Integrative analysis with microbial modelling and machine learning uncovers potential alleviators for ulcerative colitis
Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine lea...
Saved in:
Published in | Gut microbes Vol. 16; no. 1; p. 2336877 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
31.12.2024
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions. |
---|---|
AbstractList | Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions.Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions. ABSTRACTUlcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions. Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions. Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions. Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions. |
Author | Lu, Wenwei Chen, Wei Yin, Jialin Wang, Hongchao Zhang, Hao Hu, Mingyi Zhu, Jinlin Chen, Jing |
Author_xml | – sequence: 1 givenname: Jinlin surname: Zhu fullname: Zhu, Jinlin organization: Jiangnan University – sequence: 2 givenname: Jialin surname: Yin fullname: Yin, Jialin organization: Jiangnan University – sequence: 3 givenname: Jing surname: Chen fullname: Chen, Jing organization: Jiangnan University – sequence: 4 givenname: Mingyi surname: Hu fullname: Hu, Mingyi organization: Jiangnan University – sequence: 5 givenname: Wenwei surname: Lu fullname: Lu, Wenwei organization: Jiangnan University – sequence: 6 givenname: Hongchao surname: Wang fullname: Wang, Hongchao organization: Jiangnan University – sequence: 7 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: Wuxi People's Hospital – sequence: 8 givenname: Wei surname: Chen fullname: Chen, Wei email: chenwei66@jiangnan.edu.cn organization: Jiangnan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38563656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEUXKEiWkp_AmiPXBLs9a53LQ6AKj4iVeICZ-ut_Zy48trFdlLy7_GSNKIcwBdb45l5fp73vDrzwWNVvaRkSclA3lDRCiJ6vmxI0y4bxvjQ90-qixlfEDG0Z6dzz8-rq5RuSVlt2xPOnlXnbOg44x2_qH6ufMZ1hGx3WIMHt0821fc2b-rJqhhGC66egkbnrF8Xhq4nUBvrsXYI0c_g1quww5jqu5DR51kBzuHOQg4FNSHWW6fwWEQFZ7NNL6qnBlzCq-N-WX3_9PHb9ZfFzdfPq-sPNwvVsS4vBNVEKC2w1cZozbghou0Mim5oTAM9M4pQ1uuB9NCA6TkfkQ-EGI4NUDGyy2p18NUBbuVdtBPEvQxg5W8gxLWEmK1yKPlo1EBY0xONbUfaUTGNTHTCkIbQkRWvdwevu-04oVal2QjukenjG283ch12kpZMBBe0OLw-OsTwY4spy8kmVT4XPIZtkowwSkucLS_UV38WO1V5yK4QugOhxJRSRHOiUCLnMZEPYyLnMZHHMSm6t3_plM0lmzC_2br_qt8f1NaXYCe4D9FpmWHvQjQRvLKli39b_AJ7edlT |
CitedBy_id | crossref_primary_10_1016_j_csbj_2025_03_012 crossref_primary_10_1016_j_bbadis_2024_167618 crossref_primary_10_1016_j_nutres_2025_02_004 crossref_primary_10_1080_19490976_2025_2476570 crossref_primary_10_3389_fmicb_2025_1556827 crossref_primary_10_59717_j_xinn_life_2024_100105 crossref_primary_10_1039_D4FO02344G |
Cites_doi | 10.1080/19490976.2021.1915673 10.1101/gr.092759.109 10.1093/bioinformatics/btp352 10.1038/s41598-017-10034-5 10.1371/journal.pcbi.1007084 10.1186/1471-2105-11-489 10.1038/s41586-019-1237-9 10.1136/gutjnl-2014-307873 10.1093/bioinformatics/btu170 10.1038/s41540-018-0063-2 10.1016/j.ebiom.2019.03.009 10.1038/s41564-018-0306-4 10.1039/C1AN15605E 10.1053/j.gastro.2019.07.025 10.1053/j.gastro.2020.12.004 10.1038/nri3707 10.1038/s41587-022-01628-0 10.1053/j.gastro.2020.06.038 10.3389/fmicb.2018.01274 10.1038/s41540-021-00178-6 10.1093/ecco-jcc/jjv223 10.1093/bioinformatics/btac082 10.1093/ecco-jcc/jjab029 10.1177/1535370215584901 10.1021/acs.jafc.0c06755 10.1038/s41575-023-00766-3 10.1021/pr2003598 10.1111/jgh.15232 10.1038/nrgastro.2017.110 10.1038/nbt.1614 10.1038/nbt.3703 10.1016/j.ajpath.2018.01.011 10.1038/s41598-020-70583-0 10.1371/journal.pone.0186178 10.1186/s40168-019-0689-3 10.1038/s41467-021-22989-1 10.1093/bioinformatics/btp324 10.1038/s41591-018-0308-z 10.1016/j.coisb.2021.03.001 10.1016/j.compbiomed.2022.106244 10.1093/nar/gky992 10.1002/mnfr.201700144 10.3389/fnut.2021.818902 10.1146/annurev-med-042320-021020 10.3390/ijms17050632 10.1128/mSystems.00209-17 10.1039/D1FO00875G 10.3892/ijmm.2022.5098 10.1016/j.intimp.2022.108711 10.1371/journal.pone.0085345 10.1371/journal.pone.0146162 10.1073/pnas.0704189104 10.1016/j.chom.2015.09.008 10.1093/bioinformatics/bty445 10.3390/jcm10081749 10.3109/00365521.2016.1101245 10.1155/2020/7694734 10.1038/s41572-020-0205-x 10.1016/j.copbio.2014.12.017 10.1016/j.phrs.2012.10.020 10.1038/s41575-019-0258-z 10.1073/pnas.1116053109 10.1128/mSystems.00913-20 10.1046/j.1432-1327.2001.02001.x 10.1016/j.jff.2023.105416 10.1093/nar/gkj102 10.1038/s41598-017-02606-2 10.1073/pnas.0706625104 10.1038/ismej.2017.44 10.1093/bioinformatics/bty941 10.1016/j.csbj.2022.10.026 10.1128/spectrum.01651-22 10.1038/s41596-018-0098-2 10.1016/j.copbio.2018.07.010 10.5009/gnl18438 10.1038/nprot.2009.203 10.1038/s41579-019-0213-6 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024 – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024 The Author(s) |
DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1080/19490976.2024.2336877 |
DatabaseName | Taylor & Francis Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | J. ZHU ET AL |
EISSN | 1949-0984 |
ExternalDocumentID | oai_doaj_org_article_6bfc803270de4504bc3de3959f0201b3 PMC10989691 38563656 10_1080_19490976_2024_2336877 2336877 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province – fundername: National Natural Science Foundation of China grantid: No. 32372345 – fundername: Fundamental Research Funds for the Central Universities grantid: JUSRP622034 – fundername: National Natural Science Foundation of China grantid: No. 32021005, No. 31820103010 |
GroupedDBID | --- 00X 0YH 30N 4.4 53G ABPEM ACGFS ACTIO ADBBV ADCVX AEISY AGYJP AIJEM ALMA_UNASSIGNED_HOLDINGS AOIJS AQRUH BABNJ BAWUL BLEHA CCCUG DKSSO EBS EMOBN F5P GROUPED_DOAJ H13 KYCEM LJTGL M4Z MM. O9- OK1 RPM SNACF SV3 TDBHL TFL TFT TFW TR2 TTHFI AAYXX AIYEW CITATION DGEBU ABCCY C1A CGR CUY CVF DIK ECM EIF EJD HYE IPNFZ NPM OVD RIG TEORI 7X8 5PM |
ID | FETCH-LOGICAL-c535t-91d09cd9e4dffdd36f0945fe9582f2a73fc0137d807a2af766be6800f6e2a19b3 |
IEDL.DBID | DOA |
ISSN | 1949-0976 1949-0984 |
IngestDate | Wed Aug 27 01:27:59 EDT 2025 Thu Aug 21 18:34:48 EDT 2025 Thu Jul 10 20:38:34 EDT 2025 Thu Apr 03 06:53:54 EDT 2025 Thu Apr 24 22:59:00 EDT 2025 Tue Jul 01 03:30:44 EDT 2025 Wed Dec 25 09:05:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | N-acetyl-D-mannosamine Parabacteroides merdae ATCC 43184 ulcerative colitis Genome-scale metabolic model machine learning inflammatory bowel disease biomarker selection |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-91d09cd9e4dffdd36f0945fe9582f2a73fc0137d807a2af766be6800f6e2a19b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/6bfc803270de4504bc3de3959f0201b3 |
PMID | 38563656 |
PQID | 3031133646 |
PQPubID | 23479 |
ParticipantIDs | crossref_primary_10_1080_19490976_2024_2336877 proquest_miscellaneous_3031133646 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10989691 crossref_citationtrail_10_1080_19490976_2024_2336877 doaj_primary_oai_doaj_org_article_6bfc803270de4504bc3de3959f0201b3 informaworld_taylorfrancis_310_1080_19490976_2024_2336877 pubmed_primary_38563656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Gut microbes |
PublicationTitleAlternate | Gut Microbes |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_5_29_1 e_1_3_5_27_1 e_1_3_5_25_1 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_67_1 e_1_3_5_46_1 e_1_3_5_69_1 e_1_3_5_48_1 e_1_3_5_3_1 e_1_3_5_61_1 e_1_3_5_40_1 e_1_3_5_63_1 e_1_3_5_42_1 e_1_3_5_65_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_5_1 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_37_1 e_1_3_5_14_1 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_56_1 e_1_3_5_77_1 e_1_3_5_58_1 e_1_3_5_50_1 e_1_3_5_71_1 e_1_3_5_52_1 e_1_3_5_73_1 e_1_3_5_54_1 e_1_3_5_75_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_28_1 e_1_3_5_26_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_66_1 e_1_3_5_47_1 e_1_3_5_68_1 e_1_3_5_49_1 e_1_3_5_2_1 e_1_3_5_60_1 e_1_3_5_41_1 e_1_3_5_62_1 e_1_3_5_43_1 e_1_3_5_64_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_6_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_55_1 e_1_3_5_78_1 e_1_3_5_57_1 e_1_3_5_59_1 e_1_3_5_19_1 e_1_3_5_70_1 e_1_3_5_72_1 e_1_3_5_51_1 e_1_3_5_74_1 e_1_3_5_53_1 e_1_3_5_76_1 e_1_3_5_32_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_27_1 doi: 10.1080/19490976.2021.1915673 – ident: e_1_3_5_45_1 doi: 10.1101/gr.092759.109 – ident: e_1_3_5_39_1 doi: 10.1093/bioinformatics/btp352 – ident: e_1_3_5_8_1 doi: 10.1038/s41598-017-10034-5 – ident: e_1_3_5_30_1 doi: 10.1371/journal.pcbi.1007084 – ident: e_1_3_5_41_1 doi: 10.1186/1471-2105-11-489 – ident: e_1_3_5_35_1 doi: 10.1038/s41586-019-1237-9 – ident: e_1_3_5_47_1 doi: 10.1136/gutjnl-2014-307873 – ident: e_1_3_5_36_1 doi: 10.1093/bioinformatics/btu170 – ident: e_1_3_5_38_1 doi: 10.1038/s41540-018-0063-2 – ident: e_1_3_5_33_1 doi: 10.1016/j.ebiom.2019.03.009 – ident: e_1_3_5_62_1 doi: 10.1038/s41564-018-0306-4 – ident: e_1_3_5_10_1 doi: 10.1039/C1AN15605E – ident: e_1_3_5_20_1 doi: 10.1053/j.gastro.2019.07.025 – ident: e_1_3_5_6_1 doi: 10.1053/j.gastro.2020.12.004 – ident: e_1_3_5_73_1 doi: 10.1038/nri3707 – ident: e_1_3_5_78_1 doi: 10.1038/s41587-022-01628-0 – ident: e_1_3_5_72_1 doi: 10.1053/j.gastro.2020.06.038 – ident: e_1_3_5_48_1 doi: 10.3389/fmicb.2018.01274 – ident: e_1_3_5_18_1 doi: 10.1038/s41540-021-00178-6 – ident: e_1_3_5_44_1 doi: 10.1093/ecco-jcc/jjv223 – ident: e_1_3_5_40_1 doi: 10.1093/bioinformatics/btac082 – ident: e_1_3_5_2_1 doi: 10.1093/ecco-jcc/jjab029 – ident: e_1_3_5_68_1 doi: 10.1177/1535370215584901 – ident: e_1_3_5_43_1 doi: 10.1021/acs.jafc.0c06755 – ident: e_1_3_5_67_1 doi: 10.1038/s41575-023-00766-3 – ident: e_1_3_5_61_1 doi: 10.1021/pr2003598 – ident: e_1_3_5_46_1 doi: 10.1111/jgh.15232 – ident: e_1_3_5_3_1 doi: 10.1038/nrgastro.2017.110 – ident: e_1_3_5_25_1 doi: 10.1038/nbt.1614 – ident: e_1_3_5_17_1 doi: 10.1038/nbt.3703 – ident: e_1_3_5_60_1 doi: 10.1016/j.ajpath.2018.01.011 – ident: e_1_3_5_29_1 doi: 10.1038/s41598-020-70583-0 – ident: e_1_3_5_50_1 doi: 10.1371/journal.pone.0186178 – ident: e_1_3_5_19_1 doi: 10.1186/s40168-019-0689-3 – ident: e_1_3_5_32_1 doi: 10.1038/s41467-021-22989-1 – ident: e_1_3_5_37_1 doi: 10.1093/bioinformatics/btp324 – ident: e_1_3_5_54_1 doi: 10.1038/s41591-018-0308-z – ident: e_1_3_5_31_1 doi: 10.1016/j.coisb.2021.03.001 – ident: e_1_3_5_34_1 doi: 10.1016/j.compbiomed.2022.106244 – ident: e_1_3_5_24_1 doi: 10.1093/nar/gky992 – ident: e_1_3_5_53_1 doi: 10.1002/mnfr.201700144 – ident: e_1_3_5_7_1 doi: 10.3389/fnut.2021.818902 – ident: e_1_3_5_5_1 doi: 10.1146/annurev-med-042320-021020 – ident: e_1_3_5_12_1 doi: 10.3390/ijms17050632 – ident: e_1_3_5_51_1 doi: 10.1128/mSystems.00209-17 – ident: e_1_3_5_52_1 doi: 10.1039/D1FO00875G – ident: e_1_3_5_70_1 doi: 10.3892/ijmm.2022.5098 – ident: e_1_3_5_77_1 doi: 10.1016/j.intimp.2022.108711 – ident: e_1_3_5_71_1 doi: 10.1371/journal.pone.0085345 – ident: e_1_3_5_64_1 doi: 10.1371/journal.pone.0146162 – ident: e_1_3_5_65_1 doi: 10.1073/pnas.0704189104 – ident: e_1_3_5_58_1 doi: 10.1016/j.chom.2015.09.008 – ident: e_1_3_5_22_1 doi: 10.1093/bioinformatics/bty445 – ident: e_1_3_5_63_1 doi: 10.3390/jcm10081749 – ident: e_1_3_5_74_1 doi: 10.3109/00365521.2016.1101245 – ident: e_1_3_5_75_1 doi: 10.1155/2020/7694734 – ident: e_1_3_5_4_1 doi: 10.1038/s41572-020-0205-x – ident: e_1_3_5_23_1 doi: 10.1016/j.copbio.2014.12.017 – ident: e_1_3_5_26_1 doi: 10.1016/j.phrs.2012.10.020 – ident: e_1_3_5_55_1 doi: 10.1038/s41575-019-0258-z – ident: e_1_3_5_14_1 doi: 10.1073/pnas.1116053109 – ident: e_1_3_5_56_1 doi: 10.1128/mSystems.00913-20 – ident: e_1_3_5_66_1 doi: 10.1046/j.1432-1327.2001.02001.x – ident: e_1_3_5_76_1 doi: 10.1016/j.jff.2023.105416 – ident: e_1_3_5_13_1 doi: 10.1093/nar/gkj102 – ident: e_1_3_5_28_1 doi: 10.1038/s41598-017-02606-2 – ident: e_1_3_5_57_1 doi: 10.1073/pnas.0706625104 – ident: e_1_3_5_49_1 doi: 10.1038/ismej.2017.44 – ident: e_1_3_5_21_1 doi: 10.1093/bioinformatics/bty941 – ident: e_1_3_5_9_1 doi: 10.1016/j.csbj.2022.10.026 – ident: e_1_3_5_42_1 doi: 10.1128/spectrum.01651-22 – ident: e_1_3_5_15_1 doi: 10.1038/s41596-018-0098-2 – ident: e_1_3_5_11_1 doi: 10.1016/j.copbio.2018.07.010 – ident: e_1_3_5_69_1 doi: 10.5009/gnl18438 – ident: e_1_3_5_16_1 doi: 10.1038/nprot.2009.203 – ident: e_1_3_5_59_1 doi: 10.1038/s41579-019-0213-6 |
SSID | ssj0000447063 |
Score | 2.3931289 |
Snippet | Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To... ABSTRACTUlcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut... |
SourceID | doaj pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2336877 |
SubjectTerms | Animals biomarker selection Colitis Colitis, Ulcerative Gastrointestinal Microbiome Genome-scale metabolic model Humans inflammatory bowel disease Inflammatory Bowel Diseases Machine Learning Mice N-acetyl-D-mannosamine Parabacteroides merdae ATCC 43184 Research Paper ulcerative colitis |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCIlLxbvLS0bimuLYjh0fAVEtSHCiEpwiP8tKbbZqshX8e2YcZ9WtQD1w3F1P4s3MeGac8fcR8kZCVLDR8EqERlcyIJE7OFaVvBIQnqCWM3ga-ctXtTyWn783czfhUNoqsYZOE1BEXqvRua0b5o64t1B3GwZhFKo7Lg-5EKrV-ja5w9FawaTZj-V2m4VJqSc-NZSqUGw-x_OvK-1EqAzkfw3G9G_J6PWeyitB6ug-2S_ZJX03mcMDciv2D8ndiW_y9yPy61MBh4AljtoCR0JxK5aerTIiEwhnbhw8pA4jAj3LzZaRFnaJEwpxELs-B3q-HrHTCCSQjuVyhdX7QGH-dHPqY7mJz-11w2NyfPTx24dlVagXKt-IZgR9BWZ8MFGGlEIQKkEZiH1pTcsTt1okj1iFoWXacpu0Ui4qyD2TitzWxoknZK9f9_GAUG10kAkGcOGkUswwZbxhrk3CRs_Ugsj5cXe-4JIjPcZpVxf40llLHWqpK1pakMOt2PkEzHGTwHvU5XYw4mrnL9YXJ11x00655FsmuGYhyoZJ50WIwjQmQVpdO7Eg5qoldGPeVkkTB0onbpjA69lsOvBhfDFj-7jegBysrDUMkvAwnk5mtJ2maBslIOlekHbHwHb-x-4v_epnxgmvmWmNMvWz_5j0c3IPP07Qli_I3nixiS8hDRvdq-xofwBxkihh priority: 102 providerName: Taylor & Francis |
Title | Integrative analysis with microbial modelling and machine learning uncovers potential alleviators for ulcerative colitis |
URI | https://www.tandfonline.com/doi/abs/10.1080/19490976.2024.2336877 https://www.ncbi.nlm.nih.gov/pubmed/38563656 https://www.proquest.com/docview/3031133646 https://pubmed.ncbi.nlm.nih.gov/PMC10989691 https://doaj.org/article/6bfc803270de4504bc3de3959f0201b3 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagEhIX1PIM0MpIXLf1rr1-HKFqFZDoiUrlZO36AZHaTdVsUPn3zNhOlFRIuXDJwfEktmfsmdkdfx8hHwV4hS6YpuK-VZXwSOQOG6uKTnJwT5DLGbyN_O1CTi_F16v2aoPqC2vCMjxwXrgT2UenGW8U80G0TPSO-8BNayIEOnWfcD7hRzeSqXQGC6EyjRok6VgTpOTq-o5mJ9iGTZAeNuK44VxqpbYcU8Lvf4Be-q8Y9GEp5YZvOt8nz0pQST_lyRyQR2F4Tp5kmsk_L8j9l4IJAScb7QoKCcUnsPRmloCYQDhR4uDddOjh6U2qsQy0kEr8pOD-sNhzQW_nIxYYgQSysPyeYdK-oDB-urx2ofyJS1V1i5fk8vzs--m0KowLlWt5O4KaPDPOmyB8jN5zGSH7w3K0Vjex6RSPDiEKvWaqa7qopOyDhJAzytB0ten5K7I3zIfwhlBllBcROjS8F1Iyw6RxhvU68i44JidErJbbugJHjqwY17YuqKUrLVnUki1ampDjtdhtxuPYJfAZdbnujHDaqQGMzBYjs7uMbELMpiXYMT1NiZn6xPIdA_iwMhsLWxffx3RDmC9BDg7UGjoJWIzX2YzWw-S6lRxi7QnRWwa2NY_tb4bZrwQPXjOjjTT12_8x83fkKU4mQ1u-J3vj3TIcQhg29kfkMfsxhU_OLo7S7vsLSb8sxQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNELb-jyNBLXLE7s2PERENUW2j21Um9W4kdZ0WarbhYBv54Zx1ntrkA99Jp4Ns7s2PPI-PsIeS_AK9ReFxl3pcqEQyJ3WFhZsJKDe4JcTuNp5KOpnJyIr6fl6dpZGGyrxBw69EARca_GxY3F6KEl7gMk3pqBH4X0rhDjgnNZKXWb3Cm1VMhiwNl0VWdhQqieUA2lMhQbDvL875c2XFRE8t_CMf1XNLrdVLnmpfYfEDu8X9-c8mO87Jqx_bMF_XgzBTwk91MQSz_2VveI3PLtY3K3p7X8_YT8OkgYFLCT0jqhnlCs-NKLWQR-AuFIwYNn4WGEoxexp9PTRGJxRsHdYnPpgl7OO2xoAglkffk5wyLBgoKW6PLc-vQQG7v4Fk_Jyf6X48-TLDE8ZLbkZQdm4Zi2TnvhQnCOywDZJra_lVURilrxYBES0VVM1UUdlJSNlxDiBumLOtcNf0Z22nnr9whVWjkRYEDBGyEl00xqq1lTBV57y-SIiOFPNTbBnyMLx7nJE0rqoFSDSjVJqSMyXold9vgf1wl8QotZDUb47nhhfnVm0m5gZBNsxXihmPOiZKKx3HmuSx0ges8bPiJ63d5MF6s3oadaMfyaCbwbjNPAVoHff-rWz5cgBxt4DoMEKON5b6yrafKqlBxi-xGpNsx44z0277Sz7xGOPGe60lLnL24w6bfk3uT46NAcHky_vSS7eKtH03xFdrqrpX8NkV_XvIlL-y80j0vy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFLZgEIgL-1JWI3FNcWLHjo9s1QxLxYGRuFnxNlTMtNU0RcCv5z3HqaYVaA5zbfxa-_X5Lc7n7xHyUkBUaIOuCu5rVQiPjdxhYxXRSQ7hCWo5jbeRP0_l_qH48K0e0ISrDKvEGjr2RBHJV-PmXvo4IOJeQd2tGYRRqO4qMa44l41Sl8kVieTheIuDTTfHLEwI1fdTQ6kCxYZ7PP_7pq0IlYj8d2hM_5WM7mIqzwSpyU1ih-X12JQf43Vnx-7PDvPjhdZ_i9zIKSx93dvcbXIpzO-Qq31Ty993ya-DzEABfpS2mfOE4nkvPZkl2icQTg148CY8jPD0JCE6A80tLI4oBFuElq7octEhnAkksOfLzxkeEawoKImuj13IP-IShm91jxxO3n99u1_k_g6Fq3ndgVF4pp3XQfgYvecyQq2J4Le6qWLVKh4dEiL6hqm2aqOS0gYJCW6UoWpLbfl9sjdfzMNDQpVWXkQYUHErpGSaSe00s03kbXBMjogY_lPjMvk59uA4NmXmSB2UalCpJit1RMYbsWXP_nGewBs0mM1gJO9OHyxOj0z2BUba6BrGK8V8EDUT1nEfuK51hNy9tHxE9FlzM106u4l9oxXDz5nAi8E2DTgKfPvTzsNiDXLgvksYJEAZD3pb3UyTN7XkkNmPSLNlxVvr2H4yn31PZOQl042Wunx0gUk_J9e-vJuYTwfTj4_JdXzSU2k-IXvd6To8hbSvs8_Sxv4L4QlKlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+analysis+with+microbial+modelling+and+machine+learning+uncovers+potential+alleviators+for+ulcerative+colitis&rft.jtitle=Gut+microbes&rft.au=Zhu%2C+Jinlin&rft.au=Yin%2C+Jialin&rft.au=Chen%2C+Jing&rft.au=Hu%2C+Mingyi&rft.date=2024-12-31&rft.issn=1949-0984&rft.eissn=1949-0984&rft.volume=16&rft.issue=1&rft.spage=2336877&rft_id=info:doi/10.1080%2F19490976.2024.2336877&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-0976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-0976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-0976&client=summon |