Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest
Background Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play an important role in maintaining ecosystem stability, but their responses to freeze–thaw cycles (FTCs) are poorly understood. We conducted a...
Saved in:
Published in | Ecological processes Vol. 10; no. 1; p. 66 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
22.10.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play an important role in maintaining ecosystem stability, but their responses to freeze–thaw cycles (FTCs) are poorly understood. We conducted a field freeze–thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve, China, to determine the dynamic responses of soil microbial communities to FTCs.
Results
Bacteria were more sensitive than fungi to FTCs. Fungal biomass, diversity and community composition were not significantly affected by freeze–thaw regardless of the stage. Moderate initial freeze–thaw resulted in increased bacterial biomass, diversity, and copiotrophic taxa abundance. Subsequent FTCs reduced the bacterial biomass and diversity. Compared with the initial FTC, subsequent FTCs exerted an opposite effect on the direction of change in the composition and function of the bacterial community. Soil water content, dissolved organic carbon, ammonium nitrogen, and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs. Moreover, the functional potentials of the microbial community involved in C and N cycling were also affected by FTCs.
Conclusions
Different stages of FTCs have different ecological effects on the soil environment and microbial activities. Soil FTCs changed the soil nutrients and water availability and then mainly influenced bacterial community composition, diversity, and functional potentials, which may disturb C and N states in this temperate forest soil. This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change. |
---|---|
AbstractList | Abstract Background Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play an important role in maintaining ecosystem stability, but their responses to freeze–thaw cycles (FTCs) are poorly understood. We conducted a field freeze–thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve, China, to determine the dynamic responses of soil microbial communities to FTCs. Results Bacteria were more sensitive than fungi to FTCs. Fungal biomass, diversity and community composition were not significantly affected by freeze–thaw regardless of the stage. Moderate initial freeze–thaw resulted in increased bacterial biomass, diversity, and copiotrophic taxa abundance. Subsequent FTCs reduced the bacterial biomass and diversity. Compared with the initial FTC, subsequent FTCs exerted an opposite effect on the direction of change in the composition and function of the bacterial community. Soil water content, dissolved organic carbon, ammonium nitrogen, and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs. Moreover, the functional potentials of the microbial community involved in C and N cycling were also affected by FTCs. Conclusions Different stages of FTCs have different ecological effects on the soil environment and microbial activities. Soil FTCs changed the soil nutrients and water availability and then mainly influenced bacterial community composition, diversity, and functional potentials, which may disturb C and N states in this temperate forest soil. This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change. BACKGROUND: Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play an important role in maintaining ecosystem stability, but their responses to freeze–thaw cycles (FTCs) are poorly understood. We conducted a field freeze–thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve, China, to determine the dynamic responses of soil microbial communities to FTCs. RESULTS: Bacteria were more sensitive than fungi to FTCs. Fungal biomass, diversity and community composition were not significantly affected by freeze–thaw regardless of the stage. Moderate initial freeze–thaw resulted in increased bacterial biomass, diversity, and copiotrophic taxa abundance. Subsequent FTCs reduced the bacterial biomass and diversity. Compared with the initial FTC, subsequent FTCs exerted an opposite effect on the direction of change in the composition and function of the bacterial community. Soil water content, dissolved organic carbon, ammonium nitrogen, and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs. Moreover, the functional potentials of the microbial community involved in C and N cycling were also affected by FTCs. CONCLUSIONS: Different stages of FTCs have different ecological effects on the soil environment and microbial activities. Soil FTCs changed the soil nutrients and water availability and then mainly influenced bacterial community composition, diversity, and functional potentials, which may disturb C and N states in this temperate forest soil. This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change. BackgroundFreeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play an important role in maintaining ecosystem stability, but their responses to freeze–thaw cycles (FTCs) are poorly understood. We conducted a field freeze–thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve, China, to determine the dynamic responses of soil microbial communities to FTCs.ResultsBacteria were more sensitive than fungi to FTCs. Fungal biomass, diversity and community composition were not significantly affected by freeze–thaw regardless of the stage. Moderate initial freeze–thaw resulted in increased bacterial biomass, diversity, and copiotrophic taxa abundance. Subsequent FTCs reduced the bacterial biomass and diversity. Compared with the initial FTC, subsequent FTCs exerted an opposite effect on the direction of change in the composition and function of the bacterial community. Soil water content, dissolved organic carbon, ammonium nitrogen, and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs. Moreover, the functional potentials of the microbial community involved in C and N cycling were also affected by FTCs.ConclusionsDifferent stages of FTCs have different ecological effects on the soil environment and microbial activities. Soil FTCs changed the soil nutrients and water availability and then mainly influenced bacterial community composition, diversity, and functional potentials, which may disturb C and N states in this temperate forest soil. This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change. Background Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play an important role in maintaining ecosystem stability, but their responses to freeze–thaw cycles (FTCs) are poorly understood. We conducted a field freeze–thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve, China, to determine the dynamic responses of soil microbial communities to FTCs. Results Bacteria were more sensitive than fungi to FTCs. Fungal biomass, diversity and community composition were not significantly affected by freeze–thaw regardless of the stage. Moderate initial freeze–thaw resulted in increased bacterial biomass, diversity, and copiotrophic taxa abundance. Subsequent FTCs reduced the bacterial biomass and diversity. Compared with the initial FTC, subsequent FTCs exerted an opposite effect on the direction of change in the composition and function of the bacterial community. Soil water content, dissolved organic carbon, ammonium nitrogen, and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs. Moreover, the functional potentials of the microbial community involved in C and N cycling were also affected by FTCs. Conclusions Different stages of FTCs have different ecological effects on the soil environment and microbial activities. Soil FTCs changed the soil nutrients and water availability and then mainly influenced bacterial community composition, diversity, and functional potentials, which may disturb C and N states in this temperate forest soil. This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change. |
ArticleNumber | 66 |
Author | Bai, Edith Wang, Chao Sun, Lifei Jiang, Ping Sang, Changpeng Xia, Zongwei Sun, Hao |
Author_xml | – sequence: 1 givenname: Changpeng surname: Sang fullname: Sang, Changpeng organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Zongwei surname: Xia fullname: Xia, Zongwei email: xiazongwei@iae.ac.cn organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University – sequence: 3 givenname: Lifei surname: Sun fullname: Sun, Lifei organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences – sequence: 4 givenname: Hao surname: Sun fullname: Sun, Hao organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences – sequence: 5 givenname: Ping surname: Jiang fullname: Jiang, Ping organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences – sequence: 6 givenname: Chao surname: Wang fullname: Wang, Chao email: cwang@iae.ac.cn organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences – sequence: 7 givenname: Edith surname: Bai fullname: Bai, Edith organization: Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education |
BookMark | eNp9UctqFUEQHSSBxJgfyKrBjZuJ_ZzHUi5qAgFBdBmampnqpC8z3dfuvpi48h_8Q7_EMqMoWaQ3XVSdc6hT53l1EGLAqjoT_FyIrnmdhWpFW3Mpas6Vauu7Z9WxFL2sRcv7g__qo-o05y2n12uh-_a4uv6IeRdDxsyiYzn6mS1-THHwMLMxLss--OJpWiJzCfEb_vz-o9zCVzbejzP1fWDANrc-YEZWcNlhgoLMxYS5vKgOHcwZT__8J9Xnd28_bS7qqw_vLzdvrurRKFNqUHwwLXYGxeTGlpvJCS0n8mYG7ARNpXRdIwZQGk0rYSLDveG8nRC0BHVSXa66U4St3SW_QLq3Ebx9aMR0YyEVTwvbTjlN5h0gNHqg2kz9KJWjE4F2XUdar1atXYpf9mTCLj6POM8QMO6zlY1qtJC97gn68hF0G_cpkFMrTacbKYXUhOpWFJ0154TOjr5A8TGUBH62gtvfMdo1Rksx2ocY7R1R5SPqX29PktRKygQON5j-bfUE6xewGrKz |
CitedBy_id | crossref_primary_10_1007_s11104_025_07297_7 crossref_primary_10_1016_j_scitotenv_2024_175228 crossref_primary_10_1007_s11104_024_06728_1 crossref_primary_10_1016_j_jhydrol_2023_130069 crossref_primary_10_1016_j_catena_2024_108063 crossref_primary_10_1016_j_ecolind_2023_111164 crossref_primary_10_1016_j_geoderma_2025_117182 crossref_primary_10_1016_j_scitotenv_2024_176232 crossref_primary_10_1016_j_geoderma_2024_117141 crossref_primary_10_1016_j_jenvman_2024_122847 crossref_primary_10_1007_s11356_025_36053_8 crossref_primary_10_1016_j_catena_2022_106241 crossref_primary_10_1038_s41598_023_50541_2 crossref_primary_10_1016_j_chemosphere_2023_138678 crossref_primary_10_1016_j_ejsobi_2023_103564 crossref_primary_10_1111_1365_2435_14273 crossref_primary_10_3389_fpls_2023_1137754 crossref_primary_10_1016_j_soilbio_2024_109642 crossref_primary_10_1128_msphere_00603_24 crossref_primary_10_3389_fmicb_2022_783371 crossref_primary_10_1016_j_catena_2024_108201 crossref_primary_10_1016_j_geoderma_2024_117159 crossref_primary_10_1016_j_scitotenv_2024_171078 crossref_primary_10_1016_j_scitotenv_2023_168747 crossref_primary_10_3390_agronomy12122986 crossref_primary_10_1186_s13717_024_00522_8 crossref_primary_10_3389_fmicb_2023_1189859 crossref_primary_10_1016_j_geoderma_2022_116007 crossref_primary_10_1007_s00382_023_06952_y crossref_primary_10_3390_agronomy12092126 crossref_primary_10_1016_j_catena_2024_108357 |
Cites_doi | 10.1111/sum.12153 10.4141/cjss2012-071 10.1016/s0038-0717(02)00074-3 10.1016/j.soilbio.2017.01.020 10.3389/fmicb.2011.00094 10.1016/j.catena.2006.03.011 10.1007/s11104-014-2263-x 10.3389/fmicb.2017.02198 10.1080/00380768.2004.10408542 10.1111/j.1469-8137.2009.03003.x 10.1016/j.soilbio.2011.06.005 10.2136/sssaj1986.03615995005000030017x 10.1016/j.soilbio.2009.10.008 10.2134/jeq2004.0415 10.1016/j.soilbio.2009.02.029 10.1016/j.apsoil.2004.06.003 10.1038/s41598-017-03539-6 10.1038/nmeth.2604 10.1038/ismej.2009.140 10.1111/1462-2920.13512 10.1007/s11104-020-04470-y 10.1038/s41579-019-0265-7 10.1038/ismej.2011.159 10.1111/j.1365-2486.2012.02749.x 10.1016/j.scitotenv.2017.12.309 10.1016/j.soilbio.2008.10.032 10.1038/s41396-018-0176-z 10.1016/j.catena.2018.01.004 10.1016/j.soilbio.2004.02.004 10.1073/pnas.1508382112 10.3389/fmicb.2020.01164 10.1016/s0038-0717(03)00015-4 10.1007/s10533-013-9849-x 10.1073/pnas.1514435112 10.1016/j.soilbio.2007.03.003 10.1007/s13595-011-0100-4 10.1016/j.soilbio.2004.12.011 10.1016/0038-0717(95)00102-6 10.1016/j.pedobi.2018.08.004 10.1111/gcb.15487 10.1093/bioinformatics/btr381 10.1128/aem.59.3.695-700.1993 10.1023/a:1013072519889 10.1093/nar/gks1219 10.1111/1574-6941.12009 10.1016/j.soilbio.2015.04.009 10.1002/ecy.2075 10.1016/j.soilbio.2017.09.026 10.1016/j.soilbio.2005.12.010 10.1016/j.soilbio.2015.09.018 10.1016/j.soilbio.2011.03.017 10.1007/s00374-010-0449-9 10.3390/microorganisms8071061 10.1016/s0038-0717(99)00068-1 10.1111/1365-2435.12445 10.1038/ismej.2012.113 10.1016/s0038-0717(02)00121-9 10.1016/S0038-0717(02)00168-2 10.3389/fmicb.2021.616730 10.2136/sssaj2000.6451638x 10.1890/05-1839 10.1126/science.aaf4507 10.1016/j.pedobi.2014.10.001 10.1016/j.soilbio.2019.04.012 10.1111/j.1365-2389.2007.00923.x 10.1016/j.soilbio.2006.04.042 10.1016/S0003-2670(00)88444-5 10.1016/s0929-1393(02)00093-8 10.1111/j.1462-2920.2008.01644.x 10.1016/j.soilbio.2012.04.012 10.1111/1462-2920.13231 10.1038/nature08632 10.1016/j.soilbio.2016.08.013 10.1016/0038-0717(82)90001-3 10.1890/0012-9615(2006)076[0151:atmold]2.0.co;2 10.1134/s0026261719060195 10.1038/s41579-019-0222-5 10.1016/j.soilbio.2003.12.007 10.1128/AEM.00062-07 10.1016/j.funeco.2015.06.006 10.1007/s00374-003-0678-2 10.1016/j.soilbio.2007.02.006 10.1073/pnas.1616564113 10.1073/pnas.1000080107 10.1016/j.apsoil.2016.07.003 10.1007/s13213-014-1002-0 10.3389/fmicb.2020.00982 10.1038/ismej.2013.104 10.1016/j.agee.2019.106578 10.1007/s11769-010-0209-7 10.1016/0038-0717(85)90144-0 10.1016/j.apsoil.2017.05.023 10.1126/sciadv.1602781 10.1111/gcb.12532 10.1016/j.soilbio.2016.04.008 10.1146/annurev.es.16.110185.002051 10.1023/a:1013076609950 10.1128/AEM.66.8.3230-3233.2000 10.1111/1365-2745.12919 10.1111/j.1365-2486.2009.01898.x |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7S9 L.6 DOA |
DOI | 10.1186/s13717-021-00337-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2192-1709 |
EndPage | 66 |
ExternalDocumentID | oai_doaj_org_article_83f4941faea64bf495d9c23f192a4f88 10_1186_s13717_021_00337_x |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education grantid: GPES201902 – fundername: Youth Innovation Promotion Association CAS grantid: 2018231 – fundername: National Natural Science Foundation of China grantid: 31770531; 32001174 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key Research Program of Frontier Sciences, CAS grantid: QYZDB-SSW-DQC006 |
GroupedDBID | -A0 0R~ 4.4 40G 5VS 7XC 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFO ACGFS ACPRK ACULB ADBBV ADINQ AEGXH AEUYN AFGXO AFKRA AFPKN AFRAH AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BBNVY BCNDV BENPR BHPHI C24 C6C CCPQU EBLON EBS EDH GROUPED_DOAJ GX1 HCIFZ IAO IEP ISR ITC KQ8 LK8 M7P M~E OK1 PATMY PIMPY PROAC PYCSY RNS RSV SEV SOJ AASML AAXDM AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO F1W GNUQQ H95 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c535t-a30b57e85e1dfc705df142d1865be8130b22f861ba34e572ad37195007dea42a3 |
IEDL.DBID | DOA |
ISSN | 2192-1709 |
IngestDate | Wed Aug 27 01:27:38 EDT 2025 Fri Jul 11 05:07:56 EDT 2025 Fri Jul 25 11:01:11 EDT 2025 Tue Jul 01 04:32:00 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Fri Feb 21 02:47:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Freeze–thaw cycle Microbial diversity Functional potential Microbial community composition Soil resource availability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-a30b57e85e1dfc705df142d1865be8130b22f861ba34e572ad37195007dea42a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/83f4941faea64bf495d9c23f192a4f88 |
PQID | 2584622124 |
PQPubID | 2034775 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_83f4941faea64bf495d9c23f192a4f88 proquest_miscellaneous_2636412949 proquest_journals_2584622124 crossref_citationtrail_10_1186_s13717_021_00337_x crossref_primary_10_1186_s13717_021_00337_x springer_journals_10_1186_s13717_021_00337_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-22 |
PublicationDateYYYYMMDD | 2021-10-22 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Ecological processes |
PublicationTitleAbbrev | Ecol Process |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Schimel, Weintraub (CR70) 2003; 35 Louca, Parfrey, Doebeli (CR50) 2016; 353 Elliott (CR25) 1986; 50 Sinsabaugh, Hill, Shah (CR72) 2009; 462 Peng, Wang (CR61) 2016; 98 Allison, LeBauer, Ofrecio, Reyes, Ta, Tran (CR4) 2009; 41 Murphy, Riley (CR55) 1962; 27 Wang, Garrity, Tiedje, Cole (CR86) 2007; 73 Fitzhugh, Driscoll, Groffman, Tierney, Fahey, Hardy (CR30) 2001; 56 O'Brien, Gibbons, Owens, Hampton-Marcell, Johnston, Jastrow, Gilbert, Meyer, Antonopoulos (CR58) 2016; 18 Chodak, Gołębiewski, Morawska-Płoskonka, Kuduk, Niklińska (CR18) 2015; 65 Joergensen (CR41) 1996; 28 Sorensen, Finzi, Giasson, Reinmann, Sanders-DeMott, Templer (CR75) 2018; 116 Nguyen, Song, Bates, Branco, Tedersoo, Menke, Schilling, Kennedy (CR57) 2016; 20 Chai, Zeng, E SZ, Bai LY, Su SM, Huang T (CR16) 2014; 30 Risk, Snider, Wagner-Riddle (CR65) 2013; 93 de Scally, Makhalanyane, Frossard, Hogg, Cowan (CR20) 2016; 103 Haei, Rousk, Ilstedt, Öquist, Bååth, Laudon (CR36) 2011; 43 Liu, Feng, Cai, Tang (CR49) 2020; 11 Vimercati, de Mesquita, Schmidt (CR85) 2020; 8 Agnelli, Ascher, Corti, Ceccherini, Nannipieri, Pietramellara (CR2) 2004; 36 Mikan, Schimel, Doyle (CR51) 2002; 34 Leff, Jones, Prober, Barberán, Borer, Firn, Harpole, Hobbie, Hofmockel, Knops, McCulley, Pierre, Risch, Seabloom, Schüetz, Steenbock, Stevens, Fierer (CR46) 2015; 112 Buée, Reich, Murat, Morin, Nilsson, Uroz, Martin (CR11) 2009; 184 Allison, Condron, Peltzer, Richardson, Turner (CR3) 2007; 39 Tikhonova, Men’ko EV, Ulanova RV, Li H, Kravchenko IK (CR81) 2020; 88 Ren, Song, Hou, Song, Zhu, Cagle (CR64) 2018; 625 Bouskill, Lim, Borglin, Salve, Wood, Silver, Brodie (CR8) 2013; 7 German, Weintraub, Grandy, Lauber, Rinkes, Allison (CR32) 2011; 43 CR59 Muyzer, Waal, Uitterlinden (CR56) 1993; 59 Leff, Wieder, Taylor, Townsend, Nemergut, Grandy, Cleveland (CR45) 2012; 18 Monteux, Weedon, Blume-Werry, Gavazov, Jassey, Johansson, Keuper, Olid, Dorrepaal (CR52) 2018; 12 Barnard, Osborne, Firestone (CR5) 2013; 7 Deforest (CR21) 2009; 41 Brookes, Powlson, Jenkinson (CR9) 1982; 14 Weidner, Koller, Latz, Kowalchuk, Bonkowski, Scheu, Jousset (CR89) 2015; 29 Fierer, Bradford, Jackson (CR28) 2007; 88 Larsen, Jonasson, Michelsen (CR44) 2002; 21 Chen, Liu, Kang, Zhang, Kou, Mao, Qin, Zhang, Yang (CR17) 2021; 27 Li, Zhang, Yang, Wang, Feng, Liu, Jiang (CR47) 2019; 283 Ade, Hu, Zi, Wang, Lerdau, Dong (CR1) 2018; 164 Waring, Weintraub, Sinsabaugh (CR88) 2014; 117 Bechmann, Kleinman, Sharpley, Saporito (CR6) 2005; 34 Goldfarb, Karaoz, Hanson, Santee, Bradford, Treseder, Wallenstein, Brodie (CR33) 2011; 2 Su, Kleineidam, Schloter (CR77) 2010; 46 Yang, Peng, Penuelas, Kardol, Li, Zhang, Ni, Yue, Tan, Yin, Xu (CR93) 2019; 135 Yu, Zhang, Zhao, Lu, Wang (CR96) 2010; 20 Herrmann, Witter (CR37) 2002; 34 CR60 Wang, Shu, Zhang, Guénon (CR87) 2015; 386 Treseder, Allen, Egerton-Warburton, Hart, Klironomos, Maherali, Tedersoo (CR82) 2018; 106 Yang, Cai, Wang, Luo, Cheng, An (CR94) 2020; 449 Ernakovich, Wallenstein (CR26) 2015; 87 Yergeau, Kowalchuk (CR95) 2008; 10 Bloom, Chapin, Mooney (CR7) 1985; 16 Saiya-Cork, Sinsabaugh, Zak (CR67) 2002; 34 Zhou, Jiang, Wei, Zhao, Ma, Chen, Cao, Shen, Guan, Li (CR101) 2017; 7 Grogan, Michelsen, Ambus, Jonasson (CR34) 2004; 36 Lipson, Schmidt, Monson (CR48) 2000; 32 Scott, Condron (CR71) 2003; 39 Stefan, Cornelia, Jörg, Michael (CR76) 2014; 57 Tierney, Fahey, Groffman, Hardy, Fitzhugh, Driscoll (CR80) 2001; 56 Yanai, Toyota, Okazaki (CR91) 2004; 50 Brookes, Landman, Pruden, Jenkinson (CR10) 1985; 17 Koponen, Jaakkola, Keinänen-Toivola, Kaipainen, Tuomainen, Servomaa, Martikainen (CR42) 2006; 38 Edwards, McCulloch, Kershaw, Jefferies (CR24) 2006; 38 Turlapati, Minocha, Bhiravarasa, Tisa, Thomas, Minocha (CR83) 2013; 83 Guhr, Borken, Spohn, Matzner (CR35) 2015; 112 Jansson, Hofmockel (CR38) 2020; 18 Cavicchioli, Ripple, Timmis, Azam, Bakken, Baylis, Behrenfeld, Boetius, Boyd, Classen, Crowther, Danovaro, Foreman, Huisman, Hutchins, Jansson, Karl, Koskella, Welch, Martiny, Moran, Orphan, Reay, Remais, Rich, Singh, Stein, Stewart, Sullivan, van Oppen, Weaver, Webb, Webster (CR15) 2019; 17 Yang, Dou, Huang, An (CR92) 2017; 8 Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (CR63) 2013; 41 Fierer, Lauber, Ramirez, Zaneveld, Bradford, Knight (CR29) 2012; 6 Perez-Mon, Frey, Frossard (CR62) 2020; 11 Zhou, Chen, Zhou, Lewis, Ye, Tian, Li, Dai (CR100) 2011; 68 Supramaniam, Chong, Silvaraj, Tan (CR79) 2016; 107 Sawicka, Robador, Hubert, Jørgensen, Brüchert (CR68) 2010; 4 Feng, Nielsen, Simpson (CR27) 2007; 39 Xu, Cai (CR90) 2007; 58 Campbell, Socci, Templer (CR13) 2014; 20 Edgar (CR22) 2013; 10 Jiang, Juan, Tian, Chen, Sun, Chen (CR40) 2018; 71 Edgar, Haas, Clemente, Quince, Knight (CR23) 2011; 27 Jefferies, Walker, Edwards, Dainty (CR39) 2010; 42 George, Fierer, Levy, Adams (CR31) 2021; 12 Sjursen, Michelsen, Holmstrup (CR73) 2005; 28 Zeng, Liu, Song, Lin, Zhang, Shen, Chu (CR97) 2016; 92 Song, Zou, Wang, Yu (CR74) 2017; 109 Moorhead, Sinsabaugh (CR53) 2006; 76 Zhang, Tang, Liang (CR99) 2017; 119 Cline, Hobbie, Madritch, Buyarski, Tilman, Cavender-Bares (CR19) 2018; 99 Rivkina, Friedmann, McKay, Gilichinsky (CR66) 2000; 66 Kvaernø, Øygarden (CR43) 2006; 67 Mooshammer, Hofhansl, Frank, Wanek, Hämmerle, Leitner, Schnecker, Wild, Watzka, Keiblinger, Zechmeister-Boltenstern, Richter (CR54) 2017; 3 Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (CR14) 2011; 108 Schimel, Mikan (CR69) 2005; 37 van Bochove, Prévost, Pelletier (CR84) 2000; 64 Bünemann, Oberson, Liebisch, Keller, Annaheim, Huguenin-Elie, Frossard (CR12) 2012; 51 Zgadzaj, Garrido-Oter, Jensen, Koprivova, Schulze-Lefert, Radutoiu (CR98) 2016; 113 Sun, Dsouza, Gilbert, Guo, Wang, Guo, Ni, Chu (CR78) 2016; 18 N Risk (337_CR65) 2013; 93 KK Treseder (337_CR82) 2018; 106 LJ Ade (337_CR1) 2018; 164 ME Bechmann (337_CR6) 2005; 34 JL Deforest (337_CR21) 2009; 41 DL Moorhead (337_CR53) 2006; 76 G Stefan (337_CR76) 2014; 57 JE Sawicka (337_CR68) 2010; 4 KS Larsen (337_CR44) 2002; 21 H Li (337_CR47) 2019; 283 JG Ernakovich (337_CR26) 2015; 87 J Zhou (337_CR101) 2017; 7 M Buée (337_CR11) 2009; 184 JL Campbell (337_CR13) 2014; 20 A Herrmann (337_CR37) 2002; 34 A Agnelli (337_CR2) 2004; 36 NH Nguyen (337_CR57) 2016; 20 SH Kvaernø (337_CR43) 2006; 67 SL O'Brien (337_CR58) 2016; 18 M Chodak (337_CR18) 2015; 65 EK Bünemann (337_CR12) 2012; 51 C Perez-Mon (337_CR62) 2020; 11 EN Tikhonova (337_CR81) 2020; 88 RL Jefferies (337_CR39) 2010; 42 JW Leff (337_CR45) 2012; 18 JK Jansson (337_CR38) 2020; 18 337_CR60 KA Edwards (337_CR24) 2006; 38 RL Sinsabaugh (337_CR72) 2009; 462 Y Song (337_CR74) 2017; 109 337_CR59 X Feng (337_CR27) 2007; 39 Y Chen (337_CR17) 2021; 27 RC Edgar (337_CR22) 2013; 10 RG Joergensen (337_CR41) 1996; 28 SA Turlapati (337_CR83) 2013; 83 E van Bochove (337_CR84) 2000; 64 LC Cline (337_CR19) 2018; 99 C Quast (337_CR63) 2013; 41 KC Goldfarb (337_CR33) 2011; 2 N Fierer (337_CR29) 2012; 6 S Monteux (337_CR52) 2018; 12 DA Lipson (337_CR48) 2000; 32 KR Saiya-Cork (337_CR67) 2002; 34 AJ Bloom (337_CR7) 1985; 16 Y Yanai (337_CR91) 2004; 50 RD Fitzhugh (337_CR30) 2001; 56 M Su (337_CR77) 2010; 46 N Jiang (337_CR40) 2018; 71 R Sun (337_CR78) 2016; 18 JG Caporaso (337_CR14) 2011; 108 H Zhang (337_CR99) 2017; 119 KJ Yang (337_CR93) 2019; 135 VJ Allison (337_CR3) 2007; 39 R Zgadzaj (337_CR98) 2016; 113 EM Rivkina (337_CR66) 2000; 66 RL Barnard (337_CR5) 2013; 7 S Louca (337_CR50) 2016; 353 DP German (337_CR32) 2011; 43 H Sjursen (337_CR73) 2005; 28 PC Brookes (337_CR9) 1982; 14 G Muyzer (337_CR56) 1993; 59 L Vimercati (337_CR85) 2020; 8 E Yergeau (337_CR95) 2008; 10 R Cavicchioli (337_CR15) 2019; 17 J Murphy (337_CR55) 1962; 27 W Zhou (337_CR100) 2011; 68 PC Brookes (337_CR10) 1985; 17 CJ Mikan (337_CR51) 2002; 34 J Zeng (337_CR97) 2016; 92 Y Supramaniam (337_CR79) 2016; 107 X Yu (337_CR96) 2010; 20 ET Elliott (337_CR25) 1986; 50 M Haei (337_CR36) 2011; 43 M Liu (337_CR49) 2020; 11 RC Edgar (337_CR23) 2011; 27 M Mooshammer (337_CR54) 2017; 3 W Yang (337_CR94) 2020; 449 S Weidner (337_CR89) 2015; 29 Y Yang (337_CR92) 2017; 8 SF George (337_CR31) 2021; 12 P Grogan (337_CR34) 2004; 36 A Guhr (337_CR35) 2015; 112 JP Schimel (337_CR69) 2005; 37 NJ Bouskill (337_CR8) 2013; 7 PO Sorensen (337_CR75) 2018; 116 J Ren (337_CR64) 2018; 625 JW Leff (337_CR46) 2015; 112 Q Wang (337_CR86) 2007; 73 W Wang (337_CR87) 2015; 386 YJ Chai (337_CR16) 2014; 30 N Fierer (337_CR28) 2007; 88 YB Xu (337_CR90) 2007; 58 GL Tierney (337_CR80) 2001; 56 X Peng (337_CR61) 2016; 98 HT Koponen (337_CR42) 2006; 38 BG Waring (337_CR88) 2014; 117 SD Allison (337_CR4) 2009; 41 JT Scott (337_CR71) 2003; 39 SZ de Scally (337_CR20) 2016; 103 JP Schimel (337_CR70) 2003; 35 |
References_xml | – volume: 30 start-page: 507 issue: 4 year: 2014 end-page: 516 ident: CR16 article-title: Effects of freeze-thaw on aggregate stability and the organic carbon and nitrogen enrichment ratios in aggregate fractions publication-title: Soil Use Manage doi: 10.1111/sum.12153 – volume: 93 start-page: 401 issue: 4 year: 2013 end-page: 414 ident: CR65 article-title: Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles publication-title: Can J Soil Sci doi: 10.4141/cjss2012-071 – volume: 34 start-page: 1309 issue: 9 year: 2002 end-page: 1315 ident: CR67 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(02)00074-3 – volume: 109 start-page: 35 year: 2017 end-page: 49 ident: CR74 article-title: Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.01.020 – volume: 2 start-page: 00094 issue: 94 year: 2011 ident: CR33 article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance publication-title: Front Microbiol doi: 10.3389/fmicb.2011.00094 – volume: 67 start-page: 175 issue: 3 year: 2006 end-page: 182 ident: CR43 article-title: The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway publication-title: Catena doi: 10.1016/j.catena.2006.03.011 – volume: 386 start-page: 263 issue: 1–2 year: 2015 end-page: 272 ident: CR87 article-title: Effects of freeze-thaw cycles on the soil nutrient balances, infiltration, and stability of cyanobacterial soil crusts in northern China publication-title: Plant Soil doi: 10.1007/s11104-014-2263-x – volume: 8 start-page: 02198 year: 2017 ident: CR92 article-title: Links between soil fungal diversity and plant and soil properties on the Loess Plateau publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02198 – volume: 50 start-page: 821 issue: 6 year: 2004 end-page: 829 ident: CR91 article-title: Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2004.10408542 – volume: 184 start-page: 449 issue: 2 year: 2009 end-page: 456 ident: CR11 article-title: 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.03003.x – volume: 43 start-page: 2069 issue: 10 year: 2011 end-page: 2077 ident: CR36 article-title: Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.06.005 – volume: 50 start-page: 627 issue: 3 year: 1986 end-page: 633 ident: CR25 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1986.03615995005000030017x – volume: 42 start-page: 129 issue: 2 year: 2010 end-page: 135 ident: CR39 article-title: Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.008 – volume: 34 start-page: 2301 issue: 6 year: 2005 end-page: 2309 ident: CR6 article-title: Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils publication-title: J Environ Qual doi: 10.2134/jeq2004.0415 – volume: 41 start-page: 1180 issue: 6 year: 2009 end-page: 1186 ident: CR21 article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.02.029 – volume: 28 start-page: 79 issue: 1 year: 2005 end-page: 93 ident: CR73 article-title: Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2004.06.003 – volume: 7 start-page: 3267 issue: 1 year: 2017 ident: CR101 article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China publication-title: Sci Rep doi: 10.1038/s41598-017-03539-6 – volume: 10 start-page: 996 issue: 10 year: 2013 end-page: 998 ident: CR22 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 4 start-page: 585 issue: 4 year: 2010 end-page: 594 ident: CR68 article-title: Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat publication-title: ISME J doi: 10.1038/ismej.2009.140 – volume: 18 start-page: 5137 issue: 12 year: 2016 end-page: 5150 ident: CR78 article-title: Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter publication-title: Environ Microbiol doi: 10.1111/1462-2920.13512 – volume: 449 start-page: 97 issue: 1 year: 2020 end-page: 115 ident: CR94 article-title: Exotic Loisel. Invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China publication-title: Plant Soil doi: 10.1007/s11104-020-04470-y – volume: 18 start-page: 35 issue: 1 year: 2020 end-page: 46 ident: CR38 article-title: Soil microbiomes and climate change publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0265-7 – volume: 6 start-page: 1007 issue: 5 year: 2012 end-page: 1017 ident: CR29 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: ISME J doi: 10.1038/ismej.2011.159 – volume: 18 start-page: 2969 issue: 9 year: 2012 end-page: 2979 ident: CR45 article-title: Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest publication-title: Global Change Biol doi: 10.1111/j.1365-2486.2012.02749.x – ident: CR60 – volume: 625 start-page: 782 year: 2018 end-page: 791 ident: CR64 article-title: Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.309 – volume: 41 start-page: 293 issue: 2 year: 2009 end-page: 302 ident: CR4 article-title: Low levels of nitrogen addition stimulate decomposition by boreal forest fungi publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.10.032 – volume: 12 start-page: 2129 issue: 9 year: 2018 end-page: 2141 ident: CR52 article-title: Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration publication-title: ISME J doi: 10.1038/s41396-018-0176-z – volume: 164 start-page: 13 year: 2018 end-page: 22 ident: CR1 article-title: Effect of snowpack on the soil bacteria of alpine meadows in the Qinghai-Tibetan Plateau of China publication-title: Catena doi: 10.1016/j.catena.2018.01.004 – volume: 36 start-page: 859 issue: 5 year: 2004 end-page: 868 ident: CR2 article-title: Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.02.004 – volume: 112 start-page: 10967 issue: 35 year: 2015 end-page: 10972 ident: CR46 article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1508382112 – volume: 11 start-page: 01164 year: 2020 ident: CR49 article-title: Soil microbial community response differently to the frequency and strength of freeze-thaw events in a Larix gmelinii forest in the Daxing'an Mountains, China publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01164 – volume: 35 start-page: 549 issue: 4 year: 2003 end-page: 563 ident: CR70 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(03)00015-4 – volume: 117 start-page: 101 issue: 1 year: 2014 end-page: 113 ident: CR88 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry doi: 10.1007/s10533-013-9849-x – volume: 112 start-page: 14647 issue: 47 year: 2015 end-page: 14651 ident: CR35 article-title: Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1514435112 – volume: 39 start-page: 2027 issue: 8 year: 2007 end-page: 2037 ident: CR27 article-title: Responses of soil organic matter and microorganisms to freeze-thaw cycles publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.03.003 – volume: 68 start-page: 943 issue: 5 year: 2011 end-page: 951 ident: CR100 article-title: Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain publication-title: Ann Forest Sci doi: 10.1007/s13595-011-0100-4 – volume: 37 start-page: 1411 issue: 8 year: 2005 end-page: 1418 ident: CR69 article-title: Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.12.011 – volume: 28 start-page: 25 issue: 1 year: 1996 end-page: 31 ident: CR41 article-title: The fumigation-extraction method to estimate soil microbial biomass: Calibration of the EC value publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(95)00102-6 – volume: 71 start-page: 41 year: 2018 end-page: 49 ident: CR40 article-title: Modification of the composition of dissolved nitrogen forms, nitrogen transformation processes, and diversity of bacterial communities by freeze-thaw events in temperate soils publication-title: Pedobiologia doi: 10.1016/j.pedobi.2018.08.004 – volume: 27 start-page: 3218 issue: 14 year: 2021 end-page: 3229 ident: CR17 article-title: Large-scale evidence for microbial response and associated carbon release after permafrost thaw publication-title: Global Change Biol doi: 10.1111/gcb.15487 – volume: 27 start-page: 2194 issue: 16 year: 2011 end-page: 2200 ident: CR23 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 59 start-page: 695 issue: 3 year: 1993 end-page: 700 ident: CR56 article-title: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA publication-title: Appl Environ Microb doi: 10.1128/aem.59.3.695-700.1993 – volume: 56 start-page: 175 issue: 2 year: 2001 end-page: 190 ident: CR80 article-title: Soil freezing alters fine root dynamics in a northern hardwood forest publication-title: Biogeochemistry doi: 10.1023/a:1013072519889 – volume: 41 start-page: 590 issue: D1 year: 2013 end-page: 596 ident: CR63 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 83 start-page: 478 issue: 2 year: 2013 end-page: 493 ident: CR83 article-title: Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA publication-title: FEMS Microbiol Ecol doi: 10.1111/1574-6941.12009 – volume: 87 start-page: 78 year: 2015 end-page: 89 ident: CR26 article-title: Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.04.009 – volume: 99 start-page: 204 issue: 1 year: 2018 end-page: 216 ident: CR19 article-title: Resource availability underlies the plant-fungal diversity relationship in a grassland ecosystem publication-title: Ecology doi: 10.1002/ecy.2075 – volume: 116 start-page: 39 year: 2018 end-page: 47 ident: CR75 article-title: Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.09.026 – volume: 38 start-page: 1861 issue: 7 year: 2006 end-page: 1871 ident: CR42 article-title: Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.12.010 – volume: 92 start-page: 41 year: 2016 end-page: 49 ident: CR97 article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.09.018 – volume: 43 start-page: 1387 issue: 7 year: 2011 end-page: 1397 ident: CR32 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.03.017 – volume: 46 start-page: 537 issue: 5 year: 2010 end-page: 541 ident: CR77 article-title: Influence of different litter quality on the abundance of genes involved in nitrification and denitrification after freezing and thawing of an arable soil publication-title: Biol Fert Soils doi: 10.1007/s00374-010-0449-9 – volume: 8 start-page: 1061 issue: 7 year: 2020 ident: CR85 article-title: Limited response of Indigenous microbes to water and nutrient pulses in high-elevation Atacama soils: Implications for the cold-dry limits of life on earth publication-title: Microorganisms doi: 10.3390/microorganisms8071061 – volume: 32 start-page: 441 issue: 4 year: 2000 end-page: 448 ident: CR48 article-title: Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(99)00068-1 – volume: 29 start-page: 1341 issue: 10 year: 2015 end-page: 1349 ident: CR89 article-title: Bacterial diversity amplifies nutrient-based plant-soil feedbacks publication-title: Funct Ecol doi: 10.1111/1365-2435.12445 – volume: 7 start-page: 384 issue: 2 year: 2013 end-page: 394 ident: CR8 article-title: Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought publication-title: ISME J doi: 10.1038/ismej.2012.113 – volume: 34 start-page: 1495 issue: 10 year: 2002 end-page: 1505 ident: CR37 article-title: Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(02)00121-9 – volume: 34 start-page: 1785 issue: 11 year: 2002 end-page: 1795 ident: CR51 article-title: Temperature controls of microbial respiration in arctic tundra soils above and below freezing publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(02)00168-2 – volume: 12 year: 2021 ident: CR31 article-title: Antarctic water tracks: microbial community responses to variation in soil moisture, pH, and salinity publication-title: Front Microbiol doi: 10.3389/fmicb.2021.616730 – volume: 64 start-page: 1638 issue: 5 year: 2000 end-page: 1643 ident: CR84 article-title: Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.6451638x – volume: 88 start-page: 1354 issue: 6 year: 2007 end-page: 1364 ident: CR28 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology doi: 10.1890/05-1839 – volume: 353 start-page: 1272 issue: 6305 year: 2016 end-page: 1277 ident: CR50 article-title: Decoupling function and taxonomy in the global ocean microbiome publication-title: Science doi: 10.1126/science.aaf4507 – volume: 57 start-page: 205 issue: 4–6 year: 2014 end-page: 213 ident: CR76 article-title: Soil water availability strongly alters the community composition of soil protists publication-title: Pedobiologia doi: 10.1016/j.pedobi.2014.10.001 – volume: 135 start-page: 51 year: 2019 end-page: 59 ident: CR93 article-title: Immediate and carry-over effects of increased soil frost on soil respiration and microbial activity in a spruce forest publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.04.012 – volume: 58 start-page: 1293 issue: 6 year: 2007 end-page: 1303 ident: CR90 article-title: Denitrification characteristics of subtropical soils in China affected by soil parent material and land use publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2007.00923.x – volume: 38 start-page: 2843 issue: 9 year: 2006 end-page: 2851 ident: CR24 article-title: Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.04.042 – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: CR55 article-title: A modified single solution method for determination of phosphate in natural waters publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 21 start-page: 187 issue: 3 year: 2002 end-page: 195 ident: CR44 article-title: Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types publication-title: Appl Soil Ecol doi: 10.1016/s0929-1393(02)00093-8 – volume: 10 start-page: 2223 issue: 9 year: 2008 end-page: 2235 ident: CR95 article-title: Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01644.x – volume: 51 start-page: 84 issue: 3 year: 2012 end-page: 95 ident: CR12 article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.04.012 – volume: 18 start-page: 2039 issue: 6 year: 2016 end-page: 2051 ident: CR58 article-title: Spatial scale drives patterns in soil bacterial diversity publication-title: Environ Microbiol doi: 10.1111/1462-2920.13231 – volume: 462 start-page: 795 issue: 7274 year: 2009 end-page: 798 ident: CR72 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature doi: 10.1038/nature08632 – volume: 103 start-page: 160 year: 2016 end-page: 170 ident: CR20 article-title: Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.08.013 – volume: 14 start-page: 319 issue: 4 year: 1982 end-page: 329 ident: CR9 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(82)90001-3 – volume: 76 start-page: 151 issue: 2 year: 2006 end-page: 174 ident: CR53 article-title: A theoretical model of litter decay and microbial interaction publication-title: Ecol Monogr doi: 10.1890/0012-9615(2006)076[0151:atmold]2.0.co;2 – volume: 88 start-page: 781 issue: 6 year: 2020 end-page: 785 ident: CR81 article-title: Effect of temperature on the taxonomic structure of soil bacterial communities during litter decomposition publication-title: Microbiology doi: 10.1134/s0026261719060195 – volume: 17 start-page: 569 issue: 9 year: 2019 end-page: 586 ident: CR15 article-title: Scientists' warning to humanity: microorganisms and climate change publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0222-5 – volume: 36 start-page: 641 issue: 4 year: 2004 end-page: 654 ident: CR34 article-title: Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2003.12.007 – volume: 73 start-page: 5264 issue: 16 year: 2007 end-page: 5267 ident: CR86 article-title: Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl Environ Microb doi: 10.1128/AEM.00062-07 – volume: 20 start-page: 241 year: 2016 end-page: 248 ident: CR57 article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol doi: 10.1016/j.funeco.2015.06.006 – volume: 39 start-page: 65 issue: 2 year: 2003 end-page: 73 ident: CR71 article-title: Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system publication-title: Biol Fert Soils doi: 10.1007/s00374-003-0678-2 – volume: 39 start-page: 1770 issue: 7 year: 2007 end-page: 1781 ident: CR3 article-title: Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.02.006 – volume: 113 start-page: 7996 issue: 49 year: 2016 end-page: 8005 ident: CR98 article-title: Root nodule symbiosis in drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1616564113 – volume: 108 start-page: 4516 issue: S1 year: 2011 end-page: 4522 ident: CR14 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1000080107 – volume: 107 start-page: 279 year: 2016 end-page: 289 ident: CR79 article-title: Effect of short term variation in temperature and water content on the bacterial community in a tropical soil publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2016.07.003 – volume: 65 start-page: 1627 issue: 3 year: 2015 end-page: 1637 ident: CR18 article-title: Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress publication-title: Ann Microbiol doi: 10.1007/s13213-014-1002-0 – volume: 11 start-page: 982 year: 2020 ident: CR62 article-title: Functional and structural responses of arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00982 – volume: 7 start-page: 2229 issue: 11 year: 2013 end-page: 2241 ident: CR5 article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting publication-title: ISME J doi: 10.1038/ismej.2013.104 – volume: 283 year: 2019 ident: CR47 article-title: Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2019.106578 – volume: 20 start-page: 209 issue: 3 year: 2010 end-page: 217 ident: CR96 article-title: Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils publication-title: Chinese Geogr Sci doi: 10.1007/s11769-010-0209-7 – volume: 17 start-page: 837 issue: 6 year: 1985 end-page: 842 ident: CR10 article-title: Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(85)90144-0 – volume: 119 start-page: 339 year: 2017 end-page: 344 ident: CR99 article-title: Effects of snow cover plus straw mulching on microorganisms in paddy soil during winter publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.05.023 – volume: 3 issue: 5 year: 2017 ident: CR54 article-title: Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events publication-title: Sci Adv doi: 10.1126/sciadv.1602781 – volume: 20 start-page: 2663 issue: 8 year: 2014 end-page: 2673 ident: CR13 article-title: Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest publication-title: Global Change Biol doi: 10.1111/gcb.12532 – volume: 98 start-page: 74 year: 2016 end-page: 84 ident: CR61 article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.04.008 – volume: 16 start-page: 363 issue: 1 year: 1985 end-page: 392 ident: CR7 article-title: Resource limitation in plants– An economic analogy publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev.es.16.110185.002051 – volume: 56 start-page: 215 issue: 2 year: 2001 end-page: 238 ident: CR30 article-title: Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem publication-title: Biogeochemistry doi: 10.1023/a:1013076609950 – volume: 66 start-page: 3230 issue: 8 year: 2000 end-page: 3233 ident: CR66 article-title: Metabolic activity of permafrost bacteria below the freezing point publication-title: Appl Environ Microb doi: 10.1128/AEM.66.8.3230-3233.2000 – ident: CR59 – volume: 106 start-page: 480 issue: 2 year: 2018 end-page: 489 ident: CR82 article-title: Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework publication-title: J Ecol doi: 10.1111/1365-2745.12919 – volume: 14 start-page: 319 issue: 4 year: 1982 ident: 337_CR9 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(82)90001-3 – volume: 7 start-page: 384 issue: 2 year: 2013 ident: 337_CR8 publication-title: ISME J doi: 10.1038/ismej.2012.113 – volume: 8 start-page: 1061 issue: 7 year: 2020 ident: 337_CR85 publication-title: Microorganisms doi: 10.3390/microorganisms8071061 – volume: 39 start-page: 1770 issue: 7 year: 2007 ident: 337_CR3 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.02.006 – volume: 41 start-page: 590 issue: D1 year: 2013 ident: 337_CR63 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 108 start-page: 4516 issue: S1 year: 2011 ident: 337_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1000080107 – volume: 51 start-page: 84 issue: 3 year: 2012 ident: 337_CR12 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.04.012 – volume: 11 start-page: 01164 year: 2020 ident: 337_CR49 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01164 – volume: 386 start-page: 263 issue: 1–2 year: 2015 ident: 337_CR87 publication-title: Plant Soil doi: 10.1007/s11104-014-2263-x – volume: 67 start-page: 175 issue: 3 year: 2006 ident: 337_CR43 publication-title: Catena doi: 10.1016/j.catena.2006.03.011 – volume: 353 start-page: 1272 issue: 6305 year: 2016 ident: 337_CR50 publication-title: Science doi: 10.1126/science.aaf4507 – volume: 76 start-page: 151 issue: 2 year: 2006 ident: 337_CR53 publication-title: Ecol Monogr doi: 10.1890/0012-9615(2006)076[0151:atmold]2.0.co;2 – volume: 117 start-page: 101 issue: 1 year: 2014 ident: 337_CR88 publication-title: Biogeochemistry doi: 10.1007/s10533-013-9849-x – volume: 283 year: 2019 ident: 337_CR47 publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2019.106578 – volume: 12 year: 2021 ident: 337_CR31 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.616730 – volume: 50 start-page: 627 issue: 3 year: 1986 ident: 337_CR25 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1986.03615995005000030017x – volume: 68 start-page: 943 issue: 5 year: 2011 ident: 337_CR100 publication-title: Ann Forest Sci doi: 10.1007/s13595-011-0100-4 – volume: 21 start-page: 187 issue: 3 year: 2002 ident: 337_CR44 publication-title: Appl Soil Ecol doi: 10.1016/s0929-1393(02)00093-8 – volume: 34 start-page: 1495 issue: 10 year: 2002 ident: 337_CR37 publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(02)00121-9 – volume: 35 start-page: 549 issue: 4 year: 2003 ident: 337_CR70 publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(03)00015-4 – volume: 16 start-page: 363 issue: 1 year: 1985 ident: 337_CR7 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev.es.16.110185.002051 – volume: 87 start-page: 78 year: 2015 ident: 337_CR26 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.04.009 – volume: 32 start-page: 441 issue: 4 year: 2000 ident: 337_CR48 publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(99)00068-1 – volume: 107 start-page: 279 year: 2016 ident: 337_CR79 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2016.07.003 – volume: 20 start-page: 241 year: 2016 ident: 337_CR57 publication-title: Fungal Ecol doi: 10.1016/j.funeco.2015.06.006 – volume: 20 start-page: 2663 issue: 8 year: 2014 ident: 337_CR13 publication-title: Global Change Biol doi: 10.1111/gcb.12532 – volume: 27 start-page: 31 year: 1962 ident: 337_CR55 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 106 start-page: 480 issue: 2 year: 2018 ident: 337_CR82 publication-title: J Ecol doi: 10.1111/1365-2745.12919 – volume: 43 start-page: 2069 issue: 10 year: 2011 ident: 337_CR36 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.06.005 – volume: 17 start-page: 569 issue: 9 year: 2019 ident: 337_CR15 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0222-5 – volume: 99 start-page: 204 issue: 1 year: 2018 ident: 337_CR19 publication-title: Ecology doi: 10.1002/ecy.2075 – volume: 10 start-page: 2223 issue: 9 year: 2008 ident: 337_CR95 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01644.x – volume: 34 start-page: 1785 issue: 11 year: 2002 ident: 337_CR51 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(02)00168-2 – volume: 27 start-page: 3218 issue: 14 year: 2021 ident: 337_CR17 publication-title: Global Change Biol doi: 10.1111/gcb.15487 – volume: 18 start-page: 2969 issue: 9 year: 2012 ident: 337_CR45 publication-title: Global Change Biol doi: 10.1111/j.1365-2486.2012.02749.x – volume: 93 start-page: 401 issue: 4 year: 2013 ident: 337_CR65 publication-title: Can J Soil Sci doi: 10.4141/cjss2012-071 – volume: 92 start-page: 41 year: 2016 ident: 337_CR97 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.09.018 – volume: 2 start-page: 00094 issue: 94 year: 2011 ident: 337_CR33 publication-title: Front Microbiol doi: 10.3389/fmicb.2011.00094 – volume: 7 start-page: 2229 issue: 11 year: 2013 ident: 337_CR5 publication-title: ISME J doi: 10.1038/ismej.2013.104 – ident: 337_CR60 doi: 10.1111/j.1365-2486.2009.01898.x – volume: 10 start-page: 996 issue: 10 year: 2013 ident: 337_CR22 publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 6 start-page: 1007 issue: 5 year: 2012 ident: 337_CR29 publication-title: ISME J doi: 10.1038/ismej.2011.159 – volume: 34 start-page: 2301 issue: 6 year: 2005 ident: 337_CR6 publication-title: J Environ Qual doi: 10.2134/jeq2004.0415 – volume: 36 start-page: 859 issue: 5 year: 2004 ident: 337_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.02.004 – volume: 39 start-page: 65 issue: 2 year: 2003 ident: 337_CR71 publication-title: Biol Fert Soils doi: 10.1007/s00374-003-0678-2 – volume: 29 start-page: 1341 issue: 10 year: 2015 ident: 337_CR89 publication-title: Funct Ecol doi: 10.1111/1365-2435.12445 – volume: 46 start-page: 537 issue: 5 year: 2010 ident: 337_CR77 publication-title: Biol Fert Soils doi: 10.1007/s00374-010-0449-9 – volume: 113 start-page: 7996 issue: 49 year: 2016 ident: 337_CR98 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1616564113 – volume: 27 start-page: 2194 issue: 16 year: 2011 ident: 337_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 38 start-page: 2843 issue: 9 year: 2006 ident: 337_CR24 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.04.042 – volume: 112 start-page: 10967 issue: 35 year: 2015 ident: 337_CR46 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1508382112 – volume: 98 start-page: 74 year: 2016 ident: 337_CR61 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.04.008 – volume: 71 start-page: 41 year: 2018 ident: 337_CR40 publication-title: Pedobiologia doi: 10.1016/j.pedobi.2018.08.004 – volume: 28 start-page: 79 issue: 1 year: 2005 ident: 337_CR73 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2004.06.003 – volume: 83 start-page: 478 issue: 2 year: 2013 ident: 337_CR83 publication-title: FEMS Microbiol Ecol doi: 10.1111/1574-6941.12009 – volume: 41 start-page: 1180 issue: 6 year: 2009 ident: 337_CR21 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.02.029 – volume: 7 start-page: 3267 issue: 1 year: 2017 ident: 337_CR101 publication-title: Sci Rep doi: 10.1038/s41598-017-03539-6 – volume: 116 start-page: 39 year: 2018 ident: 337_CR75 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.09.026 – volume: 18 start-page: 35 issue: 1 year: 2020 ident: 337_CR38 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0265-7 – volume: 37 start-page: 1411 issue: 8 year: 2005 ident: 337_CR69 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.12.011 – volume: 18 start-page: 5137 issue: 12 year: 2016 ident: 337_CR78 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13512 – volume: 41 start-page: 293 issue: 2 year: 2009 ident: 337_CR4 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.10.032 – volume: 56 start-page: 215 issue: 2 year: 2001 ident: 337_CR30 publication-title: Biogeochemistry doi: 10.1023/a:1013076609950 – volume: 184 start-page: 449 issue: 2 year: 2009 ident: 337_CR11 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.03003.x – volume: 39 start-page: 2027 issue: 8 year: 2007 ident: 337_CR27 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.03.003 – volume: 625 start-page: 782 year: 2018 ident: 337_CR64 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.309 – volume: 449 start-page: 97 issue: 1 year: 2020 ident: 337_CR94 publication-title: Plant Soil doi: 10.1007/s11104-020-04470-y – volume: 65 start-page: 1627 issue: 3 year: 2015 ident: 337_CR18 publication-title: Ann Microbiol doi: 10.1007/s13213-014-1002-0 – volume: 28 start-page: 25 issue: 1 year: 1996 ident: 337_CR41 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(95)00102-6 – volume: 43 start-page: 1387 issue: 7 year: 2011 ident: 337_CR32 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.03.017 – volume: 17 start-page: 837 issue: 6 year: 1985 ident: 337_CR10 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(85)90144-0 – volume: 73 start-page: 5264 issue: 16 year: 2007 ident: 337_CR86 publication-title: Appl Environ Microb doi: 10.1128/AEM.00062-07 – volume: 103 start-page: 160 year: 2016 ident: 337_CR20 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.08.013 – volume: 462 start-page: 795 issue: 7274 year: 2009 ident: 337_CR72 publication-title: Nature doi: 10.1038/nature08632 – volume: 42 start-page: 129 issue: 2 year: 2010 ident: 337_CR39 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.008 – volume: 38 start-page: 1861 issue: 7 year: 2006 ident: 337_CR42 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.12.010 – volume: 119 start-page: 339 year: 2017 ident: 337_CR99 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.05.023 – volume: 50 start-page: 821 issue: 6 year: 2004 ident: 337_CR91 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2004.10408542 – volume: 109 start-page: 35 year: 2017 ident: 337_CR74 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.01.020 – volume: 88 start-page: 781 issue: 6 year: 2020 ident: 337_CR81 publication-title: Microbiology doi: 10.1134/s0026261719060195 – volume: 112 start-page: 14647 issue: 47 year: 2015 ident: 337_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1514435112 – volume: 64 start-page: 1638 issue: 5 year: 2000 ident: 337_CR84 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.6451638x – volume: 56 start-page: 175 issue: 2 year: 2001 ident: 337_CR80 publication-title: Biogeochemistry doi: 10.1023/a:1013072519889 – volume: 20 start-page: 209 issue: 3 year: 2010 ident: 337_CR96 publication-title: Chinese Geogr Sci doi: 10.1007/s11769-010-0209-7 – volume: 11 start-page: 982 year: 2020 ident: 337_CR62 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00982 – volume: 18 start-page: 2039 issue: 6 year: 2016 ident: 337_CR58 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13231 – volume: 8 start-page: 02198 year: 2017 ident: 337_CR92 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02198 – ident: 337_CR59 – volume: 59 start-page: 695 issue: 3 year: 1993 ident: 337_CR56 publication-title: Appl Environ Microb doi: 10.1128/aem.59.3.695-700.1993 – volume: 164 start-page: 13 year: 2018 ident: 337_CR1 publication-title: Catena doi: 10.1016/j.catena.2018.01.004 – volume: 66 start-page: 3230 issue: 8 year: 2000 ident: 337_CR66 publication-title: Appl Environ Microb doi: 10.1128/AEM.66.8.3230-3233.2000 – volume: 58 start-page: 1293 issue: 6 year: 2007 ident: 337_CR90 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2007.00923.x – volume: 88 start-page: 1354 issue: 6 year: 2007 ident: 337_CR28 publication-title: Ecology doi: 10.1890/05-1839 – volume: 36 start-page: 641 issue: 4 year: 2004 ident: 337_CR34 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2003.12.007 – volume: 57 start-page: 205 issue: 4–6 year: 2014 ident: 337_CR76 publication-title: Pedobiologia doi: 10.1016/j.pedobi.2014.10.001 – volume: 135 start-page: 51 year: 2019 ident: 337_CR93 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.04.012 – volume: 34 start-page: 1309 issue: 9 year: 2002 ident: 337_CR67 publication-title: Soil Biol Biochem doi: 10.1016/s0038-0717(02)00074-3 – volume: 4 start-page: 585 issue: 4 year: 2010 ident: 337_CR68 publication-title: ISME J doi: 10.1038/ismej.2009.140 – volume: 12 start-page: 2129 issue: 9 year: 2018 ident: 337_CR52 publication-title: ISME J doi: 10.1038/s41396-018-0176-z – volume: 3 issue: 5 year: 2017 ident: 337_CR54 publication-title: Sci Adv doi: 10.1126/sciadv.1602781 – volume: 30 start-page: 507 issue: 4 year: 2014 ident: 337_CR16 publication-title: Soil Use Manage doi: 10.1111/sum.12153 |
SSID | ssj0000941497 |
Score | 2.360771 |
Snippet | Background
Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play... BackgroundFreeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play... BACKGROUND: Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms... Abstract Background Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 66 |
SubjectTerms | Ammonium Ammonium compounds ammonium nitrogen Bacteria bacterial biomass bacterial communities Biomass China climate Climate change Community composition Community involvement community structure Composition conservation areas Cycles Dissolved organic carbon Dissolved organic phosphorus Earth and Environmental Science ecological balance Ecological effects Ecological function Ecosystem stability edaphic factors Environment Forest ecosystems Forest soils Forests Freeze thaw cycles Freeze-thawing Freeze–thaw cycle Functional potential fungal biomass Fungi Global warming Microbial activity Microbial community composition Microbial diversity Microbiomes Microorganisms Mixed forests Moisture content Mountains Nature reserves Nitrogen Nutrient availability Nutrients organic carbon Phosphorus Pinus koraiensis Soil Soil dynamics Soil microorganisms Soil nutrients Soil resource availability Soil stability Soil water soil water content Species diversity Temperate forests Terrestrial ecosystems total dissolved phosphorus Water availability Water content |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuiKcIFGQkbhB149iO94Qo2qriUKGKSr0gy48xrNQmZZOKlhP_gX_IL2HsOFsVid6ixE6ceXhm7PE3hLx2FRhrHC95YAIDlIqXatH40sp5mIMKXoWUbXEg94_4x2NxnBfc-pxWOc2JaaL2nYtr5DssWkqGEy1_d_a9jFWj4u5qLqFxm2zhE6VmZGt3efDpcLPKgsELhgDNdFpGyZ2-qjGCKWNmQqxj1pQX1yxSAu6_5m3-s0Ga7M7efXIvO4z0_cjhB-QWtA_JnWUCm758RL4cjkmu0NMu0L5bndDTVQJXwk5uPP0RMVPp0NGwBvgJf379Hr6ZH9RdxoQ4umqpobGKNvRAI1BVRFkGir4sjusxOdpbfv6wX-aSCaUTtRhKU8-taEAJqHxwzVz4UHHm8ceFBYX2yjIWlKysqTmIhhmP1FgIdBQ8GM5M_YTM2q6Fp4Raxh0qr6nBYvjsGsslsDoEI4z1VRAFqSayaZfxxGNZixOd4gol9UhqjaTWidT6oiBvNn3ORjSNG1vvRm5sWkYk7HSjW3_VWbG0qgNHJgcDRnKL18IvHI4TPVfDg1IF2Z54qbN69vpKmAryavMYFSvulpgWunNsI2vJ0Rvii4K8nWTg6hX_H_azm7_4nNxlUfrQ_jG2TWbD-hxeoGMz2JdZev8CQHr3RQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pa9VAEF-kRfAirVWMbWWF3mrwZf9l37GVluLBg1jopSz7Z1af1KS8pNj21O_gN_STOLtJnlRU8BaS2bCZ3cn8hpn9DSF7vgLrrBeliExigFKJUs_rUDo1izPQMeiYqy3eq5NT8e5Mno2Hwrqp2n1KSeY_dTZrrd50FcfQo0wlBakBWV0iclyXKXZPKdrxjMOXoVYOYX89nZD549B7XiiT9d9DmL8lRbOvOd4gj0eQSA-GVd0kD6B5Qh4eZYLpmy1y_mEobIWOtpF27eKCfl1kQiUc5IcTH4knlfYtjUuAW_hx973_bL9Rf5OK4OiioZamztnQAU3kVIlZGSjiV5zXU3J6fPTx7Uk5tkkoveSyLy2fOVmDllCF6OuZDLESLOCHSwcafZRjLGpVOcsFyJrZgNqYSwQHAaxglj8ja03bwHNCHRMeDdZycBgy-9oJBYzHaKV1oYqyINWkNuNHDvHUyuLC5FhCKzOo2qCqTVa1uS7I_mrM5cCg8U_pw7QaK8nEfp1vtMtPZjQmo3kUuMjRglXC4bUMc4_zRLRqRdS6IDvTWprRJDvDEtRi6KlFQV6tHqMxpQyJbaC9QhnFlUAEJOYFeT3tgV-v-Pu0X_yf-DZ5xNJuRB_I2A5Z65dXsIvgpncv817-CQ--8yM priority: 102 providerName: Springer Nature |
Title | Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest |
URI | https://link.springer.com/article/10.1186/s13717-021-00337-x https://www.proquest.com/docview/2584622124 https://www.proquest.com/docview/2636412949 https://doaj.org/article/83f4941faea64bf495d9c23f192a4f88 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagCIkLKn8iUFZG4gZRE8d2nON2taXaQ4UKlXpBlu2MxVYlQU0qWk68Q9-QJ2HsZJcWqfTCJYkcO5qMx5pv5PE3hLxxORhrHE-5ZwIDlJynqirr1MrMZ6B8rXzMttiXe4d8cSSOrpT6CjlhAz3woLhtVXhe8dwbMJJbfBZ15VjhEZkY7lU85os-70owdTzkyyH0L1enZJTc7vICI5c0ZCSE-mVlen7NE0XC_mso86-N0ehvdjfJwxEo0ukg4CNyB5rH5P48kkxfPCGfD4bkVuho62nXLk_o12UkVcJBbjj1EbhSad9SfwrwA379vOy_mO_UXYREOLpsqKGhejZ0QANBVWBXBooYFuV6Sg53559me-lYKiF1ohB9aorMihKUgLz2rsxE7XPOavxxYUGhn7KMeSVzawoOomSmRm1UAgFCDYYzUzwjG03bwHNCLeMOF60pwGLY7ErLJaC-vRHG1rkXCclXatNu5BEP5SxOdIwnlNSDqjWqWkdV6_OEvF2P-TawaPyz906YjXXPwIAdG9Au9GgX-ja7SMjWai71uCw7zQLcYuiteUJer1_jggq7JKaB9gz7yEJyREG8Ssi7lQ38-cTNYr_4H2K_JA9YsFH0joxtkY3-9AxeIezp7YTc5dn7Cbk3nS4-LvC-M9__cICtM8bDVc4mcQ38BtmbBFM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVgguiF8RKGAkOEHUxLEd7wEhClttaVmhqpV6QcZ2xrBS2ZRNqnY58Q68Bw_FkzDOz1ZForfeosR2rJnx_Njjbwh55lIw1jgec88EBigpj9UwL2IrE5-A8oXyTbbFRI73-fsDcbBCfvd3YUJaZa8TG0VdlC7ska-zYCkZKlr--uh7HKpGhdPVvoRGKxbbsDjBkK16tfUO-fucsc3R3ttx3FUViJ3IRB2bLLEiByUgLbzLE1H4lLMiVVJYUKjSLWNeydSajIPImSmyPNRKTfICDGcmw3GvkFWeyYQNyOrGaPJxd7mrg8EShhx5fztHyfUqxe55HDIhQt20PD49ZwGbQgHnvNt_DmQbO7d5k9zoHFT6ppWoW2QFZrfJ1VEDbr24Qz7ttkm1UNHS06qcHtJv0wbMCTu59rZJwGildUn9HOAH_Pn5q_5qTqhbhAQ8Op1RQ0PVbqiABmCsgOoMFH1nnNddsn8pxLxHBrNyBvcJtYw7VBYmA4vhusstl8Ay740wtki9iEjak027Dr88lNE41E0co6RuSa2R1LohtT6NyItln6MWvePC1huBG8uWAXm7eVHOv-huIWuVeY5M9gaM5BafRTF0OE_0lA33SkVkreel7tRBpc-ENyJPl59xIYfTGTOD8hjbyExy9L74MCIvexk4G-L_035w8R-fkGvjvQ87emdrsv2QXGdBEtH2MrZGBvX8GB6hU1Xbx50kU_L5shfPXyf4M2k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKViAuiPKjBgoYCU4Q7caxY-8BIUp31VK0qioq9YKM7YxhpbIpm1TtcuIdeBsehydhnJ-tWoneeosS27HmzzP2-BtCXrgEjDWOx9wzgQFKwmM1lHlss4EfgPK58nW2xSTbPuAfDsXhCvnT3YUJaZWdTawNdV64sEfeZ2GlZGhoed-3aRF7W-O3xz_iUEEqnLR25TQaEdmFxSmGb-WbnS3k9UvGxqNP77fjtsJA7EQqqtikAyskKAFJ7p0ciNwnnOWJyoQFhebdMuZVlliTchCSmTyVoW7qQOZgODMpjnuDrMoQFfXI6uZosre_3OHBwAnDD9nd1FFZv0ywu4xDVkSooSbjswurYV004IKne-lwtl7zxnfJndZZpe8a6VojKzC7R26OaqDrxX3yeb9JsIWSFp6WxfSIfp_WwE7YyTU3TwJeK60K6ucAP-Hvr9_VN3NK3SIk49HpjBoaKnhDCTSAZAWEZ6DoR-O8HpCDayHmQ9KbFTNYJ9Qy7tBwmBQshu5OWp4BS703wtg88SIiSUc27Vos81BS40jXMY3KdENqjaTWNan1WUReLfscN0geV7beDNxYtgwo3PWLYv5Vt0qtVeo5MtkbMBm3-CzyocN5otdsuFcqIhsdL3VrGkp9LsgReb78jEodTmrMDIoTbJOlGUdPjA8j8rqTgfMh_j_tR1f_8Rm5hUqjP-5Mdh-T2ywIIi7DjG2QXjU_gSfoX1X2aSvIlHy5bt35B3EON54 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responses+of+soil+microbial+communities+to+freeze%E2%80%93thaw+cycles+in+a+Chinese+temperate+forest&rft.jtitle=Ecological+processes&rft.au=Changpeng+Sang&rft.au=Zongwei+Xia&rft.au=Lifei+Sun&rft.au=Hao+Sun&rft.date=2021-10-22&rft.pub=SpringerOpen&rft.eissn=2192-1709&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1186%2Fs13717-021-00337-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_83f4941faea64bf495d9c23f192a4f88 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon |