A traceability analysis system for model evaluation on land carbon dynamics: design and applications
Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycl...
Saved in:
Published in | Ecological processes Vol. 10; no. 1; p. 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
29.01.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models.
Methods
A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6).
Results
The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells.
Conclusion
TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation. |
---|---|
AbstractList | BACKGROUND: An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models. METHODS: A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6). RESULTS: The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells. CONCLUSION: TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation. Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models. Methods A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6). Results The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells. Conclusion TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation. BackgroundAn increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models.MethodsA new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6).ResultsThe TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells.ConclusionTraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation. Abstract Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models. Methods A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6). Results The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells. Conclusion TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation. |
ArticleNumber | 12 |
Author | Wei, Ning Liu, Yufu Zhou, Jian Luo, Yiqi Bai, Yuqi Bian, Chenyu Xia, Jianyang |
Author_xml | – sequence: 1 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University – sequence: 2 givenname: Jianyang orcidid: 0000-0001-9276-6086 surname: Xia fullname: Xia, Jianyang email: jyxia@des.ecnu.edu.cn organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University – sequence: 3 givenname: Ning surname: Wei fullname: Wei, Ning organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University – sequence: 4 givenname: Yufu surname: Liu fullname: Liu, Yufu organization: Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Joint Center for Global Change Studies (JCGCS) – sequence: 5 givenname: Chenyu surname: Bian fullname: Bian, Chenyu organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University – sequence: 6 givenname: Yuqi surname: Bai fullname: Bai, Yuqi organization: Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Joint Center for Global Change Studies (JCGCS) – sequence: 7 givenname: Yiqi surname: Luo fullname: Luo, Yiqi organization: Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University |
BookMark | eNp9kU1v1DAQhiNUJErpH-BkiQuXUH8lsblVFYVKlbjA2Rrbk5VXTrzYWar8e9wNiKqHWpY8sp93xjPv2-ZsTjM2zXtGPzGm-qvCxMCGlnLWUsoVax9eNeecad6ygeqzJ_Gb5rKUPa1LSyb1cN74a7JkcAg2xLCsBGaIawmFlLUsOJExZTIlj5Hgb4hHWEKaSd0RZk8cZFtjv84wBVc-E48l7Gby-AaHQwzuxJd3zesRYsHLv-dF8_P2y4-bb-399693N9f3retEt7Ra2FFaaUcPblQDVdb34PTYccZADgqE0sJ7Lqji1oKwdMCeO-SM9hYFExfN3ZbXJ9ibQw4T5NUkCOZ0kfLOQF6Ci2h4j360veYSrEQUulbTnetGtNxqPtRcH7dch5x-HbEsZgrFYayNYzoWwzsueS9011X0wzN0n465DrJSUgnJRM9UpdRGuZxKyTgaF5bTfKoBIRpGzaObZnPTVDfNyU3zUKX8mfRfby-KxCYqFZ53mP__6gXVHxYntWo |
CitedBy_id | crossref_primary_10_1029_2020JG006120 crossref_primary_10_5194_gmd_15_8153_2022 crossref_primary_10_3389_fevo_2023_1105832 crossref_primary_10_1111_gcb_16643 crossref_primary_10_1186_s13717_021_00328_y crossref_primary_10_1016_j_fecs_2022_100011 crossref_primary_10_1029_2022MS003397 crossref_primary_10_1038_s41467_024_47872_7 crossref_primary_10_31497_zrzyxb_20241012 |
Cites_doi | 10.1175/JCLI-D-20-0078.1 10.1073/pnas.1413090112 10.1186/s13717-018-0130-z 10.3402/tellusb.v51i2.16318 10.5194/gmd-13-3383-2020 10.1175/JCLI3800.1 10.1175/JCLI-D-17-0357.1 10.5194/gmd-5-1259-2012 10.1126/science.1197869 10.1016/j.tree.2010.11.003 10.1029/2018MS001354 10.1029/2018GB005909 10.1046/j.1365-2486.2003.00590.x 10.5194/essd-12-2725-2020 10.5194/gmd-11-4399-2018 10.5194/bg-17-4173-2020 10.1073/pnas.1018189108 10.1111/gcb.12172 10.1029/2019GB006175 10.1002/2016JG003384 10.5334/dsj-2017-030 10.1126/science.1249534 10.5194/esd-7-813-2016 10.1038/ngeo2413 10.1002/2013JG002381 10.1186/s13717-020-00255-4 10.1088/1748-9326/ab2ee4 10.5194/esd-11-1233-2020 10.1002/ldr.2506 10.1029/2019MS001633 10.5194/gmd-5-819-2012 10.1111/gcb.12870 10.5194/gmd-5-869-2012 10.5194/gmd-12-1119-2019 10.1088/1748-9326/7/4/044008 10.5194/bg-14-145-2017 10.1038/nature02403 10.1890/07-1929.1 10.5194/bg-16-917-2019 10.1080/00031305.1991.10475776 10.1111/j.1365-2486.2007.01365.x 10.1016/j.envsoft.2018.09.007 10.1111/gcb.15317 10.1038/s41558-018-0355-y 10.1038/s41559-018-0714-0 10.1111/gcb.14619 10.1038/s41561-020-0596-z 10.5194/gmd-9-1747-2016 10.1002/2017MS001004 10.1038/s41559-019-0958-3 10.1073/pnas.1509991112 10.1038/s41467-020-16839-9 10.1111/gcb.14939 10.1029/2020MS002304 10.5194/gmd-7-1251-2014 10.1111/gcb.12766 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7S9 L.6 DOA |
DOI | 10.1186/s13717-021-00281-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2192-1709 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_26edfb6924ab4ee3908b95c5feb2b927 10_1186_s13717_021_00281_w |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31722009 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2017YFA0604600 |
GroupedDBID | -A0 0R~ 4.4 40G 5VS 7XC 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFO ACGFS ACPRK ACULB ADBBV ADINQ AEGXH AEUYN AFGXO AFKRA AFPKN AFRAH AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BBNVY BCNDV BENPR BHPHI C24 C6C CCPQU EBLON EBS EDH GROUPED_DOAJ GX1 HCIFZ IAO IEP ISR ITC KQ8 LK8 M7P M~E OK1 PATMY PIMPY PROAC PYCSY RNS RSV SEV SOJ AASML AAXDM AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO F1W GNUQQ H95 L.G PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c535t-93bf4b4bfdacf8708bd6ac9f5211a478a3893dd23082bba3b07e62ce2106be313 |
IEDL.DBID | BENPR |
ISSN | 2192-1709 |
IngestDate | Wed Aug 27 01:31:17 EDT 2025 Fri Jul 11 08:03:55 EDT 2025 Fri Jul 25 22:52:32 EDT 2025 Tue Jul 01 04:32:00 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Fri Feb 21 02:48:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CMIP6 land carbon cycle model evaluation traceability analysis uncertainty |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-93bf4b4bfdacf8708bd6ac9f5211a478a3893dd23082bba3b07e62ce2106be313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9276-6086 |
OpenAccessLink | https://www.proquest.com/docview/2483413618?pq-origsite=%requestingapplication% |
PQID | 2483413618 |
PQPubID | 2034775 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26edfb6924ab4ee3908b95c5feb2b927 proquest_miscellaneous_2524263955 proquest_journals_2483413618 crossref_citationtrail_10_1186_s13717_021_00281_w crossref_primary_10_1186_s13717_021_00281_w springer_journals_10_1186_s13717_021_00281_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-29 |
PublicationDateYYYYMMDD | 2021-01-29 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Ecological processes |
PublicationTitleAbbrev | Ecol Process |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Xia JY, Luo YQ, Wang YP, Weng ES, Hararuk O (2012) A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state. Geosci Model Dev 5:1259–1271 Wei N, Cui E, Huang K, Du Z, Xu X, Wang J, Yan L, Xia J (2019) Decadal stabilization of soil inorganic nitrogen as a benchmark for global land models. J Adv Model Earth Syst 11:1088–1099 Abramowitz G (2012) Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci Model Dev 5:819–827 Lovenduski NS, Bonan GB (2017) Reducing uncertainty in projections of terrestrial carbon uptake. Environ Res Lett 12(4):044020 Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359(6375):eaam8328 Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L (2011) Soil warming, carbon–nitrogen interactions, and forest carbon budgets. P Natl Acad Sci USA 108:9508–9512 Xia J, Niu S, Ciais P, Janssens IA, Chen J, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen S, Dong J, Flanagan LB, Frankenberg C, Georgiadis T, Gough CM, Hui D, Kiely G, Li J, Lund M, Magliulo V, Marcolla B, Merbold L, Montagnani L, Moors EJ, Olesen JE, Piao S, Raschi A, Roupsard O, Suyker AE, Urbaniak M, Vaccari FP, Varlagin A, Vesala T, Wilkinson M, Weng E, Wohlfahrt G, Yan L, Luo Y (2015) Joint control of terrestrial gross primary productivity by plant phenology and physiology. P Natl Acad Sci USA 112:2788–2793 Salunkhe O, Khare PK, Kumari R, Khan ML (2018) A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecol Process 7:17 Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Adam Langley J, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3:1309–1320 HoffmanFMKovenCDKeppel-AleksGLawrenceDMRileyWJRandersonJTAhlstromAAbramowitzGBaldocchiDDBestMJ2016 International Land Model Benchmarking (ILAMB) Workshop Report2016 Xu H, Li S, Bai Y, Dong W, Huang W, Xu S, Lin Y, Wang B, Wu F, Xin X (2019) A collaborative analysis framework for distributed gridded environmental data. Environ Model Softw 111:324–339 Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol 25:1922–1940 Cui E, Huang K, Arain MA, Fisher JB, Huntzinger DN, Ito A, Luo Y, Jain AK, Mao J, Michalak AM, Niu S, Parazoo NC, Peng C, Peng S, Poulter B, Ricciuto DM, Schaefer KM, Schwalm CR, Shi X, Tian H, Wang W, Wang J, Wei Y, Yan E, Yan L, Zeng N, Zhu Q, Xia J (2019) Vegetation functional properties determine uncertainty of simulated ecosystem productivity: a traceability analysis in the East Asian Monsoon Region. Global Biogeochem Cy 33:668–689 Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353 Huang K, Xia J, Wang Y, Ahlstrom A, Chen J, Cook RB, Cui E, Fang Y, Fisher JB, Huntzinger DN, Li Z, Michalak AM, Qiao Y, Schaefer K, Schwalm C, Wang J, Wei Y, Xu X, Yan L, Bian C, Luo Y (2018) Enhanced peak growth of global vegetation and its key mechanisms. Nat Ecol Evol 2:1897–1905 Luo Y, Keenan TF, Smith M (2015) Predictability of the terrestrial carbon cycle. Glob Change Biol 21(5):1737–1751 Schlund M, Lauer A, Gentine P, Sherwood SC, Eyring V (2020) Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst Dyn 11(4):1233–1258 Rafique R, Xia J, Hararuk O, Leng G, Asrar G, Luo Y (2017) Comparing the performance of three land models in global C cycle simulations: a detailed structural analysis. Land Degrad Dev 28:524–533 Zhu C, Xia J (2020) Nonlinear increase of vegetation carbon storage in aging forests and its implications for Earth system models. J Adv Model Earth Syst 12:e2020MS002304 TianHMelilloJKicklighterDMcGuireAHelfrichJThe sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United StatesTellus B19995141445210.3402/tellusb.v51i2.16318 Zheng Y, Shen R, Wang Y, Li X, Liu S, Liang S, Chen JM, Ju W, Zhang L, Yuan W (2020) Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst Sci Data 12:2725–2746 MurrayKConnerMMMethods to quantify variable importance: implications for the analysis of noisy ecological dataEcology20099034835510.1890/07-1929.1 Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K (2015) Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol 21:2711–2725 Bonan GB, Lombardozzi DL, Wieder WR, Oleson KW, Lawrence DM, Hoffman FM, Collier NJGBC (2019) Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Global Biogeochem Cy 33(10):1310–1326 Xia J, Luo Y, Wang YP, Hararuk O (2013) Traceable components of terrestrial carbon storage capacity in biogeochemical models, Glob Change Biol 19:2104–2116 OverpeckJTMeehlGABonySEasterlingDRClimate data challenges in the 21st centuryScience20113317007021:CAS:528:DC%2BC3MXhs1yku7w%3D10.1126/science.1197869 Wu H, Guo Z, Peng C (2003) Land use induced changes of organic carbon storage in soils of China. Glob Change Biol 9:305–315 Collier N, Hoffman FM, Lawrence DM, Keppel-Aleks G, Koven CD, Riley WJ, Mu M, Randerson JT (2018) The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J Adv Model Earth Sy 10:2731–2754 Zarakas CM, Swann AL, Laguë MM, Armour KC, Randerson JT (2020) Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth System models. J Clim 33(19):8561–8578 Fisher RA, Koven CD (2020) Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J Adv Model Earth Sy 12(4):e2018MS001453 Hoffman FM, Randerson JT, Arora VK, Bao Q, Cadule P, Ji D, Jones CD, Kawamiya M, Samar K, Lindsay K, Obata A, Shevliakova E, Six KD, Tjiputra JF, Volodin EM, Wu T (2014) Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J Geophys Res-Biogeo 119:141–162 Van GroenigenKJQiXOsenbergCWLuoYHungateBAFaster decomposition under increased atmospheric CO2 limits soil carbon storageScience201434450850910.1126/science.1249534 Jiang L, Shi Z, Xia J, Liang J, Lu X, Wang Y, Luo Y (2017) Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems. J Adv Model Earth Sy 9:2822–2835 Eyring V, Bock L, Lauer A, Righi M, Schlund M, Andela B, Arnone E, Bellprat O, Brötz B, Caron L-P, Carvalhais N, Cionni I, Cortesi N, Crezee B, Davin EL, Davini P, Debeire K, de Mora L, Deser C, Docquier D, Earnshaw P, Ehbrecht C, Gier BK, Gonzalez-Reviriego N, Goodman P, Hagemann S, Hardiman S, Hassler B, Hunter A, Kadow C, Kindermann S, Koirala S, Koldunov N, Lejeune Q, Lembo V, Lovato T, Lucarini V, Massonnet F, Müller B, Pandde A, Pérez-Zanón N, Phillips A, Predoi V, Russell J, Sellar A, Serva F, Stacke T, Swaminathan R, Torralba V, Vegas-Regidor J, von Hardenberg J, Weigel K, Zimmermann K (2020) Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci Model Dev 13:3383–3438 DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Change Biol 13:1157–1167 Eyring V, Righi M, Lauer A, Evaldsson M, Wenzel S, Jones C, Anav A, Andrews O, Cionni I, Davin EL, Deser C, Ehbrecht C, Friedlingstein P, Gleckler P, Gottschaldt K-D, Hagemann S, Juckes M, Kindermann S, Krasting J, Kunert D, Levine R, Loew A, Mäkelä J, Martin G, Mason E, Phillips AS, Read S, Rio C, Roehrig R, Senftleben D, Sterl A, van Ulft LH, Walton J, Wang S, Williams KD (2016b) ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci Model Dev 9:1747–1802 Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Hayes DJ, Huang K, Ji D, Krinner G, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T, Shi Z, Yan L, Liang J, Jiang L, Zhang Q, Luo Y (2017) Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J Geophys Res-Biogeo 122:430–446 Cui E, Weng E, Yan E, Xia J (2020) Robust leaf trait relationships across species under global environmental changes. Nat Commun 11:2999 Eyring V, Gleckler PJ, Heinze C, Stouffer RJ, Taylor KE, Balaji V, Guilyardi E, Joussaume S, Kindermann S, Lawrence BN, Meehl GA, Righi M, Williams DN (2016a) Towards improved and more routine Earth system model evaluation in CMIP. Earth Syst Dynam 7:813–830 Fyllas NM, Gloor E, Mercado L, Sitch S, Quesada CA, Domingues T, Galbraith D, Torre-Lezama A, Vilanova E, Ramírez-Angulo H (2014) Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v. 1). Geosci Model Dev 7:1251–1269 Shi Z, Allison SD, He Y, IJ Wright (281_CR50) 2004; 428 281_CR49 281_CR48 281_CR43 281_CR42 281_CR41 281_CR51 KJ Van Groenigen (281_CR46) 2014; 344 H Tian (281_CR44) 1999; 51 281_CR19 281_CR18 281_CR17 281_CR16 281_CR15 281_CR59 281_CR14 281_CR58 281_CR13 281_CR57 281_CR12 281_CR56 281_CR11 281_CR55 281_CR10 281_CR54 281_CR53 281_CR52 281_CR62 281_CR61 281_CR60 SL Ustin (281_CR45) 2021; 10 J Wang (281_CR47) 2019; 16 K Murray (281_CR34) 2009; 90 281_CR29 281_CR28 281_CR27 281_CR26 281_CR25 281_CR24 281_CR23 281_CR22 281_CR21 Y Luo (281_CR31) 2017; 14 VK Arora (281_CR3) 2020; 17 281_CR39 281_CR38 281_CR37 281_CR36 281_CR2 281_CR1 281_CR33 281_CR30 281_CR8 281_CR40 281_CR7 281_CR9 Y Luo (281_CR32) 2011; 26 281_CR4 281_CR6 281_CR5 FM Hoffman (281_CR20) 2016 JT Overpeck (281_CR35) 2011; 331 |
References_xml | – reference: OverpeckJTMeehlGABonySEasterlingDRClimate data challenges in the 21st centuryScience20113317007021:CAS:528:DC%2BC3MXhs1yku7w%3D10.1126/science.1197869 – reference: Jaworski T, Hilszczański J (2013) The effect of temperature and humidity changes on insects development and their impact on forest ecosystems in the context of expected climate change. For Res Pap 74:345–355 – reference: Zheng Y, Shen R, Wang Y, Li X, Liu S, Liang S, Chen JM, Ju W, Zhang L, Yuan W (2020) Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst Sci Data 12:2725–2746 – reference: Zhou S, Liang J, Lu X, Li Q, Jiang L, Zhang Y, Schwalm CR, Fisher JB, Tjiputra J, Sitch S, Ahlström A, Huntzinger DN, Huang Y, Wang G, Luo Y (2018) Sources of uncertainty in modeled land carbon storage within and across three mips: diagnosis with three new techniques. J Clim 31:2833–2851 – reference: Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359(6375):eaam8328 – reference: Eyring V, Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P, Collins WD, Gier BK, Hall AD, Hoffman FM, Hurtt GC, Jahn A, Jones CD, Klein SA, Krasting JP, Kwiatkowski L, Lorenz R, Maloney E, Meehl GA, Pendergrass AG, Pincus R, Ruane AC, Russell JL, Sanderson BM, Santer BD, Sherwood SC, Simpson IR, Stouffer RJ, Williamson MS (2019) Taking climate model evaluation to the next level. Nat Clim Change 9:102–110 – reference: AroraVKKatavoutaAWilliamsRGJonesCDBrovkinVFriedlingsteinPSchwingerJBoppLBoucherOCadulePCarbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 modelsBiogeosciences20201716417342221:CAS:528:DC%2BB3MXhsFSjtr8%3D10.5194/bg-17-4173-2020 – reference: Wu H, Guo Z, Peng C (2003) Land use induced changes of organic carbon storage in soils of China. Glob Change Biol 9:305–315 – reference: Xia J, Niu S, Ciais P, Janssens IA, Chen J, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen S, Dong J, Flanagan LB, Frankenberg C, Georgiadis T, Gough CM, Hui D, Kiely G, Li J, Lund M, Magliulo V, Marcolla B, Merbold L, Montagnani L, Moors EJ, Olesen JE, Piao S, Raschi A, Roupsard O, Suyker AE, Urbaniak M, Vaccari FP, Varlagin A, Vesala T, Wilkinson M, Weng E, Wohlfahrt G, Yan L, Luo Y (2015) Joint control of terrestrial gross primary productivity by plant phenology and physiology. P Natl Acad Sci USA 112:2788–2793 – reference: Eyring V, Gleckler PJ, Heinze C, Stouffer RJ, Taylor KE, Balaji V, Guilyardi E, Joussaume S, Kindermann S, Lawrence BN, Meehl GA, Righi M, Williams DN (2016a) Towards improved and more routine Earth system model evaluation in CMIP. Earth Syst Dynam 7:813–830 – reference: Lovenduski NS, Bonan GB (2017) Reducing uncertainty in projections of terrestrial carbon uptake. Environ Res Lett 12(4):044020 – reference: MurrayKConnerMMMethods to quantify variable importance: implications for the analysis of noisy ecological dataEcology20099034835510.1890/07-1929.1 – reference: Shi Z, Allison SD, He Y, Levine PA, Hoyt AM, Beem-Miller J, Zhu Q, Wieder WR, Trumbore S, Randerson JT (2020) The age distribution of global soil carbon inferred from radiocarbon measurements. Nat Geosci 13(8):555–559 – reference: Xia J, Luo Y, Wang YP, Hararuk O (2013) Traceable components of terrestrial carbon storage capacity in biogeochemical models, Glob Change Biol 19:2104–2116 – reference: DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Change Biol 13:1157–1167 – reference: Schlund M, Lauer A, Gentine P, Sherwood SC, Eyring V (2020) Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst Dyn 11(4):1233–1258 – reference: Huang K, Xia J, Wang Y, Ahlstrom A, Chen J, Cook RB, Cui E, Fang Y, Fisher JB, Huntzinger DN, Li Z, Michalak AM, Qiao Y, Schaefer K, Schwalm C, Wang J, Wei Y, Xu X, Yan L, Bian C, Luo Y (2018) Enhanced peak growth of global vegetation and its key mechanisms. Nat Ecol Evol 2:1897–1905 – reference: Zarakas CM, Swann AL, Laguë MM, Armour KC, Randerson JT (2020) Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth System models. J Clim 33(19):8561–8578 – reference: Fisher RA, Koven CD (2020) Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J Adv Model Earth Sy 12(4):e2018MS001453 – reference: Ahlström A, Schurgers G, Arneth A, Smith B (2012) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ Res Lett 7:044008 – reference: Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L (2011) Soil warming, carbon–nitrogen interactions, and forest carbon budgets. P Natl Acad Sci USA 108:9508–9512 – reference: Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K (2015) Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol 21:2711–2725 – reference: Bonan GB, Lombardozzi DL, Wieder WR, Oleson KW, Lawrence DM, Hoffman FM, Collier NJGBC (2019) Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Global Biogeochem Cy 33(10):1310–1326 – reference: Hoffman FM, Randerson JT, Arora VK, Bao Q, Cadule P, Ji D, Jones CD, Kawamiya M, Samar K, Lindsay K, Obata A, Shevliakova E, Six KD, Tjiputra JF, Volodin EM, Wu T (2014) Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J Geophys Res-Biogeo 119:141–162 – reference: LuoYShiZLuXXiaJLiangJJiangJWangYSmithMJJiangLAhlströmAChenBHararukOHastingsAHoffmanFMedlynBNiuSRasmussenMTodd-BrownKWangY-PTransient dynamics of terrestrial carbon storage: mathematical foundation and its applicationsBiogeosciences2017141451611:CAS:528:DC%2BC1cXhtlWisL%2FN10.5194/bg-14-145-2017 – reference: Xia J, Wang J, Niu S (2020) Research challenges and opportunities for using big data in global change biology. Glob Change Biol 26:6040–6061 – reference: Li S, Yuan W, Ciais P, Viovy N, Ito A, Jia B, Zhu D (2019) Benchmark estimates for aboveground litterfall data derived from ecosystem models. Environ Res Lett 14:084020 – reference: Xu H, Li S, Bai Y, Dong W, Huang W, Xu S, Lin Y, Wang B, Wu F, Xin X (2019) A collaborative analysis framework for distributed gridded environmental data. Environ Model Softw 111:324–339 – reference: Zhu C, Xia J (2020) Nonlinear increase of vegetation carbon storage in aging forests and its implications for Earth system models. J Adv Model Earth Syst 12:e2020MS002304 – reference: UstinSLMiddletonEMCurrent and near-term advances in Earth observation for ecological applicationsEcol Process202110110.1186/s13717-020-00255-4 – reference: Salunkhe O, Khare PK, Kumari R, Khan ML (2018) A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecol Process 7:17 – reference: WangJXiaJZhouXHuangKZhouJHuangYJiangLXuXLiangJWangY-PChengXLuoYEvaluating the simulated mean soil carbon transit times by Earth system models using observationsBiogeosciences2019169179261:CAS:528:DC%2BB3cXitF2nsbk%3D10.5194/bg-16-917-2019 – reference: Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, Ricciuto D, Luo Y (2019) Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geosci Model Dev 12:1119–1137 – reference: WrightIJReichPBWestobyMAckerlyDDBaruchZBongersFCavender-BaresJChapinTCornelissenJHDiemerMThe worldwide leaf economics spectrumNature20044288218271:CAS:528:DC%2BD2cXjt1Crt74%3D10.1038/nature02403 – reference: Xia JY, Luo YQ, Wang YP, Weng ES, Hararuk O (2012) A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state. Geosci Model Dev 5:1259–1271 – reference: HoffmanFMKovenCDKeppel-AleksGLawrenceDMRileyWJRandersonJTAhlstromAAbramowitzGBaldocchiDDBestMJ2016 International Land Model Benchmarking (ILAMB) Workshop Report2016 – reference: Bai Y, Di L (2012) Review of geospatial data systems’ support of global change studies. Br J Environ Clim Change 2(4):421–436 – reference: Abramowitz G (2012) Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci Model Dev 5:819–827 – reference: Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Adam Langley J, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3:1309–1320 – reference: Jiang L, Shi Z, Xia J, Liang J, Lu X, Wang Y, Luo Y (2017) Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems. J Adv Model Earth Sy 9:2822–2835 – reference: TianHMelilloJKicklighterDMcGuireAHelfrichJThe sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United StatesTellus B19995141445210.3402/tellusb.v51i2.16318 – reference: Wieder WR, Cleveland CC, Smith WK, Todd-Brown KJNG (2015) Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci 8:441–444 – reference: Kumar SV, Peters-Lidard CD, Santanello J, Harrison K, Liu Y, Shaw M (2012) Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation. Geosci Model Dev 5:869–886 – reference: Rafique R, Xia J, Hararuk O, Leng G, Asrar G, Luo Y (2017) Comparing the performance of three land models in global C cycle simulations: a detailed structural analysis. Land Degrad Dev 28:524–533 – reference: Luo Y, Keenan TF, Smith M (2015) Predictability of the terrestrial carbon cycle. Glob Change Biol 21(5):1737–1751 – reference: Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96 – reference: Luo Y, Schuur EA (2020) Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Glob Change Biol 26:1109–1117 – reference: Xie Y, Wang X, Silander JA Jr (2015) Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. P Natl Acad Sci USA 112:13585–13590 – reference: Cui E, Huang K, Arain MA, Fisher JB, Huntzinger DN, Ito A, Luo Y, Jain AK, Mao J, Michalak AM, Niu S, Parazoo NC, Peng C, Peng S, Poulter B, Ricciuto DM, Schaefer KM, Schwalm CR, Shi X, Tian H, Wang W, Wang J, Wei Y, Yan E, Yan L, Zeng N, Zhu Q, Xia J (2019) Vegetation functional properties determine uncertainty of simulated ecosystem productivity: a traceability analysis in the East Asian Monsoon Region. Global Biogeochem Cy 33:668–689 – reference: Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353 – reference: Cui E, Weng E, Yan E, Xia J (2020) Robust leaf trait relationships across species under global environmental changes. Nat Commun 11:2999 – reference: LuoYWengEDynamic disequilibrium of the terrestrial carbon cycle under global changeTrends Ecol Evol2011269610410.1016/j.tree.2010.11.003 – reference: Eyring V, Righi M, Lauer A, Evaldsson M, Wenzel S, Jones C, Anav A, Andrews O, Cionni I, Davin EL, Deser C, Ehbrecht C, Friedlingstein P, Gleckler P, Gottschaldt K-D, Hagemann S, Juckes M, Kindermann S, Krasting J, Kunert D, Levine R, Loew A, Mäkelä J, Martin G, Mason E, Phillips AS, Read S, Rio C, Roehrig R, Senftleben D, Sterl A, van Ulft LH, Walton J, Wang S, Williams KD (2016b) ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci Model Dev 9:1747–1802 – reference: Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Hayes DJ, Huang K, Ji D, Krinner G, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T, Shi Z, Yan L, Liang J, Jiang L, Zhang Q, Luo Y (2017) Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J Geophys Res-Biogeo 122:430–446 – reference: Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol 25:1922–1940 – reference: Fyllas NM, Gloor E, Mercado L, Sitch S, Quesada CA, Domingues T, Galbraith D, Torre-Lezama A, Vilanova E, Ramírez-Angulo H (2014) Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v. 1). Geosci Model Dev 7:1251–1269 – reference: Van GroenigenKJQiXOsenbergCWLuoYHungateBAFaster decomposition under increased atmospheric CO2 limits soil carbon storageScience201434450850910.1126/science.1249534 – reference: Wei N, Cui E, Huang K, Du Z, Xu X, Wang J, Yan L, Xia J (2019) Decadal stabilization of soil inorganic nitrogen as a benchmark for global land models. J Adv Model Earth Syst 11:1088–1099 – reference: Collier N, Hoffman FM, Lawrence DM, Keppel-Aleks G, Koven CD, Riley WJ, Mu M, Randerson JT (2018) The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J Adv Model Earth Sy 10:2731–2754 – reference: Stockhause M, Lautenschlager M (2017) CMIP6 data citation of evolving data. Data Sci J 16:30 – reference: Du Z, Weng E, Jiang L, Luo Y, Xia J, Zhou X (2018) Carbon–nitrogen coupling under three schemes of model representation: a traceability analysis. Geosci Model Dev 11:4399–4416 – reference: Eyring V, Bock L, Lauer A, Righi M, Schlund M, Andela B, Arnone E, Bellprat O, Brötz B, Caron L-P, Carvalhais N, Cionni I, Cortesi N, Crezee B, Davin EL, Davini P, Debeire K, de Mora L, Deser C, Docquier D, Earnshaw P, Ehbrecht C, Gier BK, Gonzalez-Reviriego N, Goodman P, Hagemann S, Hardiman S, Hassler B, Hunter A, Kadow C, Kindermann S, Koirala S, Koldunov N, Lejeune Q, Lembo V, Lovato T, Lucarini V, Massonnet F, Müller B, Pandde A, Pérez-Zanón N, Phillips A, Predoi V, Russell J, Sellar A, Serva F, Stacke T, Swaminathan R, Torralba V, Vegas-Regidor J, von Hardenberg J, Weigel K, Zimmermann K (2020) Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci Model Dev 13:3383–3438 – ident: 281_CR59 doi: 10.1175/JCLI-D-20-0078.1 – ident: 281_CR54 doi: 10.1073/pnas.1413090112 – ident: 281_CR39 doi: 10.1186/s13717-018-0130-z – volume: 51 start-page: 414 year: 1999 ident: 281_CR44 publication-title: Tellus B doi: 10.3402/tellusb.v51i2.16318 – ident: 281_CR17 – ident: 281_CR13 doi: 10.5194/gmd-13-3383-2020 – ident: 281_CR18 doi: 10.1175/JCLI3800.1 – ident: 281_CR61 doi: 10.1175/JCLI-D-17-0357.1 – ident: 281_CR56 doi: 10.5194/gmd-5-1259-2012 – ident: 281_CR5 – volume: 331 start-page: 700 year: 2011 ident: 281_CR35 publication-title: Science doi: 10.1126/science.1197869 – volume: 26 start-page: 96 year: 2011 ident: 281_CR32 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2010.11.003 – ident: 281_CR8 doi: 10.1029/2018MS001354 – ident: 281_CR9 doi: 10.1029/2018GB005909 – ident: 281_CR51 doi: 10.1046/j.1365-2486.2003.00590.x – ident: 281_CR60 doi: 10.5194/essd-12-2725-2020 – ident: 281_CR12 doi: 10.5194/gmd-11-4399-2018 – volume: 17 start-page: 4173 issue: 16 year: 2020 ident: 281_CR3 publication-title: Biogeosciences doi: 10.5194/bg-17-4173-2020 – ident: 281_CR33 doi: 10.1073/pnas.1018189108 – ident: 281_CR52 doi: 10.1111/gcb.12172 – ident: 281_CR6 doi: 10.1029/2019GB006175 – ident: 281_CR53 doi: 10.1002/2016JG003384 – ident: 281_CR43 doi: 10.5334/dsj-2017-030 – volume: 344 start-page: 508 year: 2014 ident: 281_CR46 publication-title: Science doi: 10.1126/science.1249534 – ident: 281_CR15 doi: 10.5194/esd-7-813-2016 – ident: 281_CR49 doi: 10.1038/ngeo2413 – ident: 281_CR21 doi: 10.1002/2013JG002381 – volume: 10 start-page: 1 year: 2021 ident: 281_CR45 publication-title: Ecol Process doi: 10.1186/s13717-020-00255-4 – ident: 281_CR28 – volume-title: 2016 International Land Model Benchmarking (ILAMB) Workshop Report year: 2016 ident: 281_CR20 – ident: 281_CR27 doi: 10.1088/1748-9326/ab2ee4 – ident: 281_CR24 – ident: 281_CR40 doi: 10.5194/esd-11-1233-2020 – ident: 281_CR37 doi: 10.1002/ldr.2506 – ident: 281_CR48 doi: 10.1029/2019MS001633 – ident: 281_CR1 doi: 10.5194/gmd-5-819-2012 – ident: 281_CR38 doi: 10.1111/gcb.12870 – ident: 281_CR26 doi: 10.5194/gmd-5-869-2012 – ident: 281_CR23 doi: 10.5194/gmd-12-1119-2019 – ident: 281_CR2 doi: 10.1088/1748-9326/7/4/044008 – volume: 14 start-page: 145 year: 2017 ident: 281_CR31 publication-title: Biogeosciences doi: 10.5194/bg-14-145-2017 – volume: 428 start-page: 821 year: 2004 ident: 281_CR50 publication-title: Nature doi: 10.1038/nature02403 – volume: 90 start-page: 348 year: 2009 ident: 281_CR34 publication-title: Ecology doi: 10.1890/07-1929.1 – volume: 16 start-page: 917 year: 2019 ident: 281_CR47 publication-title: Biogeosciences doi: 10.5194/bg-16-917-2019 – ident: 281_CR7 doi: 10.1080/00031305.1991.10475776 – ident: 281_CR11 doi: 10.1111/j.1365-2486.2007.01365.x – ident: 281_CR58 doi: 10.1016/j.envsoft.2018.09.007 – ident: 281_CR55 doi: 10.1111/gcb.15317 – ident: 281_CR4 – ident: 281_CR14 doi: 10.1038/s41558-018-0355-y – ident: 281_CR22 doi: 10.1038/s41559-018-0714-0 – ident: 281_CR36 doi: 10.1111/gcb.14619 – ident: 281_CR41 doi: 10.1038/s41561-020-0596-z – ident: 281_CR16 doi: 10.5194/gmd-9-1747-2016 – ident: 281_CR25 doi: 10.1002/2017MS001004 – ident: 281_CR42 doi: 10.1038/s41559-019-0958-3 – ident: 281_CR57 doi: 10.1073/pnas.1509991112 – ident: 281_CR10 doi: 10.1038/s41467-020-16839-9 – ident: 281_CR30 doi: 10.1111/gcb.14939 – ident: 281_CR62 doi: 10.1029/2020MS002304 – ident: 281_CR19 doi: 10.5194/gmd-7-1251-2014 – ident: 281_CR29 doi: 10.1111/gcb.12766 |
SSID | ssj0000941497 |
Score | 2.4195423 |
Snippet | Background
An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast... BackgroundAn increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast... BACKGROUND: An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the... Abstract Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Analysis Carbon Carbon cycle carbon sequestration Cloud computing CMIP6 Dynamics Earth and Environmental Science ecosystems Environment Evaluation gross primary productivity Intercomparison land carbon cycle model evaluation model uncertainty model validation Primary production Residence time Residence time distribution Simulation traceability traceability analysis Tracking Uncertainty Uncertainty analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FKPRStFVcv0ihNw2azSa78abFx6NQTwreQmaSPRR5yvtA_O-dJPueT6HtpbCHZZNdwmSG-c3O5DeMfVfY9h3qKCK2KJomngkfsRGtseBRYmcwZXR_XZvxbfPzTt-ttfpKNWGFHrgI7rQ2MfRgKEzw0MRIIXoHVqcaKajB1vkcOfm8tWDqd6mXI-jfLk_JdOZ0JhVFLiJVJKQ4Q4qnN54oE_a_QZnvEqPZ34w22ecBKPKLssAt9iFOvrCPV5lk-vkrCxd8PvUYC832M_cDuQgv1MycsCjPXW74K583pysVMnL0U6D7ULrRz855yHUcPI2tZ7S32e3o6ubHWAwdEwRqpefCKugbaKAPHnuyxA6C8Wh78tHSN23nEzwJoU4cNQBewVkbTY2R4j4DUUm1wzYmD5O4y3hQMniyII-EmJREC2TcOpheE4KTFisml9JzONCJp64W9y6HFZ1xReKOJO6yxN1TxY5X7zwWMo2_zr5Mm7KamYiw8wNSDzeoh_uXelTsYLmlbrDOmavTH1SpjOwq9m01THaVkiV-Eh8WNEdnLnurdcVOlqrw-ok_L3vvfyx7n32qs6pKUdsDtjGfLuIhoZ85HGVFfwFJhwGh priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_8QPDl8E7lenpHDnzToGmatPHNO1zk4HxS8C0kk1SQY1d2V2T_eydpu37gHRz0oTST0k4yzW86k98AHEis2wZV5BFr5FUVT7iLWPFaG-9QYKMxRXR_X-qL6-rXjbrpN4XNhmz3ISSZv9TZrBt9PBOSXA-eUgqSoyD44yqsq-S7pxBtv8fhrsuVI9hfDztk3u36ahXKZP2vEOaboGhea0Zb8KEHieysG9WPsBLHn2DjPBNML7YhnLH51GHsKLYXzPXEIqyjZWaEQ1mucMOeubwZHSmJkaGbejoPXSX62SkLOYeDpbaX0ewduB6dX_284H21BI5Kqjk30reVr3wbHLZkhY0P2qFpaX0Wrqobl6BJCGXip_HeSX9SR11iJJ9P-yiF3IW18WQcPwMLUgRH1uOQ0JIUaDwZtgq6VYTehMECxKA9iz2VeKpo8cdml6LRttO4JY3brHH7WMDhss99R6TxT-kfaVCWkokEO1-YTG9tb1O21DG0XpMH6XwVozT0zkal9DlfelPWBewPQ2p7y5zZMv09FVKLpoDvy2ayqRQoceM4eSAZlXnsjVIFHA1T4fkWf3_sL_8nvgebZZ6UgpdmH9bm04f4lTDO3H_LU_oJSLj1VA priority: 102 providerName: Springer Nature |
Title | A traceability analysis system for model evaluation on land carbon dynamics: design and applications |
URI | https://link.springer.com/article/10.1186/s13717-021-00281-w https://www.proquest.com/docview/2483413618 https://www.proquest.com/docview/2524263955 https://doaj.org/article/26edfb6924ab4ee3908b95c5feb2b927 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZaxsxEB4am0JfSk-6bWpU6FsrYq2OXfWlOMZpMDSUtoG8CV2bl2KntkPIv-9IK9tNoYFlWbTaazQjzbXfALznvulaLyONvvFUiDimNnpBG6Wd9cy3yqeI7tczdXou5hfyojjc1iWtcjsn5ok6LH3ykR_VyevFuGLt56vfNFWNStHVUkLjAIY4BbftAIbHs7Nv33deFjRe0ARotn_LtOpozThaMDRlJiR7g9GbOytSBu6_o23-EyDN687JE3hcFEYy6Uf4KTyIi2fwcJbBpm-fQ5iQzcr62MNt3xJbQEZID9FMUCcludoN2eN6E9xSQiPxduXwOPRV6defSMj5HCSd-zuy_QLOT2Y_p6e0VE6gXnK5oZq7TjjhumB9hxLZuqCs1x2u1cyKprVJTQmhTlg1zlnuxk1UtY9o_ykXOeMvYbBYLuIrIIGzYFGSrEfNiTOvHQq5DKqTqMkx7StgW-oZX2DFU3WLXyabF60yPcUNUtxkipubCj7srrnqQTXu7X2cBmXXMwFi54bl6tIU-TK1iqFzCq1J60SMXOM3a5lS6VztdN1UcLgdUlOkdG32PFXBu91plK8UNLGLuLzGPjJj2mspK_i4ZYX9Lf7_2q_vf-IbeFRnJmS01ocw2Kyu41vUbzZuBAdi_GUEw8lk_mM-KiyNrdNapL2ajrLn4A8nvP54 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFdEX8RNXq0bQJw29JJvsriDS6pWrbQ-RFvqW5mtF0Lt6d-W4f8q_0Ul2984K9q2wD8sm-zWZycxkJr8BeCVcUZdOBhpc4Wiehz41weW0UJU1jrlSuRjRPRqp4Un--VSebsDvbi9MTKvs5sQ0UfuJi2vk2zyuejGhWPnh_BeNVaNidLUrodGwxUFYLtBlm73f_4Tj-5rzvcHxxyFtqwpQJ4Wc00rYOre5rb1xNXJrab0yrqpRjzGTF6WJKtx7HnFcrDXC9ouguAvoGykbBBP43BuwmQvV5z3Y3B2Mvnxdreqgs4QuR9HtzinV9owJ9JhozISI_g2ji0saMBUKuGTd_hOQTXpu7y7caQ1UstNw1D3YCOP7cHOQwK2XD8DvkPnUuNDAey-JaUFNSAMJTdAGJqm6DlnjiBM8YgIlcWZq8dwvx-bndzd7R3zKHyGx7e9I-kM4uRaaPoLeeDIOj4F4wbxByTUOLTXBXGVxUpFe1RItR1a5DFhHPe1aGPNYTeOHTu5MqXRDcY0U14niepHBm9U95w2Ix5W9d-OgrHpGAO50YTL9plt51lwFX1uF3quxeQiiwn-uZEzds9xWvMhgqxtS3c4KM73m4QxerppRnmOQxozD5AL7yIShX0mZwduOFdaP-P9nP7n6jS_g1vD46FAf7o8OnsJtnhiSUV5tQW8-vQjP0Laa2-ctQxM4u24Z-gNqMzcu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ8iMMBI8ARWZztxYiSENtZqY1BNiEl7M_4KmjTa0Xaq-q_x13F2kpYhsbdJeYgS5-t8Z9_Pd_kdwCvhyrpyRaDBlY7medimJricllJZ45irpIsR3S8juX-cfzopTjbgd_cvTEyr7MbENFD7iYtr5H0eV72YkKzq121axNHe8MP5LxorSMVIa1dOo1GRw7BcIHybvT_Yw75-zflw8O3jPm0rDFBXiGJOlbB1bnNbe-Nq1NzKemmcqnFOYyYvKxOnc-955HSx1gi7XQbJXUCcJG0QTOB9b8BmGVFRDzZ3B6Ojr6sVHgROCD_K7k-dSvZnTCB6ojErImIdRheXZsNUNOCSp_tPcDbNecO7cKd1VslOo133YCOM78PNQSK6Xj4Av0PmU-NCQ_W9JKYlOCENPTRBf5ikSjtkzSlOcIvJlMSZqcV9vxybn6du9o74lEtC4rm_o-oP4fhaZPoIeuPJODwG4gXzBq3YOPTaBHPK4gBTeFkX6EUy5TJgnfS0aynNY2WNM52gTSV1I3GNEtdJ4nqRwZvVNecNoceVrXdjp6xaRjLudGAy_aFb29ZcBl9biUjW2DwEofCbVRHT-Cy3ipcZbHVdqtsRYqbX-pzBy9VptO0YsDHjMLnANkXi01dFkcHbThXWt_j_az-5-okv4Bbajv58MDp8Crd50kdGudqC3nx6EZ6hmzW3z1t9JvD9uk3oD9W1O2M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+traceability+analysis+system+for+model+evaluation+on+land+carbon+dynamics%3A+design+and+applications&rft.jtitle=Ecological+processes&rft.au=Zhou%2C+Jian&rft.au=Xia%2C+Jianyang&rft.au=Wei%2C+Ning&rft.au=Liu%2C+Yufu&rft.date=2021-01-29&rft.issn=2192-1709&rft.eissn=2192-1709&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-021-00281-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13717_021_00281_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon |