  year: 2005
  ident: ref_27
  article-title: Fast kernel classifiers with online and active learning
  publication-title: J. Mach. Learn. Res.
– volume: 37
  start-page: 63
  year: 2008
  ident: ref_26
  article-title: Semi-Supervised Learning Literature Survey
  publication-title: Comput. Sci.
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_18
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 74
  start-page: 2561
  year: 2014
  ident: ref_4
  article-title: Trends in big data analytics
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.01.003
– volume: 5
  start-page: 1
  year: 1988
  ident: ref_38
  article-title: Learning representations by back-propagating errors
  publication-title: Cognit. Model.
– volume: 35
  start-page: 1472
  year: 2012
  ident: ref_39
  article-title: Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23600
– volume: 9
  start-page: 2226
  year: 2013
  ident: ref_5
  article-title: From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2013.2243743
– volume: 2
  start-page: 1
  year: 2009
  ident: ref_33
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 11
  start-page: 1407
  year: 2011
  ident: ref_11
  article-title: Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.012
– volume: 41
  start-page: 127
  year: 2013
  ident: ref_12
  article-title: Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.07.006
– volume: 27
  start-page: 696
  year: 2012
  ident: ref_15
  article-title: Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.08.002
– volume: 142
  start-page: 482
  year: 2015
  ident: ref_8
  article-title: An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.05.025
– volume: 35
  start-page: 2078
  year: 2013
  ident: ref_31
  article-title: A rank-based approach to active diagnosis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.30
– volume: 17
  start-page: 245
  year: 1993
  ident: ref_40
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 24
  start-page: 223
  year: 2014
  ident: ref_17
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.01.012
– volume: 33
  start-page: 244
  year: 2009
  ident: ref_1
  article-title: Performance assessment of a novel fault diagnosis system based on support vector machines
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.08.008
– volume: 89
  start-page: 171
  year: 2016
  ident: ref_24
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 115
  start-page: 2232
  year: 2011
  ident: ref_28
  article-title: Using active learning to adapt remote sensing image classifiers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.04.022
– volume: 72
  start-page: 92
  year: 2016
  ident: ref_23
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.014
– ident: ref_22
– ident: ref_20
– volume: 24
  start-page: 777
  year: 2000
  ident: ref_41
  article-title: Neural network based framework for fault diagnosis in batch chemical plants
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00371-9
– volume: 48
  start-page: 213
  year: 2009
  ident: ref_7
  article-title: Model-based monitoring and fault diagnosis of fossil power plant process units using group method of data handling
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2008.10.014
– volume: 62
  start-page: 494
  year: 2015
  ident: ref_14
  article-title: Vibration spectrum imaging: A novel bearing fault classification approach
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2327555
– reference: 19084227 - ISA Trans. 2009 Apr;48(2):213-9
– reference: 16764513 - Neural Comput. 2006 Jul;18(7):1527-54
– reference: 25633599 - Sensors (Basel). 2015 Jan 27;15(2):2774-97
– reference: 22281731 - J Magn Reson Imaging. 2012 Jun;35(6):1472-7
– reference: 23868771 - IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2078-90
SSID ssj0023338
Score 2.3466086
Snippet Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1695
SubjectTerms Accuracy
Active learning
Algorithms
big sensor data
Chemical sensors
Criteria
Deep learning
deep neural network
Diagnosis
Fault diagnosis
Fourier transforms
Knowledge
Learning
Machine learning
Methods
Neural networks
Parameter estimation
Process controls
Sensors
Signal processing
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQmj6dpkUpPfRistbbxyTbJeQQCm0gNyONJBoI3pD1_v_O2F6zG0J66cEXa7CtGc3MN_b4E2PfvKlBRZBlTiaUCqAuXfa5rEAEn0wSVe7ZPq_MxbW6vNE3W1t9UU_YQA88KO4E9CxIATIEDKSGNuiGHHwQ2iVI1kWKvpjzNsXUWGpJrLwGHiGJRf3JCnEN0Y7onezTk_Q_hSwfN0huZZzFa_ZqhIr8dHjEA_YitW_Yyy0Cwbfs58Kv7zo-H_rlblf8DJNS5MuWb4gA-C-sU5cPfO47z-mlK_ctP-2DHJ-ndM-JnQPFroZ28HfsevHj9_lFOe6RUIKWuiu9cY7c1uqgoxSJ_hRVSesYwZgoZQBrwGVprakVhLrKswpgFoUEbzJiqfdsr1226SPjJsdsMampWQ7o2T5Eh7YSocYbIIySBfu-0V0DI4E47WNx12AhQWpuJjUX7Oskej-wZjwldEYGmASI6Lo_geZvRvM3_zJ_wY425mtG71s1GKYqR9AHn_l4Gka_oY8hvk3LdS-jlSL2wmdlrBSIIJ-9jtbS4lEX7MOwaqYZCaIXlM4UzO6sp50p7460t396jm_EzVY5efg_dPSJ7SPMM5RxK3nE9rqHdfqMUKoLX3qv-QvMsh1_
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpcmkPIUlfzqOopYde3K719qGUpNslFBoK7UJuRs80sNjJrhfSf9-RX8Rl2YMv1mBbMxrNN5L8DULvtcgtc5amwQuTMmvzVAUd0swSo73wJAsN2-eVuJyz79f8egf1NTY7Ba42pnaxntR8ufj4cP_3Czj855hxQsr-aQWoJZKK8CdoDwKSjP75gw2bCYRCGtaSCo3FR6GoYezfBDP_Py35KPzMDtB-hxvxeWvoQ7TjyyP07BGb4HP0c6bXixpP28Nztyt8ARHK4arEPSsA_gVJa7XEU11rHFdgsS7xeTPj4an3dzhSdYDYVXs2_AWaz779_nqZdgUTUsspr1MtlIo-LLnhjhIffxtlnnPnrBCOUmOlsCpQKUXOrMmzMMmsnThCrRYBgNVLtFtWpX-NsAguSIhwbBIMuLk2ToHhiMnhBYCpaII-9LorbMcmHotaLArIKqKai0HNCXo3iN61FBqbhC6iAQaByHrd3KiWN0XnRIXlE0OJpcZAUBWxWLsNRhvClbdeKpeg0958RT-SCpizMhVxEHzz26EZnCjujOjSV-tGhjMWqQy3ykhKAE5ufQ7nVMKVJ-hVO2qGHpHINUiVSJAcjadRl8ct5e2fhvAbQLRkih5v794JegpoTsTAmtFTtFsv1_4MEFNt3jT-8A8juBWb
  priority: 102
  providerName: Scholars Portal
Title Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/27754386
https://www.proquest.com/docview/1831878223
https://www.proquest.com/docview/1835449822
https://www.proquest.com/docview/1837323923
https://www.proquest.com/docview/1855375539
https://pubmed.ncbi.nlm.nih.gov/PMC5087483
https://doaj.org/article/c50b32c3bb28469082cfbab258ece78d
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be4ED4o1LiRbEgYvV2Pv0CTWkoUIiqoBKuVn7LJUqOyTO_--M7bgNqnKwD96RrX3Mzjez428I-Wxk4bh3LI1B2pQ7V6Q6mphmLrcmyJBnsWX7nMvzS_5jIRZ9wG3dp1Vu98R2o_a1wxj5CSy9TKM5Y1-X_1KsGoWnq30JjcfkEKnLMKVLLe4cLgb-V8cmxMC1P1kDukHyEbFjg1qq_ofw5f9pkvfszuw5edYDRnrazfAL8ihUL8nTezSCr8jFzGxuGjrtsuau13QCpsnTuqJbOgD6G7zVekWnpjEUQ6_UVPS03eroNIQlRY4OEJt3SeGvyeXs7M-387SvlJA6wUSTGqk1Kq8SVniWB_xflAchvHdSesasU9LpyJSSBXe2yOI4c27sc-aMjICo3pCDqq7CO0Jl9FGBaePjaEG_jfUaZiy3BXwAwBRLyJft2JWupxHHahY3JbgTOMzlMMwJ-TSILjvujIeEJjgBgwDSXbcP6tVV2WtP6cTYstwxa8GaSqzS7qI1Nhc6uKC0T8jxdvrKXgfX5d2KScjHoRm0B49ETBXqTSsjOEcOw70yiuWAI_e-Rwim4CoS8rZbNUOPciQZZFomRO2sp50u77ZU139bpm9Az4prdrS_e-_JE4BxEi1qxo7JQbPahA8AlRo7avUB7nr2fUQOJ2fzi1-jNuwA959c3wK3IRiF
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDcpBQwCiUvUxI7t5IBQy7La0rJCopX2FvyESlWy3c0K8af4jcwkm20XVXvrIZd4lMjjedrjbwh5q2VhM2d5HLw0cWZtEedBhzi1zGgvPUtDi_Y5lqPT7MtETLbI3_4uDJZV9jaxNdSutrhHvgeil-bozvjH6UWMXaPwdLVvodGJxZH_8xtStvmHwwGs7zvGhp9PPo3iZVeB2AoumljLPEdBV8IIx5nHu5WZF8I5K6Xj3FglbR64UrLIrCnSkKTWJo5xq2XIEOgATP4tcLwJapSaXCZ4HPK9Dr2I8yLZm0M0hWAnYs3nta0Brotn_y_LvOLnhvfJvWWASvc7iXpAtnz1kNy9Alv4iHwb6sV5Qwddld7ZnB6AK3S0rmgPP0C_Q3Zcz-hAN5riVi_VFd1vTSsdeD-liAkCZOOuCP0xOb0RHj4h21Vd-WeEyuCCAleaJcGAPdHG5SAhzBTwAwjeeETe97wr7RK2HLtnnJeQviCbyxWbI_JmRTrtsDquIzrABVgRILx2-6Ke_SyX2lpakRjOLDcGvLfErvA2GG2YyL31KncR2e2Xr1zq_Ly8lNCIvF4Ng7biEYyufL1oaUSWIWbiRhrFGcStG78jBFfwFBF52knNakYMQQ15LiOi1uRpbcrrI9XZrxZZHKJ1leV8Z_P0XpHbo5Ovx-Xx4fjoObkDIaREb57yXbLdzBb-BYRpjXnZ6gYlP25aGf8BmDhQHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IN4EChgEEpdoN3ZsJweEWsKqpWhVCSrtLfgJlapk2YcQf41fx0xe7aJqbz3kEo8SeTxPe_wNIW-0zG3qLI-DlyZOrc3jLOgQJ5YZ7aVnSWjQPqfy8DT9PBOzHfK3vwuDZZW9TWwMtast7pGPQPSSDN0ZH4WuLOKkmHyY_4qxgxSetPbtNFoROfZ_fkP6tnx_VMBav2Vs8unbx8O46zAQW8HFKtYyy1DolTDCcebxnmXqhXDOSuk4N1ZJmwWulMxTa_IkjBNrx45xq2VIEfQAzP8NxUWCOqZmF8keh9yvRTLiPB-PlhBZIfCJ2PB_TZuAq2Lb_0s0L_m8yV1ypwtW6X4rXffIjq_uk9uXIAwfkJOJXp-vaNFW7J0t6QG4RUfrivZQBPQrZMr1ghZ6pSlu-1Jd0f3GzNLC-zlFfBAgm7YF6Q_J6bXw8BHZrerKPyFUBhcUuNV0HAzYFm1cBtLCTA4_gECOR-Rdz7vSdhDm2EnjvIRUBtlcDmyOyOuBdN7idlxFdIALMBAg1Hbzol78KDvNLa0YG84sNwY8ucQO8TYYbZjIvPUqcxHZ65ev7PR_WV5Ia0ReDcOguXgcoytfrxsakaaIn7iVRnEGMezW7wjBFTx5RB63UjPMiCHAIc9kRNSGPG1MeXOkOvvZoIxD5K7SjD_dPr2X5CaoYfnlaHr8jNyCaFKiY0_4HtldLdb-OURsK_OiUQ1Kvl-3Lv4DPzRUUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+Based+on+Chemical+Sensor+Data+with+an+Active+Deep+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Peng&rft.au=Hu%2C+Zhixin&rft.au=Liu%2C+Jun&rft.au=Yu%2C+Shanen&rft.date=2016-10-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=16&rft.issue=10&rft.spage=1695&rft_id=info:doi/10.3390%2Fs16101695&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4226755421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon