Inducing Gamma Oscillations and Precise Spike Synchrony by Operant Conditioning via Brain-Machine Interface

Neural oscillations in the low-gamma range (30–50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations betw...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 77; no. 2; pp. 361 - 375
Main Authors Engelhard, Ben, Ozeri, Nofar, Israel, Zvi, Bergman, Hagai, Vaadia, Eilon
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 23.01.2013
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural oscillations in the low-gamma range (30–50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a brain-machine interface (BMI) to train monkeys to specifically increase low-gamma power in selected sites of motor cortex to move a cursor and obtain a reward. The monkeys learned to robustly generate oscillatory gamma waves, which were accompanied by a dramatic increase of spiking synchrony of highly precise spatiotemporal patterns. The findings link volitional control of LFP oscillations, neuronal synchrony, and the behavioral outcome. Subjects’ ability to directly modulate specific patterns of neuronal synchrony provides a powerful approach for understanding neuronal processing in relation to behavior and for the use of BMIs in a clinical setting. ► Conditioning of oscillations in a specific frequency band of local field potentials ► Volitional modulation of precise neuronal synchronization in a specific cortical site ► Spatiotemporal patterns of γ oscillations and spike synchrony are highly correlated Engelhard et al. use a brain-machine interface to induce volitional control of low-gamma oscillations and precise spike timing in motor cortex of monkeys. They show that emerging spatiotemporal patterns of oscillations are directly linked to the dynamics of spiking synchronization.
AbstractList Neural oscillations in the low-gamma range (30-50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a brain-machine interface (BMI) to train monkeys to specifically increase low-gamma power in selected sites of motor cortex to move a cursor and obtain a reward. The monkeys learned to robustly generate oscillatory gamma waves, which were accompanied by a dramatic increase of spiking synchrony of highly precise spatiotemporal patterns. The findings link volitional control of LFP oscillations, neuronal synchrony, and the behavioral outcome. Subjects' ability to directly modulate specific patterns of neuronal synchrony provides a powerful approach for understanding neuronal processing in relation to behavior and for the use of BMIs in a clinical setting.
Neural oscillations in the low-gamma range (30-50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a brain-machine interface (BMI) to train monkeys to specifically increase low-gamma power in selected sites of motor cortex to move a cursor and obtain a reward. The monkeys learned to robustly generate oscillatory gamma waves, which were accompanied by a dramatic increase of spiking synchrony of highly precise spatiotemporal patterns. The findings link volitional control of LFP oscillations, neuronal synchrony, and the behavioral outcome. Subjects' ability to directly modulate specific patterns of neuronal synchrony provides a powerful approach for understanding neuronal processing in relation to behavior and for the use of BMIs in a clinical setting.Neural oscillations in the low-gamma range (30-50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a brain-machine interface (BMI) to train monkeys to specifically increase low-gamma power in selected sites of motor cortex to move a cursor and obtain a reward. The monkeys learned to robustly generate oscillatory gamma waves, which were accompanied by a dramatic increase of spiking synchrony of highly precise spatiotemporal patterns. The findings link volitional control of LFP oscillations, neuronal synchrony, and the behavioral outcome. Subjects' ability to directly modulate specific patterns of neuronal synchrony provides a powerful approach for understanding neuronal processing in relation to behavior and for the use of BMIs in a clinical setting.
Neural oscillations in the low-gamma range (30–50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a brain-machine interface (BMI) to train monkeys to specifically increase low-gamma power in selected sites of motor cortex to move a cursor and obtain a reward. The monkeys learned to robustly generate oscillatory gamma waves, which were accompanied by a dramatic increase of spiking synchrony of highly precise spatiotemporal patterns. The findings link volitional control of LFP oscillations, neuronal synchrony, and the behavioral outcome. Subjects’ ability to directly modulate specific patterns of neuronal synchrony provides a powerful approach for understanding neuronal processing in relation to behavior and for the use of BMIs in a clinical setting. ► Conditioning of oscillations in a specific frequency band of local field potentials ► Volitional modulation of precise neuronal synchronization in a specific cortical site ► Spatiotemporal patterns of γ oscillations and spike synchrony are highly correlated Engelhard et al. use a brain-machine interface to induce volitional control of low-gamma oscillations and precise spike timing in motor cortex of monkeys. They show that emerging spatiotemporal patterns of oscillations are directly linked to the dynamics of spiking synchronization.
Author Ozeri, Nofar
Israel, Zvi
Bergman, Hagai
Engelhard, Ben
Vaadia, Eilon
Author_xml – sequence: 1
  givenname: Ben
  surname: Engelhard
  fullname: Engelhard, Ben
  email: ben.engelhard@mail.huji.ac.il
  organization: Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 2
  givenname: Nofar
  surname: Ozeri
  fullname: Ozeri, Nofar
  organization: Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 3
  givenname: Zvi
  surname: Israel
  fullname: Israel, Zvi
  organization: Center for Function and Restorative Neurosurgery, Department of Neurosurgery, Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 4
  givenname: Hagai
  surname: Bergman
  fullname: Bergman, Hagai
  organization: Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 5
  givenname: Eilon
  surname: Vaadia
  fullname: Vaadia, Eilon
  organization: Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem 91120, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23352171$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v0zAchi00xLrBN0DIEhcuCf45dmJzQIJqG5WGigScLdd_mLvG6exkUr89Dt0uO7CLfXne1_L7nKGTOESH0FsgNRBoP27r6KY0xJoSoDVATYC_QAsgsqsYSHmCFkTItmpp15yis5y3hADjEl6hU9o0nEIHC3S7inYyIf7BV7rvNV5nE3Y7PYYhZqyjxT-SMyE7_HMfbst5iOamPHrAmwNe713SccTLIdowJ-aa-6Dx16RDrL5rcxOiw6s4uuS1ca_RS6932b15uM_R78uLX8tv1fX6arX8cl0Z3vCxktZ6yTuppfSGMSrNhjhvhPS8E4JLwXjXtFR2nkhrdMc8I74RTQOwIdry5hx9OPbu03A3uTyqPmTjyreiG6asoOWs7Zgg4nmUCsqBSQEFff8E3Q5TiuUjpZDxeVBJC_XugZo2vbNqn0Kv00E9Ll6AT0fApCHn5LwyYfy391hW2ykgatartuqoV816FYAqekuYPQk_9j8T-3yMubL6fXBJFcsuGmdDsTsqO4T_F_wF5P2_rw
CitedBy_id crossref_primary_10_1007_s40473_018_0151_z
crossref_primary_10_3389_fnint_2015_00040
crossref_primary_10_7554_eLife_24573
crossref_primary_10_7554_eLife_76411
crossref_primary_10_1002_hbm_24189
crossref_primary_10_1152_jn_00551_2020
crossref_primary_10_3389_fnsys_2014_00165
crossref_primary_10_1038_s42003_022_03665_6
crossref_primary_10_1038_srep36255
crossref_primary_10_1038_nn_3712
crossref_primary_10_1088_1741_2552_aadf3d
crossref_primary_10_1007_s11571_014_9290_4
crossref_primary_10_1016_j_neubiorev_2020_03_030
crossref_primary_10_1016_j_celrep_2020_02_005
crossref_primary_10_1016_j_cub_2018_07_009
crossref_primary_10_3390_technologies4030026
crossref_primary_10_1146_annurev_bioeng_110220_110833
crossref_primary_10_1523_ENEURO_0369_17_2018
crossref_primary_10_1093_texcom_tgaa017
crossref_primary_10_1109_TNSRE_2016_2639501
crossref_primary_10_1016_j_encep_2016_11_003
crossref_primary_10_3389_fnhum_2015_00171
crossref_primary_10_1016_j_conb_2015_02_004
crossref_primary_10_3389_fnbeh_2014_00383
crossref_primary_10_7554_eLife_90944_3
crossref_primary_10_1016_j_cam_2024_115889
crossref_primary_10_1016_j_parkreldis_2024_106010
crossref_primary_10_1016_j_tics_2022_01_008
crossref_primary_10_1016_j_neuron_2024_12_023
crossref_primary_10_3171_2020_4_FOCUS20179
crossref_primary_10_1016_j_neubiorev_2016_07_016
crossref_primary_10_1523_ENEURO_0163_23_2023
crossref_primary_10_1523_JNEUROSCI_3490_14_2015
crossref_primary_10_1016_j_neuropsychologia_2017_10_015
crossref_primary_10_1016_j_neuron_2015_03_036
crossref_primary_10_3390_brainsci12010066
crossref_primary_10_1016_j_neuron_2013_01_003
crossref_primary_10_3390_s21206729
crossref_primary_10_1016_j_neuroscience_2021_12_004
crossref_primary_10_1038_nature13665
crossref_primary_10_1209_0295_5075_ac1a23
crossref_primary_10_1016_j_conb_2014_11_010
crossref_primary_10_1073_pnas_1405300111
crossref_primary_10_1093_cercor_bhz013
crossref_primary_10_1111_nyas_13338
crossref_primary_10_1152_jn_00131_2018
crossref_primary_10_1016_j_neuron_2017_01_023
crossref_primary_10_1152_jn_00070_2017
crossref_primary_10_1177_1073858418775355
crossref_primary_10_1016_j_neures_2019_04_003
crossref_primary_10_1093_cercor_bhae051
crossref_primary_10_3389_fnsys_2014_00104
crossref_primary_10_1016_j_bbr_2015_09_011
crossref_primary_10_3389_fnins_2017_00060
crossref_primary_10_1016_j_nbd_2015_05_001
crossref_primary_10_1523_JNEUROSCI_1090_15_2015
crossref_primary_10_7554_eLife_100238
crossref_primary_10_1016_j_neuron_2016_05_039
crossref_primary_10_1371_journal_pone_0060060
crossref_primary_10_1093_brain_aww246
crossref_primary_10_1109_TNSRE_2016_2612001
crossref_primary_10_1038_s42003_020_0801_z
crossref_primary_10_7554_eLife_90944
crossref_primary_10_1109_TNSRE_2016_2597243
crossref_primary_10_1152_jn_00621_2013
crossref_primary_10_1177_1073858414549015
crossref_primary_10_1523_JNEUROSCI_4367_13_2014
crossref_primary_10_1038_s41467_017_01909_2
crossref_primary_10_1002_hbm_23663
crossref_primary_10_1109_JPROC_2014_2313113
crossref_primary_10_1038_ncomms6462
crossref_primary_10_1016_j_conb_2015_12_005
crossref_primary_10_1016_j_neuron_2019_11_001
crossref_primary_10_1088_1741_2560_11_2_026002
crossref_primary_10_31887_DCNS_2013_15_3_puhlhaas
crossref_primary_10_1016_j_neures_2020_03_008
crossref_primary_10_1038_nn_3723
crossref_primary_10_7554_eLife_40843
crossref_primary_10_1016_j_neubiorev_2021_12_029
crossref_primary_10_1093_nc_niad003
crossref_primary_10_3389_fnbot_2015_00008
Cites_doi 10.1007/s00429-010-0277-6
10.1038/nrn3137
10.1016/j.neuron.2008.03.027
10.1007/BF00202899
10.1016/0006-8993(74)90298-4
10.1038/373515a0
10.1146/annurev-neuro-062111-150444
10.1146/annurev.neuro.051508.135603
10.1126/science.163.3870.955
10.1016/j.neuron.2011.11.002
10.1073/pnas.0308538101
10.1038/338334a0
10.1016/j.neubiorev.2009.09.001
10.1016/S0896-6273(00)80821-1
10.1038/35086012
10.1038/nrn1888
10.1016/S0165-0270(01)00372-7
10.1007/BF00998559
10.1152/jn.00024.2005
10.1152/jn.1998.79.1.159
10.1177/1545968311418345
10.1152/jn.1996.76.6.3968
10.1038/nature08002
10.1073/pnas.86.5.1698
10.1073/pnas.92.1.290
10.1111/j.1460-9568.2010.07100.x
10.1093/cercor/bhr040
10.1016/j.neuron.2009.01.008
10.1073/pnas.89.12.5670
10.1007/s13311-012-0136-7
10.1152/jn.1989.61.5.900
10.1016/j.neurobiolaging.2004.03.008
10.1016/j.neuron.2011.12.013
10.1038/nrn2044
10.1002/cne.903540106
10.1016/j.tins.2011.10.004
10.1038/nrn2774
10.1126/science.278.5345.1950
10.1016/j.neuron.2012.09.004
10.1146/annurev.ne.18.030195.003011
10.1016/S0896-6273(00)80822-3
10.1016/j.biopsych.2006.07.002
10.1126/science.1099745
10.1016/j.neuron.2010.02.001
10.1073/pnas.0509346102
10.1016/j.clinph.2005.07.007
10.1016/j.neuron.2006.09.020
10.1016/j.brainres.2008.06.103
10.1113/jphysiol.2001.015099
10.1038/nrn2315
10.1207/s15324826an1202_2
10.1016/j.neuron.2005.03.002
10.1016/S0896-6273(03)00120-X
10.1080/13854040600744839
10.1016/j.ijpsycho.2009.10.011
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1073/pnas.90.10.4470
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 23, 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 23, 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1016/j.neuron.2012.11.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
Neurosciences Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 375
ExternalDocumentID 3557472811
23352171
10_1016_j_neuron_2012_11_015
S0896627312010306
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
AAFWJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c535t-9ddf9579a99fc4429cb0efc89f578859845736297f09dca74f40f383311b0ad53
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Tue Aug 12 05:11:16 EDT 2025
Thu Jul 10 23:00:07 EDT 2025
Sat Aug 23 12:59:36 EDT 2025
Mon Jul 21 06:03:24 EDT 2025
Tue Jul 01 01:16:05 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 23 02:11:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-9ddf9579a99fc4429cb0efc89f578859845736297f09dca74f40f383311b0ad53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627312010306
PMID 23352171
PQID 1645352192
PQPubID 2031076
PageCount 15
ParticipantIDs proquest_miscellaneous_1654674808
proquest_miscellaneous_1282514981
proquest_journals_1645352192
pubmed_primary_23352171
crossref_citationtrail_10_1016_j_neuron_2012_11_015
crossref_primary_10_1016_j_neuron_2012_11_015
elsevier_sciencedirect_doi_10_1016_j_neuron_2012_11_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-23
PublicationDateYYYYMMDD 2013-01-23
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Apostol, Creutzfeldt (bib4) 1974; 67
Herrmann, Fründ, Lenz (bib24) 2010; 34
Keizer, Verschoor, Verment, Hommel (bib27) 2010; 75
Jackson, Spinks, Freeman, Wolpert, Lemon (bib25) 2002; 541
Brovelli, Ding, Ledberg, Chen, Nakamura, Bressler (bib11) 2004; 101
Steriade (bib52) 1995; 354
Angelakis, Stathopoulou, Frymiare, Green, Lubar, Kounios (bib3) 2007; 21
Singer (bib49) 1999; 24
Loo, Barkley (bib34) 2005; 12
Uhlhaas, Singer (bib54) 2006; 52
Sitaram, Veit, Stevens, Caria, Gerloff, Birbaumer, Hummel (bib51) 2012; 26
Singer, Gray (bib50) 1995; 18
Bird, Newton, Sheer, Ford (bib9) 1978; 3
Denker, Roux, Lindén, Diesmann, Riehle, Grün (bib16) 2011; 21
Eckhorn, Bauer, Jordan, Brosch, Kruse, Munk, Reitboeck (bib18) 1988; 60
Cardin, Carlén, Meletis, Knoblich, Zhang, Deisseroth, Tsai, Moore (bib14) 2009; 459
König, Engel, Singer (bib29) 1995; 92
Yuval-Greenberg, Tomer, Keren, Nelken, Deouell (bib59) 2008; 58
Averbeck, Latham, Pouget (bib6) 2006; 7
Lehongre, Ramus, Villiermet, Schwartz, Giraud (bib31) 2011; 72
Tiesinga, Fellous, Sejnowski (bib53) 2008; 9
Chen, Fetz (bib15) 2005; 94
Ros, Munneke, Ruge, Gruzelier, Rothwell (bib42) 2010; 31
Wilson, Rojas, Reite, Teale, Rogers (bib58) 2007; 62
Saleh, Reimer, Penn, Ojakangas, Hatsopoulos (bib43) 2010; 65
Aertsen, Gerstein, Habib, Palm (bib2) 1989; 61
Buzsáki, Wang (bib13) 2012; 35
Atallah, Bruns, Carandini, Scanziani (bib5) 2012; 73
Koenig, Prichep, Dierks, Hubl, Wahlund, John, Jelic (bib28) 2005; 26
Gray, Singer (bib21) 1989; 86
MacKay (bib35) 2005
Donoghue, Sanes, Hatsopoulos, Gaál (bib17) 1998; 79
Herrmann, Demiralp (bib23) 2005; 116
Lewis, Curley, Glausier, Volk (bib33) 2012; 35
Shmiel, Drori, Shmiel, Ben-Shaul, Nadasdy, Shemesh, Teicher, Abeles (bib47) 2005; 102
Vaadia, Haalman, Abeles, Bergman, Prut, Slovin, Aertsen (bib57) 1995; 373
Lachaux, Rodriguez, Martinerie, Varela (bib30) 1999; 8
Shadlen, Movshon (bib46) 1999; 24
Sanes, Donoghue (bib45) 1993; 90
Palanca, DeAngelis (bib40) 2005; 46
Le Van Quyen, Foucher, Lachaux, Rodriguez, Lutz, Martinerie, Varela (bib32) 2001; 111
Fries (bib20) 2009; 32
Moriyama, Polanczyk, Caye, Banaschewski, Brandeis, Rohde (bib36) 2012; 9
Başar, Güntekin (bib8) 2008; 1235
Kayser, Montemurro, Logothetis, Panzeri (bib26) 2009; 61
Murthy, Fetz (bib37) 1992; 89
Murthy, Fetz (bib38) 1996; 76
Siegel, Donner, Engel (bib48) 2012; 13
Gray, König, Engel, Singer (bib22) 1989; 338
Uhlhaas, Singer (bib55) 2010; 11
Uhlhaas, Singer (bib56) 2012; 75
Brody, Hopfield (bib10) 2003; 37
Nunez, Srinivasan (bib39) 2010; 215
Buzsáki, Draguhn (bib12) 2004; 304
Abeles (bib1) 1991
Fetz (bib19) 1969; 163
Salinas, Sejnowski (bib44) 2001; 2
Bartos, Vida, Jonas (bib7) 2007; 8
Riehle, Grün, Diesmann, Aertsen (bib41) 1997; 278
Averbeck (10.1016/j.neuron.2012.11.015_bib6) 2006; 7
Gray (10.1016/j.neuron.2012.11.015_bib21) 1989; 86
Fetz (10.1016/j.neuron.2012.11.015_bib19) 1969; 163
Sitaram (10.1016/j.neuron.2012.11.015_bib51) 2012; 26
Cardin (10.1016/j.neuron.2012.11.015_bib14) 2009; 459
Salinas (10.1016/j.neuron.2012.11.015_bib44) 2001; 2
Jackson (10.1016/j.neuron.2012.11.015_bib25) 2002; 541
Ros (10.1016/j.neuron.2012.11.015_bib42) 2010; 31
Uhlhaas (10.1016/j.neuron.2012.11.015_bib54) 2006; 52
Kayser (10.1016/j.neuron.2012.11.015_bib26) 2009; 61
Shadlen (10.1016/j.neuron.2012.11.015_bib46) 1999; 24
Donoghue (10.1016/j.neuron.2012.11.015_bib17) 1998; 79
Palanca (10.1016/j.neuron.2012.11.015_bib40) 2005; 46
Murthy (10.1016/j.neuron.2012.11.015_bib38) 1996; 76
Abeles (10.1016/j.neuron.2012.11.015_bib1) 1991
Wilson (10.1016/j.neuron.2012.11.015_bib58) 2007; 62
Aertsen (10.1016/j.neuron.2012.11.015_bib2) 1989; 61
Fries (10.1016/j.neuron.2012.11.015_bib20) 2009; 32
Brovelli (10.1016/j.neuron.2012.11.015_bib11) 2004; 101
Eckhorn (10.1016/j.neuron.2012.11.015_bib18) 1988; 60
Loo (10.1016/j.neuron.2012.11.015_bib34) 2005; 12
Lachaux (10.1016/j.neuron.2012.11.015_bib30) 1999; 8
Atallah (10.1016/j.neuron.2012.11.015_bib5) 2012; 73
Yuval-Greenberg (10.1016/j.neuron.2012.11.015_bib59) 2008; 58
Nunez (10.1016/j.neuron.2012.11.015_bib39) 2010; 215
Sanes (10.1016/j.neuron.2012.11.015_bib45) 1993; 90
MacKay (10.1016/j.neuron.2012.11.015_bib35) 2005
Singer (10.1016/j.neuron.2012.11.015_bib50) 1995; 18
Apostol (10.1016/j.neuron.2012.11.015_bib4) 1974; 67
Koenig (10.1016/j.neuron.2012.11.015_bib28) 2005; 26
Keizer (10.1016/j.neuron.2012.11.015_bib27) 2010; 75
Siegel (10.1016/j.neuron.2012.11.015_bib48) 2012; 13
Buzsáki (10.1016/j.neuron.2012.11.015_bib13) 2012; 35
Shmiel (10.1016/j.neuron.2012.11.015_bib47) 2005; 102
Singer (10.1016/j.neuron.2012.11.015_bib49) 1999; 24
Başar (10.1016/j.neuron.2012.11.015_bib8) 2008; 1235
Moriyama (10.1016/j.neuron.2012.11.015_bib36) 2012; 9
Riehle (10.1016/j.neuron.2012.11.015_bib41) 1997; 278
Steriade (10.1016/j.neuron.2012.11.015_bib52) 1995; 354
Denker (10.1016/j.neuron.2012.11.015_bib16) 2011; 21
Herrmann (10.1016/j.neuron.2012.11.015_bib23) 2005; 116
Saleh (10.1016/j.neuron.2012.11.015_bib43) 2010; 65
Herrmann (10.1016/j.neuron.2012.11.015_bib24) 2010; 34
König (10.1016/j.neuron.2012.11.015_bib29) 1995; 92
Lehongre (10.1016/j.neuron.2012.11.015_bib31) 2011; 72
Murthy (10.1016/j.neuron.2012.11.015_bib37) 1992; 89
Uhlhaas (10.1016/j.neuron.2012.11.015_bib55) 2010; 11
Uhlhaas (10.1016/j.neuron.2012.11.015_bib56) 2012; 75
Brody (10.1016/j.neuron.2012.11.015_bib10) 2003; 37
Lewis (10.1016/j.neuron.2012.11.015_bib33) 2012; 35
Bartos (10.1016/j.neuron.2012.11.015_bib7) 2007; 8
Tiesinga (10.1016/j.neuron.2012.11.015_bib53) 2008; 9
Le Van Quyen (10.1016/j.neuron.2012.11.015_bib32) 2001; 111
Angelakis (10.1016/j.neuron.2012.11.015_bib3) 2007; 21
Bird (10.1016/j.neuron.2012.11.015_bib9) 1978; 3
Vaadia (10.1016/j.neuron.2012.11.015_bib57) 1995; 373
Buzsáki (10.1016/j.neuron.2012.11.015_bib12) 2004; 304
Gray (10.1016/j.neuron.2012.11.015_bib22) 1989; 338
Chen (10.1016/j.neuron.2012.11.015_bib15) 2005; 94
23352158 - Neuron. 2013 Jan 23;77(2):216-8
References_xml – year: 1991
  ident: bib1
  article-title: Corticonics: Neural Circuits of the Cerebral Cortex
– volume: 75
  start-page: 25
  year: 2010
  end-page: 32
  ident: bib27
  article-title: The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures
  publication-title: Int. J. Psychophysiol.
– volume: 37
  start-page: 843
  year: 2003
  end-page: 852
  ident: bib10
  article-title: Simple networks for spike-timing-based computation, with application to olfactory processing
  publication-title: Neuron
– volume: 26
  start-page: 256
  year: 2012
  end-page: 265
  ident: bib51
  article-title: Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time FMRI and TMS study
  publication-title: Neurorehabil. Neural Repair
– volume: 1235
  start-page: 172
  year: 2008
  end-page: 193
  ident: bib8
  article-title: A review of brain oscillations in cognitive disorders and the role of neurotransmitters
  publication-title: Brain Res.
– volume: 373
  start-page: 515
  year: 1995
  end-page: 518
  ident: bib57
  article-title: Dynamics of neuronal interactions in monkey cortex in relation to behavioural events
  publication-title: Nature
– start-page: 210
  year: 2005
  end-page: 242
  ident: bib35
  article-title: Wheels of motion: oscillatory potentials in the motor cortex
  publication-title: Motor Cortex in Voluntary Movements: A Distributed System for Distributed Functions
– volume: 26
  start-page: 165
  year: 2005
  end-page: 171
  ident: bib28
  article-title: Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
– volume: 52
  start-page: 155
  year: 2006
  end-page: 168
  ident: bib54
  article-title: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology
  publication-title: Neuron
– volume: 32
  start-page: 209
  year: 2009
  end-page: 224
  ident: bib20
  article-title: Neuronal gamma-band synchronization as a fundamental process in cortical computation
  publication-title: Annu. Rev. Neurosci.
– volume: 35
  start-page: 57
  year: 2012
  end-page: 67
  ident: bib33
  article-title: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia
  publication-title: Trends Neurosci.
– volume: 3
  start-page: 1
  year: 1978
  end-page: 11
  ident: bib9
  article-title: Biofeedback training of 40-Hz EEG in humans
  publication-title: Biofeedback Self Regul.
– volume: 163
  start-page: 955
  year: 1969
  end-page: 958
  ident: bib19
  article-title: Operant conditioning of cortical unit activity
  publication-title: Science
– volume: 459
  start-page: 663
  year: 2009
  end-page: 667
  ident: bib14
  article-title: Driving fast-spiking cells induces gamma rhythm and controls sensory responses
  publication-title: Nature
– volume: 76
  start-page: 3968
  year: 1996
  end-page: 3982
  ident: bib38
  article-title: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys
  publication-title: J. Neurophysiol.
– volume: 24
  start-page: 67
  year: 1999
  end-page: 77
  ident: bib46
  article-title: Synchrony unbound: a critical evaluation of the temporal binding hypothesis
  publication-title: Neuron
– volume: 18
  start-page: 555
  year: 1995
  end-page: 586
  ident: bib50
  article-title: Visual feature integration and the temporal correlation hypothesis
  publication-title: Annu. Rev. Neurosci.
– volume: 60
  start-page: 121
  year: 1988
  end-page: 130
  ident: bib18
  article-title: Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat
  publication-title: Biol. Cybern.
– volume: 541
  start-page: 685
  year: 2002
  end-page: 699
  ident: bib25
  article-title: Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation
  publication-title: J. Physiol.
– volume: 35
  start-page: 203
  year: 2012
  end-page: 225
  ident: bib13
  article-title: Mechanisms of gamma oscillations
  publication-title: Annu. Rev. Neurosci.
– volume: 116
  start-page: 2719
  year: 2005
  end-page: 2733
  ident: bib23
  article-title: Human EEG gamma oscillations in neuropsychiatric disorders
  publication-title: Clin. Neurophysiol.
– volume: 72
  start-page: 1080
  year: 2011
  end-page: 1090
  ident: bib31
  article-title: Altered low-γ sampling in auditory cortex accounts for the three main facets of dyslexia
  publication-title: Neuron
– volume: 111
  start-page: 83
  year: 2001
  end-page: 98
  ident: bib32
  article-title: Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony
  publication-title: J. Neurosci. Methods
– volume: 9
  start-page: 588
  year: 2012
  end-page: 598
  ident: bib36
  article-title: Evidence-based information on the clinical use of neurofeedback for ADHD
  publication-title: Neurotherapeutics
– volume: 338
  start-page: 334
  year: 1989
  end-page: 337
  ident: bib22
  article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
  publication-title: Nature
– volume: 90
  start-page: 4470
  year: 1993
  end-page: 4474
  ident: bib45
  article-title: Oscillations in local field potentials of the primate motor cortex during voluntary movement
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 62
  start-page: 192
  year: 2007
  end-page: 197
  ident: bib58
  article-title: Children and adolescents with autism exhibit reduced MEG steady-state gamma responses
  publication-title: Biol. Psychiatry
– volume: 7
  start-page: 358
  year: 2006
  end-page: 366
  ident: bib6
  article-title: Neural correlations, population coding and computation
  publication-title: Nat. Rev. Neurosci.
– volume: 86
  start-page: 1698
  year: 1989
  end-page: 1702
  ident: bib21
  article-title: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 75
  start-page: 963
  year: 2012
  end-page: 980
  ident: bib56
  article-title: Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks
  publication-title: Neuron
– volume: 101
  start-page: 9849
  year: 2004
  end-page: 9854
  ident: bib11
  article-title: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 73
  start-page: 159
  year: 2012
  end-page: 170
  ident: bib5
  article-title: Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli
  publication-title: Neuron
– volume: 58
  start-page: 429
  year: 2008
  end-page: 441
  ident: bib59
  article-title: Transient induced gamma-band response in EEG as a manifestation of miniature saccades
  publication-title: Neuron
– volume: 46
  start-page: 333
  year: 2005
  end-page: 346
  ident: bib40
  article-title: Does neuronal synchrony underlie visual feature grouping?
  publication-title: Neuron
– volume: 24
  start-page: 49
  year: 1999
  end-page: 65
  ident: bib49
  article-title: Neuronal synchrony: a versatile code for the definition of relations?
  publication-title: Neuron
– volume: 9
  start-page: 97
  year: 2008
  end-page: 107
  ident: bib53
  article-title: Regulation of spike timing in visual cortical circuits
  publication-title: Nat. Rev. Neurosci.
– volume: 21
  start-page: 2681
  year: 2011
  end-page: 2695
  ident: bib16
  article-title: The local field potential reflects surplus spike synchrony
  publication-title: Cereb. Cortex
– volume: 102
  start-page: 18655
  year: 2005
  end-page: 18657
  ident: bib47
  article-title: Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 45
  year: 2007
  end-page: 56
  ident: bib7
  article-title: Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks
  publication-title: Nat. Rev. Neurosci.
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  ident: bib30
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
– volume: 278
  start-page: 1950
  year: 1997
  end-page: 1953
  ident: bib41
  article-title: Spike synchronization and rate modulation differentially involved in motor cortical function
  publication-title: Science
– volume: 215
  start-page: 67
  year: 2010
  end-page: 71
  ident: bib39
  article-title: Scale and frequency chauvinism in brain dynamics: too much emphasis on γ band oscillations
  publication-title: Brain Struct. Funct.
– volume: 34
  start-page: 981
  year: 2010
  end-page: 992
  ident: bib24
  article-title: Human gamma-band activity: a review on cognitive and behavioral correlates and network models
  publication-title: Neurosci. Biobehav. Rev.
– volume: 65
  start-page: 461
  year: 2010
  end-page: 471
  ident: bib43
  article-title: Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues
  publication-title: Neuron
– volume: 13
  start-page: 121
  year: 2012
  end-page: 134
  ident: bib48
  article-title: Spectral fingerprints of large-scale neuronal interactions
  publication-title: Nat. Rev. Neurosci.
– volume: 2
  start-page: 539
  year: 2001
  end-page: 550
  ident: bib44
  article-title: Correlated neuronal activity and the flow of neural information
  publication-title: Nat. Rev. Neurosci.
– volume: 61
  start-page: 900
  year: 1989
  end-page: 917
  ident: bib2
  article-title: Dynamics of neuronal firing correlation: modulation of “effective connectivity”
  publication-title: J. Neurophysiol.
– volume: 12
  start-page: 64
  year: 2005
  end-page: 76
  ident: bib34
  article-title: Clinical utility of EEG in attention deficit hyperactivity disorder
  publication-title: Appl. Neuropsychol.
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  ident: bib12
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 67
  start-page: 65
  year: 1974
  end-page: 75
  ident: bib4
  article-title: Crosscorrelation between the activity of septal units and hippocampal EEG during arousal
  publication-title: Brain Res.
– volume: 79
  start-page: 159
  year: 1998
  end-page: 173
  ident: bib17
  article-title: Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements
  publication-title: J. Neurophysiol.
– volume: 354
  start-page: 57
  year: 1995
  end-page: 70
  ident: bib52
  article-title: Two channels in the cerebellothalamocortical system
  publication-title: J. Comp. Neurol.
– volume: 11
  start-page: 100
  year: 2010
  end-page: 113
  ident: bib55
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat. Rev. Neurosci.
– volume: 21
  start-page: 110
  year: 2007
  end-page: 129
  ident: bib3
  article-title: EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly
  publication-title: Clin. Neuropsychol.
– volume: 61
  start-page: 597
  year: 2009
  end-page: 608
  ident: bib26
  article-title: Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns
  publication-title: Neuron
– volume: 92
  start-page: 290
  year: 1995
  end-page: 294
  ident: bib29
  article-title: Relation between oscillatory activity and long-range synchronization in cat visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 94
  start-page: 2713
  year: 2005
  end-page: 2725
  ident: bib15
  article-title: Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo
  publication-title: J. Neurophysiol.
– volume: 89
  start-page: 5670
  year: 1992
  end-page: 5674
  ident: bib37
  article-title: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 770
  year: 2010
  end-page: 778
  ident: bib42
  article-title: Endogenous control of waking brain rhythms induces neuroplasticity in humans
  publication-title: Eur. J. Neurosci.
– volume: 215
  start-page: 67
  year: 2010
  ident: 10.1016/j.neuron.2012.11.015_bib39
  article-title: Scale and frequency chauvinism in brain dynamics: too much emphasis on γ band oscillations
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-010-0277-6
– volume: 13
  start-page: 121
  year: 2012
  ident: 10.1016/j.neuron.2012.11.015_bib48
  article-title: Spectral fingerprints of large-scale neuronal interactions
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3137
– volume: 58
  start-page: 429
  year: 2008
  ident: 10.1016/j.neuron.2012.11.015_bib59
  article-title: Transient induced gamma-band response in EEG as a manifestation of miniature saccades
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.03.027
– volume: 60
  start-page: 121
  year: 1988
  ident: 10.1016/j.neuron.2012.11.015_bib18
  article-title: Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00202899
– volume: 67
  start-page: 65
  year: 1974
  ident: 10.1016/j.neuron.2012.11.015_bib4
  article-title: Crosscorrelation between the activity of septal units and hippocampal EEG during arousal
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(74)90298-4
– volume: 373
  start-page: 515
  year: 1995
  ident: 10.1016/j.neuron.2012.11.015_bib57
  article-title: Dynamics of neuronal interactions in monkey cortex in relation to behavioural events
  publication-title: Nature
  doi: 10.1038/373515a0
– volume: 35
  start-page: 203
  year: 2012
  ident: 10.1016/j.neuron.2012.11.015_bib13
  article-title: Mechanisms of gamma oscillations
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150444
– volume: 32
  start-page: 209
  year: 2009
  ident: 10.1016/j.neuron.2012.11.015_bib20
  article-title: Neuronal gamma-band synchronization as a fundamental process in cortical computation
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.051508.135603
– volume: 163
  start-page: 955
  year: 1969
  ident: 10.1016/j.neuron.2012.11.015_bib19
  article-title: Operant conditioning of cortical unit activity
  publication-title: Science
  doi: 10.1126/science.163.3870.955
– volume: 72
  start-page: 1080
  year: 2011
  ident: 10.1016/j.neuron.2012.11.015_bib31
  article-title: Altered low-γ sampling in auditory cortex accounts for the three main facets of dyslexia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.002
– volume: 101
  start-page: 9849
  year: 2004
  ident: 10.1016/j.neuron.2012.11.015_bib11
  article-title: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0308538101
– volume: 338
  start-page: 334
  year: 1989
  ident: 10.1016/j.neuron.2012.11.015_bib22
  article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
  publication-title: Nature
  doi: 10.1038/338334a0
– volume: 34
  start-page: 981
  year: 2010
  ident: 10.1016/j.neuron.2012.11.015_bib24
  article-title: Human gamma-band activity: a review on cognitive and behavioral correlates and network models
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2009.09.001
– volume: 24
  start-page: 49
  year: 1999
  ident: 10.1016/j.neuron.2012.11.015_bib49
  article-title: Neuronal synchrony: a versatile code for the definition of relations?
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80821-1
– volume: 2
  start-page: 539
  year: 2001
  ident: 10.1016/j.neuron.2012.11.015_bib44
  article-title: Correlated neuronal activity and the flow of neural information
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35086012
– volume: 7
  start-page: 358
  year: 2006
  ident: 10.1016/j.neuron.2012.11.015_bib6
  article-title: Neural correlations, population coding and computation
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1888
– volume: 111
  start-page: 83
  year: 2001
  ident: 10.1016/j.neuron.2012.11.015_bib32
  article-title: Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(01)00372-7
– volume: 3
  start-page: 1
  year: 1978
  ident: 10.1016/j.neuron.2012.11.015_bib9
  article-title: Biofeedback training of 40-Hz EEG in humans
  publication-title: Biofeedback Self Regul.
  doi: 10.1007/BF00998559
– volume: 94
  start-page: 2713
  year: 2005
  ident: 10.1016/j.neuron.2012.11.015_bib15
  article-title: Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00024.2005
– volume: 79
  start-page: 159
  year: 1998
  ident: 10.1016/j.neuron.2012.11.015_bib17
  article-title: Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.79.1.159
– volume: 26
  start-page: 256
  year: 2012
  ident: 10.1016/j.neuron.2012.11.015_bib51
  article-title: Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time FMRI and TMS study
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968311418345
– volume: 76
  start-page: 3968
  year: 1996
  ident: 10.1016/j.neuron.2012.11.015_bib38
  article-title: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.6.3968
– volume: 459
  start-page: 663
  year: 2009
  ident: 10.1016/j.neuron.2012.11.015_bib14
  article-title: Driving fast-spiking cells induces gamma rhythm and controls sensory responses
  publication-title: Nature
  doi: 10.1038/nature08002
– volume: 86
  start-page: 1698
  year: 1989
  ident: 10.1016/j.neuron.2012.11.015_bib21
  article-title: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.5.1698
– volume: 92
  start-page: 290
  year: 1995
  ident: 10.1016/j.neuron.2012.11.015_bib29
  article-title: Relation between oscillatory activity and long-range synchronization in cat visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.1.290
– start-page: 210
  year: 2005
  ident: 10.1016/j.neuron.2012.11.015_bib35
  article-title: Wheels of motion: oscillatory potentials in the motor cortex
– volume: 31
  start-page: 770
  year: 2010
  ident: 10.1016/j.neuron.2012.11.015_bib42
  article-title: Endogenous control of waking brain rhythms induces neuroplasticity in humans
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2010.07100.x
– volume: 21
  start-page: 2681
  year: 2011
  ident: 10.1016/j.neuron.2012.11.015_bib16
  article-title: The local field potential reflects surplus spike synchrony
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr040
– volume: 61
  start-page: 597
  year: 2009
  ident: 10.1016/j.neuron.2012.11.015_bib26
  article-title: Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.01.008
– volume: 89
  start-page: 5670
  year: 1992
  ident: 10.1016/j.neuron.2012.11.015_bib37
  article-title: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.12.5670
– volume: 9
  start-page: 588
  year: 2012
  ident: 10.1016/j.neuron.2012.11.015_bib36
  article-title: Evidence-based information on the clinical use of neurofeedback for ADHD
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-012-0136-7
– volume: 61
  start-page: 900
  year: 1989
  ident: 10.1016/j.neuron.2012.11.015_bib2
  article-title: Dynamics of neuronal firing correlation: modulation of “effective connectivity”
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1989.61.5.900
– volume: 26
  start-page: 165
  year: 2005
  ident: 10.1016/j.neuron.2012.11.015_bib28
  article-title: Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2004.03.008
– volume: 73
  start-page: 159
  year: 2012
  ident: 10.1016/j.neuron.2012.11.015_bib5
  article-title: Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.013
– volume: 8
  start-page: 45
  year: 2007
  ident: 10.1016/j.neuron.2012.11.015_bib7
  article-title: Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2044
– volume: 354
  start-page: 57
  year: 1995
  ident: 10.1016/j.neuron.2012.11.015_bib52
  article-title: Two channels in the cerebellothalamocortical system
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903540106
– volume: 35
  start-page: 57
  year: 2012
  ident: 10.1016/j.neuron.2012.11.015_bib33
  article-title: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.10.004
– volume: 11
  start-page: 100
  year: 2010
  ident: 10.1016/j.neuron.2012.11.015_bib55
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2774
– volume: 278
  start-page: 1950
  year: 1997
  ident: 10.1016/j.neuron.2012.11.015_bib41
  article-title: Spike synchronization and rate modulation differentially involved in motor cortical function
  publication-title: Science
  doi: 10.1126/science.278.5345.1950
– volume: 75
  start-page: 963
  year: 2012
  ident: 10.1016/j.neuron.2012.11.015_bib56
  article-title: Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.09.004
– volume: 18
  start-page: 555
  year: 1995
  ident: 10.1016/j.neuron.2012.11.015_bib50
  article-title: Visual feature integration and the temporal correlation hypothesis
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.003011
– volume: 24
  start-page: 67
  year: 1999
  ident: 10.1016/j.neuron.2012.11.015_bib46
  article-title: Synchrony unbound: a critical evaluation of the temporal binding hypothesis
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80822-3
– volume: 62
  start-page: 192
  year: 2007
  ident: 10.1016/j.neuron.2012.11.015_bib58
  article-title: Children and adolescents with autism exhibit reduced MEG steady-state gamma responses
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2006.07.002
– volume: 304
  start-page: 1926
  year: 2004
  ident: 10.1016/j.neuron.2012.11.015_bib12
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 65
  start-page: 461
  year: 2010
  ident: 10.1016/j.neuron.2012.11.015_bib43
  article-title: Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.02.001
– volume: 102
  start-page: 18655
  year: 2005
  ident: 10.1016/j.neuron.2012.11.015_bib47
  article-title: Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0509346102
– volume: 116
  start-page: 2719
  year: 2005
  ident: 10.1016/j.neuron.2012.11.015_bib23
  article-title: Human EEG gamma oscillations in neuropsychiatric disorders
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.07.007
– volume: 52
  start-page: 155
  year: 2006
  ident: 10.1016/j.neuron.2012.11.015_bib54
  article-title: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.09.020
– volume: 1235
  start-page: 172
  year: 2008
  ident: 10.1016/j.neuron.2012.11.015_bib8
  article-title: A review of brain oscillations in cognitive disorders and the role of neurotransmitters
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.06.103
– volume: 541
  start-page: 685
  year: 2002
  ident: 10.1016/j.neuron.2012.11.015_bib25
  article-title: Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2001.015099
– volume: 9
  start-page: 97
  year: 2008
  ident: 10.1016/j.neuron.2012.11.015_bib53
  article-title: Regulation of spike timing in visual cortical circuits
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2315
– volume: 12
  start-page: 64
  year: 2005
  ident: 10.1016/j.neuron.2012.11.015_bib34
  article-title: Clinical utility of EEG in attention deficit hyperactivity disorder
  publication-title: Appl. Neuropsychol.
  doi: 10.1207/s15324826an1202_2
– volume: 46
  start-page: 333
  year: 2005
  ident: 10.1016/j.neuron.2012.11.015_bib40
  article-title: Does neuronal synchrony underlie visual feature grouping?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.03.002
– volume: 37
  start-page: 843
  year: 2003
  ident: 10.1016/j.neuron.2012.11.015_bib10
  article-title: Simple networks for spike-timing-based computation, with application to olfactory processing
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00120-X
– year: 1991
  ident: 10.1016/j.neuron.2012.11.015_bib1
– volume: 21
  start-page: 110
  year: 2007
  ident: 10.1016/j.neuron.2012.11.015_bib3
  article-title: EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854040600744839
– volume: 75
  start-page: 25
  year: 2010
  ident: 10.1016/j.neuron.2012.11.015_bib27
  article-title: The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2009.10.011
– volume: 8
  start-page: 194
  year: 1999
  ident: 10.1016/j.neuron.2012.11.015_bib30
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– volume: 90
  start-page: 4470
  year: 1993
  ident: 10.1016/j.neuron.2012.11.015_bib45
  article-title: Oscillations in local field potentials of the primate motor cortex during voluntary movement
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.10.4470
– reference: 23352158 - Neuron. 2013 Jan 23;77(2):216-8
SSID ssj0014591
Score 2.3967476
Snippet Neural oscillations in the low-gamma range (30–50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma...
Neural oscillations in the low-gamma range (30-50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 361
SubjectTerms Action Potentials - physiology
Animals
Autism
Bands
Behavior
Brain research
Brain Waves - physiology
Brain-Computer Interfaces
Charitable foundations
Conditioning, Operant - physiology
Electroencephalography Phase Synchronization - physiology
Macaca fascicularis
Musical performances
Singers
Title Inducing Gamma Oscillations and Precise Spike Synchrony by Operant Conditioning via Brain-Machine Interface
URI https://dx.doi.org/10.1016/j.neuron.2012.11.015
https://www.ncbi.nlm.nih.gov/pubmed/23352171
https://www.proquest.com/docview/1645352192
https://www.proquest.com/docview/1282514981
https://www.proquest.com/docview/1654674808
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIvgi2vpxWksE8S1edpPcJo_Xw1osWrEW721Jsglc29s77FXY_96ZZPdAUAu-7MPuBDaZTGYmM_MbQt4U3rnGOM7KiSrBQTET5nzQjEsXNTfOhoz2-XlyciE_ztV8h8yGWhhMq-zP_nymp9O6fzPuV3O8XizG51wbRC8XBQZ0RYLdFlKnIr750TaSIFXumgfEDKmH8rmU45UwIxEFtSjfIZYnNsf9s3r6m_mZ1NDxI_Kwtx_pNP_iY7IT2j2yP23Bd1529C1NGZ3pqnyP3M-NJrt9coUdOjxoKfrBLpeWnsFUr_ssOGrbhn5BkIubQM_Xiyt4dq1H0NyOuo6erQPosw2drTC6na9v6c-FpUfYXYJ9StmYgaarxWh9eEIujt9_m52wvs0C80qoDTNNEzFYZ42JXoJ-8o6H6LWJIM1aGS1VBWrOVJGbxttKRskjOLaiKBy3jRJPyW67asNzQrnzlfNYjAtemOZCN2AuOKniRLiSKzsiYljd2vcY5NgK47oeks0u68yTGnkC7kkNPBkRth21zhgcd9BXA-Pq3_ZSDWrijpEHA5_rXpZvapgKYuCAKTwir7efQQoxtGLbsLoFmlQCLI0u_kGDdWMVLIsekWd5D22nU2LpW1EVL_7711-SB2Xq1FGwUhyQ3c2P2_AK7KWNOyT3pqdfv58eJsH4BSQKE-o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2wvZWv3ka3rNBh70yLbUiw9tmFduvVj0BbyJiRZgqyNE9p04P9-d7IdGGwt7MUP9hksnaW70939foR8zLxzlXac5SOZQ4CiR8z5oBgXLiqunQ0t2ufpaHIpvk3ldIOM-14YLKvs9v52T0-7dXdn2M3mcDmbDc-50oheXmSY0C0QdvsReAMl8jccTQ_WqQQhW9o8kGYo3vfPpSKvBBqJMKhZ_hnBPJEd9-_26V_-Z7JDh8_IVudA0v32G5-TjVBvk539GoLneUM_0VTSmc7Kt8njlmmy2SFXSNHhwUzRr3Y-t_QMxnrdlcFRW1f0B6Jc3AZ6vpxdwbWpPaLmNtQ19GwZwKCt6HiB6e32_Jb-mll6gPQS7CSVYwaazhaj9eEFuTz8cjGesI5ngXlZyBXTVRUxW2e1jl6AgfKOh-iVjrCcldRKyBLsnC4j15W3pYiCR4hsiyxz3FayeEk260UdXhPKnS-dx25cCMMUL1QF_oITMo4Kl3NpB6ToZ9f4DoQcuTCuTV9t9tO0OjGoE4hPDOhkQNj6rWULwvGAfNkrzvzxMxmwEw-8udvr2XSL-dbAUBAEB3zhAfmwfgzLEHMrtg6LO5BJPcBCq-weGWwcK2Fa1IC8av-h9XBy7H3LyuzNf3_6e_JkcnFybI6PTr-_JU_zRNuRsbzYJZurm7vwDpynldtLi-M3UWMVZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inducing+Gamma+Oscillations+and+Precise+Spike+Synchrony+by+Operant+Conditioning+via+Brain-Machine+Interface&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Engelhard%2C+Ben&rft.au=Ozeri%2C+Nofar&rft.au=Israel%2C+Zvi&rft.au=Bergman%2C+Hagai&rft.date=2013-01-23&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=77&rft.issue=2&rft.spage=361&rft_id=info:doi/10.1016%2Fj.neuron.2012.11.015&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3557472811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon