Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network
Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 16; no. 10; p. 1695 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.10.2016
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s16101695 |
Cover
Loading…
Abstract | Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. |
---|---|
AbstractList | Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. |
Author | Yu, Shanen Wu, Feng Hu, Zhixin Liu, Jun Jiang, Peng |
AuthorAffiliation | 2 State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, 310027 Hangzhou, China; liujun@163.com 1 College of Automation, Hangzhou Dianzi University, 310018 Hangzhou, China; hduhzx@163.com (Z.H.); shanen_yu@hdu.edu.cn (S.Y.); fengwu@hdu.edu.cn (F.W.) |
AuthorAffiliation_xml | – name: 1 College of Automation, Hangzhou Dianzi University, 310018 Hangzhou, China; hduhzx@163.com (Z.H.); shanen_yu@hdu.edu.cn (S.Y.); fengwu@hdu.edu.cn (F.W.) – name: 2 State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, 310027 Hangzhou, China; liujun@163.com |
Author_xml | – sequence: 1 givenname: Peng surname: Jiang fullname: Jiang, Peng – sequence: 2 givenname: Zhixin orcidid: 0000-0001-6627-4598 surname: Hu fullname: Hu, Zhixin – sequence: 3 givenname: Jun surname: Liu fullname: Liu, Jun – sequence: 4 givenname: Shanen surname: Yu fullname: Yu, Shanen – sequence: 5 givenname: Feng surname: Wu fullname: Wu, Feng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27754386$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9vFCEUxyemxv7y4D9gSLzoYS3Dg4G5mNRdW5s0rYl6JgzzZpd1dtgC08b_XrbbNm299EAg8Hmf8M17-8XO4Acsincl_QxQ06NYViUtq1q8KvZKzvhEMUZ3Hp13i_0Yl5QyAFBvil0mpeCgqr3ix4kZ-0RmzswHH10kX03ElviBTBe4ctb05CcO0QcyM8mQG5cWxAzk2CZ3jWSGuCYXOIaMXWC68eHPYfG6M33Et3f7QfH75Nuv6ffJ-eXp2fT4fGIFiDQxlVJAJZWiES0wzN_hHIVoW1tVLUBjZWVVB1JWNbdNXXa0tJa2DKypOs7goDjbeltvlnod3MqEv9obp28vfJhrE5KzPWoraAPMQtMwxauaKma7xjRMKLQoVZtdX7au9dissLU4pJzoifTpy-AWeu6vtaBKcgVZ8PFOEPzViDHplYsW-94M6MeoSyUEyLzqF6AggUHNXmIFwXmdG5zRD8_QpR_DkBuwoUolN1Cm3j_O-RDwfhwycLQFbPAxBuy0dckk5zexXa9LqjcDpx8GLld8elZxL_2f_Qfd0dHQ |
CitedBy_id | crossref_primary_10_1016_j_cjche_2024_09_026 crossref_primary_10_2166_ws_2023_164 crossref_primary_10_1016_j_measurement_2024_116025 crossref_primary_10_3390_s19092131 crossref_primary_10_3390_s21238075 crossref_primary_10_4015_S1016237218500370 crossref_primary_10_3390_electronics11233884 crossref_primary_10_1016_j_ifacol_2024_08_440 crossref_primary_10_1016_j_isatra_2021_04_042 crossref_primary_10_1007_s11432_018_9564_6 crossref_primary_10_3390_s19071633 crossref_primary_10_1016_j_chemolab_2022_104719 crossref_primary_10_1007_s11356_019_05116_y crossref_primary_10_1016_j_neucom_2020_04_075 crossref_primary_10_1155_2017_1320780 crossref_primary_10_1177_1475921719850576 crossref_primary_10_1016_j_jii_2021_100216 crossref_primary_10_1080_00207543_2021_1968061 crossref_primary_10_1016_j_eswa_2023_121159 crossref_primary_10_1007_s00170_018_2607_4 crossref_primary_10_1016_j_eswa_2022_118508 crossref_primary_10_1016_j_isatra_2019_07_001 crossref_primary_10_1016_j_neucom_2021_11_067 crossref_primary_10_3390_math9233035 crossref_primary_10_3390_a11020021 crossref_primary_10_1002_cjce_24087 crossref_primary_10_1007_s12065_023_00842_2 crossref_primary_10_1109_TIE_2018_2798633 crossref_primary_10_1007_s10489_020_02087_3 crossref_primary_10_1016_j_chemolab_2022_104624 crossref_primary_10_1016_j_knosys_2021_107350 crossref_primary_10_1109_TII_2021_3084911 crossref_primary_10_3390_s17081786 crossref_primary_10_1016_j_conengprac_2021_104811 crossref_primary_10_3390_s20092458 crossref_primary_10_1109_JSYST_2017_2753851 crossref_primary_10_1155_2022_8626722 crossref_primary_10_1002_cite_202100134 crossref_primary_10_1016_j_jprocont_2020_01_004 crossref_primary_10_1016_j_compchemeng_2019_106669 crossref_primary_10_3390_s18030782 crossref_primary_10_1142_S021800141858003X |
Cites_doi | 10.1016/j.ins.2016.01.082 10.1016/j.ress.2013.02.022 10.1016/j.eswa.2011.02.078 10.1016/j.compchemeng.2009.12.008 10.1016/j.arcontrol.2004.12.002 10.1109/CCDC.2015.7162328 10.1016/j.asoc.2012.06.020 10.1016/j.ymssp.2015.10.025 10.3390/s150202774 10.1016/j.jprocont.2009.07.011 10.1109/ICMLA.2015.208 10.1186/s40537-014-0007-7 10.1214/aoms/1177729694 10.1162/neco.2006.18.7.1527 10.1016/j.jpdc.2014.01.003 10.1002/jmri.23600 10.1109/TII.2013.2243743 10.1561/2200000006 10.1016/j.asoc.2010.04.012 10.1016/j.ymssp.2013.07.006 10.1016/j.ymssp.2011.08.002 10.1016/j.ress.2015.05.025 10.1109/TPAMI.2013.30 10.1016/0098-1354(93)80018-I 10.1016/j.jprocont.2014.01.012 10.1016/j.compchemeng.2008.08.008 10.1016/j.measurement.2016.04.007 10.1016/j.rse.2011.04.022 10.1016/j.ymssp.2015.11.014 10.1016/S0098-1354(00)00371-9 10.1016/j.isatra.2008.10.014 10.1109/TIE.2014.2327555 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 – notice: 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7QO 8FD FR3 P64 7SP 7TB 7U5 L7M 5PM DOA |
DOI | 10.3390/s16101695 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef Solid State and Superconductivity Abstracts Engineering Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
EndPage | 1695 |
ExternalDocumentID | oai_doaj_org_article_c50b32c3bb28469082cfbab258ece78d PMC5087483 4226755421 27754386 10_3390_s16101695 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 7QO 8FD FR3 P64 7SP 7TB 7U5 L7M 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-a688307075b5d32e54344e55ddc66d33bc76c8f377694cb91f01cc0d23ca6f423 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Thu Aug 21 17:51:45 EDT 2025 Fri Jul 11 08:31:34 EDT 2025 Fri Jul 11 09:55:35 EDT 2025 Fri Jul 11 06:07:45 EDT 2025 Fri Jul 25 07:31:21 EDT 2025 Wed Feb 19 02:41:06 EST 2025 Tue Jul 01 01:36:25 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | deep learning active learning fault diagnosis big sensor data deep neural network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-a688307075b5d32e54344e55ddc66d33bc76c8f377694cb91f01cc0d23ca6f423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6627-4598 |
OpenAccessLink | https://www.proquest.com/docview/1831878223?pq-origsite=%requestingapplication% |
PMID | 27754386 |
PQID | 1831878223 |
PQPubID | 2032333 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c50b32c3bb28469082cfbab258ece78d pubmedcentral_primary_oai_pubmedcentral_nih_gov_5087483 proquest_miscellaneous_1855375539 proquest_miscellaneous_1837323923 proquest_miscellaneous_1835449822 proquest_journals_1831878223 pubmed_primary_27754386 crossref_citationtrail_10_3390_s16101695 crossref_primary_10_3390_s16101695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-13 |
PublicationDateYYYYMMDD | 2016-10-13 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2016 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Escudero (ref_1) 2009; 33 Tamilselvan (ref_3) 2013; 115 Tuia (ref_28) 2011; 115 Vincent (ref_35) 2010; 11 Dai (ref_5) 2013; 9 Eslamloueyan (ref_11) 2011; 11 Monroy (ref_2) 2010; 34 Zhu (ref_26) 2008; 37 Isermann (ref_6) 2005; 29 Azadeh (ref_13) 2013; 13 ref_30 Rumelhart (ref_38) 1988; 5 Downs (ref_40) 1993; 17 ref_19 Zhang (ref_8) 2015; 142 Bordes (ref_27) 2005; 6 Bengio (ref_33) 2009; 2 Kambatla (ref_4) 2014; 74 Hinton (ref_18) 2006; 18 Zhang (ref_12) 2013; 41 Jia (ref_9) 2016; 72 Bazi (ref_29) 2016; 345 Larochelle (ref_36) 2009; 10 Ellingson (ref_39) 2012; 35 Najafabadi (ref_34) 2015; 2 Li (ref_7) 2009; 48 Bin (ref_15) 2012; 27 Bellala (ref_31) 2013; 35 ref_25 Gan (ref_23) 2016; 72 Kullback (ref_37) 1951; 22 ref_22 ref_21 ref_20 Amar (ref_14) 2015; 62 Molina (ref_16) 2015; 15 Shang (ref_17) 2014; 24 Mahadevan (ref_10) 2009; 19 Ruiz (ref_41) 2000; 24 Zhao (ref_32) 2011; 38 Sun (ref_24) 2016; 89 25633599 - Sensors (Basel). 2015 Jan 27;15(2):2774-97 19084227 - ISA Trans. 2009 Apr;48(2):213-9 16764513 - Neural Comput. 2006 Jul;18(7):1527-54 22281731 - J Magn Reson Imaging. 2012 Jun;35(6):1472-7 23868771 - IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2078-90 |
References_xml | – ident: ref_30 – volume: 345 start-page: 340 year: 2016 ident: ref_29 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.082 – volume: 10 start-page: 1 year: 2009 ident: ref_36 article-title: Exploring strategies for training deep neural networks publication-title: J. Mach. Learn. Res. – volume: 115 start-page: 124 year: 2013 ident: ref_3 article-title: Failure diagnosis using deep belief learning based health state classification publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2013.02.022 – volume: 38 start-page: 10199 year: 2011 ident: ref_32 article-title: An effective procedure exploiting unlabeled data to build monitoring system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.078 – volume: 34 start-page: 631 year: 2010 ident: ref_2 article-title: A semi-supervised approach to fault diagnosis for chemical processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.12.008 – volume: 29 start-page: 71 year: 2005 ident: ref_6 article-title: Model-based fault-detection and diagnosis–status and applications publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2004.12.002 – volume: 11 start-page: 3371 year: 2010 ident: ref_35 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref_19 doi: 10.1109/CCDC.2015.7162328 – volume: 13 start-page: 1478 year: 2013 ident: ref_13 article-title: A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.06.020 – volume: 72 start-page: 303 year: 2016 ident: ref_9 article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.025 – volume: 15 start-page: 2774 year: 2015 ident: ref_16 article-title: Anomaly detection based on sensor data in petroleum industry applications publication-title: Sensors doi: 10.3390/s150202774 – volume: 19 start-page: 1627 year: 2009 ident: ref_10 article-title: Fault detection and diagnosis in process data using one-class support vector machines publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.07.011 – ident: ref_21 – ident: ref_25 doi: 10.1109/ICMLA.2015.208 – volume: 2 start-page: 1 year: 2015 ident: ref_34 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 22 start-page: 79 year: 1951 ident: ref_37 article-title: On information and sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – volume: 6 start-page: 1579 year: 2005 ident: ref_27 article-title: Fast kernel classifiers with online and active learning publication-title: J. Mach. Learn. Res. – volume: 37 start-page: 63 year: 2008 ident: ref_26 article-title: Semi-Supervised Learning Literature Survey publication-title: Comput. Sci. – volume: 18 start-page: 1527 year: 2006 ident: ref_18 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 74 start-page: 2561 year: 2014 ident: ref_4 article-title: Trends in big data analytics publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2014.01.003 – volume: 5 start-page: 1 year: 1988 ident: ref_38 article-title: Learning representations by back-propagating errors publication-title: Cognit. Model. – volume: 35 start-page: 1472 year: 2012 ident: ref_39 article-title: Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.23600 – volume: 9 start-page: 2226 year: 2013 ident: ref_5 article-title: From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2013.2243743 – volume: 2 start-page: 1 year: 2009 ident: ref_33 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 11 start-page: 1407 year: 2011 ident: ref_11 article-title: Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.012 – volume: 41 start-page: 127 year: 2013 ident: ref_12 article-title: Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.07.006 – volume: 27 start-page: 696 year: 2012 ident: ref_15 article-title: Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.08.002 – volume: 142 start-page: 482 year: 2015 ident: ref_8 article-title: An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.05.025 – volume: 35 start-page: 2078 year: 2013 ident: ref_31 article-title: A rank-based approach to active diagnosis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.30 – volume: 17 start-page: 245 year: 1993 ident: ref_40 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 24 start-page: 223 year: 2014 ident: ref_17 article-title: Data-driven soft sensor development based on deep learning technique publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.01.012 – volume: 33 start-page: 244 year: 2009 ident: ref_1 article-title: Performance assessment of a novel fault diagnosis system based on support vector machines publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.08.008 – volume: 89 start-page: 171 year: 2016 ident: ref_24 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 115 start-page: 2232 year: 2011 ident: ref_28 article-title: Using active learning to adapt remote sensing image classifiers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.04.022 – volume: 72 start-page: 92 year: 2016 ident: ref_23 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.11.014 – ident: ref_22 – ident: ref_20 – volume: 24 start-page: 777 year: 2000 ident: ref_41 article-title: Neural network based framework for fault diagnosis in batch chemical plants publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00371-9 – volume: 48 start-page: 213 year: 2009 ident: ref_7 article-title: Model-based monitoring and fault diagnosis of fossil power plant process units using group method of data handling publication-title: ISA Trans. doi: 10.1016/j.isatra.2008.10.014 – volume: 62 start-page: 494 year: 2015 ident: ref_14 article-title: Vibration spectrum imaging: A novel bearing fault classification approach publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2327555 – reference: 19084227 - ISA Trans. 2009 Apr;48(2):213-9 – reference: 16764513 - Neural Comput. 2006 Jul;18(7):1527-54 – reference: 25633599 - Sensors (Basel). 2015 Jan 27;15(2):2774-97 – reference: 22281731 - J Magn Reson Imaging. 2012 Jun;35(6):1472-7 – reference: 23868771 - IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2078-90 |
SSID | ssj0023338 |
Score | 2.3466086 |
Snippet | Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1695 |
SubjectTerms | Accuracy Active learning Algorithms big sensor data Chemical sensors Criteria Deep learning deep neural network Diagnosis Fault diagnosis Fourier transforms Knowledge Learning Machine learning Methods Neural networks Parameter estimation Process controls Sensors Signal processing Support vector machines Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQmj6dpkUpPfRistbbxyTbJeQQCm0gNyONJBoI3pD1_v_O2F6zG0J66cEXa7CtGc3MN_b4E2PfvKlBRZBlTiaUCqAuXfa5rEAEn0wSVe7ZPq_MxbW6vNE3W1t9UU_YQA88KO4E9CxIATIEDKSGNuiGHHwQ2iVI1kWKvpjzNsXUWGpJrLwGHiGJRf3JCnEN0Y7onezTk_Q_hSwfN0huZZzFa_ZqhIr8dHjEA_YitW_Yyy0Cwbfs58Kv7zo-H_rlblf8DJNS5MuWb4gA-C-sU5cPfO47z-mlK_ctP-2DHJ-ndM-JnQPFroZ28HfsevHj9_lFOe6RUIKWuiu9cY7c1uqgoxSJ_hRVSesYwZgoZQBrwGVprakVhLrKswpgFoUEbzJiqfdsr1226SPjJsdsMampWQ7o2T5Eh7YSocYbIIySBfu-0V0DI4E47WNx12AhQWpuJjUX7Oskej-wZjwldEYGmASI6Lo_geZvRvM3_zJ_wY425mtG71s1GKYqR9AHn_l4Gka_oY8hvk3LdS-jlSL2wmdlrBSIIJ-9jtbS4lEX7MOwaqYZCaIXlM4UzO6sp50p7460t396jm_EzVY5efg_dPSJ7SPMM5RxK3nE9rqHdfqMUKoLX3qv-QvMsh1_ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpcmkPIUlfzqOopYde3K719qGUpNslFBoK7UJuRs80sNjJrhfSf9-RX8Rl2YMv1mBbMxrNN5L8DULvtcgtc5amwQuTMmvzVAUd0swSo73wJAsN2-eVuJyz79f8egf1NTY7Ba42pnaxntR8ufj4cP_3Czj855hxQsr-aQWoJZKK8CdoDwKSjP75gw2bCYRCGtaSCo3FR6GoYezfBDP_Py35KPzMDtB-hxvxeWvoQ7TjyyP07BGb4HP0c6bXixpP28Nztyt8ARHK4arEPSsA_gVJa7XEU11rHFdgsS7xeTPj4an3dzhSdYDYVXs2_AWaz779_nqZdgUTUsspr1MtlIo-LLnhjhIffxtlnnPnrBCOUmOlsCpQKUXOrMmzMMmsnThCrRYBgNVLtFtWpX-NsAguSIhwbBIMuLk2ToHhiMnhBYCpaII-9LorbMcmHotaLArIKqKai0HNCXo3iN61FBqbhC6iAQaByHrd3KiWN0XnRIXlE0OJpcZAUBWxWLsNRhvClbdeKpeg0958RT-SCpizMhVxEHzz26EZnCjujOjSV-tGhjMWqQy3ykhKAE5ufQ7nVMKVJ-hVO2qGHpHINUiVSJAcjadRl8ct5e2fhvAbQLRkih5v794JegpoTsTAmtFTtFsv1_4MEFNt3jT-8A8juBWb priority: 102 providerName: Scholars Portal |
Title | Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27754386 https://www.proquest.com/docview/1831878223 https://www.proquest.com/docview/1835449822 https://www.proquest.com/docview/1837323923 https://www.proquest.com/docview/1855375539 https://pubmed.ncbi.nlm.nih.gov/PMC5087483 https://doaj.org/article/c50b32c3bb28469082cfbab258ece78d |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be4ED4o1LiRbEgYvV2Pv0CTWkoUIiqoBKuVn7LJUqOyTO_--M7bgNqnKwD96RrX3Mzjez428I-Wxk4bh3LI1B2pQ7V6Q6mphmLrcmyJBnsWX7nMvzS_5jIRZ9wG3dp1Vu98R2o_a1wxj5CSy9TKM5Y1-X_1KsGoWnq30JjcfkEKnLMKVLLe4cLgb-V8cmxMC1P1kDukHyEbFjg1qq_ofw5f9pkvfszuw5edYDRnrazfAL8ihUL8nTezSCr8jFzGxuGjrtsuau13QCpsnTuqJbOgD6G7zVekWnpjEUQ6_UVPS03eroNIQlRY4OEJt3SeGvyeXs7M-387SvlJA6wUSTGqk1Kq8SVniWB_xflAchvHdSesasU9LpyJSSBXe2yOI4c27sc-aMjICo3pCDqq7CO0Jl9FGBaePjaEG_jfUaZiy3BXwAwBRLyJft2JWupxHHahY3JbgTOMzlMMwJ-TSILjvujIeEJjgBgwDSXbcP6tVV2WtP6cTYstwxa8GaSqzS7qI1Nhc6uKC0T8jxdvrKXgfX5d2KScjHoRm0B49ETBXqTSsjOEcOw70yiuWAI_e-Rwim4CoS8rZbNUOPciQZZFomRO2sp50u77ZU139bpm9Az4prdrS_e-_JE4BxEi1qxo7JQbPahA8AlRo7avUB7nr2fUQOJ2fzi1-jNuwA959c3wK3IRiF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDcpBQwCiUvUxI7t5IBQy7La0rJCopX2FvyESlWy3c0K8af4jcwkm20XVXvrIZd4lMjjedrjbwh5q2VhM2d5HLw0cWZtEedBhzi1zGgvPUtDi_Y5lqPT7MtETLbI3_4uDJZV9jaxNdSutrhHvgeil-bozvjH6UWMXaPwdLVvodGJxZH_8xtStvmHwwGs7zvGhp9PPo3iZVeB2AoumljLPEdBV8IIx5nHu5WZF8I5K6Xj3FglbR64UrLIrCnSkKTWJo5xq2XIEOgATP4tcLwJapSaXCZ4HPK9Dr2I8yLZm0M0hWAnYs3nta0Brotn_y_LvOLnhvfJvWWASvc7iXpAtnz1kNy9Alv4iHwb6sV5Qwddld7ZnB6AK3S0rmgPP0C_Q3Zcz-hAN5riVi_VFd1vTSsdeD-liAkCZOOuCP0xOb0RHj4h21Vd-WeEyuCCAleaJcGAPdHG5SAhzBTwAwjeeETe97wr7RK2HLtnnJeQviCbyxWbI_JmRTrtsDquIzrABVgRILx2-6Ke_SyX2lpakRjOLDcGvLfErvA2GG2YyL31KncR2e2Xr1zq_Ly8lNCIvF4Ng7biEYyufL1oaUSWIWbiRhrFGcStG78jBFfwFBF52knNakYMQQ15LiOi1uRpbcrrI9XZrxZZHKJ1leV8Z_P0XpHbo5Ovx-Xx4fjoObkDIaREb57yXbLdzBb-BYRpjXnZ6gYlP25aGf8BmDhQHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IN4EChgEEpdoN3ZsJweEWsKqpWhVCSrtLfgJlapk2YcQf41fx0xe7aJqbz3kEo8SeTxPe_wNIW-0zG3qLI-DlyZOrc3jLOgQJ5YZ7aVnSWjQPqfy8DT9PBOzHfK3vwuDZZW9TWwMtast7pGPQPSSDN0ZH4WuLOKkmHyY_4qxgxSetPbtNFoROfZ_fkP6tnx_VMBav2Vs8unbx8O46zAQW8HFKtYyy1DolTDCcebxnmXqhXDOSuk4N1ZJmwWulMxTa_IkjBNrx45xq2VIEfQAzP8NxUWCOqZmF8keh9yvRTLiPB-PlhBZIfCJ2PB_TZuAq2Lb_0s0L_m8yV1ypwtW6X4rXffIjq_uk9uXIAwfkJOJXp-vaNFW7J0t6QG4RUfrivZQBPQrZMr1ghZ6pSlu-1Jd0f3GzNLC-zlFfBAgm7YF6Q_J6bXw8BHZrerKPyFUBhcUuNV0HAzYFm1cBtLCTA4_gECOR-Rdz7vSdhDm2EnjvIRUBtlcDmyOyOuBdN7idlxFdIALMBAg1Hbzol78KDvNLa0YG84sNwY8ucQO8TYYbZjIvPUqcxHZ65ev7PR_WV5Ia0ReDcOguXgcoytfrxsakaaIn7iVRnEGMezW7wjBFTx5RB63UjPMiCHAIc9kRNSGPG1MeXOkOvvZoIxD5K7SjD_dPr2X5CaoYfnlaHr8jNyCaFKiY0_4HtldLdb-OURsK_OiUQ1Kvl-3Lv4DPzRUUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+Based+on+Chemical+Sensor+Data+with+an+Active+Deep+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Peng&rft.au=Hu%2C+Zhixin&rft.au=Liu%2C+Jun&rft.au=Yu%2C+Shanen&rft.date=2016-10-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=16&rft.issue=10&rft.spage=1695&rft_id=info:doi/10.3390%2Fs16101695&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4226755421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |