Directed evolution of cyclic peptides for inhibition of autophagy
In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 1; pp. 3526 - 3543 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
13.01.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners
in vitro
. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery
in vitro
and
in vivo
.
SUPR peptide mRNA display was used to evolve a cell-permeable, macrocyclic peptide for autophagy inhibition. |
---|---|
AbstractList | In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B—two essential components of the autophagosome maturation machinery—with mid-nanomolar affinities and disrupted protein–protein interactions (PPIs) between LC3 and its binding partners
in vitro
. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery
in vitro
and
in vivo
.
SUPR peptide mRNA display was used to evolve a cell-permeable, macrocyclic peptide for autophagy inhibition. In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B—two essential components of the autophagosome maturation machinery—with mid-nanomolar affinities and disrupted protein–protein interactions (PPIs) between LC3 and its binding partners in vitro . The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo . In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B—two essential components of the autophagosome maturation machinery—with mid-nanomolar affinities and disrupted protein–protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo. In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners . The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery and . In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo.In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo. |
Author | Batistatou, Nefeli Lu, Zhen Gray, Joshua P Uddin, Md. Nasir Chaudhari, Rajan Yang, Hailing Gammon, Seth T Zhang, Shuxing Grindel, Brian J Kritzer, Joshua A Sutton, Margie N Rask, Philip Wang, Jing Engel, Brian J Piwnica-Worms, David Bast, Robert C Locke, Hannah Bhattacharya, Pratip Millward, Steven W |
AuthorAffiliation | Department of Chemistry University of Houston Department of Cancer Systems Imaging Department of Biology and Biochemistry Tufts University University of Texas MD Anderson Cancer Center Department of Experimental Therapeutics |
AuthorAffiliation_xml | – name: University of Texas MD Anderson Cancer Center – name: Department of Biology and Biochemistry – name: Tufts University – name: Department of Chemistry – name: Department of Cancer Systems Imaging – name: University of Houston – name: Department of Experimental Therapeutics |
Author_xml | – sequence: 1 givenname: Joshua P surname: Gray fullname: Gray, Joshua P – sequence: 2 givenname: Md. Nasir surname: Uddin fullname: Uddin, Md. Nasir – sequence: 3 givenname: Rajan surname: Chaudhari fullname: Chaudhari, Rajan – sequence: 4 givenname: Margie N surname: Sutton fullname: Sutton, Margie N – sequence: 5 givenname: Hailing surname: Yang fullname: Yang, Hailing – sequence: 6 givenname: Philip surname: Rask fullname: Rask, Philip – sequence: 7 givenname: Hannah surname: Locke fullname: Locke, Hannah – sequence: 8 givenname: Brian J surname: Engel fullname: Engel, Brian J – sequence: 9 givenname: Nefeli surname: Batistatou fullname: Batistatou, Nefeli – sequence: 10 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 11 givenname: Brian J surname: Grindel fullname: Grindel, Brian J – sequence: 12 givenname: Pratip surname: Bhattacharya fullname: Bhattacharya, Pratip – sequence: 13 givenname: Seth T surname: Gammon fullname: Gammon, Seth T – sequence: 14 givenname: Shuxing surname: Zhang fullname: Zhang, Shuxing – sequence: 15 givenname: David surname: Piwnica-Worms fullname: Piwnica-Worms, David – sequence: 16 givenname: Joshua A surname: Kritzer fullname: Kritzer, Joshua A – sequence: 17 givenname: Zhen surname: Lu fullname: Lu, Zhen – sequence: 18 givenname: Robert C surname: Bast fullname: Bast, Robert C – sequence: 19 givenname: Steven W surname: Millward fullname: Millward, Steven W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34163626$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c1r2zAYBnBROvqR5rL7hmGXUUgn6ZVl-TIIabu1BHZoexaK_LpRcCxXsgP576c1abZVFwneHw-SnnNy3PoWCfnI6BWjUH6raLQUJIXVETnjVLCJzKE8Ppw5PSXjGFc0LQCW8-KEnIJgEiSXZ2R67QLaHqsMN74ZeufbzNeZ3drG2azDrncVxqz2IXPt0i3cmzBD77uled5ekA-1aSKO9_uIPN3ePM5-Tua_ftzNpvOJzSHvJ4qx2kAtKEcGdFEVVqKSRYmCCVkqYNKWitbGqoKj4ZYpVhSiUBIEz2uOMCLfd7ndsFhjZbHtg2l0F9zahK32xun_J61b6me_0SmohBJSwNd9QPAvA8Zer1202DSmRT9EzXMhlEq_RBP98o6u_BDa9LykKOeU51IkdblTNvgYA9aHyzCq_5Sjr-nD7LWc-4Q__3v9A32rIoFPOxCiPUz_tgu_AWd1lEQ |
CitedBy_id | crossref_primary_10_3892_mmr_2021_12405 crossref_primary_10_1039_D1CS00160D crossref_primary_10_1002_ijch_202300167 crossref_primary_10_1016_j_aichem_2023_100022 crossref_primary_10_1021_acschembio_4c00211 crossref_primary_10_1016_j_bbamcr_2023_119473 crossref_primary_10_1111_cas_15803 crossref_primary_10_1002_cbic_202300009 crossref_primary_10_1016_j_medidd_2022_100145 crossref_primary_10_1080_14787210_2024_2360684 crossref_primary_10_1021_acsinfecdis_2c00435 crossref_primary_10_2174_1568009622666220428102741 crossref_primary_10_1089_ars_2022_0055 crossref_primary_10_3389_fonc_2022_992171 crossref_primary_10_1016_j_snb_2021_131023 crossref_primary_10_1021_acschembio_2c00218 crossref_primary_10_1016_j_bcp_2022_115403 crossref_primary_10_1038_s41598_021_95461_1 crossref_primary_10_1002_cmdc_202300679 crossref_primary_10_1016_j_tips_2021_11_008 crossref_primary_10_1021_acs_jmedchem_2c01837 crossref_primary_10_1021_jacs_2c04699 |
Cites_doi | 10.1038/cddis.2017.21 10.1016/j.ejca.2014.01.011 10.1038/ncb1007-1102 10.1038/ncomms6475 10.1080/15548627.2015.1009787 10.1021/jacs.8b06144 10.1158/2159-8290.CD-19-0292 10.1016/bs.mie.2020.03.003 10.1093/nar/gkv456 10.33549/physiolres.933526 10.1172/JCI73941 10.1038/nrc3262 10.1021/ja031625a 10.1016/j.celrep.2014.10.058 10.1021/acs.chemrev.9b00008 10.1002/path.5222 10.1080/15548627.2017.1287651 10.1016/j.ejca.2003.11.028 10.1038/cddis.2013.350 10.1038/nchembio.664 10.4161/auto.7.3.14487 10.1021/jacs.8b06738 10.1093/toxsci/kfj141 10.1016/S0076-6879(08)04011-1 10.1155/2018/8023821 10.1242/jcs.126128 10.1074/jbc.M702824200 10.1534/genetics.117.300064 10.1002/cbic.201600253 10.1021/cb3005403 10.1021/ja054373h 10.1080/15548627.2016.1185590 10.1074/jbc.M114.558288 10.1111/j.1365-2443.2008.01238.x 10.1021/ja0563455 10.1016/j.jmb.2019.07.016 10.1038/s41467-019-10059-6 10.1158/0008-5472.CAN-14-0303 10.1039/C4MD00131A 10.1126/science.1099191 10.1073/pnas.1304790110 10.1038/cr.2013.168 10.1073/pnas.94.23.12297 10.1016/j.addr.2016.06.002 10.1021/acs.bioconjchem.6b00678 10.1016/j.drudis.2008.10.009 10.1016/j.ygyno.2015.05.040 10.1016/0014-4827(83)90443-3 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d0sc03603j |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 3543 |
ExternalDocumentID | 10_1039_D0SC03603J 34163626 d0sc03603j |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA247220 – fundername: NCI NIH HHS grantid: P50 CA217685 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: R21 CA181994 – fundername: NIGMS NIH HHS grantid: R01 GM127585 – fundername: NCI NIH HHS grantid: T32 CA196561 – fundername: ; grantid: P30 CA16672; P50 CA217685; R01 CA135354; R21 CA181994 – fundername: ; grantid: Unassigned – fundername: ; grantid: RP200166-IIRA – fundername: ; grantid: GM 127585 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ -JG 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP H13 HZ~ NPM PGMZT RAOCF RNS AAYXX AFPKN CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c535t-811fa3f402e130bd7c6e8679e414698316c980fac872ea2c1817747863425f2e3 |
IEDL.DBID | RPM |
ISSN | 2041-6520 |
IngestDate | Tue Sep 17 21:27:37 EDT 2024 Sat Oct 26 04:44:34 EDT 2024 Thu Oct 10 15:23:39 EDT 2024 Fri Aug 23 01:58:29 EDT 2024 Tue Oct 29 09:22:44 EDT 2024 Sat Jan 08 03:48:11 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-811fa3f402e130bd7c6e8679e414698316c980fac872ea2c1817747863425f2e3 |
Notes | 10.1039/d0sc03603j Electronic supplementary information (ESI) available: Full experimental details are available and include all synthetic methods for small molecules and SUPR peptides, supplemental figures (Table S1 and Fig. S1-S7), and compound characterization data (Fig. S8-S28). See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8572-0020 0000-0002-2120-7217 0000-0002-6038-0098 0000-0002-9263-9877 0000-0001-8647-0975 0000-0001-8994-649X 0000-0003-2878-6781 0000-0002-3231-7075 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179393/ |
PMID | 34163626 |
PQID | 2502202564 |
PQPubID | 2047492 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179393 rsc_primary_d0sc03603j pubmed_primary_34163626 proquest_journals_2502202564 crossref_primary_10_1039_D0SC03603J proquest_miscellaneous_2544880030 |
PublicationCentury | 2000 |
PublicationDate | 20210113 |
PublicationDateYYYYMMDD | 2021-01-13 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210113 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Chu (D0SC03603J-(cit26)/*[position()=1]) 2015; 6 Noda (D0SC03603J-(cit17)/*[position()=1]) 2008; 13 Deprey (D0SC03603J-(cit32)/*[position()=1]) 2020; 641 Han (D0SC03603J-(cit10)/*[position()=1]) 2018; 52 Sui (D0SC03603J-(cit12)/*[position()=1]) 2013; 4 Peraro (D0SC03603J-(cit33)/*[position()=1]) 2018; 140 Fiacco (D0SC03603J-(cit28)/*[position()=1]) 2016; 17 White (D0SC03603J-(cit24)/*[position()=1]) 2011; 7 Skytte Rasmussen (D0SC03603J-(cit38)/*[position()=1]) 2017; 13 Roberts (D0SC03603J-(cit30)/*[position()=1]) 1997; 94 Kelland (D0SC03603J-(cit48)/*[position()=1]) 2004; 40 White (D0SC03603J-(cit7)/*[position()=1]) 2015; 125 Rezai (D0SC03603J-(cit23)/*[position()=1]) 2006; 128 Millward (D0SC03603J-(cit31)/*[position()=1]) 2005; 127 Gray (D0SC03603J-(cit40)/*[position()=1]) 2017; 207 Liu (D0SC03603J-(cit52)/*[position()=1]) 2015; 11 Jiang (D0SC03603J-(cit41)/*[position()=1]) 2017; 38 Xie (D0SC03603J-(cit3)/*[position()=1]) 2007; 9 Feng (D0SC03603J-(cit2)/*[position()=1]) 2014; 24 Birgisdottir (D0SC03603J-(cit37)/*[position()=1]) 2013; 126 Walensky (D0SC03603J-(cit44)/*[position()=1]) 2004; 305 Johansen (D0SC03603J-(cit4)/*[position()=1]) 2011; 7 Faulstich (D0SC03603J-(cit21)/*[position()=1]) 1983; 144 Kritzer (D0SC03603J-(cit27)/*[position()=1]) 2004; 126 Mitra (D0SC03603J-(cit43)/*[position()=1]) 2015; 138 Okamoto (D0SC03603J-(cit46)/*[position()=1]) 2013; 8 Marinkovic (D0SC03603J-(cit16)/*[position()=1]) 2018; 2018 Pankiv (D0SC03603J-(cit5)/*[position()=1]) 2007; 282 Li (D0SC03603J-(cit45)/*[position()=1]) 2014; 9 White (D0SC03603J-(cit6)/*[position()=1]) 2012; 12 Paglin (D0SC03603J-(cit13)/*[position()=1]) 2001; 61 Ballister (D0SC03603J-(cit34)/*[position()=1]) 2014; 5 Wang (D0SC03603J-(cit42)/*[position()=1]) 2014; 289 Letschert (D0SC03603J-(cit20)/*[position()=1]) 2006; 91 Wirth (D0SC03603J-(cit19)/*[position()=1]) 2019; 10 Hashimoto (D0SC03603J-(cit9)/*[position()=1]) 2014; 50 Messai (D0SC03603J-(cit51)/*[position()=1]) 2014; 74 Baginska (D0SC03603J-(cit50)/*[position()=1]) 2013; 110 Wen (D0SC03603J-(cit11)/*[position()=1]) 2017; 8 Lu (D0SC03603J-(cit8)/*[position()=1]) 2008; 118 Pisaneschi (D0SC03603J-(cit29)/*[position()=1]) 2017; 28 Dougherty (D0SC03603J-(cit22)/*[position()=1]) 2019; 119 Kurcinski (D0SC03603J-(cit35)/*[position()=1]) 2015; 43 Smith (D0SC03603J-(cit14)/*[position()=1]) 2019; 247 Rhodes (D0SC03603J-(cit25)/*[position()=1]) 2018; 140 Szadvari (D0SC03603J-(cit49)/*[position()=1]) 2016; 65 Cheng (D0SC03603J-(cit1)/*[position()=1]) 2016; 12 Komin (D0SC03603J-(cit47)/*[position()=1]) 2017; 110–111 Amaravadi (D0SC03603J-(cit15)/*[position()=1]) 2019; 9 Fuller (D0SC03603J-(cit18)/*[position()=1]) 2009; 14 Chu (D0SC03603J-(cit36)/*[position()=1]) 2009; 453 Johansen (D0SC03603J-(cit39)/*[position()=1]) 2020; 432 |
References_xml | – volume: 8 start-page: e2593 issue: 2 year: 2017 ident: D0SC03603J-(cit11)/*[position()=1] publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.21 contributor: fullname: Wen – volume: 38 start-page: 3668 issue: 6 year: 2017 ident: D0SC03603J-(cit41)/*[position()=1] publication-title: Oncol. Rep. contributor: fullname: Jiang – volume: 50 start-page: 1382 issue: 7 year: 2014 ident: D0SC03603J-(cit9)/*[position()=1] publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2014.01.011 contributor: fullname: Hashimoto – volume: 9 start-page: 1102 issue: 10 year: 2007 ident: D0SC03603J-(cit3)/*[position()=1] publication-title: Nat. Cell Biol. doi: 10.1038/ncb1007-1102 contributor: fullname: Xie – volume: 5 start-page: 5475 year: 2014 ident: D0SC03603J-(cit34)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6475 contributor: fullname: Ballister – volume: 11 start-page: 271 issue: 2 year: 2015 ident: D0SC03603J-(cit52)/*[position()=1] publication-title: Autophagy doi: 10.1080/15548627.2015.1009787 contributor: fullname: Liu – volume: 140 start-page: 11360 issue: 36 year: 2018 ident: D0SC03603J-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06144 contributor: fullname: Peraro – volume: 9 start-page: 1167 issue: 9 year: 2019 ident: D0SC03603J-(cit15)/*[position()=1] publication-title: Cancer Discovery doi: 10.1158/2159-8290.CD-19-0292 contributor: fullname: Amaravadi – volume: 641 start-page: 277 year: 2020 ident: D0SC03603J-(cit32)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2020.03.003 contributor: fullname: Deprey – volume: 118 start-page: 3917 issue: 12 year: 2008 ident: D0SC03603J-(cit8)/*[position()=1] publication-title: J. Clin. Invest. contributor: fullname: Lu – volume: 43 start-page: W419 issue: W1 year: 2015 ident: D0SC03603J-(cit35)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv456 contributor: fullname: Kurcinski – volume: 65 start-page: S441 issue: suppl. 4 year: 2016 ident: D0SC03603J-(cit49)/*[position()=1] publication-title: Physiol. Res. doi: 10.33549/physiolres.933526 contributor: fullname: Szadvari – volume: 125 start-page: 42 issue: 1 year: 2015 ident: D0SC03603J-(cit7)/*[position()=1] publication-title: J. Clin. Invest. doi: 10.1172/JCI73941 contributor: fullname: White – volume: 12 start-page: 401 issue: 6 year: 2012 ident: D0SC03603J-(cit6)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3262 contributor: fullname: White – volume: 126 start-page: 9468 issue: 31 year: 2004 ident: D0SC03603J-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja031625a contributor: fullname: Kritzer – volume: 9 start-page: 1946 issue: 5 year: 2014 ident: D0SC03603J-(cit45)/*[position()=1] publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.058 contributor: fullname: Li – volume: 119 start-page: 10241 issue: 17 year: 2019 ident: D0SC03603J-(cit22)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00008 contributor: fullname: Dougherty – volume: 247 start-page: 708 issue: 5 year: 2019 ident: D0SC03603J-(cit14)/*[position()=1] publication-title: J. Pathol.: Clin. Res. doi: 10.1002/path.5222 contributor: fullname: Smith – volume: 13 start-page: 834 issue: 5 year: 2017 ident: D0SC03603J-(cit38)/*[position()=1] publication-title: Autophagy doi: 10.1080/15548627.2017.1287651 contributor: fullname: Skytte Rasmussen – volume: 40 start-page: 827 issue: 6 year: 2004 ident: D0SC03603J-(cit48)/*[position()=1] publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2003.11.028 contributor: fullname: Kelland – volume: 4 start-page: e838 year: 2013 ident: D0SC03603J-(cit12)/*[position()=1] publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.350 contributor: fullname: Sui – volume: 7 start-page: 810 issue: 11 year: 2011 ident: D0SC03603J-(cit24)/*[position()=1] publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.664 contributor: fullname: White – volume: 7 start-page: 279 issue: 3 year: 2011 ident: D0SC03603J-(cit4)/*[position()=1] publication-title: Autophagy doi: 10.4161/auto.7.3.14487 contributor: fullname: Johansen – volume: 140 start-page: 12102 issue: 38 year: 2018 ident: D0SC03603J-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06738 contributor: fullname: Rhodes – volume: 91 start-page: 140 issue: 1 year: 2006 ident: D0SC03603J-(cit20)/*[position()=1] publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfj141 contributor: fullname: Letschert – volume: 453 start-page: 217 year: 2009 ident: D0SC03603J-(cit36)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(08)04011-1 contributor: fullname: Chu – volume: 2018 start-page: 8023821 year: 2018 ident: D0SC03603J-(cit16)/*[position()=1] publication-title: Oxid. Med. Cell. Longevity doi: 10.1155/2018/8023821 contributor: fullname: Marinkovic – volume: 126 start-page: 3237 issue: pt 15 year: 2013 ident: D0SC03603J-(cit37)/*[position()=1] publication-title: J. Cell Sci. doi: 10.1242/jcs.126128 contributor: fullname: Birgisdottir – volume: 282 start-page: 24131 issue: 33 year: 2007 ident: D0SC03603J-(cit5)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702824200 contributor: fullname: Pankiv – volume: 207 start-page: 53 issue: 1 year: 2017 ident: D0SC03603J-(cit40)/*[position()=1] publication-title: Genetics doi: 10.1534/genetics.117.300064 contributor: fullname: Gray – volume: 17 start-page: 1643 issue: 17 year: 2016 ident: D0SC03603J-(cit28)/*[position()=1] publication-title: Chembiochem doi: 10.1002/cbic.201600253 contributor: fullname: Fiacco – volume: 8 start-page: 297 issue: 2 year: 2013 ident: D0SC03603J-(cit46)/*[position()=1] publication-title: ACS Chem. Biol. doi: 10.1021/cb3005403 contributor: fullname: Okamoto – volume: 127 start-page: 14142 issue: 41 year: 2005 ident: D0SC03603J-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054373h contributor: fullname: Millward – volume: 12 start-page: 1330 issue: 8 year: 2016 ident: D0SC03603J-(cit1)/*[position()=1] publication-title: Autophagy doi: 10.1080/15548627.2016.1185590 contributor: fullname: Cheng – volume: 289 start-page: 17163 issue: 24 year: 2014 ident: D0SC03603J-(cit42)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.558288 contributor: fullname: Wang – volume: 13 start-page: 1211 issue: 12 year: 2008 ident: D0SC03603J-(cit17)/*[position()=1] publication-title: Genes Cells doi: 10.1111/j.1365-2443.2008.01238.x contributor: fullname: Noda – volume: 128 start-page: 2510 issue: 8 year: 2006 ident: D0SC03603J-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0563455 contributor: fullname: Rezai – volume: 432 start-page: 80 issue: 1 year: 2020 ident: D0SC03603J-(cit39)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.07.016 contributor: fullname: Johansen – volume: 10 start-page: 2055 issue: 1 year: 2019 ident: D0SC03603J-(cit19)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10059-6 contributor: fullname: Wirth – volume: 74 start-page: 6820 issue: 23 year: 2014 ident: D0SC03603J-(cit51)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0303 contributor: fullname: Messai – volume: 6 start-page: 111 issue: 1 year: 2015 ident: D0SC03603J-(cit26)/*[position()=1] publication-title: MedChemComm doi: 10.1039/C4MD00131A contributor: fullname: Chu – volume: 61 start-page: 439 issue: 2 year: 2001 ident: D0SC03603J-(cit13)/*[position()=1] publication-title: Cancer Res. contributor: fullname: Paglin – volume: 52 start-page: 1057 issue: 4 year: 2018 ident: D0SC03603J-(cit10)/*[position()=1] publication-title: Int. J. Oncol. contributor: fullname: Han – volume: 305 start-page: 1466 issue: 5689 year: 2004 ident: D0SC03603J-(cit44)/*[position()=1] publication-title: Science doi: 10.1126/science.1099191 contributor: fullname: Walensky – volume: 110 start-page: 17450 issue: 43 year: 2013 ident: D0SC03603J-(cit50)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1304790110 contributor: fullname: Baginska – volume: 24 start-page: 24 issue: 1 year: 2014 ident: D0SC03603J-(cit2)/*[position()=1] publication-title: Cell Res. doi: 10.1038/cr.2013.168 contributor: fullname: Feng – volume: 94 start-page: 12297 issue: 23 year: 1997 ident: D0SC03603J-(cit30)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.23.12297 contributor: fullname: Roberts – volume: 110–111 start-page: 52 year: 2017 ident: D0SC03603J-(cit47)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2016.06.002 contributor: fullname: Komin – volume: 28 start-page: 583 issue: 2 year: 2017 ident: D0SC03603J-(cit29)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.6b00678 contributor: fullname: Pisaneschi – volume: 14 start-page: 155 issue: 3–4 year: 2009 ident: D0SC03603J-(cit18)/*[position()=1] publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2008.10.009 contributor: fullname: Fuller – volume: 138 start-page: 372 issue: 2 year: 2015 ident: D0SC03603J-(cit43)/*[position()=1] publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2015.05.040 contributor: fullname: Mitra – volume: 144 start-page: 73 issue: 1 year: 1983 ident: D0SC03603J-(cit21)/*[position()=1] publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(83)90443-3 contributor: fullname: Faulstich |
SSID | ssj0000331527 |
Score | 2.4839852 |
Snippet | In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3526 |
SubjectTerms | Adapter proteins Adapters Autophagy Binding Biocompatibility Cancer Chemistry Health services Inhibitors Organochlorine compounds Ovarian cancer Peptides Platinum Proteins Toxicity |
Title | Directed evolution of cyclic peptides for inhibition of autophagy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34163626 https://www.proquest.com/docview/2502202564 https://www.proquest.com/docview/2544880030 https://pubmed.ncbi.nlm.nih.gov/PMC8179393 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5RJg1e0H7ACD-qoO3V1LEdJ3lEZQghMU1snbqnyL44IwjSirZI_PfYbtyBeOM5pyQ6f777Lr58B_Atz7hNEhkSLZUmgjNFlK0jiKlrXSidM0T3vePyhzwfiYtxOl6DNPwL45v2UTfH7e3dcdtc-97K6R0OQp_Y4OflMHeoKvigBz0L0Gclug-_nHejWhkVCZEpo0GWlBeDis7QBm3KbzbhPXdsRDpdhec56RXRfN0v2bsP40F8Gjr7AFsdf4xPlu_5EdZM-wk2hmFs22c4WQYxU8XmoYNVPKljfMTbBuOpa2KpzCy2XDVu2utGN8FCLZzGgPr3uA2js--_h-ekm5NAMOXpnORJUite20rQ2IykqwylcTp6RiRuPiRPJBY5rRXmGTOKoU3qmZPNl9xu2JoZvgPr7aQ1uxBrIXlFJaq0YkLXmBshKGLlmAmtpIzga_BUOV3KYZT-GJsX5Sn9NfSuvYjgIDix7LbErLRcizHHsEQER6vL1jnuhEK1ZrJwNsIFFBt4Iviy9PnqMWGxIsherMbKwAllv7xi8eMFszu8RLBj121l_x8Ke2--5T5sMtfkQhOS8ANYn98vzKFlKXPd99V932OzD--u_ozGf58AmS3oKA |
link.rule.ids | 230,315,730,783,787,867,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BlQoX6BcQPtpU7dW7ju04yRFtQVvKokqFiltkT5ySAtkVu4tEf33tJN5CObVnjxI5M555jp_fAHxME26LRIJES6WJ4EwRZfcRxJSlzpROGaL73zE6lcNzcXwRXyxB7O_CNKR91FWvvr7p1dVlw62c3GDf88T6X0eD1EVVxvvL8MyuVyofbNKbBMx516yVURERGTPqhUl51i_oFG3apvznGjznDo9Ip6zwsCo9gZpPGZPLt75BSFOIjjbgu59Cyz-56s1nuoe__lJ3_Oc5voD1DpqGB-3wS1gy9StYHfiOcK_hoM2PpgjNXRex4bgM8R6vKwwnjh9TmGloYXBY1ZeVrryFmjv5AvXj_g2cHx2eDYaka8FAMObxjKRRVCpe2k2mscVOFwlK4yT6jIhc60keScxSWipME2YUQ4sXEqfIL7nNBSUzfBNW6nFttiHUQvKCSlRxwYQuMTVCUMTCgR5aSBnAB--CfNIqbeTNCTnP8k_026Dx2XEAe947ebfaprmFcYw58CYCeL8Yth_HHX6o2oznzka4XGVzWgBbrTMXr_FREEDyyM0LA6fB_XjEuq3R4u7cFMCmDYiF_Z8Y2_nvR76D1eHZ6CQ_-Xz6ZRfWmOPS0IhEfA9WZrdzs2_B0Ey_bUL_N_jWB3E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKlEuQD9o00Kbqr1649iOkxzRworSgpBaJNRLZE8cSAvZFbuLRH997STeLuXG2aNEzhvPvIlHbwA-Zym3SSJFoqXSRHCmiLJ1BDFVpXOlM4bo_nccn8jDM3F0npwvjfpqm_ZR14Pm6nrQ1Jdtb-XkGiPfJxadHg8z51U5jyZlFa3AU3tmabZUqLdBmPN-YCujIiYyYdSLk_I8KukUbeim_Nc6rHHHSaRTV1jOTA_o5sOuyZUbPySkTUajTfjpt9H1oPwezGd6gH_-U3h81D63YKOnqOFeZ_IcnpjmBTwb-slwL2Gvi5OmDM1t77nhuArxDq9qDCeuT6Y009DS4bBuLmtdews1dzIG6uLuFZyNDn4MD0k_ioFgwpMZyeK4UryyxaaxSU-XKUrjpPqMiN0ISh5LzDNaKcxSZhRDyxtSp8wvuY0JFTN8G1abcWPeQKiF5CWVqJKSCV1hZoSgiKUjP7SUMoBPHoZi0iluFO1NOc-Lffp92OJ2FMCOR6joT920sHSOMUfiRAAfF8v247hLENWY8dzZCBezbGwL4HUH6OI13hMCSO9BvTBwWtz3Vyx0rSZ3D1UA29YpFvb__Oztox_5AdZO90fFty8nX9_BOnMtNTQmMd-B1dnN3OxaTjTT71vv_wtPeQnx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directed+evolution+of+cyclic+peptides+for+inhibition+of+autophagy&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Gray%2C+Joshua+P&rft.au=Uddin%2C+Md+Nasir&rft.au=Chaudhari%2C+Rajan&rft.au=Sutton%2C+Margie+N&rft.date=2021-01-13&rft.issn=2041-6520&rft.volume=12&rft.issue=10&rft.spage=3526&rft_id=info:doi/10.1039%2Fd0sc03603j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |