A traceability analysis system for model evaluation on land carbon dynamics: design and applications

Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycl...

Full description

Saved in:
Bibliographic Details
Published inEcological processes Vol. 10; no. 1; p. 12
Main Authors Zhou, Jian, Xia, Jianyang, Wei, Ning, Liu, Yufu, Bian, Chenyu, Bai, Yuqi, Luo, Yiqi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 29.01.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models. Methods A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6). Results The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells. Conclusion TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation.
AbstractList BACKGROUND: An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models. METHODS: A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6). RESULTS: The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells. CONCLUSION: TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation.
Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models. Methods A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6). Results The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells. Conclusion TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation.
BackgroundAn increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models.MethodsA new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6).ResultsThe TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells.ConclusionTraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation.
Abstract Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast development of models, leading to a pervasive simulation uncertainty in key ecological processes, especially the terrestrial carbon (C) cycle. Traceability analysis provides a theoretical basis for tracking and quantifying the structural uncertainty of simulated C storage in models. Thus, a new tool of model evaluation based on the traceability analysis is urgently needed to efficiently diagnose the sources of inter-model variations on the terrestrial C cycle in Earth system models. Methods A new cloud-based model evaluation platform, i.e., the online traceability analysis system for model evaluation (TraceME v1.0), was established. The TraceME was applied to analyze the uncertainties of seven models from the Coupled Model Intercomparison Project (CMIP6). Results The TraceME can effectively diagnose the key sources of different land C dynamics among CMIIP6 models. For example, the analyses based on TraceME showed that the estimation of global land C storage varied about 2.4 folds across the seven CMIP6 models. Among all models, IPSL-CM6A-LR simulated the lowest land C storage, which mainly resulted from its shortest baseline C residence time. Over the historical period of 1850–2014, gross primary productivity and baseline C residence time were the major uncertainty contributors to the inter-model variation in ecosystem C storage in most land grid cells. Conclusion TraceME can facilitate model evaluation by identifying sources of model uncertainty and provides a new tool for the next generation of model evaluation.
ArticleNumber 12
Author Wei, Ning
Liu, Yufu
Zhou, Jian
Luo, Yiqi
Bai, Yuqi
Bian, Chenyu
Xia, Jianyang
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University
– sequence: 2
  givenname: Jianyang
  orcidid: 0000-0001-9276-6086
  surname: Xia
  fullname: Xia, Jianyang
  email: jyxia@des.ecnu.edu.cn
  organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University
– sequence: 3
  givenname: Ning
  surname: Wei
  fullname: Wei, Ning
  organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University
– sequence: 4
  givenname: Yufu
  surname: Liu
  fullname: Liu, Yufu
  organization: Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Joint Center for Global Change Studies (JCGCS)
– sequence: 5
  givenname: Chenyu
  surname: Bian
  fullname: Bian, Chenyu
  organization: Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Research Center for Global Change and Ecological Forecasting, East China Normal University
– sequence: 6
  givenname: Yuqi
  surname: Bai
  fullname: Bai, Yuqi
  organization: Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Joint Center for Global Change Studies (JCGCS)
– sequence: 7
  givenname: Yiqi
  surname: Luo
  fullname: Luo, Yiqi
  organization: Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University
BookMark eNp9kU1v1DAQhiNUJErpH-BkiQuXUH8lsblVFYVKlbjA2Rrbk5VXTrzYWar8e9wNiKqHWpY8sp93xjPv2-ZsTjM2zXtGPzGm-qvCxMCGlnLWUsoVax9eNeecad6ygeqzJ_Gb5rKUPa1LSyb1cN74a7JkcAg2xLCsBGaIawmFlLUsOJExZTIlj5Hgb4hHWEKaSd0RZk8cZFtjv84wBVc-E48l7Gby-AaHQwzuxJd3zesRYsHLv-dF8_P2y4-bb-399693N9f3retEt7Ra2FFaaUcPblQDVdb34PTYccZADgqE0sJ7Lqji1oKwdMCeO-SM9hYFExfN3ZbXJ9ibQw4T5NUkCOZ0kfLOQF6Ci2h4j360veYSrEQUulbTnetGtNxqPtRcH7dch5x-HbEsZgrFYayNYzoWwzsueS9011X0wzN0n465DrJSUgnJRM9UpdRGuZxKyTgaF5bTfKoBIRpGzaObZnPTVDfNyU3zUKX8mfRfby-KxCYqFZ53mP__6gXVHxYntWo
CitedBy_id crossref_primary_10_1029_2020JG006120
crossref_primary_10_5194_gmd_15_8153_2022
crossref_primary_10_3389_fevo_2023_1105832
crossref_primary_10_1111_gcb_16643
crossref_primary_10_1186_s13717_021_00328_y
crossref_primary_10_1016_j_fecs_2022_100011
crossref_primary_10_1029_2022MS003397
crossref_primary_10_1038_s41467_024_47872_7
crossref_primary_10_31497_zrzyxb_20241012
Cites_doi 10.1175/JCLI-D-20-0078.1
10.1073/pnas.1413090112
10.1186/s13717-018-0130-z
10.3402/tellusb.v51i2.16318
10.5194/gmd-13-3383-2020
10.1175/JCLI3800.1
10.1175/JCLI-D-17-0357.1
10.5194/gmd-5-1259-2012
10.1126/science.1197869
10.1016/j.tree.2010.11.003
10.1029/2018MS001354
10.1029/2018GB005909
10.1046/j.1365-2486.2003.00590.x
10.5194/essd-12-2725-2020
10.5194/gmd-11-4399-2018
10.5194/bg-17-4173-2020
10.1073/pnas.1018189108
10.1111/gcb.12172
10.1029/2019GB006175
10.1002/2016JG003384
10.5334/dsj-2017-030
10.1126/science.1249534
10.5194/esd-7-813-2016
10.1038/ngeo2413
10.1002/2013JG002381
10.1186/s13717-020-00255-4
10.1088/1748-9326/ab2ee4
10.5194/esd-11-1233-2020
10.1002/ldr.2506
10.1029/2019MS001633
10.5194/gmd-5-819-2012
10.1111/gcb.12870
10.5194/gmd-5-869-2012
10.5194/gmd-12-1119-2019
10.1088/1748-9326/7/4/044008
10.5194/bg-14-145-2017
10.1038/nature02403
10.1890/07-1929.1
10.5194/bg-16-917-2019
10.1080/00031305.1991.10475776
10.1111/j.1365-2486.2007.01365.x
10.1016/j.envsoft.2018.09.007
10.1111/gcb.15317
10.1038/s41558-018-0355-y
10.1038/s41559-018-0714-0
10.1111/gcb.14619
10.1038/s41561-020-0596-z
10.5194/gmd-9-1747-2016
10.1002/2017MS001004
10.1038/s41559-019-0958-3
10.1073/pnas.1509991112
10.1038/s41467-020-16839-9
10.1111/gcb.14939
10.1029/2020MS002304
10.5194/gmd-7-1251-2014
10.1111/gcb.12766
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FH
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M7P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7S9
L.6
DOA
DOI 10.1186/s13717-021-00281-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2192-1709
EndPage 12
ExternalDocumentID oai_doaj_org_article_26edfb6924ab4ee3908b95c5feb2b927
10_1186_s13717_021_00281_w
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31722009
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2017YFA0604600
GroupedDBID -A0
0R~
4.4
40G
5VS
7XC
8FE
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFO
ACGFS
ACPRK
ACULB
ADBBV
ADINQ
AEGXH
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ATCPS
BAPOH
BBNVY
BCNDV
BENPR
BHPHI
C24
C6C
CCPQU
EBLON
EBS
EDH
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEP
ISR
ITC
KQ8
LK8
M7P
M~E
OK1
PATMY
PIMPY
PROAC
PYCSY
RNS
RSV
SEV
SOJ
AASML
AAXDM
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c535t-93bf4b4bfdacf8708bd6ac9f5211a478a3893dd23082bba3b07e62ce2106be313
IEDL.DBID BENPR
ISSN 2192-1709
IngestDate Wed Aug 27 01:31:17 EDT 2025
Fri Jul 11 08:03:55 EDT 2025
Fri Jul 25 22:52:32 EDT 2025
Tue Jul 01 04:32:00 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Fri Feb 21 02:48:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CMIP6
land carbon cycle
model evaluation
traceability analysis
uncertainty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-93bf4b4bfdacf8708bd6ac9f5211a478a3893dd23082bba3b07e62ce2106be313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9276-6086
OpenAccessLink https://www.proquest.com/docview/2483413618?pq-origsite=%requestingapplication%
PQID 2483413618
PQPubID 2034775
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_26edfb6924ab4ee3908b95c5feb2b927
proquest_miscellaneous_2524263955
proquest_journals_2483413618
crossref_citationtrail_10_1186_s13717_021_00281_w
crossref_primary_10_1186_s13717_021_00281_w
springer_journals_10_1186_s13717_021_00281_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-29
PublicationDateYYYYMMDD 2021-01-29
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-29
  day: 29
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Ecological processes
PublicationTitleAbbrev Ecol Process
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Xia JY, Luo YQ, Wang YP, Weng ES, Hararuk O (2012) A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state. Geosci Model Dev 5:1259–1271
Wei N, Cui E, Huang K, Du Z, Xu X, Wang J, Yan L, Xia J (2019) Decadal stabilization of soil inorganic nitrogen as a benchmark for global land models. J Adv Model Earth Syst 11:1088–1099
Abramowitz G (2012) Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci Model Dev 5:819–827
Lovenduski NS, Bonan GB (2017) Reducing uncertainty in projections of terrestrial carbon uptake. Environ Res Lett 12(4):044020
Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359(6375):eaam8328
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L (2011) Soil warming, carbon–nitrogen interactions, and forest carbon budgets. P Natl Acad Sci USA 108:9508–9512
Xia J, Niu S, Ciais P, Janssens IA, Chen J, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen S, Dong J, Flanagan LB, Frankenberg C, Georgiadis T, Gough CM, Hui D, Kiely G, Li J, Lund M, Magliulo V, Marcolla B, Merbold L, Montagnani L, Moors EJ, Olesen JE, Piao S, Raschi A, Roupsard O, Suyker AE, Urbaniak M, Vaccari FP, Varlagin A, Vesala T, Wilkinson M, Weng E, Wohlfahrt G, Yan L, Luo Y (2015) Joint control of terrestrial gross primary productivity by plant phenology and physiology. P Natl Acad Sci USA 112:2788–2793
Salunkhe O, Khare PK, Kumari R, Khan ML (2018) A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecol Process 7:17
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Adam Langley J, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3:1309–1320
HoffmanFMKovenCDKeppel-AleksGLawrenceDMRileyWJRandersonJTAhlstromAAbramowitzGBaldocchiDDBestMJ2016 International Land Model Benchmarking (ILAMB) Workshop Report2016
Xu H, Li S, Bai Y, Dong W, Huang W, Xu S, Lin Y, Wang B, Wu F, Xin X (2019) A collaborative analysis framework for distributed gridded environmental data. Environ Model Softw 111:324–339
Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol 25:1922–1940
Cui E, Huang K, Arain MA, Fisher JB, Huntzinger DN, Ito A, Luo Y, Jain AK, Mao J, Michalak AM, Niu S, Parazoo NC, Peng C, Peng S, Poulter B, Ricciuto DM, Schaefer KM, Schwalm CR, Shi X, Tian H, Wang W, Wang J, Wei Y, Yan E, Yan L, Zeng N, Zhu Q, Xia J (2019) Vegetation functional properties determine uncertainty of simulated ecosystem productivity: a traceability analysis in the East Asian Monsoon Region. Global Biogeochem Cy 33:668–689
Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353
Huang K, Xia J, Wang Y, Ahlstrom A, Chen J, Cook RB, Cui E, Fang Y, Fisher JB, Huntzinger DN, Li Z, Michalak AM, Qiao Y, Schaefer K, Schwalm C, Wang J, Wei Y, Xu X, Yan L, Bian C, Luo Y (2018) Enhanced peak growth of global vegetation and its key mechanisms. Nat Ecol Evol 2:1897–1905
Luo Y, Keenan TF, Smith M (2015) Predictability of the terrestrial carbon cycle. Glob Change Biol 21(5):1737–1751
Schlund M, Lauer A, Gentine P, Sherwood SC, Eyring V (2020) Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst Dyn 11(4):1233–1258
Rafique R, Xia J, Hararuk O, Leng G, Asrar G, Luo Y (2017) Comparing the performance of three land models in global C cycle simulations: a detailed structural analysis. Land Degrad Dev 28:524–533
Zhu C, Xia J (2020) Nonlinear increase of vegetation carbon storage in aging forests and its implications for Earth system models. J Adv Model Earth Syst 12:e2020MS002304
TianHMelilloJKicklighterDMcGuireAHelfrichJThe sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United StatesTellus B19995141445210.3402/tellusb.v51i2.16318
Zheng Y, Shen R, Wang Y, Li X, Liu S, Liang S, Chen JM, Ju W, Zhang L, Yuan W (2020) Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst Sci Data 12:2725–2746
MurrayKConnerMMMethods to quantify variable importance: implications for the analysis of noisy ecological dataEcology20099034835510.1890/07-1929.1
Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K (2015) Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol 21:2711–2725
Bonan GB, Lombardozzi DL, Wieder WR, Oleson KW, Lawrence DM, Hoffman FM, Collier NJGBC (2019) Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Global Biogeochem Cy 33(10):1310–1326
Xia J, Luo Y, Wang YP, Hararuk O (2013) Traceable components of terrestrial carbon storage capacity in biogeochemical models, Glob Change Biol 19:2104–2116
OverpeckJTMeehlGABonySEasterlingDRClimate data challenges in the 21st centuryScience20113317007021:CAS:528:DC%2BC3MXhs1yku7w%3D10.1126/science.1197869
Wu H, Guo Z, Peng C (2003) Land use induced changes of organic carbon storage in soils of China. Glob Change Biol 9:305–315
Collier N, Hoffman FM, Lawrence DM, Keppel-Aleks G, Koven CD, Riley WJ, Mu M, Randerson JT (2018) The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J Adv Model Earth Sy 10:2731–2754
Zarakas CM, Swann AL, Laguë MM, Armour KC, Randerson JT (2020) Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth System models. J Clim 33(19):8561–8578
Fisher RA, Koven CD (2020) Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J Adv Model Earth Sy 12(4):e2018MS001453
Hoffman FM, Randerson JT, Arora VK, Bao Q, Cadule P, Ji D, Jones CD, Kawamiya M, Samar K, Lindsay K, Obata A, Shevliakova E, Six KD, Tjiputra JF, Volodin EM, Wu T (2014) Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J Geophys Res-Biogeo 119:141–162
Van GroenigenKJQiXOsenbergCWLuoYHungateBAFaster decomposition under increased atmospheric CO2 limits soil carbon storageScience201434450850910.1126/science.1249534
Jiang L, Shi Z, Xia J, Liang J, Lu X, Wang Y, Luo Y (2017) Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems. J Adv Model Earth Sy 9:2822–2835
Eyring V, Bock L, Lauer A, Righi M, Schlund M, Andela B, Arnone E, Bellprat O, Brötz B, Caron L-P, Carvalhais N, Cionni I, Cortesi N, Crezee B, Davin EL, Davini P, Debeire K, de Mora L, Deser C, Docquier D, Earnshaw P, Ehbrecht C, Gier BK, Gonzalez-Reviriego N, Goodman P, Hagemann S, Hardiman S, Hassler B, Hunter A, Kadow C, Kindermann S, Koirala S, Koldunov N, Lejeune Q, Lembo V, Lovato T, Lucarini V, Massonnet F, Müller B, Pandde A, Pérez-Zanón N, Phillips A, Predoi V, Russell J, Sellar A, Serva F, Stacke T, Swaminathan R, Torralba V, Vegas-Regidor J, von Hardenberg J, Weigel K, Zimmermann K (2020) Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci Model Dev 13:3383–3438
DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Change Biol 13:1157–1167
Eyring V, Righi M, Lauer A, Evaldsson M, Wenzel S, Jones C, Anav A, Andrews O, Cionni I, Davin EL, Deser C, Ehbrecht C, Friedlingstein P, Gleckler P, Gottschaldt K-D, Hagemann S, Juckes M, Kindermann S, Krasting J, Kunert D, Levine R, Loew A, Mäkelä J, Martin G, Mason E, Phillips AS, Read S, Rio C, Roehrig R, Senftleben D, Sterl A, van Ulft LH, Walton J, Wang S, Williams KD (2016b) ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci Model Dev 9:1747–1802
Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Hayes DJ, Huang K, Ji D, Krinner G, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T, Shi Z, Yan L, Liang J, Jiang L, Zhang Q, Luo Y (2017) Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J Geophys Res-Biogeo 122:430–446
Cui E, Weng E, Yan E, Xia J (2020) Robust leaf trait relationships across species under global environmental changes. Nat Commun 11:2999
Eyring V, Gleckler PJ, Heinze C, Stouffer RJ, Taylor KE, Balaji V, Guilyardi E, Joussaume S, Kindermann S, Lawrence BN, Meehl GA, Righi M, Williams DN (2016a) Towards improved and more routine Earth system model evaluation in CMIP. Earth Syst Dynam 7:813–830
Fyllas NM, Gloor E, Mercado L, Sitch S, Quesada CA, Domingues T, Galbraith D, Torre-Lezama A, Vilanova E, Ramírez-Angulo H (2014) Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v. 1). Geosci Model Dev 7:1251–1269
Shi Z, Allison SD, He Y,
IJ Wright (281_CR50) 2004; 428
281_CR49
281_CR48
281_CR43
281_CR42
281_CR41
281_CR51
KJ Van Groenigen (281_CR46) 2014; 344
H Tian (281_CR44) 1999; 51
281_CR19
281_CR18
281_CR17
281_CR16
281_CR15
281_CR59
281_CR14
281_CR58
281_CR13
281_CR57
281_CR12
281_CR56
281_CR11
281_CR55
281_CR10
281_CR54
281_CR53
281_CR52
281_CR62
281_CR61
281_CR60
SL Ustin (281_CR45) 2021; 10
J Wang (281_CR47) 2019; 16
K Murray (281_CR34) 2009; 90
281_CR29
281_CR28
281_CR27
281_CR26
281_CR25
281_CR24
281_CR23
281_CR22
281_CR21
Y Luo (281_CR31) 2017; 14
VK Arora (281_CR3) 2020; 17
281_CR39
281_CR38
281_CR37
281_CR36
281_CR2
281_CR1
281_CR33
281_CR30
281_CR8
281_CR40
281_CR7
281_CR9
Y Luo (281_CR32) 2011; 26
281_CR4
281_CR6
281_CR5
FM Hoffman (281_CR20) 2016
JT Overpeck (281_CR35) 2011; 331
References_xml – reference: OverpeckJTMeehlGABonySEasterlingDRClimate data challenges in the 21st centuryScience20113317007021:CAS:528:DC%2BC3MXhs1yku7w%3D10.1126/science.1197869
– reference: Jaworski T, Hilszczański J (2013) The effect of temperature and humidity changes on insects development and their impact on forest ecosystems in the context of expected climate change. For Res Pap 74:345–355
– reference: Zheng Y, Shen R, Wang Y, Li X, Liu S, Liang S, Chen JM, Ju W, Zhang L, Yuan W (2020) Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst Sci Data 12:2725–2746
– reference: Zhou S, Liang J, Lu X, Li Q, Jiang L, Zhang Y, Schwalm CR, Fisher JB, Tjiputra J, Sitch S, Ahlström A, Huntzinger DN, Huang Y, Wang G, Luo Y (2018) Sources of uncertainty in modeled land carbon storage within and across three mips: diagnosis with three new techniques. J Clim 31:2833–2851
– reference: Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359(6375):eaam8328
– reference: Eyring V, Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P, Collins WD, Gier BK, Hall AD, Hoffman FM, Hurtt GC, Jahn A, Jones CD, Klein SA, Krasting JP, Kwiatkowski L, Lorenz R, Maloney E, Meehl GA, Pendergrass AG, Pincus R, Ruane AC, Russell JL, Sanderson BM, Santer BD, Sherwood SC, Simpson IR, Stouffer RJ, Williamson MS (2019) Taking climate model evaluation to the next level. Nat Clim Change 9:102–110
– reference: AroraVKKatavoutaAWilliamsRGJonesCDBrovkinVFriedlingsteinPSchwingerJBoppLBoucherOCadulePCarbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 modelsBiogeosciences20201716417342221:CAS:528:DC%2BB3MXhsFSjtr8%3D10.5194/bg-17-4173-2020
– reference: Wu H, Guo Z, Peng C (2003) Land use induced changes of organic carbon storage in soils of China. Glob Change Biol 9:305–315
– reference: Xia J, Niu S, Ciais P, Janssens IA, Chen J, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen S, Dong J, Flanagan LB, Frankenberg C, Georgiadis T, Gough CM, Hui D, Kiely G, Li J, Lund M, Magliulo V, Marcolla B, Merbold L, Montagnani L, Moors EJ, Olesen JE, Piao S, Raschi A, Roupsard O, Suyker AE, Urbaniak M, Vaccari FP, Varlagin A, Vesala T, Wilkinson M, Weng E, Wohlfahrt G, Yan L, Luo Y (2015) Joint control of terrestrial gross primary productivity by plant phenology and physiology. P Natl Acad Sci USA 112:2788–2793
– reference: Eyring V, Gleckler PJ, Heinze C, Stouffer RJ, Taylor KE, Balaji V, Guilyardi E, Joussaume S, Kindermann S, Lawrence BN, Meehl GA, Righi M, Williams DN (2016a) Towards improved and more routine Earth system model evaluation in CMIP. Earth Syst Dynam 7:813–830
– reference: Lovenduski NS, Bonan GB (2017) Reducing uncertainty in projections of terrestrial carbon uptake. Environ Res Lett 12(4):044020
– reference: MurrayKConnerMMMethods to quantify variable importance: implications for the analysis of noisy ecological dataEcology20099034835510.1890/07-1929.1
– reference: Shi Z, Allison SD, He Y, Levine PA, Hoyt AM, Beem-Miller J, Zhu Q, Wieder WR, Trumbore S, Randerson JT (2020) The age distribution of global soil carbon inferred from radiocarbon measurements. Nat Geosci 13(8):555–559
– reference: Xia J, Luo Y, Wang YP, Hararuk O (2013) Traceable components of terrestrial carbon storage capacity in biogeochemical models, Glob Change Biol 19:2104–2116
– reference: DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Change Biol 13:1157–1167
– reference: Schlund M, Lauer A, Gentine P, Sherwood SC, Eyring V (2020) Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst Dyn 11(4):1233–1258
– reference: Huang K, Xia J, Wang Y, Ahlstrom A, Chen J, Cook RB, Cui E, Fang Y, Fisher JB, Huntzinger DN, Li Z, Michalak AM, Qiao Y, Schaefer K, Schwalm C, Wang J, Wei Y, Xu X, Yan L, Bian C, Luo Y (2018) Enhanced peak growth of global vegetation and its key mechanisms. Nat Ecol Evol 2:1897–1905
– reference: Zarakas CM, Swann AL, Laguë MM, Armour KC, Randerson JT (2020) Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth System models. J Clim 33(19):8561–8578
– reference: Fisher RA, Koven CD (2020) Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J Adv Model Earth Sy 12(4):e2018MS001453
– reference: Ahlström A, Schurgers G, Arneth A, Smith B (2012) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ Res Lett 7:044008
– reference: Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L (2011) Soil warming, carbon–nitrogen interactions, and forest carbon budgets. P Natl Acad Sci USA 108:9508–9512
– reference: Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K (2015) Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol 21:2711–2725
– reference: Bonan GB, Lombardozzi DL, Wieder WR, Oleson KW, Lawrence DM, Hoffman FM, Collier NJGBC (2019) Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Global Biogeochem Cy 33(10):1310–1326
– reference: Hoffman FM, Randerson JT, Arora VK, Bao Q, Cadule P, Ji D, Jones CD, Kawamiya M, Samar K, Lindsay K, Obata A, Shevliakova E, Six KD, Tjiputra JF, Volodin EM, Wu T (2014) Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J Geophys Res-Biogeo 119:141–162
– reference: LuoYShiZLuXXiaJLiangJJiangJWangYSmithMJJiangLAhlströmAChenBHararukOHastingsAHoffmanFMedlynBNiuSRasmussenMTodd-BrownKWangY-PTransient dynamics of terrestrial carbon storage: mathematical foundation and its applicationsBiogeosciences2017141451611:CAS:528:DC%2BC1cXhtlWisL%2FN10.5194/bg-14-145-2017
– reference: Xia J, Wang J, Niu S (2020) Research challenges and opportunities for using big data in global change biology. Glob Change Biol 26:6040–6061
– reference: Li S, Yuan W, Ciais P, Viovy N, Ito A, Jia B, Zhu D (2019) Benchmark estimates for aboveground litterfall data derived from ecosystem models. Environ Res Lett 14:084020
– reference: Xu H, Li S, Bai Y, Dong W, Huang W, Xu S, Lin Y, Wang B, Wu F, Xin X (2019) A collaborative analysis framework for distributed gridded environmental data. Environ Model Softw 111:324–339
– reference: Zhu C, Xia J (2020) Nonlinear increase of vegetation carbon storage in aging forests and its implications for Earth system models. J Adv Model Earth Syst 12:e2020MS002304
– reference: UstinSLMiddletonEMCurrent and near-term advances in Earth observation for ecological applicationsEcol Process202110110.1186/s13717-020-00255-4
– reference: Salunkhe O, Khare PK, Kumari R, Khan ML (2018) A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecol Process 7:17
– reference: WangJXiaJZhouXHuangKZhouJHuangYJiangLXuXLiangJWangY-PChengXLuoYEvaluating the simulated mean soil carbon transit times by Earth system models using observationsBiogeosciences2019169179261:CAS:528:DC%2BB3cXitF2nsbk%3D10.5194/bg-16-917-2019
– reference: Huang Y, Stacy M, Jiang J, Sundi N, Ma S, Saruta V, Jung CG, Shi Z, Xia J, Hanson PJ, Ricciuto D, Luo Y (2019) Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geosci Model Dev 12:1119–1137
– reference: WrightIJReichPBWestobyMAckerlyDDBaruchZBongersFCavender-BaresJChapinTCornelissenJHDiemerMThe worldwide leaf economics spectrumNature20044288218271:CAS:528:DC%2BD2cXjt1Crt74%3D10.1038/nature02403
– reference: Xia JY, Luo YQ, Wang YP, Weng ES, Hararuk O (2012) A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state. Geosci Model Dev 5:1259–1271
– reference: HoffmanFMKovenCDKeppel-AleksGLawrenceDMRileyWJRandersonJTAhlstromAAbramowitzGBaldocchiDDBestMJ2016 International Land Model Benchmarking (ILAMB) Workshop Report2016
– reference: Bai Y, Di L (2012) Review of geospatial data systems’ support of global change studies. Br J Environ Clim Change 2(4):421–436
– reference: Abramowitz G (2012) Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci Model Dev 5:819–827
– reference: Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Adam Langley J, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3:1309–1320
– reference: Jiang L, Shi Z, Xia J, Liang J, Lu X, Wang Y, Luo Y (2017) Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems. J Adv Model Earth Sy 9:2822–2835
– reference: TianHMelilloJKicklighterDMcGuireAHelfrichJThe sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United StatesTellus B19995141445210.3402/tellusb.v51i2.16318
– reference: Wieder WR, Cleveland CC, Smith WK, Todd-Brown KJNG (2015) Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci 8:441–444
– reference: Kumar SV, Peters-Lidard CD, Santanello J, Harrison K, Liu Y, Shaw M (2012) Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation. Geosci Model Dev 5:869–886
– reference: Rafique R, Xia J, Hararuk O, Leng G, Asrar G, Luo Y (2017) Comparing the performance of three land models in global C cycle simulations: a detailed structural analysis. Land Degrad Dev 28:524–533
– reference: Luo Y, Keenan TF, Smith M (2015) Predictability of the terrestrial carbon cycle. Glob Change Biol 21(5):1737–1751
– reference: Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96
– reference: Luo Y, Schuur EA (2020) Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Glob Change Biol 26:1109–1117
– reference: Xie Y, Wang X, Silander JA Jr (2015) Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. P Natl Acad Sci USA 112:13585–13590
– reference: Cui E, Huang K, Arain MA, Fisher JB, Huntzinger DN, Ito A, Luo Y, Jain AK, Mao J, Michalak AM, Niu S, Parazoo NC, Peng C, Peng S, Poulter B, Ricciuto DM, Schaefer KM, Schwalm CR, Shi X, Tian H, Wang W, Wang J, Wei Y, Yan E, Yan L, Zeng N, Zhu Q, Xia J (2019) Vegetation functional properties determine uncertainty of simulated ecosystem productivity: a traceability analysis in the East Asian Monsoon Region. Global Biogeochem Cy 33:668–689
– reference: Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353
– reference: Cui E, Weng E, Yan E, Xia J (2020) Robust leaf trait relationships across species under global environmental changes. Nat Commun 11:2999
– reference: LuoYWengEDynamic disequilibrium of the terrestrial carbon cycle under global changeTrends Ecol Evol2011269610410.1016/j.tree.2010.11.003
– reference: Eyring V, Righi M, Lauer A, Evaldsson M, Wenzel S, Jones C, Anav A, Andrews O, Cionni I, Davin EL, Deser C, Ehbrecht C, Friedlingstein P, Gleckler P, Gottschaldt K-D, Hagemann S, Juckes M, Kindermann S, Krasting J, Kunert D, Levine R, Loew A, Mäkelä J, Martin G, Mason E, Phillips AS, Read S, Rio C, Roehrig R, Senftleben D, Sterl A, van Ulft LH, Walton J, Wang S, Williams KD (2016b) ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci Model Dev 9:1747–1802
– reference: Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Hayes DJ, Huang K, Ji D, Krinner G, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T, Shi Z, Yan L, Liang J, Jiang L, Zhang Q, Luo Y (2017) Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J Geophys Res-Biogeo 122:430–446
– reference: Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol 25:1922–1940
– reference: Fyllas NM, Gloor E, Mercado L, Sitch S, Quesada CA, Domingues T, Galbraith D, Torre-Lezama A, Vilanova E, Ramírez-Angulo H (2014) Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v. 1). Geosci Model Dev 7:1251–1269
– reference: Van GroenigenKJQiXOsenbergCWLuoYHungateBAFaster decomposition under increased atmospheric CO2 limits soil carbon storageScience201434450850910.1126/science.1249534
– reference: Wei N, Cui E, Huang K, Du Z, Xu X, Wang J, Yan L, Xia J (2019) Decadal stabilization of soil inorganic nitrogen as a benchmark for global land models. J Adv Model Earth Syst 11:1088–1099
– reference: Collier N, Hoffman FM, Lawrence DM, Keppel-Aleks G, Koven CD, Riley WJ, Mu M, Randerson JT (2018) The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J Adv Model Earth Sy 10:2731–2754
– reference: Stockhause M, Lautenschlager M (2017) CMIP6 data citation of evolving data. Data Sci J 16:30
– reference: Du Z, Weng E, Jiang L, Luo Y, Xia J, Zhou X (2018) Carbon–nitrogen coupling under three schemes of model representation: a traceability analysis. Geosci Model Dev 11:4399–4416
– reference: Eyring V, Bock L, Lauer A, Righi M, Schlund M, Andela B, Arnone E, Bellprat O, Brötz B, Caron L-P, Carvalhais N, Cionni I, Cortesi N, Crezee B, Davin EL, Davini P, Debeire K, de Mora L, Deser C, Docquier D, Earnshaw P, Ehbrecht C, Gier BK, Gonzalez-Reviriego N, Goodman P, Hagemann S, Hardiman S, Hassler B, Hunter A, Kadow C, Kindermann S, Koirala S, Koldunov N, Lejeune Q, Lembo V, Lovato T, Lucarini V, Massonnet F, Müller B, Pandde A, Pérez-Zanón N, Phillips A, Predoi V, Russell J, Sellar A, Serva F, Stacke T, Swaminathan R, Torralba V, Vegas-Regidor J, von Hardenberg J, Weigel K, Zimmermann K (2020) Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci Model Dev 13:3383–3438
– ident: 281_CR59
  doi: 10.1175/JCLI-D-20-0078.1
– ident: 281_CR54
  doi: 10.1073/pnas.1413090112
– ident: 281_CR39
  doi: 10.1186/s13717-018-0130-z
– volume: 51
  start-page: 414
  year: 1999
  ident: 281_CR44
  publication-title: Tellus B
  doi: 10.3402/tellusb.v51i2.16318
– ident: 281_CR17
– ident: 281_CR13
  doi: 10.5194/gmd-13-3383-2020
– ident: 281_CR18
  doi: 10.1175/JCLI3800.1
– ident: 281_CR61
  doi: 10.1175/JCLI-D-17-0357.1
– ident: 281_CR56
  doi: 10.5194/gmd-5-1259-2012
– ident: 281_CR5
– volume: 331
  start-page: 700
  year: 2011
  ident: 281_CR35
  publication-title: Science
  doi: 10.1126/science.1197869
– volume: 26
  start-page: 96
  year: 2011
  ident: 281_CR32
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2010.11.003
– ident: 281_CR8
  doi: 10.1029/2018MS001354
– ident: 281_CR9
  doi: 10.1029/2018GB005909
– ident: 281_CR51
  doi: 10.1046/j.1365-2486.2003.00590.x
– ident: 281_CR60
  doi: 10.5194/essd-12-2725-2020
– ident: 281_CR12
  doi: 10.5194/gmd-11-4399-2018
– volume: 17
  start-page: 4173
  issue: 16
  year: 2020
  ident: 281_CR3
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-4173-2020
– ident: 281_CR33
  doi: 10.1073/pnas.1018189108
– ident: 281_CR52
  doi: 10.1111/gcb.12172
– ident: 281_CR6
  doi: 10.1029/2019GB006175
– ident: 281_CR53
  doi: 10.1002/2016JG003384
– ident: 281_CR43
  doi: 10.5334/dsj-2017-030
– volume: 344
  start-page: 508
  year: 2014
  ident: 281_CR46
  publication-title: Science
  doi: 10.1126/science.1249534
– ident: 281_CR15
  doi: 10.5194/esd-7-813-2016
– ident: 281_CR49
  doi: 10.1038/ngeo2413
– ident: 281_CR21
  doi: 10.1002/2013JG002381
– volume: 10
  start-page: 1
  year: 2021
  ident: 281_CR45
  publication-title: Ecol Process
  doi: 10.1186/s13717-020-00255-4
– ident: 281_CR28
– volume-title: 2016 International Land Model Benchmarking (ILAMB) Workshop Report
  year: 2016
  ident: 281_CR20
– ident: 281_CR27
  doi: 10.1088/1748-9326/ab2ee4
– ident: 281_CR24
– ident: 281_CR40
  doi: 10.5194/esd-11-1233-2020
– ident: 281_CR37
  doi: 10.1002/ldr.2506
– ident: 281_CR48
  doi: 10.1029/2019MS001633
– ident: 281_CR1
  doi: 10.5194/gmd-5-819-2012
– ident: 281_CR38
  doi: 10.1111/gcb.12870
– ident: 281_CR26
  doi: 10.5194/gmd-5-869-2012
– ident: 281_CR23
  doi: 10.5194/gmd-12-1119-2019
– ident: 281_CR2
  doi: 10.1088/1748-9326/7/4/044008
– volume: 14
  start-page: 145
  year: 2017
  ident: 281_CR31
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-145-2017
– volume: 428
  start-page: 821
  year: 2004
  ident: 281_CR50
  publication-title: Nature
  doi: 10.1038/nature02403
– volume: 90
  start-page: 348
  year: 2009
  ident: 281_CR34
  publication-title: Ecology
  doi: 10.1890/07-1929.1
– volume: 16
  start-page: 917
  year: 2019
  ident: 281_CR47
  publication-title: Biogeosciences
  doi: 10.5194/bg-16-917-2019
– ident: 281_CR7
  doi: 10.1080/00031305.1991.10475776
– ident: 281_CR11
  doi: 10.1111/j.1365-2486.2007.01365.x
– ident: 281_CR58
  doi: 10.1016/j.envsoft.2018.09.007
– ident: 281_CR55
  doi: 10.1111/gcb.15317
– ident: 281_CR4
– ident: 281_CR14
  doi: 10.1038/s41558-018-0355-y
– ident: 281_CR22
  doi: 10.1038/s41559-018-0714-0
– ident: 281_CR36
  doi: 10.1111/gcb.14619
– ident: 281_CR41
  doi: 10.1038/s41561-020-0596-z
– ident: 281_CR16
  doi: 10.5194/gmd-9-1747-2016
– ident: 281_CR25
  doi: 10.1002/2017MS001004
– ident: 281_CR42
  doi: 10.1038/s41559-019-0958-3
– ident: 281_CR57
  doi: 10.1073/pnas.1509991112
– ident: 281_CR10
  doi: 10.1038/s41467-020-16839-9
– ident: 281_CR30
  doi: 10.1111/gcb.14939
– ident: 281_CR62
  doi: 10.1029/2020MS002304
– ident: 281_CR19
  doi: 10.5194/gmd-7-1251-2014
– ident: 281_CR29
  doi: 10.1111/gcb.12766
SSID ssj0000941497
Score 2.4195423
Snippet Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast...
BackgroundAn increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the fast...
BACKGROUND: An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind the...
Abstract Background An increasing number of ecological processes have been incorporated into Earth system models. However, model evaluations usually lag behind...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Analysis
Carbon
Carbon cycle
carbon sequestration
Cloud computing
CMIP6
Dynamics
Earth and Environmental Science
ecosystems
Environment
Evaluation
gross primary productivity
Intercomparison
land carbon cycle
model evaluation
model uncertainty
model validation
Primary production
Residence time
Residence time distribution
Simulation
traceability
traceability analysis
Tracking
Uncertainty
Uncertainty analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FKPRStFVcv0ihNw2azSa78abFx6NQTwreQmaSPRR5yvtA_O-dJPueT6HtpbCHZZNdwmSG-c3O5DeMfVfY9h3qKCK2KJomngkfsRGtseBRYmcwZXR_XZvxbfPzTt-ttfpKNWGFHrgI7rQ2MfRgKEzw0MRIIXoHVqcaKajB1vkcOfm8tWDqd6mXI-jfLk_JdOZ0JhVFLiJVJKQ4Q4qnN54oE_a_QZnvEqPZ34w22ecBKPKLssAt9iFOvrCPV5lk-vkrCxd8PvUYC832M_cDuQgv1MycsCjPXW74K583pysVMnL0U6D7ULrRz855yHUcPI2tZ7S32e3o6ubHWAwdEwRqpefCKugbaKAPHnuyxA6C8Wh78tHSN23nEzwJoU4cNQBewVkbTY2R4j4DUUm1wzYmD5O4y3hQMniyII-EmJREC2TcOpheE4KTFisml9JzONCJp64W9y6HFZ1xReKOJO6yxN1TxY5X7zwWMo2_zr5Mm7KamYiw8wNSDzeoh_uXelTsYLmlbrDOmavTH1SpjOwq9m01THaVkiV-Eh8WNEdnLnurdcVOlqrw-ok_L3vvfyx7n32qs6pKUdsDtjGfLuIhoZ85HGVFfwFJhwGh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_8QPDl8E7lenpHDnzToGmatPHNO1zk4HxS8C0kk1SQY1d2V2T_eydpu37gHRz0oTST0k4yzW86k98AHEis2wZV5BFr5FUVT7iLWPFaG-9QYKMxRXR_X-qL6-rXjbrpN4XNhmz3ISSZv9TZrBt9PBOSXA-eUgqSoyD44yqsq-S7pxBtv8fhrsuVI9hfDztk3u36ahXKZP2vEOaboGhea0Zb8KEHieysG9WPsBLHn2DjPBNML7YhnLH51GHsKLYXzPXEIqyjZWaEQ1mucMOeubwZHSmJkaGbejoPXSX62SkLOYeDpbaX0ewduB6dX_284H21BI5Kqjk30reVr3wbHLZkhY0P2qFpaX0Wrqobl6BJCGXip_HeSX9SR11iJJ9P-yiF3IW18WQcPwMLUgRH1uOQ0JIUaDwZtgq6VYTehMECxKA9iz2VeKpo8cdml6LRttO4JY3brHH7WMDhss99R6TxT-kfaVCWkokEO1-YTG9tb1O21DG0XpMH6XwVozT0zkal9DlfelPWBewPQ2p7y5zZMv09FVKLpoDvy2ayqRQoceM4eSAZlXnsjVIFHA1T4fkWf3_sL_8nvgebZZ6UgpdmH9bm04f4lTDO3H_LU_oJSLj1VA
  priority: 102
  providerName: Springer Nature
Title A traceability analysis system for model evaluation on land carbon dynamics: design and applications
URI https://link.springer.com/article/10.1186/s13717-021-00281-w
https://www.proquest.com/docview/2483413618
https://www.proquest.com/docview/2524263955
https://doaj.org/article/26edfb6924ab4ee3908b95c5feb2b927
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZaxsxEB4am0JfSk-6bWpU6FsrYq2OXfWlOMZpMDSUtoG8CV2bl2KntkPIv-9IK9tNoYFlWbTaazQjzbXfALznvulaLyONvvFUiDimNnpBG6Wd9cy3yqeI7tczdXou5hfyojjc1iWtcjsn5ok6LH3ykR_VyevFuGLt56vfNFWNStHVUkLjAIY4BbftAIbHs7Nv33deFjRe0ARotn_LtOpozThaMDRlJiR7g9GbOytSBu6_o23-EyDN687JE3hcFEYy6Uf4KTyIi2fwcJbBpm-fQ5iQzcr62MNt3xJbQEZID9FMUCcludoN2eN6E9xSQiPxduXwOPRV6defSMj5HCSd-zuy_QLOT2Y_p6e0VE6gXnK5oZq7TjjhumB9hxLZuqCs1x2u1cyKprVJTQmhTlg1zlnuxk1UtY9o_ykXOeMvYbBYLuIrIIGzYFGSrEfNiTOvHQq5DKqTqMkx7StgW-oZX2DFU3WLXyabF60yPcUNUtxkipubCj7srrnqQTXu7X2cBmXXMwFi54bl6tIU-TK1iqFzCq1J60SMXOM3a5lS6VztdN1UcLgdUlOkdG32PFXBu91plK8UNLGLuLzGPjJj2mspK_i4ZYX9Lf7_2q_vf-IbeFRnJmS01ocw2Kyu41vUbzZuBAdi_GUEw8lk_mM-KiyNrdNapL2ajrLn4A8nvP54
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFdEX8RNXq0bQJw29JJvsriDS6pWrbQ-RFvqW5mtF0Lt6d-W4f8q_0Ul2984K9q2wD8sm-zWZycxkJr8BeCVcUZdOBhpc4Wiehz41weW0UJU1jrlSuRjRPRqp4Un--VSebsDvbi9MTKvs5sQ0UfuJi2vk2zyuejGhWPnh_BeNVaNidLUrodGwxUFYLtBlm73f_4Tj-5rzvcHxxyFtqwpQJ4Wc00rYOre5rb1xNXJrab0yrqpRjzGTF6WJKtx7HnFcrDXC9ouguAvoGykbBBP43BuwmQvV5z3Y3B2Mvnxdreqgs4QuR9HtzinV9owJ9JhozISI_g2ji0saMBUKuGTd_hOQTXpu7y7caQ1UstNw1D3YCOP7cHOQwK2XD8DvkPnUuNDAey-JaUFNSAMJTdAGJqm6DlnjiBM8YgIlcWZq8dwvx-bndzd7R3zKHyGx7e9I-kM4uRaaPoLeeDIOj4F4wbxByTUOLTXBXGVxUpFe1RItR1a5DFhHPe1aGPNYTeOHTu5MqXRDcY0U14niepHBm9U95w2Ix5W9d-OgrHpGAO50YTL9plt51lwFX1uF3quxeQiiwn-uZEzds9xWvMhgqxtS3c4KM73m4QxerppRnmOQxozD5AL7yIShX0mZwduOFdaP-P9nP7n6jS_g1vD46FAf7o8OnsJtnhiSUV5tQW8-vQjP0Laa2-ctQxM4u24Z-gNqMzcu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ8iMMBI8ARWZztxYiSENtZqY1BNiEl7M_4KmjTa0Xaq-q_x13F2kpYhsbdJeYgS5-t8Z9_Pd_kdwCvhyrpyRaDBlY7medimJricllJZ45irpIsR3S8juX-cfzopTjbgd_cvTEyr7MbENFD7iYtr5H0eV72YkKzq121axNHe8MP5LxorSMVIa1dOo1GRw7BcIHybvT_Yw75-zflw8O3jPm0rDFBXiGJOlbB1bnNbe-Nq1NzKemmcqnFOYyYvKxOnc-955HSx1gi7XQbJXUCcJG0QTOB9b8BmGVFRDzZ3B6Ojr6sVHgROCD_K7k-dSvZnTCB6ojErImIdRheXZsNUNOCSp_tPcDbNecO7cKd1VslOo133YCOM78PNQSK6Xj4Av0PmU-NCQ_W9JKYlOCENPTRBf5ikSjtkzSlOcIvJlMSZqcV9vxybn6du9o74lEtC4rm_o-oP4fhaZPoIeuPJODwG4gXzBq3YOPTaBHPK4gBTeFkX6EUy5TJgnfS0aynNY2WNM52gTSV1I3GNEtdJ4nqRwZvVNecNoceVrXdjp6xaRjLudGAy_aFb29ZcBl9biUjW2DwEofCbVRHT-Cy3ipcZbHVdqtsRYqbX-pzBy9VptO0YsDHjMLnANkXi01dFkcHbThXWt_j_az-5-okv4Bbajv58MDp8Crd50kdGudqC3nx6EZ6hmzW3z1t9JvD9uk3oD9W1O2M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+traceability+analysis+system+for+model+evaluation+on+land+carbon+dynamics%3A+design+and+applications&rft.jtitle=Ecological+processes&rft.au=Zhou%2C+Jian&rft.au=Xia%2C+Jianyang&rft.au=Wei%2C+Ning&rft.au=Liu%2C+Yufu&rft.date=2021-01-29&rft.issn=2192-1709&rft.eissn=2192-1709&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-021-00281-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13717_021_00281_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon