Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks
Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deploy...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 4; p. 1133 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.04.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. |
---|---|
AbstractList | Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. |
Author | Kominami, Daichi Leibnitz, Kenji Murakami, Masaya Murata, Masayuki |
AuthorAffiliation | 3 Center for Information and Neural Networks (CiNet), 1-4, Yamadaoka, Suita 565-0871, Osaka, Japan; leibnitz@nict.go.jp 1 Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita 565-0871, Osaka, Japan; murata@ist.osaka-u.ac.jp 2 Graduate School of Economics, Osaka University, 1-7, Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan; d-kominami@econ.osaka-u.ac.jp |
AuthorAffiliation_xml | – name: 3 Center for Information and Neural Networks (CiNet), 1-4, Yamadaoka, Suita 565-0871, Osaka, Japan; leibnitz@nict.go.jp – name: 2 Graduate School of Economics, Osaka University, 1-7, Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan; d-kominami@econ.osaka-u.ac.jp – name: 1 Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita 565-0871, Osaka, Japan; murata@ist.osaka-u.ac.jp |
Author_xml | – sequence: 1 givenname: Masaya orcidid: 0000-0003-0881-5231 surname: Murakami fullname: Murakami, Masaya email: m-murakami@ist.osaka-u.ac.jp organization: Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita 565-0871, Osaka, Japan. m-murakami@ist.osaka-u.ac.jp – sequence: 2 givenname: Daichi surname: Kominami fullname: Kominami, Daichi email: d-kominami@econ.osaka-u.ac.jp organization: Graduate School of Economics, Osaka University, 1-7, Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan. d-kominami@econ.osaka-u.ac.jp – sequence: 3 givenname: Kenji surname: Leibnitz fullname: Leibnitz, Kenji email: leibnitz@nict.go.jp organization: Center for Information and Neural Networks (CiNet), 1-4, Yamadaoka, Suita 565-0871, Osaka, Japan. leibnitz@nict.go.jp – sequence: 4 givenname: Masayuki surname: Murata fullname: Murata, Masayuki email: murata@ist.osaka-u.ac.jp organization: Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita 565-0871, Osaka, Japan. murata@ist.osaka-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29642483$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkltvFCEUgElT05t98A-YSXzRh1Vuw4APTep66SaNvqiPJSwwK-sMbA-Mjf9e2q2btiEEwvnOxwmcY7QfU_QIvSD4LWMKv8tEYk4IY3voiHDKZ5JSvP9gf4iOc15jTBlj8gAdUiVqSLIjdPURzE2Iq2YR8yaAKSHFpoc0NhfTaGLzAUyIzVdfbhL8zu-beYq5wGTvuNTXtOLBphi9Ld41PwOUyQy7hOfoWW-G7E_v1xP04_On7_OL2eW3L4v5-eXMtqwtM8MloXYpsZCMC6d8RzBd1tkRRZR1tlaOuZdKCYE70WKnOiE611HuKe4JO0GLrdcls9YbCKOBvzqZoO8OEqy0gRLs4DUTjHvFsJOOcm6NqhrBuenFkghpTXWdbV2baTl6Z30sYIZH0seRGH7pVfqjW8VlVVXB63sBpOvJ56LHkK0fBhN9mrKmuF7cMdy2FX31BF2nCWJ9qkpxLDtSR6XebCkLKWfw_a4YgvVtB-hdB1T25cPqd-T_L2f_AFM5q6c |
CitedBy_id | crossref_primary_10_1016_j_procs_2024_03_121 crossref_primary_10_3389_fnagi_2022_788661 crossref_primary_10_3390_sym13122414 crossref_primary_10_3390_math11051128 crossref_primary_10_4236_jamp_2021_98127 crossref_primary_10_3389_fnagi_2023_1101879 crossref_primary_10_3390_s19184048 |
Cites_doi | 10.1371/journal.pcbi.1003491 10.1016/j.osn.2014.05.003 10.1109/TII.2014.2300753 10.1126/science.286.5439.509 10.1109/ACCESS.2017.2666200 10.1109/COMST.2015.2412971 10.1016/j.neuron.2013.07.036 10.1109/JRPROC.1946.234568 10.1016/j.neuroimage.2008.08.010 10.1146/annurev-psych-122414-033634 10.1073/pnas.1218972110 10.1016/j.socnet.2007.11.001 10.21136/CMJ.1973.101168 10.1109/SURV.2014.012214.00180 10.1109/MCOM.2016.7509393 10.1177/1073858406293182 10.1109/COMST.2015.2477041 10.1109/MCOM.2014.6736750 10.1109/MCOM.2015.7045396 10.1109/JIOT.2016.2579198 10.1038/nrn3214 10.1109/COMST.2014.2352118 10.1016/S1389-1286(01)00302-4 10.1109/MC.2016.245 10.1016/j.compeleceng.2017.02.026 10.1109/JIOT.2014.2312291 10.5486/PMD.1959.6.3-4.12 10.1109/JIOT.2017.2774286 10.1103/PhysRevLett.94.018102 10.1109/JPROC.2014.2371999 10.1016/j.future.2017.05.040 10.1109/COMST.2017.2717482 10.1109/TNSM.2016.2597295 10.1109/MNET.2018.1700175 10.1016/j.physrep.2005.10.009 10.1109/MCOM.2017.1600940 10.1109/COMST.2017.2652320 10.3389/neuro.11.037.2009 10.1016/j.amc.2012.11.002 10.1109/ACCESS.2017.2704444 10.1007/s41109-017-0025-4 10.1371/journal.pcbi.0020095 10.1109/JIOT.2017.2717704 10.1016/j.physa.2008.01.029 10.1109/MC.2017.9 10.1007/s10796-014-9489-2 10.1109/COMST.2015.2504600 10.3389/fnins.2010.00200 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2018 2018 by the authors. 2018 |
Copyright_xml | – notice: Copyright MDPI AG 2018 – notice: 2018 by the authors. 2018 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION K9. 7X8 5PM DOA |
DOI | 10.3390/s18041133 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3634e930d8d244ca97d7644af6b168ca 10_3390_s18041133 29642483 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D1I DU5 E3Z EBD ECM EIF ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION K9. 7X8 5PM |
ID | FETCH-LOGICAL-c535t-a4812cb8068346d9e7102b10271919cdc02304e8996607650d97667d724e20f13 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:12:43 EDT 2024 Tue Sep 17 21:05:42 EDT 2024 Fri Jun 28 02:27:27 EDT 2024 Sat Nov 09 17:26:27 EST 2024 Fri Aug 23 03:52:08 EDT 2024 Sat Nov 02 12:05:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | virtual networks wireless sensor networks Internet of Things brain networks |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-a4812cb8068346d9e7102b10271919cdc02304e8996607650d97667d724e20f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0881-5231 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948764/ |
PMID | 29642483 |
PQID | 2040871717 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3634e930d8d244ca97d7644af6b168ca pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948764 proquest_miscellaneous_2024473055 proquest_journals_2040871717 crossref_primary_10_3390_s18041133 pubmed_primary_29642483 |
PublicationCentury | 2000 |
PublicationDate | 2018-04-08 |
PublicationDateYYYYMMDD | 2018-04-08 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref13 ref12 ref15 ref59 ref14 ref58 ref53 ref52 Erdös (ref57) 1959; 6 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Knoblauch (ref46) 2016 ref51 Zhang (ref48) 2012; 1 ref45 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 Sporns (ref43) 2010 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Fiedler (ref50) 1973; 23 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Barabási (ref56) 1999; 286 ref29 ref60 ref61 |
References_xml | – ident: ref38 doi: 10.1371/journal.pcbi.1003491 – ident: ref53 doi: 10.1016/j.osn.2014.05.003 – ident: ref10 doi: 10.1109/TII.2014.2300753 – volume: 286 start-page: 509 year: 1999 ident: ref56 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 contributor: fullname: Barabási – ident: ref21 doi: 10.1109/ACCESS.2017.2666200 – ident: ref19 doi: 10.1109/COMST.2015.2412971 – ident: ref27 – ident: ref35 doi: 10.1016/j.neuron.2013.07.036 – ident: ref55 doi: 10.1109/JRPROC.1946.234568 – ident: ref42 doi: 10.1016/j.neuroimage.2008.08.010 – ident: ref34 doi: 10.1146/annurev-psych-122414-033634 – ident: ref61 doi: 10.1073/pnas.1218972110 – volume: 1 start-page: 1 year: 2012 ident: ref48 article-title: A universal assortativity measure for network analysis publication-title: arXiv contributor: fullname: Zhang – ident: ref37 doi: 10.1016/j.socnet.2007.11.001 – volume: 23 start-page: 298 year: 1973 ident: ref50 article-title: Algebraic connectivity of graphs publication-title: Czechoslov. Math. J. doi: 10.21136/CMJ.1973.101168 contributor: fullname: Fiedler – ident: ref14 doi: 10.1109/SURV.2014.012214.00180 – ident: ref36 – ident: ref16 doi: 10.1109/MCOM.2016.7509393 – ident: ref40 doi: 10.1177/1073858406293182 – ident: ref13 doi: 10.1109/COMST.2015.2477041 – ident: ref6 – ident: ref31 doi: 10.1109/MCOM.2014.6736750 – ident: ref12 doi: 10.1109/MCOM.2015.7045396 – ident: ref4 doi: 10.1109/JIOT.2016.2579198 – ident: ref33 doi: 10.1038/nrn3214 – ident: ref18 doi: 10.1109/COMST.2014.2352118 – ident: ref26 – ident: ref1 doi: 10.1016/S1389-1286(01)00302-4 – ident: ref7 doi: 10.1109/MC.2016.245 – start-page: 45 year: 2016 ident: ref46 article-title: The brain in space contributor: fullname: Knoblauch – ident: ref22 doi: 10.1016/j.compeleceng.2017.02.026 – ident: ref8 doi: 10.1109/JIOT.2014.2312291 – volume: 6 start-page: 290 year: 1959 ident: ref57 article-title: On random graphs, I publication-title: Publ. Math. (Debrecen) doi: 10.5486/PMD.1959.6.3-4.12 contributor: fullname: Erdös – ident: ref30 doi: 10.1109/JIOT.2017.2774286 – ident: ref41 doi: 10.1103/PhysRevLett.94.018102 – ident: ref3 – ident: ref58 – ident: ref15 doi: 10.1109/JPROC.2014.2371999 – ident: ref9 doi: 10.1016/j.future.2017.05.040 – ident: ref24 doi: 10.1109/COMST.2017.2717482 – ident: ref25 – ident: ref20 doi: 10.1109/TNSM.2016.2597295 – ident: ref51 – ident: ref23 doi: 10.1109/MNET.2018.1700175 – ident: ref49 doi: 10.1016/j.physrep.2005.10.009 – ident: ref17 doi: 10.1109/MCOM.2017.1600940 – ident: ref2 doi: 10.1109/COMST.2017.2652320 – ident: ref45 doi: 10.3389/neuro.11.037.2009 – ident: ref54 doi: 10.1016/j.amc.2012.11.002 – year: 2010 ident: ref43 contributor: fullname: Sporns – ident: ref59 – ident: ref29 doi: 10.1109/ACCESS.2017.2704444 – ident: ref39 doi: 10.1007/s41109-017-0025-4 – ident: ref47 doi: 10.1371/journal.pcbi.0020095 – ident: ref28 doi: 10.1109/JIOT.2017.2717704 – ident: ref60 doi: 10.1016/j.physa.2008.01.029 – ident: ref52 – ident: ref5 doi: 10.1109/MC.2017.9 – ident: ref11 doi: 10.1007/s10796-014-9489-2 – ident: ref32 doi: 10.1109/COMST.2015.2504600 – ident: ref44 doi: 10.3389/fnins.2010.00200 |
SSID | ssj0023338 |
Score | 2.3173234 |
Snippet | Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1133 |
SubjectTerms | Brain brain networks Cerebral cortex Communication Computer Communication Networks Computer simulation Construction methods Humans Internet Internet of Things Links Network topologies Remote sensors Test procedures Virtual networks Wireless sensor networks |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4NAEN0YT3owfotWsxqvpAu7sKw3qzbVxJ6s6Umy7G5jL9S0Nf59Z1ggrTHxYggJ4SvDDDDvscMbQq4TqTk2sQh1EctQKIuDhFKFTCdKuEnEo0qs-nmYDkbiaZyMV1p9YU2Ylwf2juvylAunOLOZhUxktJJWQg7Xk7SI0sx4aMRUQ6ZqqsWBeXkdIQ6kvruIUGYn4nwt-1Qi_b8hy58FkisZp79LdmqoSG-9iXtkw5X7ZHtFQPCAvN3P9Rcs0cfSj5iDlyn-MUKrj_O0hw0g6NCXei9uKLbnbARj6WxCq--BBmtdDCBP-jqd4-8k7QGHZNR_eLkbhHXHhNAkPFmGWkC-NkXG0gwiYJVD_FDALIGWKWMNMg7hMiQ5TAI4s4BGUvBoLFzMIDJHZLOcle6EUGYTGVsWFTJVAk6ptJswYWycAGFyVgfkqvFk_uGFMXIgFOjuvHV3QHro43YH1LKuVkCE8zrC-V8RDkiniVBeP2CLPIaXD3A9mAJy2W6GRwPHO3TpZp-4D5xPoqRZQI59QFtLcLQ5FhlYKNdCvWbq-pZy-l7Jb6PADRh4-h_Xdka2AIFlVSlQ1iGbcAu4c0A5y-KiuqG_AUeE-ik priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XvQgvq0vVvEaTTabbFYQsT5QQU9WPBk2u1stSKqtov57Z5ImGPEopVCabTqd2e1-X2byDcBuJHVITSw8nXHpCWUpSSiV5-tICdcLwqAQq76-iS-64uo-up-Aqsfm2IGjP6kd9ZPqDp_3Pl-_jnDBHxLjRMq-PwpIRAfJ1iRMcYEEnSr4RJ1M4CHSsFJUqDm8sRUViv1_wczf1ZI_tp_zOZgd40Z2XAZ6HiZcvgAzP9QEF-HhdKg_8BW7zMv0Obqc0e0jrLhSzzrUDYLdlHXfowNGvTor9Vg26LHi4qChwheDMJTd9Yd0b0n9gSXonp_dnlx44_YJnonC6M3TAjdvkyV-nGA4rHIEJjJ8SuRoylhD9EO4hBiPLxGpWYQmsbSSC8d9DNMytPJB7laB-TaS3PpBJmMl8JRKu54vjOURsidndRt2Kk-mL6VKRorsgtyd1u5uQ4d8XA8gYevijcHwMR2vkzSMQ-FU6NvEIvAwWqE9CNl0L86CODH4TRtVhNJqsqQc_4mQ-OGjDdv1YVwnlPzQuRu80xg8nyR9szaslAGtLaHUMxcJWigboW6Y2jyS958KLW5Su0ED1_7jt63DNMKxpKgLSjaghVPAbSLkecu2ign9DdyIADQ priority: 102 providerName: Scholars Portal |
Title | Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29642483 https://www.proquest.com/docview/2040871717 https://search.proquest.com/docview/2024473055 https://pubmed.ncbi.nlm.nih.gov/PMC5948764 https://doaj.org/article/3634e930d8d244ca97d7644af6b168ca |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71cYEDglIgpawM6jXdJHZimxtbum2RdlVVLdoTkWN7y0o0W-224u8z4zzURZxQlCjK05qZxN9njz8DHOXScJrEIjZVJmOhHXUSSh0nJtfCz1OeBrHqybQ4vxHfZvlsC_JuLExI2rfV4rj-dXdcL36G3Mr7Ozvs8sSGl5MTkhiRhRhuwzYGaEfRW5bFkXQ1EkIc-fxwnZLCDjIxkv3ViLaF4ht1UJDq_xe-_DtN8km9M34JL1rAyL40BXsFW77eg-dPZARfw4-vK_Mb99hF3fSbo60ZjRthoYmejWgaCDZtEr7XnxlN0tnJxrLlnIVWQUsZLxbxJ_u-WNGgkv6GfbgZn16fnMftvAmxzXn-EBuBtbatVFIo9IPTnlBEhatEcqats8Q7hFdEdRKJEM0hJimkk5nwWYL-eQM79bL274AlLpeZS9JKFlrgI7Xx80RYl-VIm7wzEXzqLFneN_IYJdIKsnzZWz6CEdm4v4AUrcOB5eq2bP1a8oILr3nilEPEYY3G8iBWM_OiSgtl8U2HnYfK9jNblxn-gpDx4RLBx_40fiDU62Fqv3yka_B5koTNInjbOLQvSRcQEcgNV28UdfMMxmQQ4W5j8OC_73wPzxB8qZAFpA5hB_3uPyDAeagGGNYziVs1PhvA7uh0enk1CI0FuJ0INQgB_wfRLgAz |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,31731,31732,33385,33386,33756,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPQAH1EJpQ2nrVlzDOrETx70VWrQUdsUBKk5Eju1tV4Is2qXq3--M8yEWcaqiSFE-HGtmHL8Xj58BDjJlBC1iEZsqVbHUjgYJlY65ybT0k0QkQax6NM6HV_LHdXa9Alk3FyYk7dtqeljf3h3W098ht_L-zg66PLHBxeiYJEZULger8ALbK5cdSW95lkDa1YgICWT0g0VCGjvIxUj4VyPeloVY6oWCWP9zCPNpouSjnufkJWy1kJF9bar2ClZ8vQ2bj4QEd-Dm29z8xSN2Wjcj52htRjNHWPhJz45oIQg2blK-F18YLdPZCcey2YSF_4KWcl4sIlD2czqnaSX9A6_h6uT75fEwbldOiG0msofYSOy3bVXwvEBPOO0JR1S4K6Rn2jpLzEP6gsgOVwjSHKKSXDmVSp9y9NAurNWz2r8Fxl2mUseTSuVaYpHa-AmX1qUZEifvTASfO0uW941ARonEgixf9paP4Ihs3N9AmtbhxGz-q2w9W4pcSK8Fd4VDzGGNxvogWjOTvErywuKb9jsPlW1DW5QpfoSQ8-EWwaf-MjYRGvcwtZ_9oXuwPEXSZhG8aRza16QLiAjUkquXqrp8BaMyyHC3Ubj3309-hPXh5ei8PD8dn72DDYRiRcgJKvZhDWPAv0e481B9CMH9D3xV_kQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkKr2gKAPmkKLW_Ua8rATx9x4dAVtWXEoFadGju3ASiW72gXx95lxHtqteqqiSFGe1sw4_r548g3Al0xqTkUsQl2lMhTK0iShVGGsMyVcnfDEi1VfjPOzK_HtOrteKvXlk_ZNNTlo_twdNJNbn1s5uzNRnycWXV6ckMSIzEU0s3X0DDawz8Z5T9Q7rsWRerVCQhxZfbRISGcH-RiJ_yrE3KLgKyORF-z_F8r8O1lyafQZbcFmBxvZUdu8bVhzzSt4uSQm-Bp-n871I26x86adPUeLM_p7hPkP9eyYikGwcZv2vThkVKqzF49l05r5b4OG8l4MolD2azKnX0uGC97A1ejrz5OzsKueEJqMZ_ehFjh2mwpNU6A3rHKEJSpcJVI0Zawh9iFcQYQnlgjULCKTXFqZCpfG6KW3sN5MG_cOWGwzmdo4qWSuBN5SaVfHwtg0Q_LkrA7gc2_JctaKZJRILsjy5WD5AI7JxsMJpGvtd0znN2Xn3ZLnXDjFY1tYxB1GK2wPIjZd51WSFwaftNd7qOw626JM8UWEvA-XAD4Nh7Gb0NyHbtz0gc7B-0mSNwtgp3Xo0JI-IAKQK65eaerqEYxML8XdReL7_75yH55fno7KH-fj77vwAtFY4dOCij1YxxBwHxDx3FcffWw_ASJ3_1c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drawing+Inspiration+from+Human+Brain+Networks%3A+Construction+of+Interconnected+Virtual+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Masaya+Murakami&rft.au=Daichi+Kominami&rft.au=Kenji+Leibnitz&rft.au=Masayuki+Murata&rft.date=2018-04-08&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=18&rft.issue=4&rft.spage=1133&rft_id=info:doi/10.3390%2Fs18041133&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3634e930d8d244ca97d7644af6b168ca |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |