dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants

Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA p...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 19; pp. E2457 - E2466
Main Authors Williams, Lindsey N., Marjavaara, Lisette, Knowels, Gary M., Schultz, Eric M., Fox, Edward J., Chabes, Andrei, Herr, Alan J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.05.2015
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
AbstractList Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ... mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ... depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1...) suppresses the mutator phenotype of pol2-4 (encoding Pol ... proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ... base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1...) and radiation sensitive (Rad) 9 (rad9...), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1... but not rad9...; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1... pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1... cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ... mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. (ProQuest: ... denotes formulae/symbols omitted.)
Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion ofDUN1(dun1Δ) suppresses the mutator phenotype ofpol2-4(encoding Pol ε proofreading deficiency) and is synthetically lethal withpol2-M644G(encoding altered Pol ε base selectivity). Althoughpol2-4cells cycle normally,pol2-M644Gcells progress slowly through S-phase. Thepol2-M644Gcells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. Thepol2-M644Gmutator phenotype is partially suppressed bymrc1Δ but notrad9Δ; neither deletion suppresses thepol2-4mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress thedun1Δpol2-M644Gsynthetic lethality and restore the mutator phenotype ofpol2-4indun1Δ cells.DUN1 pol2-M644Gcells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast,pol2-4andPOL2cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Author Marjavaara, Lisette
Herr, Alan J.
Schultz, Eric M.
Knowels, Gary M.
Fox, Edward J.
Chabes, Andrei
Williams, Lindsey N.
Author_xml – sequence: 1
  givenname: Lindsey N.
  surname: Williams
  fullname: Williams, Lindsey N.
  organization: Department of Pathology, University of Washington, Seattle, WA 98195
– sequence: 2
  givenname: Lisette
  surname: Marjavaara
  fullname: Marjavaara, Lisette
  organization: Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197, Umeå, Sweden, Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE 90197, Umeå, Sweden
– sequence: 3
  givenname: Gary M.
  surname: Knowels
  fullname: Knowels, Gary M.
  organization: Department of Pathology, University of Washington, Seattle, WA 98195
– sequence: 4
  givenname: Eric M.
  surname: Schultz
  fullname: Schultz, Eric M.
  organization: Department of Pathology, University of Washington, Seattle, WA 98195
– sequence: 5
  givenname: Edward J.
  surname: Fox
  fullname: Fox, Edward J.
  organization: Department of Pathology, University of Washington, Seattle, WA 98195
– sequence: 6
  givenname: Andrei
  surname: Chabes
  fullname: Chabes, Andrei
  organization: Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197, Umeå, Sweden, Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE 90197, Umeå, Sweden
– sequence: 7
  givenname: Alan J.
  surname: Herr
  fullname: Herr, Alan J.
  organization: Department of Pathology, University of Washington, Seattle, WA 98195
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25827226$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-101547$$DView record from Swedish Publication Index
BookMark eNqNkc1u1DAUhSNURKeFNSvASzZp73Ucx94gjfoDSFVBou3WcjI301RJHOxk0DwYr9FnwqMZpnTHyovznaPje46Sg971lCRvEU4Qiux06G04QcG5FgqRv0hmCBpTKTQcJDMAXqRKcHGYHIXwAAA6V_AqOeS54gXncpbcLa5vvrPBuZa1tKI2sM4tptaOxLpptKPzbLin3o3rgQJzNSPvnU8HH3uw8-t5tLbrjrwNxB5_s5X1je3H8Dp5Wds20Jvde5zcXl7cnH1Jr759_no2v0qrPMvHVJeS60pjpYB0XaAsIBcItJA6dqcyo7KCWgiSquSVsrUtdQZaaSxRa8LsOEm3ueEXDVNpBt901q-Ns405b-7mxvmlmbrJIGAuish_2vIR7mhRUT962z6zPVf65t4s3coIkYkCZAz4uAvw7udEYTRdEypqW9uTm4JBqYVWKHT-H6gCLQHUBj3dopV3IXiq940QzGZosxnaPA0dHe___cie_7tsBNgO2Dj3ccgNanPBRb45xrst8hDizk8RUkheKIj6h61eW2fs0jfB3P7ggLEzRr8S2R9eIcTo
CitedBy_id crossref_primary_10_1038_nrc3981
crossref_primary_10_1073_pnas_1505169112
crossref_primary_10_1101_gad_350054_122
crossref_primary_10_1093_nar_gkaa103
crossref_primary_10_3390_cancers12082051
crossref_primary_10_1016_j_biortech_2019_121332
crossref_primary_10_1073_pnas_1519128113
crossref_primary_10_1093_nar_gkac602
crossref_primary_10_1016_j_dnarep_2017_06_003
crossref_primary_10_1534_genetics_117_300672
crossref_primary_10_1038_s42003_020_01544_6
crossref_primary_10_1083_jcb_201607008
crossref_primary_10_3390_ijms19103255
crossref_primary_10_1172_JCI123021
crossref_primary_10_1534_genetics_120_303333
crossref_primary_10_1093_nar_gkab160
crossref_primary_10_1073_pnas_1815966116
crossref_primary_10_1038_nrc_2015_12
crossref_primary_10_7554_eLife_32692
crossref_primary_10_1016_j_molcel_2016_05_003
crossref_primary_10_1038_srep46535
crossref_primary_10_1073_pnas_1618714114
crossref_primary_10_3390_genes8020057
crossref_primary_10_1146_annurev_biochem_032620_110354
crossref_primary_10_1038_s41467_018_08145_2
crossref_primary_10_1016_j_dnarep_2015_04_006
crossref_primary_10_1080_08916934_2018_1454912
crossref_primary_10_1016_j_gene_2016_06_031
crossref_primary_10_1093_nar_gkw1149
crossref_primary_10_1093_nar_gkx689
crossref_primary_10_3390_biology7010005
crossref_primary_10_1038_s41467_023_38255_5
crossref_primary_10_1016_j_molcel_2016_01_018
crossref_primary_10_1093_nar_gkz048
crossref_primary_10_1038_s41467_022_33903_8
crossref_primary_10_1016_j_dnarep_2019_02_007
crossref_primary_10_1128_JB_00715_16
crossref_primary_10_1371_journal_pgen_1009526
crossref_primary_10_1038_nrm_2016_37
Cites_doi 10.1038/35087613
10.1111/j.1558-5646.1983.tb05521.x
10.1073/pnas.93.7.2856
10.1016/j.molcel.2014.09.017
10.1073/pnas.1310849110
10.1101/gad.1863810
10.1534/genetics.112.146910
10.1073/pnas.0904623106
10.1093/nar/gkq552
10.1093/genetics/159.1.65
10.1038/35003506
10.1371/journal.pgen.1002061
10.1016/j.cell.2012.03.043
10.1038/sj.onc.1203774
10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
10.1016/j.cub.2006.06.070
10.1093/hmg/ddt131
10.1073/pnas.062502299
10.1016/j.cell.2011.02.013
10.1073/pnas.0330774100
10.1186/1471-2105-11-141
10.1016/S0076-6879(02)50954-X
10.2144/99264st03
10.1126/science.1074740
10.1101/gad.1043203
10.1038/ncb1101-958
10.1101/gad.1098303
10.1073/pnas.0907147106
10.1074/jbc.M512894200
10.1038/nsmb.2957
10.1016/0092-8674(95)90448-4
10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2
10.1534/genetics.109.107482
10.1101/gad.8.20.2401
10.1016/j.molcel.2008.02.022
10.1073/pnas.0912451107
10.1074/jbc.274.51.36679
10.1021/bi00475a007
10.1093/emboj/20.13.3544
10.1073/pnas.1422934112
10.1073/pnas.1113664108
10.1016/j.dnarep.2005.09.003
10.1534/genetics.111.131938
10.1093/genetics/159.1.47
10.1016/j.semcancer.2010.10.009
10.1128/MCB.19.3.2000
10.1093/genetics/162.3.1055
10.1002/j.1460-2075.1993.tb05790.x
10.1038/nchembio.424
10.1101/gad.10.20.2632
10.1016/S0092-8674(03)00075-8
10.1016/j.molcel.2008.08.020
10.1096/fj.06-5730rev
10.1002/bies.950150507
10.1038/nrc3063
10.1074/jbc.274.32.22283
10.1016/S0165-1218(96)90045-2
10.1073/pnas.85.17.6252
10.1016/S1097-2765(00)00058-7
10.1128/jb.179.2.417-422.1997
10.1007/BF00330984
10.1016/S0092-8674(01)00227-6
10.1038/88963
10.1101/gr.178335.114
10.1101/gad.1009802
10.1371/journal.pgen.1001209
10.1016/S0076-6879(02)50957-5
10.1073/pnas.97.6.2474
10.1016/S0021-9258(19)39981-8
10.1016/S0076-6879(97)83027-3
10.1074/jbc.M404669200
10.1016/S0021-9258(19)81697-6
10.1074/jbc.M005337200
10.1073/pnas.86.21.8343
10.1016/0092-8674(93)90321-G
10.1038/ejhg.2010.216
10.1371/journal.pgen.1002022
10.1016/j.molcel.2008.08.018
10.1534/genetics.104.030304
10.1093/genetics/155.2.589
10.1093/genetics/145.1.45
10.1016/S0092-8674(00)81601-3
10.1128/MCB.01388-08
10.1038/sj.emboj.7601320
10.1016/j.mbs.2008.09.002
10.1146/annurev.bi.57.070188.002025
10.1038/42701
10.1073/pnas.232340999
10.1093/nar/gkp1064
10.1101/gad.12.18.2956
10.1534/genetics.113.160960
10.1038/ng.3202
10.1038/emboj.2011.485
10.1126/science.1144067
10.1021/bi00418a012
10.1371/journal.pgen.1002282
10.1074/jbc.M110.106989
10.1016/S1097-2765(00)80277-4
10.1073/pnas.88.21.9473
10.1126/science.1056421
10.1016/j.dnarep.2007.02.004
10.1128/MCB.17.10.6105
10.1038/nature12113
10.1101/gr.174789.114
10.1038/ng.2503
10.1038/nature11252
10.1101/gad.4.5.740
10.1038/ng0607-703
10.1073/pnas.1010178107
10.1146/annurev-pathol-011110-130235
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TM
5PM
ADTPV
AOWAS
D93
DOI 10.1073/pnas.1422948112
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Nucleic Acids Abstracts
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE

Nucleic Acids Abstracts
CrossRef



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Modulating Pol ε mutators
EISSN 1091-6490
EndPage E2466
ExternalDocumentID oai_DiVA_org_umu_101547
10_1073_pnas_1422948112
25827226
112_19_E2457
26462780
US201600145784
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R21 ES021544
– fundername: NIGMS NIH HHS
  grantid: T32 GM07270
– fundername: NIGMS NIH HHS
  grantid: T32 GM007270
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: T32 GM07270
– fundername: HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
  grantid: R21 ES021544
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7X8
7TM
5PM
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c535t-9b629c91c80e9f716705410ed69002eb3ebc0f44e68b2c8afab9309891b199e13
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Sat Aug 24 00:30:28 EDT 2024
Tue Sep 17 21:21:39 EDT 2024
Fri Oct 25 05:43:39 EDT 2024
Sat Oct 05 05:59:26 EDT 2024
Fri Aug 23 01:52:03 EDT 2024
Tue Aug 27 13:45:10 EDT 2024
Wed Nov 11 00:29:45 EST 2020
Fri Feb 02 08:16:18 EST 2024
Wed Dec 27 19:19:00 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords cancer
polymerase fidelity
lethal mutagenesis
DNA replication and repair
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-9b629c91c80e9f716705410ed69002eb3ebc0f44e68b2c8afab9309891b199e13
Notes http://dx.doi.org/10.1073/pnas.1422948112
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Lawrence A. Loeb, University of Washington School of Medicine, Seattle, WA, and accepted by the Editorial Board March 5, 2015 (received for review December 1, 2014)
Author contributions: L.N.W., A.C., and A.J.H. designed research; L.N.W., L.M., G.M.K., E.M.S., E.J.F., A.C., and A.J.H. performed research; L.N.W., E.J.F., A.C., and A.J.H. contributed new reagents/analytic tools; L.N.W., L.M., G.M.K., E.M.S., E.J.F., A.C., and A.J.H. analyzed data; and L.N.W., L.M., G.M.K., E.M.S., A.C., and A.J.H. wrote the paper.
ORCID 0000-0003-1708-8259
OpenAccessLink https://www.pnas.org/content/pnas/112/19/E2457.full.pdf
PMID 25827226
PQID 1680960085
PQPubID 23479
ParticipantIDs fao_agris_US201600145784
proquest_miscellaneous_1694981495
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4434706
pubmed_primary_25827226
proquest_miscellaneous_1680960085
pnas_primary_112_19_E2457
crossref_primary_10_1073_pnas_1422948112
swepub_primary_oai_DiVA_org_umu_101547
jstor_primary_26462780
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2015-05-12
PublicationDateYYYYMMDD 2015-05-12
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 21157497 - Eur J Hum Genet. 2011 Mar;19(3):320-5
9192894 - Nature. 1997 Jun 12;387(6634):703-5
20566477 - Nucleic Acids Res. 2010 Oct;38(19):6490-501
16957771 - EMBO J. 2006 Sep 20;25(18):4316-25
11430651 - Evolution. 2001 May;55(5):909-17
25228659 - Genome Res. 2014 Nov;24(11):1740-50
10716984 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2474-9
19965764 - Nucleic Acids Res. 2010 Mar;38(4):1195-203
8610131 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2856-61
20080608 - Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1154-9
23263490 - Nat Genet. 2013 Feb;45(2):136-44
21090969 - Annu Rev Pathol. 2011;6:479-507
16207537 - DNA Repair (Amst). 2005 Dec 8;4(12):1450-6
7813016 - Cell. 1995 Jan 13;80(1):29-39
9483801 - Yeast. 1998 Jan 30;14(2):115-32
8895664 - Genes Dev. 1996 Oct 15;10(20):2632-43
12655059 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3925-9
21593786 - Nat Rev Cancer. 2011 Jun;11(6):450-7
22632967 - Cell. 2012 May 25;149(5):1023-34
20159953 - Genes Dev. 2010 Feb 15;24(4):333-8
2479023 - Proc Natl Acad Sci U S A. 1989 Nov;86(21):8343-7
3413095 - Proc Natl Acad Sci U S A. 1988 Sep;85(17):6252-6
16920619 - Curr Biol. 2006 Aug 22;16(16):1581-90
15494396 - J Biol Chem. 2005 Jan 7;280(1):28-37
16816105 - FASEB J. 2006 Jul;20(9):1300-14
1658784 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9473-7
11283373 - Science. 2001 Mar 30;291(5513):2606-8
11484058 - Nature. 2001 Aug 2;412(6846):557-61
9741624 - Cell. 1998 Sep 4;94(5):595-605
25827231 - Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2467-76
23307893 - Genetics. 2013 Mar;193(3):751-70
18851837 - Mol Cell. 2008 Oct 10;32(1):106-17
10980602 - Oncogene. 2000 Aug 31;19(37):4283-9
19841096 - Genetics. 2010 Jan;184(1):27-42
17615360 - Science. 2007 Jul 6;317(5834):127-30
25931524 - Proc Natl Acad Sci U S A. 2015 May 12;112(19):5864-5
12429860 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15560-5
11560886 - Genetics. 2001 Sep;159(1):47-64
6394957 - Mol Gen Genet. 1984;197(2):345-6
17379579 - DNA Repair (Amst). 2007 Jul 1;6(7):900-13
12514100 - Genes Dev. 2003 Jan 1;17(1):64-76
2521632 - J Biol Chem. 1989 Feb 15;264(5):2898-905
28568016 - Evolution. 1983 Jan;37(1):125-134
21926300 - Genetics. 2011 Dec;189(4):1211-24
8385605 - EMBO J. 1993 Apr;12(4):1467-73
21436894 - PLoS Genet. 2011 Mar;7(3):e1002022
12865299 - Genes Dev. 2003 Jul 15;17(14):1755-67
10835383 - Genetics. 2000 Jun;155(2):589-99
11030339 - Mol Cell. 2000 Sep;6(3):593-603
18851834 - Mol Cell. 2008 Oct 10;32(1):70-80
21124948 - PLoS Genet. 2010 Nov;6(11):e1001209
1696835 - Biochemistry. 1990 Jun 12;29(23):5452-8
7958905 - Genes Dev. 1994 Oct 15;8(20):2401-15
12581528 - Cell. 2003 Feb 7;112(3):391-401
22022273 - PLoS Genet. 2011 Oct;7(10):e1002282
10716435 - Nature. 2000 Mar 2;404(6773):42-9
11560887 - Genetics. 2001 Sep;159(1):65-75
18838542 - Mol Cell Biol. 2008 Dec;28(23):7156-67
2199320 - Genes Dev. 1990 May;4(5):740-51
8990293 - J Bacteriol. 1997 Jan;179(2):417-22
9315670 - Mol Cell Biol. 1997 Oct;17(10):6105-13
22084087 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19311-6
10343905 - Biotechniques. 1999 Apr;26(4):680-2
9774971 - Mol Cell. 1998 Sep;2(3):329-40
10884394 - J Biol Chem. 2000 Oct 20;275(42):33021-6
1688852 - J Biol Chem. 1990 Feb 5;265(4):2338-46
9744871 - Genes Dev. 1998 Sep 15;12(18):2956-70
11432841 - EMBO J. 2001 Jul 2;20(13):3544-53
22810696 - Nature. 2012 Jul 19;487(7407):330-7
19805137 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17101-4
8700180 - Mutat Res. 1996 Jul 10;369(1-2):33-44
12154119 - Genes Dev. 2002 Aug 1;16(15):1872-83
3052277 - Annu Rev Biochem. 1988;57:349-74
24167285 - Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18596-601
22234187 - EMBO J. 2012 Feb 15;31(4):895-907
3313004 - Mol Cell Biol. 1987 Aug;7(8):2783-93
12454055 - Genetics. 2002 Nov;162(3):1055-62
11239397 - Cell. 2001 Feb 9;104(3):397-408
15579674 - Genetics. 2004 Nov;168(3):1119-30
4136142 - Cancer Res. 1974 Sep;34(9):2311-21
8343143 - Bioessays. 1993 May;15(5):333-9
11385474 - Nat Med. 2001 Jun;7(6):638-9
25642631 - Nat Genet. 2015 Mar;47(3):257-62
12142523 - Science. 2002 Jul 26;297(5581):547-51
9017389 - Genetics. 1997 Jan;145(1):45-62
23636398 - Nature. 2013 May 2;497(7447):67-73
11715016 - Nat Cell Biol. 2001 Nov;3(11):958-65
3058205 - Biochemistry. 1988 Sep 6;27(18):6716-25
25217194 - Genome Res. 2014 Nov;24(11):1751-64
10428796 - J Biol Chem. 1999 Aug 6;274(32):22283-8
25622295 - Nat Struct Mol Biol. 2015 Mar;22(3):185-91
21573136 - PLoS Genet. 2011 May;7(5):e1002061
20729855 - Nat Chem Biol. 2010 Oct;6(10):774-81
17534360 - Nat Genet. 2007 Jun;39(6):703-4
18822300 - Math Biosci. 2008 Dec;216(2):150-3
11904430 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3746-51
8261511 - Cell. 1993 Dec 17;75(6):1119-27
23528559 - Hum Mol Genet. 2013 Jul 15;22(14):2820-8
21376230 - Cell. 2011 Mar 4;144(5):646-74
20951805 - Semin Cancer Biol. 2010 Oct;20(5):281-93
20298554 - BMC Bioinformatics. 2010;11:141
19515819 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12765-70
16436374 - J Biol Chem. 2006 Mar 24;281(12):7834-41
25449133 - Mol Cell. 2014 Nov 20;56(4):551-63
18439893 - Mol Cell. 2008 Apr 25;30(2):137-44
10022887 - Mol Cell Biol. 1999 Mar;19(3):2000-7
10593972 - J Biol Chem. 1999 Dec 17;274(51):36679-83
24388879 - Genetics. 2014 Mar;196(3):677-91
20190278 - J Biol Chem. 2010 Apr 23;285(17):12803-12
20876092 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17674-9
e_1_3_3_96_2
e_1_3_3_50_2
e_1_3_3_77_2
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_58_2
e_1_3_3_35_2
e_1_3_3_92_2
e_1_3_3_54_2
e_1_3_3_31_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_88_2
e_1_3_3_5_2
e_1_3_3_105_2
e_1_3_3_9_2
e_1_3_3_109_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_46_2
e_1_3_3_80_2
e_1_3_3_1_2
e_1_3_3_65_2
e_1_3_3_42_2
e_1_3_3_84_2
e_1_3_3_101_2
e_1_3_3_76_2
e_1_3_3_99_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_95_2
e_1_3_3_112_2
Loeb LA (e_1_3_3_87_2) 1974; 34
e_1_3_3_60_2
e_1_3_3_8_2
e_1_3_3_104_2
e_1_3_3_49_2
e_1_3_3_108_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
e_1_3_3_100_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_98_2
Elledge SJ (e_1_3_3_27_2) 1987; 7
e_1_3_3_79_2
e_1_3_3_18_2
e_1_3_3_37_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_94_2
e_1_3_3_111_2
e_1_3_3_10_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_86_2
e_1_3_3_107_2
e_1_3_3_7_2
e_1_3_3_29_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_82_2
e_1_3_3_103_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_97_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_110_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_93_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_106_2
e_1_3_3_28_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_102_2
References_xml – ident: e_1_3_3_64_2
  doi: 10.1038/35087613
– ident: e_1_3_3_80_2
  doi: 10.1111/j.1558-5646.1983.tb05521.x
– ident: e_1_3_3_90_2
  doi: 10.1073/pnas.93.7.2856
– ident: e_1_3_3_7_2
  doi: 10.1016/j.molcel.2014.09.017
– ident: e_1_3_3_93_2
  doi: 10.1073/pnas.1310849110
– ident: e_1_3_3_103_2
  doi: 10.1101/gad.1863810
– ident: e_1_3_3_19_2
  doi: 10.1534/genetics.112.146910
– ident: e_1_3_3_62_2
  doi: 10.1073/pnas.0904623106
– ident: e_1_3_3_71_2
  doi: 10.1093/nar/gkq552
– ident: e_1_3_3_54_2
  doi: 10.1093/genetics/159.1.65
– ident: e_1_3_3_101_2
  doi: 10.1038/35003506
– ident: e_1_3_3_37_2
  doi: 10.1371/journal.pgen.1002061
– ident: e_1_3_3_98_2
  doi: 10.1016/j.cell.2012.03.043
– ident: e_1_3_3_100_2
  doi: 10.1038/sj.onc.1203774
– volume: 34
  start-page: 2311
  year: 1974
  ident: e_1_3_3_87_2
  article-title: Errors in DNA replication as a basis of malignant changes
  publication-title: Cancer Res
  contributor:
    fullname: Loeb LA
– ident: e_1_3_3_108_2
  doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
– ident: e_1_3_3_88_2
  doi: 10.1016/j.cub.2006.06.070
– ident: e_1_3_3_10_2
  doi: 10.1093/hmg/ddt131
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.062502299
– ident: e_1_3_3_1_2
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_3_3_97_2
  doi: 10.1073/pnas.0330774100
– ident: e_1_3_3_112_2
  doi: 10.1186/1471-2105-11-141
– ident: e_1_3_3_105_2
  doi: 10.1016/S0076-6879(02)50954-X
– ident: e_1_3_3_107_2
  doi: 10.2144/99264st03
– ident: e_1_3_3_22_2
  doi: 10.1126/science.1074740
– ident: e_1_3_3_49_2
  doi: 10.1101/gad.1043203
– ident: e_1_3_3_59_2
  doi: 10.1038/ncb1101-958
– ident: e_1_3_3_61_2
  doi: 10.1101/gad.1098303
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.0907147106
– ident: e_1_3_3_99_2
  doi: 10.1074/jbc.M512894200
– ident: e_1_3_3_8_2
  doi: 10.1038/nsmb.2957
– ident: e_1_3_3_40_2
  doi: 10.1016/0092-8674(95)90448-4
– ident: e_1_3_3_89_2
  doi: 10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2
– ident: e_1_3_3_51_2
  doi: 10.1534/genetics.109.107482
– ident: e_1_3_3_68_2
  doi: 10.1101/gad.8.20.2401
– ident: e_1_3_3_9_2
  doi: 10.1016/j.molcel.2008.02.022
– ident: e_1_3_3_86_2
  doi: 10.1073/pnas.0912451107
– ident: e_1_3_3_36_2
  doi: 10.1074/jbc.274.51.36679
– ident: e_1_3_3_96_2
  doi: 10.1021/bi00475a007
– volume: 7
  start-page: 2783
  year: 1987
  ident: e_1_3_3_27_2
  article-title: Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability
  publication-title: Mol Cell Biol
  contributor:
    fullname: Elledge SJ
– ident: e_1_3_3_72_2
  doi: 10.1093/emboj/20.13.3544
– ident: e_1_3_3_92_2
  doi: 10.1073/pnas.1422934112
– ident: e_1_3_3_94_2
  doi: 10.1073/pnas.1113664108
– ident: e_1_3_3_95_2
  doi: 10.1016/j.dnarep.2005.09.003
– ident: e_1_3_3_63_2
  doi: 10.1534/genetics.111.131938
– ident: e_1_3_3_48_2
  doi: 10.1093/genetics/159.1.47
– ident: e_1_3_3_4_2
  doi: 10.1016/j.semcancer.2010.10.009
– ident: e_1_3_3_55_2
  doi: 10.1128/MCB.19.3.2000
– ident: e_1_3_3_85_2
  doi: 10.1093/genetics/162.3.1055
– ident: e_1_3_3_53_2
  doi: 10.1002/j.1460-2075.1993.tb05790.x
– ident: e_1_3_3_65_2
  doi: 10.1038/nchembio.424
– ident: e_1_3_3_41_2
  doi: 10.1101/gad.10.20.2632
– ident: e_1_3_3_38_2
  doi: 10.1016/S0092-8674(03)00075-8
– ident: e_1_3_3_43_2
  doi: 10.1016/j.molcel.2008.08.020
– ident: e_1_3_3_26_2
  doi: 10.1096/fj.06-5730rev
– ident: e_1_3_3_67_2
  doi: 10.1002/bies.950150507
– ident: e_1_3_3_2_2
  doi: 10.1038/nrc3063
– ident: e_1_3_3_42_2
  doi: 10.1074/jbc.274.32.22283
– ident: e_1_3_3_47_2
  doi: 10.1016/S0165-1218(96)90045-2
– ident: e_1_3_3_73_2
  doi: 10.1073/pnas.85.17.6252
– ident: e_1_3_3_21_2
  doi: 10.1016/S1097-2765(00)00058-7
– ident: e_1_3_3_82_2
  doi: 10.1128/jb.179.2.417-422.1997
– ident: e_1_3_3_106_2
  doi: 10.1007/BF00330984
– ident: e_1_3_3_69_2
  doi: 10.1016/S0092-8674(01)00227-6
– ident: e_1_3_3_16_2
  doi: 10.1038/88963
– ident: e_1_3_3_79_2
  doi: 10.1101/gr.178335.114
– ident: e_1_3_3_46_2
  doi: 10.1101/gad.1009802
– ident: e_1_3_3_52_2
  doi: 10.1371/journal.pgen.1001209
– ident: e_1_3_3_109_2
  doi: 10.1016/S0076-6879(02)50957-5
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.97.6.2474
– ident: e_1_3_3_74_2
  doi: 10.1016/S0021-9258(19)39981-8
– ident: e_1_3_3_111_2
  doi: 10.1016/S0076-6879(97)83027-3
– ident: e_1_3_3_57_2
  doi: 10.1074/jbc.M404669200
– ident: e_1_3_3_75_2
  doi: 10.1016/S0021-9258(19)81697-6
– ident: e_1_3_3_104_2
  doi: 10.1074/jbc.M005337200
– ident: e_1_3_3_76_2
  doi: 10.1073/pnas.86.21.8343
– ident: e_1_3_3_24_2
  doi: 10.1016/0092-8674(93)90321-G
– ident: e_1_3_3_11_2
  doi: 10.1038/ejhg.2010.216
– ident: e_1_3_3_44_2
  doi: 10.1371/journal.pgen.1002022
– ident: e_1_3_3_33_2
  doi: 10.1016/j.molcel.2008.08.018
– ident: e_1_3_3_84_2
  doi: 10.1534/genetics.104.030304
– ident: e_1_3_3_56_2
  doi: 10.1093/genetics/155.2.589
– ident: e_1_3_3_60_2
  doi: 10.1093/genetics/145.1.45
– ident: e_1_3_3_31_2
  doi: 10.1016/S0092-8674(00)81601-3
– ident: e_1_3_3_34_2
  doi: 10.1128/MCB.01388-08
– ident: e_1_3_3_50_2
  doi: 10.1038/sj.emboj.7601320
– ident: e_1_3_3_110_2
  doi: 10.1016/j.mbs.2008.09.002
– ident: e_1_3_3_25_2
  doi: 10.1146/annurev.bi.57.070188.002025
– ident: e_1_3_3_81_2
  doi: 10.1038/42701
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.232340999
– ident: e_1_3_3_66_2
  doi: 10.1093/nar/gkp1064
– ident: e_1_3_3_39_2
  doi: 10.1101/gad.12.18.2956
– ident: e_1_3_3_20_2
  doi: 10.1534/genetics.113.160960
– ident: e_1_3_3_91_2
  doi: 10.1038/ng.3202
– ident: e_1_3_3_58_2
  doi: 10.1038/emboj.2011.485
– ident: e_1_3_3_5_2
  doi: 10.1126/science.1144067
– ident: e_1_3_3_77_2
  doi: 10.1021/bi00418a012
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pgen.1002282
– ident: e_1_3_3_70_2
  doi: 10.1074/jbc.M110.106989
– ident: e_1_3_3_35_2
  doi: 10.1016/S1097-2765(00)80277-4
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.88.21.9473
– ident: e_1_3_3_83_2
  doi: 10.1126/science.1056421
– ident: e_1_3_3_23_2
  doi: 10.1016/j.dnarep.2007.02.004
– ident: e_1_3_3_30_2
  doi: 10.1128/MCB.17.10.6105
– ident: e_1_3_3_14_2
  doi: 10.1038/nature12113
– ident: e_1_3_3_6_2
  doi: 10.1101/gr.174789.114
– ident: e_1_3_3_13_2
  doi: 10.1038/ng.2503
– ident: e_1_3_3_12_2
  doi: 10.1038/nature11252
– ident: e_1_3_3_28_2
  doi: 10.1101/gad.4.5.740
– ident: e_1_3_3_102_2
  doi: 10.1038/ng0607-703
– ident: e_1_3_3_78_2
  doi: 10.1073/pnas.1010178107
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev-pathol-011110-130235
SSID ssj0009580
Score 2.4134693
Snippet Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to...
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in...
Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to...
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ... mediates leading strand DNA replication. Proofreading defects...
An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E2457
SubjectTerms Alleles
Antineoplastic Agents - chemistry
Antineoplastic Agents - therapeutic use
Biological Sciences
Cell Cycle
DNA Mutational Analysis
DNA Replication
DNA-Directed DNA Polymerase - genetics
Genetic Variation
Humans
Mutagenesis
Mutation
Neoplasms - drug therapy
Neoplasms - genetics
Nucleotides - chemistry
Phenotype
Phosphates - chemistry
Plasmids - metabolism
PNAS Plus
S Phase
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Title dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants
URI https://www.jstor.org/stable/26462780
http://www.pnas.org/content/112/19/E2457.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25827226
https://search.proquest.com/docview/1680960085
https://search.proquest.com/docview/1694981495
https://pubmed.ncbi.nlm.nih.gov/PMC4434706
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-101547
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL1a98QLYsBY-JiMhNB4SJs4Tmw_VvvQAK2axDrtzYoTZ1Rqk6ppkPhh_A1-E_emSUcF4oHn-COxr51z7ONjgHcxFxmOMeXLIpBIUOLct1EW-zK3GC02yNOUFvSvJsnlVHy6i-_2IO7PwrSi_czOhuV8MSxnX1tt5XKRjXqd2Oj66lSISMggGQ1ggAHaU_St067anDvhOP0KLno_HxmNlmVaD2nRgyxKQrrIhseKS07OCr_9lQZFWvXyRPI8xVx_w59_yih3zEbbH9TFE3jcIUs23nzBAey58ikcdGO3ZiedwfSHZ3CbT26uGV2uxeakGarZosrpGi_HFs2aWDgj5VdFy7M1qwrmVqtq5eOrlY6dTcaYdf6dFrNqx37-YN-QbpOa5jlML85vTi_97n4FP4ujeO1rm3Cd6TBTgdMFEieJ-C0MXI6MOeDIsp3NgkIIlyjLM5UWqdVRoJUObai1C6ND2C-x5iNgYcJzRDoaEYFFiCdT5GXKCRe5IBOCpx6c9O1rlhsbDdNuf8vIUPuah17x4Ajb36T3OMmZ6RdOFni09ymV8OCw7ZRtEYjmEi5V4IHXlrItOuQm1OacYzYP3vZdZ3Do0H5IWrqqwToTRQQOQee_0mihFdFID15suvuh9i54PJA7gbBNQNbdu08wolsL7y6CPXi_CZmdLGez27GpVvemWTQkwYuFfPnfVbyCR9iEMQkeQv4a9terxr1BHLW2x8ggPn4-bkfPL3mOGYI
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3axgO8AAO2hU8jITQe0iaOE9uP1T5UYK0m0VZ7s-LEGRVtUrUNEvwv_ga_iet8dBQQEjwntpPca-cc-_gY4FVIWYJ9TLg88zgSlDB1dZCELk81Zov20ji2E_qDYdQfs3dX4dUOhO1emEq0n-hpJ5_NO_n0Y6WtXMyTbqsT614OThgLGPei7i7cwv7qsZakb7x2Rb3zhOIAzChrHX140F3k8apjpz2sSYlvj7KhoaCcWm-Fn_5Lu1lctAJF63qKpf6EQH8XUm7ZjVa_qPN7MGlfrlamfOqUa91Jvv7i-_jPb38f7jaglfTqy_uwY_IHsN8MCyty3HhXv3kIk3Q4uiT23C4ys3KkFZkXqT0hzJB5ubYEn1hRWWFnflekyIhZLouli4-cG3I67GHR2Rc7T7Yy5Ps38hmZvBXqPILx-dnopO82Rze4SRiEa1fqiMpE-onwjMyQk3GEhr5nUiTjHkUCb3TiZYyZSGiaiDiLtQw8KaSvfSmNHxzAXo4tHwHxI5oiiJIINjSiRx4j5ROGmcB4CWM0duC4DZxa1A4dqlpZ54GygVM34XbgCAOr4mscP9X4A7XuenZZlQvmwEEV7U0VCBQjyoXngFPVsqnap8qX6oxiMQdetjmhsFfapZY4N0WJbUbCckPEs3-7RzIpLEN14LDOo5vWm6x0gG9l2OYG6wq-fQXTpXIHb9LDgdd1Lm4VOZ1OeqpYXqtyXlp1X8j44_9u4gXc7o8GF-ri7fD9E7iDnzO0ugqfPoW99bI0zxCurfXzqnP-AO_yOns
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYkBAvjAHbwtVICI2HtInjxPZjta4al1WVWKeJFytOnFHRJlXbTIL_xd_gN3FOLt0KiIc915c259j5Pvvrdwh5EzKewBqTrsg8AQQlTF0TJKErUgPZYrw0jvFA_3QYnYz5h4vw4kapr0q0n5hJJ5_OOvnka6WtnM-SbqsT645OjzgPuPCi7jzNulvkLqxZL2qJ-tpvV9b_PmGwCXPGW1cfEXTnebzs4NEHGpX4WM6GhZIJhv4KN95NW1lctCJFdD6FXv9CoX-LKTcsR6vX1GCHfGl_YK1O-dYpV6aT_PjD-_FWT-AhedCAV9qrm-ySOzZ_RHab7WFJDxsP63ePyXk6PBtRrN9FpyhLWtJZkWKlMEtn5QqJPkVxWYEnwEtaZNQuFsXCha-dW9of9qDr9Duely0t_fWTXgGjR8HOEzIeHJ8dnbhNCQc3CYNw5SoTMZUoP5GeVRlwMwEQ0fdsCqTcY0DkrUm8jHMbScMSGWexUYGnpPKNr5T1gz2yncPMB4T6EUsBTCkAHQZQpIiB-knLbWC9hHMWO-SwDZ6e104durphF4HG4OnrkDvkAIKr40vYR_X4M0OXPbxeFZI7ZK-K-HoIAIwRE9JziFONsh7aZ9pX-phBN4e8bvNCw-rEK5c4t0UJc0YSOSLg2v-1UVxJZKoO2a9z6Xr2JjMdIjaybN0A3cE3P4GUqVzCmxRxyNs6Hze69CfnPV0sLnU5K1HlF3Lx9NZTvCL3Rv2B_vR--PEZuQ9PM0R5hc-ek-3VorQvALWtzMtqff4G1SI8-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=dNTP+pool+levels+modulate+mutator+phenotypes+of+error-prone+DNA+polymerase+%CE%B5+variants&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Williams%2C+Lindsey+N.&rft.au=Marjavaara%2C+Lisette&rft.au=Knowels%2C+Gary+M.&rft.au=Schultz%2C+Eric+M.&rft.series=PNAS+Plus&rft.date=2015-05-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=19&rft.spage=E2457&rft.epage=E2466&rft_id=info:doi/10.1073%2Fpnas.1422948112&rft_id=info%3Apmid%2F25827226&rft.externalDBID=PMC4434706
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F19.cover.gif