dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants
Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA p...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 19; pp. E2457 - E2466 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
12.05.2015
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools.
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. |
---|---|
AbstractList | Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ... mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ... depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1...) suppresses the mutator phenotype of pol2-4 (encoding Pol ... proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ... base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1...) and radiation sensitive (Rad) 9 (rad9...), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1... but not rad9...; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1... pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1... cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ... mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. (ProQuest: ... denotes formulae/symbols omitted.) Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion ofDUN1(dun1Δ) suppresses the mutator phenotype ofpol2-4(encoding Pol ε proofreading deficiency) and is synthetically lethal withpol2-M644G(encoding altered Pol ε base selectivity). Althoughpol2-4cells cycle normally,pol2-M644Gcells progress slowly through S-phase. Thepol2-M644Gcells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. Thepol2-M644Gmutator phenotype is partially suppressed bymrc1Δ but notrad9Δ; neither deletion suppresses thepol2-4mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress thedun1Δpol2-M644Gsynthetic lethality and restore the mutator phenotype ofpol2-4indun1Δ cells.DUN1 pol2-M644Gcells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast,pol2-4andPOL2cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy drugs. New therapeutic strategies are needed that target mutator phenotypes directly. Mutator phenotypes due to defects in DNA polymerase ε have been implicated in colorectal and endometrial cancers and may emerge in other cancers during treatment. Here, we show in budding yeast that such mutator phenotypes are influenced by the levels of dNTPs, the building blocks of DNA. Lowering dNTP pool levels lessens the mutator phenotypes, whereas increasing dNTP pools accentuates the mutator phenotypes. These findings suggest that mutator phenotypes due to error-prone polymerases may be modulated by treatments that target dNTP pools. Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 ( dun1 Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint ( MRC ) 1 ( mrc1 Δ) and radiation sensitive ( Rad ) 9 ( rad9 Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1 Δ but not rad9 Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1 Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1 Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy. |
Author | Marjavaara, Lisette Herr, Alan J. Schultz, Eric M. Knowels, Gary M. Fox, Edward J. Chabes, Andrei Williams, Lindsey N. |
Author_xml | – sequence: 1 givenname: Lindsey N. surname: Williams fullname: Williams, Lindsey N. organization: Department of Pathology, University of Washington, Seattle, WA 98195 – sequence: 2 givenname: Lisette surname: Marjavaara fullname: Marjavaara, Lisette organization: Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197, Umeå, Sweden, Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE 90197, Umeå, Sweden – sequence: 3 givenname: Gary M. surname: Knowels fullname: Knowels, Gary M. organization: Department of Pathology, University of Washington, Seattle, WA 98195 – sequence: 4 givenname: Eric M. surname: Schultz fullname: Schultz, Eric M. organization: Department of Pathology, University of Washington, Seattle, WA 98195 – sequence: 5 givenname: Edward J. surname: Fox fullname: Fox, Edward J. organization: Department of Pathology, University of Washington, Seattle, WA 98195 – sequence: 6 givenname: Andrei surname: Chabes fullname: Chabes, Andrei organization: Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197, Umeå, Sweden, Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE 90197, Umeå, Sweden – sequence: 7 givenname: Alan J. surname: Herr fullname: Herr, Alan J. organization: Department of Pathology, University of Washington, Seattle, WA 98195 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25827226$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-101547$$DView record from Swedish Publication Index |
BookMark | eNqNkc1u1DAUhSNURKeFNSvASzZp73Ucx94gjfoDSFVBou3WcjI301RJHOxk0DwYr9FnwqMZpnTHyovznaPje46Sg971lCRvEU4Qiux06G04QcG5FgqRv0hmCBpTKTQcJDMAXqRKcHGYHIXwAAA6V_AqOeS54gXncpbcLa5vvrPBuZa1tKI2sM4tptaOxLpptKPzbLin3o3rgQJzNSPvnU8HH3uw8-t5tLbrjrwNxB5_s5X1je3H8Dp5Wds20Jvde5zcXl7cnH1Jr759_no2v0qrPMvHVJeS60pjpYB0XaAsIBcItJA6dqcyo7KCWgiSquSVsrUtdQZaaSxRa8LsOEm3ueEXDVNpBt901q-Ns405b-7mxvmlmbrJIGAuish_2vIR7mhRUT962z6zPVf65t4s3coIkYkCZAz4uAvw7udEYTRdEypqW9uTm4JBqYVWKHT-H6gCLQHUBj3dopV3IXiq940QzGZosxnaPA0dHe___cie_7tsBNgO2Dj3ccgNanPBRb45xrst8hDizk8RUkheKIj6h61eW2fs0jfB3P7ggLEzRr8S2R9eIcTo |
CitedBy_id | crossref_primary_10_1038_nrc3981 crossref_primary_10_1073_pnas_1505169112 crossref_primary_10_1101_gad_350054_122 crossref_primary_10_1093_nar_gkaa103 crossref_primary_10_3390_cancers12082051 crossref_primary_10_1016_j_biortech_2019_121332 crossref_primary_10_1073_pnas_1519128113 crossref_primary_10_1093_nar_gkac602 crossref_primary_10_1016_j_dnarep_2017_06_003 crossref_primary_10_1534_genetics_117_300672 crossref_primary_10_1038_s42003_020_01544_6 crossref_primary_10_1083_jcb_201607008 crossref_primary_10_3390_ijms19103255 crossref_primary_10_1172_JCI123021 crossref_primary_10_1534_genetics_120_303333 crossref_primary_10_1093_nar_gkab160 crossref_primary_10_1073_pnas_1815966116 crossref_primary_10_1038_nrc_2015_12 crossref_primary_10_7554_eLife_32692 crossref_primary_10_1016_j_molcel_2016_05_003 crossref_primary_10_1038_srep46535 crossref_primary_10_1073_pnas_1618714114 crossref_primary_10_3390_genes8020057 crossref_primary_10_1146_annurev_biochem_032620_110354 crossref_primary_10_1038_s41467_018_08145_2 crossref_primary_10_1016_j_dnarep_2015_04_006 crossref_primary_10_1080_08916934_2018_1454912 crossref_primary_10_1016_j_gene_2016_06_031 crossref_primary_10_1093_nar_gkw1149 crossref_primary_10_1093_nar_gkx689 crossref_primary_10_3390_biology7010005 crossref_primary_10_1038_s41467_023_38255_5 crossref_primary_10_1016_j_molcel_2016_01_018 crossref_primary_10_1093_nar_gkz048 crossref_primary_10_1038_s41467_022_33903_8 crossref_primary_10_1016_j_dnarep_2019_02_007 crossref_primary_10_1128_JB_00715_16 crossref_primary_10_1371_journal_pgen_1009526 crossref_primary_10_1038_nrm_2016_37 |
Cites_doi | 10.1038/35087613 10.1111/j.1558-5646.1983.tb05521.x 10.1073/pnas.93.7.2856 10.1016/j.molcel.2014.09.017 10.1073/pnas.1310849110 10.1101/gad.1863810 10.1534/genetics.112.146910 10.1073/pnas.0904623106 10.1093/nar/gkq552 10.1093/genetics/159.1.65 10.1038/35003506 10.1371/journal.pgen.1002061 10.1016/j.cell.2012.03.043 10.1038/sj.onc.1203774 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 10.1016/j.cub.2006.06.070 10.1093/hmg/ddt131 10.1073/pnas.062502299 10.1016/j.cell.2011.02.013 10.1073/pnas.0330774100 10.1186/1471-2105-11-141 10.1016/S0076-6879(02)50954-X 10.2144/99264st03 10.1126/science.1074740 10.1101/gad.1043203 10.1038/ncb1101-958 10.1101/gad.1098303 10.1073/pnas.0907147106 10.1074/jbc.M512894200 10.1038/nsmb.2957 10.1016/0092-8674(95)90448-4 10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2 10.1534/genetics.109.107482 10.1101/gad.8.20.2401 10.1016/j.molcel.2008.02.022 10.1073/pnas.0912451107 10.1074/jbc.274.51.36679 10.1021/bi00475a007 10.1093/emboj/20.13.3544 10.1073/pnas.1422934112 10.1073/pnas.1113664108 10.1016/j.dnarep.2005.09.003 10.1534/genetics.111.131938 10.1093/genetics/159.1.47 10.1016/j.semcancer.2010.10.009 10.1128/MCB.19.3.2000 10.1093/genetics/162.3.1055 10.1002/j.1460-2075.1993.tb05790.x 10.1038/nchembio.424 10.1101/gad.10.20.2632 10.1016/S0092-8674(03)00075-8 10.1016/j.molcel.2008.08.020 10.1096/fj.06-5730rev 10.1002/bies.950150507 10.1038/nrc3063 10.1074/jbc.274.32.22283 10.1016/S0165-1218(96)90045-2 10.1073/pnas.85.17.6252 10.1016/S1097-2765(00)00058-7 10.1128/jb.179.2.417-422.1997 10.1007/BF00330984 10.1016/S0092-8674(01)00227-6 10.1038/88963 10.1101/gr.178335.114 10.1101/gad.1009802 10.1371/journal.pgen.1001209 10.1016/S0076-6879(02)50957-5 10.1073/pnas.97.6.2474 10.1016/S0021-9258(19)39981-8 10.1016/S0076-6879(97)83027-3 10.1074/jbc.M404669200 10.1016/S0021-9258(19)81697-6 10.1074/jbc.M005337200 10.1073/pnas.86.21.8343 10.1016/0092-8674(93)90321-G 10.1038/ejhg.2010.216 10.1371/journal.pgen.1002022 10.1016/j.molcel.2008.08.018 10.1534/genetics.104.030304 10.1093/genetics/155.2.589 10.1093/genetics/145.1.45 10.1016/S0092-8674(00)81601-3 10.1128/MCB.01388-08 10.1038/sj.emboj.7601320 10.1016/j.mbs.2008.09.002 10.1146/annurev.bi.57.070188.002025 10.1038/42701 10.1073/pnas.232340999 10.1093/nar/gkp1064 10.1101/gad.12.18.2956 10.1534/genetics.113.160960 10.1038/ng.3202 10.1038/emboj.2011.485 10.1126/science.1144067 10.1021/bi00418a012 10.1371/journal.pgen.1002282 10.1074/jbc.M110.106989 10.1016/S1097-2765(00)80277-4 10.1073/pnas.88.21.9473 10.1126/science.1056421 10.1016/j.dnarep.2007.02.004 10.1128/MCB.17.10.6105 10.1038/nature12113 10.1101/gr.174789.114 10.1038/ng.2503 10.1038/nature11252 10.1101/gad.4.5.740 10.1038/ng0607-703 10.1073/pnas.1010178107 10.1146/annurev-pathol-011110-130235 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TM 5PM ADTPV AOWAS D93 |
DOI | 10.1073/pnas.1422948112 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Nucleic Acids Abstracts PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Umeå universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Nucleic Acids Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Nucleic Acids Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Modulating Pol ε mutators |
EISSN | 1091-6490 |
EndPage | E2466 |
ExternalDocumentID | oai_DiVA_org_umu_101547 10_1073_pnas_1422948112 25827226 112_19_E2457 26462780 US201600145784 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R21 ES021544 – fundername: NIGMS NIH HHS grantid: T32 GM07270 – fundername: NIGMS NIH HHS grantid: T32 GM007270 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: T32 GM07270 – fundername: HHS | NIH | National Institute of Environmental Health Sciences (NIEHS) grantid: R21 ES021544 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7X8 7TM 5PM ADTPV AOWAS D93 |
ID | FETCH-LOGICAL-c535t-9b629c91c80e9f716705410ed69002eb3ebc0f44e68b2c8afab9309891b199e13 |
IEDL.DBID | RPM |
ISSN | 0027-8424 1091-6490 |
IngestDate | Sat Aug 24 00:30:28 EDT 2024 Tue Sep 17 21:21:39 EDT 2024 Fri Oct 25 05:43:39 EDT 2024 Sat Oct 05 05:59:26 EDT 2024 Fri Aug 23 01:52:03 EDT 2024 Tue Aug 27 13:45:10 EDT 2024 Wed Nov 11 00:29:45 EST 2020 Fri Feb 02 08:16:18 EST 2024 Wed Dec 27 19:19:00 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | cancer polymerase fidelity lethal mutagenesis DNA replication and repair |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-9b629c91c80e9f716705410ed69002eb3ebc0f44e68b2c8afab9309891b199e13 |
Notes | http://dx.doi.org/10.1073/pnas.1422948112 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Lawrence A. Loeb, University of Washington School of Medicine, Seattle, WA, and accepted by the Editorial Board March 5, 2015 (received for review December 1, 2014) Author contributions: L.N.W., A.C., and A.J.H. designed research; L.N.W., L.M., G.M.K., E.M.S., E.J.F., A.C., and A.J.H. performed research; L.N.W., E.J.F., A.C., and A.J.H. contributed new reagents/analytic tools; L.N.W., L.M., G.M.K., E.M.S., E.J.F., A.C., and A.J.H. analyzed data; and L.N.W., L.M., G.M.K., E.M.S., A.C., and A.J.H. wrote the paper. |
ORCID | 0000-0003-1708-8259 |
OpenAccessLink | https://www.pnas.org/content/pnas/112/19/E2457.full.pdf |
PMID | 25827226 |
PQID | 1680960085 |
PQPubID | 23479 |
ParticipantIDs | fao_agris_US201600145784 proquest_miscellaneous_1694981495 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4434706 pubmed_primary_25827226 proquest_miscellaneous_1680960085 pnas_primary_112_19_E2457 crossref_primary_10_1073_pnas_1422948112 swepub_primary_oai_DiVA_org_umu_101547 jstor_primary_26462780 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2015-05-12 |
PublicationDateYYYYMMDD | 2015-05-12 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 21157497 - Eur J Hum Genet. 2011 Mar;19(3):320-5 9192894 - Nature. 1997 Jun 12;387(6634):703-5 20566477 - Nucleic Acids Res. 2010 Oct;38(19):6490-501 16957771 - EMBO J. 2006 Sep 20;25(18):4316-25 11430651 - Evolution. 2001 May;55(5):909-17 25228659 - Genome Res. 2014 Nov;24(11):1740-50 10716984 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2474-9 19965764 - Nucleic Acids Res. 2010 Mar;38(4):1195-203 8610131 - Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2856-61 20080608 - Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1154-9 23263490 - Nat Genet. 2013 Feb;45(2):136-44 21090969 - Annu Rev Pathol. 2011;6:479-507 16207537 - DNA Repair (Amst). 2005 Dec 8;4(12):1450-6 7813016 - Cell. 1995 Jan 13;80(1):29-39 9483801 - Yeast. 1998 Jan 30;14(2):115-32 8895664 - Genes Dev. 1996 Oct 15;10(20):2632-43 12655059 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3925-9 21593786 - Nat Rev Cancer. 2011 Jun;11(6):450-7 22632967 - Cell. 2012 May 25;149(5):1023-34 20159953 - Genes Dev. 2010 Feb 15;24(4):333-8 2479023 - Proc Natl Acad Sci U S A. 1989 Nov;86(21):8343-7 3413095 - Proc Natl Acad Sci U S A. 1988 Sep;85(17):6252-6 16920619 - Curr Biol. 2006 Aug 22;16(16):1581-90 15494396 - J Biol Chem. 2005 Jan 7;280(1):28-37 16816105 - FASEB J. 2006 Jul;20(9):1300-14 1658784 - Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9473-7 11283373 - Science. 2001 Mar 30;291(5513):2606-8 11484058 - Nature. 2001 Aug 2;412(6846):557-61 9741624 - Cell. 1998 Sep 4;94(5):595-605 25827231 - Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2467-76 23307893 - Genetics. 2013 Mar;193(3):751-70 18851837 - Mol Cell. 2008 Oct 10;32(1):106-17 10980602 - Oncogene. 2000 Aug 31;19(37):4283-9 19841096 - Genetics. 2010 Jan;184(1):27-42 17615360 - Science. 2007 Jul 6;317(5834):127-30 25931524 - Proc Natl Acad Sci U S A. 2015 May 12;112(19):5864-5 12429860 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15560-5 11560886 - Genetics. 2001 Sep;159(1):47-64 6394957 - Mol Gen Genet. 1984;197(2):345-6 17379579 - DNA Repair (Amst). 2007 Jul 1;6(7):900-13 12514100 - Genes Dev. 2003 Jan 1;17(1):64-76 2521632 - J Biol Chem. 1989 Feb 15;264(5):2898-905 28568016 - Evolution. 1983 Jan;37(1):125-134 21926300 - Genetics. 2011 Dec;189(4):1211-24 8385605 - EMBO J. 1993 Apr;12(4):1467-73 21436894 - PLoS Genet. 2011 Mar;7(3):e1002022 12865299 - Genes Dev. 2003 Jul 15;17(14):1755-67 10835383 - Genetics. 2000 Jun;155(2):589-99 11030339 - Mol Cell. 2000 Sep;6(3):593-603 18851834 - Mol Cell. 2008 Oct 10;32(1):70-80 21124948 - PLoS Genet. 2010 Nov;6(11):e1001209 1696835 - Biochemistry. 1990 Jun 12;29(23):5452-8 7958905 - Genes Dev. 1994 Oct 15;8(20):2401-15 12581528 - Cell. 2003 Feb 7;112(3):391-401 22022273 - PLoS Genet. 2011 Oct;7(10):e1002282 10716435 - Nature. 2000 Mar 2;404(6773):42-9 11560887 - Genetics. 2001 Sep;159(1):65-75 18838542 - Mol Cell Biol. 2008 Dec;28(23):7156-67 2199320 - Genes Dev. 1990 May;4(5):740-51 8990293 - J Bacteriol. 1997 Jan;179(2):417-22 9315670 - Mol Cell Biol. 1997 Oct;17(10):6105-13 22084087 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19311-6 10343905 - Biotechniques. 1999 Apr;26(4):680-2 9774971 - Mol Cell. 1998 Sep;2(3):329-40 10884394 - J Biol Chem. 2000 Oct 20;275(42):33021-6 1688852 - J Biol Chem. 1990 Feb 5;265(4):2338-46 9744871 - Genes Dev. 1998 Sep 15;12(18):2956-70 11432841 - EMBO J. 2001 Jul 2;20(13):3544-53 22810696 - Nature. 2012 Jul 19;487(7407):330-7 19805137 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17101-4 8700180 - Mutat Res. 1996 Jul 10;369(1-2):33-44 12154119 - Genes Dev. 2002 Aug 1;16(15):1872-83 3052277 - Annu Rev Biochem. 1988;57:349-74 24167285 - Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18596-601 22234187 - EMBO J. 2012 Feb 15;31(4):895-907 3313004 - Mol Cell Biol. 1987 Aug;7(8):2783-93 12454055 - Genetics. 2002 Nov;162(3):1055-62 11239397 - Cell. 2001 Feb 9;104(3):397-408 15579674 - Genetics. 2004 Nov;168(3):1119-30 4136142 - Cancer Res. 1974 Sep;34(9):2311-21 8343143 - Bioessays. 1993 May;15(5):333-9 11385474 - Nat Med. 2001 Jun;7(6):638-9 25642631 - Nat Genet. 2015 Mar;47(3):257-62 12142523 - Science. 2002 Jul 26;297(5581):547-51 9017389 - Genetics. 1997 Jan;145(1):45-62 23636398 - Nature. 2013 May 2;497(7447):67-73 11715016 - Nat Cell Biol. 2001 Nov;3(11):958-65 3058205 - Biochemistry. 1988 Sep 6;27(18):6716-25 25217194 - Genome Res. 2014 Nov;24(11):1751-64 10428796 - J Biol Chem. 1999 Aug 6;274(32):22283-8 25622295 - Nat Struct Mol Biol. 2015 Mar;22(3):185-91 21573136 - PLoS Genet. 2011 May;7(5):e1002061 20729855 - Nat Chem Biol. 2010 Oct;6(10):774-81 17534360 - Nat Genet. 2007 Jun;39(6):703-4 18822300 - Math Biosci. 2008 Dec;216(2):150-3 11904430 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3746-51 8261511 - Cell. 1993 Dec 17;75(6):1119-27 23528559 - Hum Mol Genet. 2013 Jul 15;22(14):2820-8 21376230 - Cell. 2011 Mar 4;144(5):646-74 20951805 - Semin Cancer Biol. 2010 Oct;20(5):281-93 20298554 - BMC Bioinformatics. 2010;11:141 19515819 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12765-70 16436374 - J Biol Chem. 2006 Mar 24;281(12):7834-41 25449133 - Mol Cell. 2014 Nov 20;56(4):551-63 18439893 - Mol Cell. 2008 Apr 25;30(2):137-44 10022887 - Mol Cell Biol. 1999 Mar;19(3):2000-7 10593972 - J Biol Chem. 1999 Dec 17;274(51):36679-83 24388879 - Genetics. 2014 Mar;196(3):677-91 20190278 - J Biol Chem. 2010 Apr 23;285(17):12803-12 20876092 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17674-9 e_1_3_3_96_2 e_1_3_3_50_2 e_1_3_3_77_2 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_58_2 e_1_3_3_35_2 e_1_3_3_92_2 e_1_3_3_54_2 e_1_3_3_31_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_88_2 e_1_3_3_5_2 e_1_3_3_105_2 e_1_3_3_9_2 e_1_3_3_109_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_46_2 e_1_3_3_80_2 e_1_3_3_1_2 e_1_3_3_65_2 e_1_3_3_42_2 e_1_3_3_84_2 e_1_3_3_101_2 e_1_3_3_76_2 e_1_3_3_99_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_95_2 e_1_3_3_112_2 Loeb LA (e_1_3_3_87_2) 1974; 34 e_1_3_3_60_2 e_1_3_3_8_2 e_1_3_3_104_2 e_1_3_3_49_2 e_1_3_3_108_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 e_1_3_3_100_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_98_2 Elledge SJ (e_1_3_3_27_2) 1987; 7 e_1_3_3_79_2 e_1_3_3_18_2 e_1_3_3_37_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_94_2 e_1_3_3_111_2 e_1_3_3_10_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_86_2 e_1_3_3_107_2 e_1_3_3_7_2 e_1_3_3_29_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_82_2 e_1_3_3_103_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_97_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_110_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_93_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_106_2 e_1_3_3_28_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_102_2 |
References_xml | – ident: e_1_3_3_64_2 doi: 10.1038/35087613 – ident: e_1_3_3_80_2 doi: 10.1111/j.1558-5646.1983.tb05521.x – ident: e_1_3_3_90_2 doi: 10.1073/pnas.93.7.2856 – ident: e_1_3_3_7_2 doi: 10.1016/j.molcel.2014.09.017 – ident: e_1_3_3_93_2 doi: 10.1073/pnas.1310849110 – ident: e_1_3_3_103_2 doi: 10.1101/gad.1863810 – ident: e_1_3_3_19_2 doi: 10.1534/genetics.112.146910 – ident: e_1_3_3_62_2 doi: 10.1073/pnas.0904623106 – ident: e_1_3_3_71_2 doi: 10.1093/nar/gkq552 – ident: e_1_3_3_54_2 doi: 10.1093/genetics/159.1.65 – ident: e_1_3_3_101_2 doi: 10.1038/35003506 – ident: e_1_3_3_37_2 doi: 10.1371/journal.pgen.1002061 – ident: e_1_3_3_98_2 doi: 10.1016/j.cell.2012.03.043 – ident: e_1_3_3_100_2 doi: 10.1038/sj.onc.1203774 – volume: 34 start-page: 2311 year: 1974 ident: e_1_3_3_87_2 article-title: Errors in DNA replication as a basis of malignant changes publication-title: Cancer Res contributor: fullname: Loeb LA – ident: e_1_3_3_108_2 doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 – ident: e_1_3_3_88_2 doi: 10.1016/j.cub.2006.06.070 – ident: e_1_3_3_10_2 doi: 10.1093/hmg/ddt131 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.062502299 – ident: e_1_3_3_1_2 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_3_3_97_2 doi: 10.1073/pnas.0330774100 – ident: e_1_3_3_112_2 doi: 10.1186/1471-2105-11-141 – ident: e_1_3_3_105_2 doi: 10.1016/S0076-6879(02)50954-X – ident: e_1_3_3_107_2 doi: 10.2144/99264st03 – ident: e_1_3_3_22_2 doi: 10.1126/science.1074740 – ident: e_1_3_3_49_2 doi: 10.1101/gad.1043203 – ident: e_1_3_3_59_2 doi: 10.1038/ncb1101-958 – ident: e_1_3_3_61_2 doi: 10.1101/gad.1098303 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.0907147106 – ident: e_1_3_3_99_2 doi: 10.1074/jbc.M512894200 – ident: e_1_3_3_8_2 doi: 10.1038/nsmb.2957 – ident: e_1_3_3_40_2 doi: 10.1016/0092-8674(95)90448-4 – ident: e_1_3_3_89_2 doi: 10.1554/0014-3820(2001)055[0909:MMILYP]2.0.CO;2 – ident: e_1_3_3_51_2 doi: 10.1534/genetics.109.107482 – ident: e_1_3_3_68_2 doi: 10.1101/gad.8.20.2401 – ident: e_1_3_3_9_2 doi: 10.1016/j.molcel.2008.02.022 – ident: e_1_3_3_86_2 doi: 10.1073/pnas.0912451107 – ident: e_1_3_3_36_2 doi: 10.1074/jbc.274.51.36679 – ident: e_1_3_3_96_2 doi: 10.1021/bi00475a007 – volume: 7 start-page: 2783 year: 1987 ident: e_1_3_3_27_2 article-title: Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability publication-title: Mol Cell Biol contributor: fullname: Elledge SJ – ident: e_1_3_3_72_2 doi: 10.1093/emboj/20.13.3544 – ident: e_1_3_3_92_2 doi: 10.1073/pnas.1422934112 – ident: e_1_3_3_94_2 doi: 10.1073/pnas.1113664108 – ident: e_1_3_3_95_2 doi: 10.1016/j.dnarep.2005.09.003 – ident: e_1_3_3_63_2 doi: 10.1534/genetics.111.131938 – ident: e_1_3_3_48_2 doi: 10.1093/genetics/159.1.47 – ident: e_1_3_3_4_2 doi: 10.1016/j.semcancer.2010.10.009 – ident: e_1_3_3_55_2 doi: 10.1128/MCB.19.3.2000 – ident: e_1_3_3_85_2 doi: 10.1093/genetics/162.3.1055 – ident: e_1_3_3_53_2 doi: 10.1002/j.1460-2075.1993.tb05790.x – ident: e_1_3_3_65_2 doi: 10.1038/nchembio.424 – ident: e_1_3_3_41_2 doi: 10.1101/gad.10.20.2632 – ident: e_1_3_3_38_2 doi: 10.1016/S0092-8674(03)00075-8 – ident: e_1_3_3_43_2 doi: 10.1016/j.molcel.2008.08.020 – ident: e_1_3_3_26_2 doi: 10.1096/fj.06-5730rev – ident: e_1_3_3_67_2 doi: 10.1002/bies.950150507 – ident: e_1_3_3_2_2 doi: 10.1038/nrc3063 – ident: e_1_3_3_42_2 doi: 10.1074/jbc.274.32.22283 – ident: e_1_3_3_47_2 doi: 10.1016/S0165-1218(96)90045-2 – ident: e_1_3_3_73_2 doi: 10.1073/pnas.85.17.6252 – ident: e_1_3_3_21_2 doi: 10.1016/S1097-2765(00)00058-7 – ident: e_1_3_3_82_2 doi: 10.1128/jb.179.2.417-422.1997 – ident: e_1_3_3_106_2 doi: 10.1007/BF00330984 – ident: e_1_3_3_69_2 doi: 10.1016/S0092-8674(01)00227-6 – ident: e_1_3_3_16_2 doi: 10.1038/88963 – ident: e_1_3_3_79_2 doi: 10.1101/gr.178335.114 – ident: e_1_3_3_46_2 doi: 10.1101/gad.1009802 – ident: e_1_3_3_52_2 doi: 10.1371/journal.pgen.1001209 – ident: e_1_3_3_109_2 doi: 10.1016/S0076-6879(02)50957-5 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.97.6.2474 – ident: e_1_3_3_74_2 doi: 10.1016/S0021-9258(19)39981-8 – ident: e_1_3_3_111_2 doi: 10.1016/S0076-6879(97)83027-3 – ident: e_1_3_3_57_2 doi: 10.1074/jbc.M404669200 – ident: e_1_3_3_75_2 doi: 10.1016/S0021-9258(19)81697-6 – ident: e_1_3_3_104_2 doi: 10.1074/jbc.M005337200 – ident: e_1_3_3_76_2 doi: 10.1073/pnas.86.21.8343 – ident: e_1_3_3_24_2 doi: 10.1016/0092-8674(93)90321-G – ident: e_1_3_3_11_2 doi: 10.1038/ejhg.2010.216 – ident: e_1_3_3_44_2 doi: 10.1371/journal.pgen.1002022 – ident: e_1_3_3_33_2 doi: 10.1016/j.molcel.2008.08.018 – ident: e_1_3_3_84_2 doi: 10.1534/genetics.104.030304 – ident: e_1_3_3_56_2 doi: 10.1093/genetics/155.2.589 – ident: e_1_3_3_60_2 doi: 10.1093/genetics/145.1.45 – ident: e_1_3_3_31_2 doi: 10.1016/S0092-8674(00)81601-3 – ident: e_1_3_3_34_2 doi: 10.1128/MCB.01388-08 – ident: e_1_3_3_50_2 doi: 10.1038/sj.emboj.7601320 – ident: e_1_3_3_110_2 doi: 10.1016/j.mbs.2008.09.002 – ident: e_1_3_3_25_2 doi: 10.1146/annurev.bi.57.070188.002025 – ident: e_1_3_3_81_2 doi: 10.1038/42701 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.232340999 – ident: e_1_3_3_66_2 doi: 10.1093/nar/gkp1064 – ident: e_1_3_3_39_2 doi: 10.1101/gad.12.18.2956 – ident: e_1_3_3_20_2 doi: 10.1534/genetics.113.160960 – ident: e_1_3_3_91_2 doi: 10.1038/ng.3202 – ident: e_1_3_3_58_2 doi: 10.1038/emboj.2011.485 – ident: e_1_3_3_5_2 doi: 10.1126/science.1144067 – ident: e_1_3_3_77_2 doi: 10.1021/bi00418a012 – ident: e_1_3_3_18_2 doi: 10.1371/journal.pgen.1002282 – ident: e_1_3_3_70_2 doi: 10.1074/jbc.M110.106989 – ident: e_1_3_3_35_2 doi: 10.1016/S1097-2765(00)80277-4 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.88.21.9473 – ident: e_1_3_3_83_2 doi: 10.1126/science.1056421 – ident: e_1_3_3_23_2 doi: 10.1016/j.dnarep.2007.02.004 – ident: e_1_3_3_30_2 doi: 10.1128/MCB.17.10.6105 – ident: e_1_3_3_14_2 doi: 10.1038/nature12113 – ident: e_1_3_3_6_2 doi: 10.1101/gr.174789.114 – ident: e_1_3_3_13_2 doi: 10.1038/ng.2503 – ident: e_1_3_3_12_2 doi: 10.1038/nature11252 – ident: e_1_3_3_28_2 doi: 10.1101/gad.4.5.740 – ident: e_1_3_3_102_2 doi: 10.1038/ng0607-703 – ident: e_1_3_3_78_2 doi: 10.1073/pnas.1010178107 – ident: e_1_3_3_3_2 doi: 10.1146/annurev-pathol-011110-130235 |
SSID | ssj0009580 |
Score | 2.4134693 |
Snippet | Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to... Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in... Significance An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to... Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ... mediates leading strand DNA replication. Proofreading defects... An increased rate of mutation, or “mutator phenotype,” generates genetic diversity that can accelerate cancer progression or confer resistance to chemotherapy... |
SourceID | swepub pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E2457 |
SubjectTerms | Alleles Antineoplastic Agents - chemistry Antineoplastic Agents - therapeutic use Biological Sciences Cell Cycle DNA Mutational Analysis DNA Replication DNA-Directed DNA Polymerase - genetics Genetic Variation Humans Mutagenesis Mutation Neoplasms - drug therapy Neoplasms - genetics Nucleotides - chemistry Phenotype Phosphates - chemistry Plasmids - metabolism PNAS Plus S Phase Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism |
Title | dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants |
URI | https://www.jstor.org/stable/26462780 http://www.pnas.org/content/112/19/E2457.abstract https://www.ncbi.nlm.nih.gov/pubmed/25827226 https://search.proquest.com/docview/1680960085 https://search.proquest.com/docview/1694981495 https://pubmed.ncbi.nlm.nih.gov/PMC4434706 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-101547 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL1a98QLYsBY-JiMhNB4SJs4Tmw_VvvQAK2axDrtzYoTZ1Rqk6ppkPhh_A1-E_emSUcF4oHn-COxr51z7ONjgHcxFxmOMeXLIpBIUOLct1EW-zK3GC02yNOUFvSvJsnlVHy6i-_2IO7PwrSi_czOhuV8MSxnX1tt5XKRjXqd2Oj66lSISMggGQ1ggAHaU_St067anDvhOP0KLno_HxmNlmVaD2nRgyxKQrrIhseKS07OCr_9lQZFWvXyRPI8xVx_w59_yih3zEbbH9TFE3jcIUs23nzBAey58ikcdGO3ZiedwfSHZ3CbT26uGV2uxeakGarZosrpGi_HFs2aWDgj5VdFy7M1qwrmVqtq5eOrlY6dTcaYdf6dFrNqx37-YN-QbpOa5jlML85vTi_97n4FP4ujeO1rm3Cd6TBTgdMFEieJ-C0MXI6MOeDIsp3NgkIIlyjLM5UWqdVRoJUObai1C6ND2C-x5iNgYcJzRDoaEYFFiCdT5GXKCRe5IBOCpx6c9O1rlhsbDdNuf8vIUPuah17x4Ajb36T3OMmZ6RdOFni09ymV8OCw7ZRtEYjmEi5V4IHXlrItOuQm1OacYzYP3vZdZ3Do0H5IWrqqwToTRQQOQee_0mihFdFID15suvuh9i54PJA7gbBNQNbdu08wolsL7y6CPXi_CZmdLGez27GpVvemWTQkwYuFfPnfVbyCR9iEMQkeQv4a9terxr1BHLW2x8ggPn4-bkfPL3mOGYI |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3axgO8AAO2hU8jITQe0iaOE9uP1T5UYK0m0VZ7s-LEGRVtUrUNEvwv_ga_iet8dBQQEjwntpPca-cc-_gY4FVIWYJ9TLg88zgSlDB1dZCELk81Zov20ji2E_qDYdQfs3dX4dUOhO1emEq0n-hpJ5_NO_n0Y6WtXMyTbqsT614OThgLGPei7i7cwv7qsZakb7x2Rb3zhOIAzChrHX140F3k8apjpz2sSYlvj7KhoaCcWm-Fn_5Lu1lctAJF63qKpf6EQH8XUm7ZjVa_qPN7MGlfrlamfOqUa91Jvv7i-_jPb38f7jaglfTqy_uwY_IHsN8MCyty3HhXv3kIk3Q4uiT23C4ys3KkFZkXqT0hzJB5ubYEn1hRWWFnflekyIhZLouli4-cG3I67GHR2Rc7T7Yy5Ps38hmZvBXqPILx-dnopO82Rze4SRiEa1fqiMpE-onwjMyQk3GEhr5nUiTjHkUCb3TiZYyZSGiaiDiLtQw8KaSvfSmNHxzAXo4tHwHxI5oiiJIINjSiRx4j5ROGmcB4CWM0duC4DZxa1A4dqlpZ54GygVM34XbgCAOr4mscP9X4A7XuenZZlQvmwEEV7U0VCBQjyoXngFPVsqnap8qX6oxiMQdetjmhsFfapZY4N0WJbUbCckPEs3-7RzIpLEN14LDOo5vWm6x0gG9l2OYG6wq-fQXTpXIHb9LDgdd1Lm4VOZ1OeqpYXqtyXlp1X8j44_9u4gXc7o8GF-ri7fD9E7iDnzO0ugqfPoW99bI0zxCurfXzqnP-AO_yOns |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYkBAvjAHbwtVICI2HtInjxPZjta4al1WVWKeJFytOnFHRJlXbTIL_xd_gN3FOLt0KiIc915c259j5Pvvrdwh5EzKewBqTrsg8AQQlTF0TJKErUgPZYrw0jvFA_3QYnYz5h4vw4kapr0q0n5hJJ5_OOvnka6WtnM-SbqsT645OjzgPuPCi7jzNulvkLqxZL2qJ-tpvV9b_PmGwCXPGW1cfEXTnebzs4NEHGpX4WM6GhZIJhv4KN95NW1lctCJFdD6FXv9CoX-LKTcsR6vX1GCHfGl_YK1O-dYpV6aT_PjD-_FWT-AhedCAV9qrm-ySOzZ_RHab7WFJDxsP63ePyXk6PBtRrN9FpyhLWtJZkWKlMEtn5QqJPkVxWYEnwEtaZNQuFsXCha-dW9of9qDr9Duely0t_fWTXgGjR8HOEzIeHJ8dnbhNCQc3CYNw5SoTMZUoP5GeVRlwMwEQ0fdsCqTcY0DkrUm8jHMbScMSGWexUYGnpPKNr5T1gz2yncPMB4T6EUsBTCkAHQZQpIiB-knLbWC9hHMWO-SwDZ6e104durphF4HG4OnrkDvkAIKr40vYR_X4M0OXPbxeFZI7ZK-K-HoIAIwRE9JziFONsh7aZ9pX-phBN4e8bvNCw-rEK5c4t0UJc0YSOSLg2v-1UVxJZKoO2a9z6Xr2JjMdIjaybN0A3cE3P4GUqVzCmxRxyNs6Hze69CfnPV0sLnU5K1HlF3Lx9NZTvCL3Rv2B_vR--PEZuQ9PM0R5hc-ek-3VorQvALWtzMtqff4G1SI8-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=dNTP+pool+levels+modulate+mutator+phenotypes+of+error-prone+DNA+polymerase+%CE%B5+variants&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Williams%2C+Lindsey+N.&rft.au=Marjavaara%2C+Lisette&rft.au=Knowels%2C+Gary+M.&rft.au=Schultz%2C+Eric+M.&rft.series=PNAS+Plus&rft.date=2015-05-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=19&rft.spage=E2457&rft.epage=E2466&rft_id=info:doi/10.1073%2Fpnas.1422948112&rft_id=info%3Apmid%2F25827226&rft.externalDBID=PMC4434706 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F19.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F19.cover.gif |