Directed evolution of cyclic peptides for inhibition of autophagy

In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 12; no. 1; pp. 3526 - 3543
Main Authors Gray, Joshua P, Uddin, Md. Nasir, Chaudhari, Rajan, Sutton, Margie N, Yang, Hailing, Rask, Philip, Locke, Hannah, Engel, Brian J, Batistatou, Nefeli, Wang, Jing, Grindel, Brian J, Bhattacharya, Pratip, Gammon, Seth T, Zhang, Shuxing, Piwnica-Worms, David, Kritzer, Joshua A, Lu, Zhen, Bast, Robert C, Millward, Steven W
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 13.01.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro . The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo . SUPR peptide mRNA display was used to evolve a cell-permeable, macrocyclic peptide for autophagy inhibition.
AbstractList In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B—two essential components of the autophagosome maturation machinery—with mid-nanomolar affinities and disrupted protein–protein interactions (PPIs) between LC3 and its binding partners in vitro . The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo . SUPR peptide mRNA display was used to evolve a cell-permeable, macrocyclic peptide for autophagy inhibition.
In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B—two essential components of the autophagosome maturation machinery—with mid-nanomolar affinities and disrupted protein–protein interactions (PPIs) between LC3 and its binding partners in vitro . The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo .
In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B—two essential components of the autophagosome maturation machinery—with mid-nanomolar affinities and disrupted protein–protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo.
In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners . The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery and .
In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo.In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo.
Author Batistatou, Nefeli
Lu, Zhen
Gray, Joshua P
Uddin, Md. Nasir
Chaudhari, Rajan
Yang, Hailing
Gammon, Seth T
Zhang, Shuxing
Grindel, Brian J
Kritzer, Joshua A
Sutton, Margie N
Rask, Philip
Wang, Jing
Engel, Brian J
Piwnica-Worms, David
Bast, Robert C
Locke, Hannah
Bhattacharya, Pratip
Millward, Steven W
AuthorAffiliation Department of Chemistry
University of Houston
Department of Cancer Systems Imaging
Department of Biology and Biochemistry
Tufts University
University of Texas MD Anderson Cancer Center
Department of Experimental Therapeutics
AuthorAffiliation_xml – name: University of Texas MD Anderson Cancer Center
– name: Department of Biology and Biochemistry
– name: Tufts University
– name: Department of Chemistry
– name: Department of Cancer Systems Imaging
– name: University of Houston
– name: Department of Experimental Therapeutics
Author_xml – sequence: 1
  givenname: Joshua P
  surname: Gray
  fullname: Gray, Joshua P
– sequence: 2
  givenname: Md. Nasir
  surname: Uddin
  fullname: Uddin, Md. Nasir
– sequence: 3
  givenname: Rajan
  surname: Chaudhari
  fullname: Chaudhari, Rajan
– sequence: 4
  givenname: Margie N
  surname: Sutton
  fullname: Sutton, Margie N
– sequence: 5
  givenname: Hailing
  surname: Yang
  fullname: Yang, Hailing
– sequence: 6
  givenname: Philip
  surname: Rask
  fullname: Rask, Philip
– sequence: 7
  givenname: Hannah
  surname: Locke
  fullname: Locke, Hannah
– sequence: 8
  givenname: Brian J
  surname: Engel
  fullname: Engel, Brian J
– sequence: 9
  givenname: Nefeli
  surname: Batistatou
  fullname: Batistatou, Nefeli
– sequence: 10
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 11
  givenname: Brian J
  surname: Grindel
  fullname: Grindel, Brian J
– sequence: 12
  givenname: Pratip
  surname: Bhattacharya
  fullname: Bhattacharya, Pratip
– sequence: 13
  givenname: Seth T
  surname: Gammon
  fullname: Gammon, Seth T
– sequence: 14
  givenname: Shuxing
  surname: Zhang
  fullname: Zhang, Shuxing
– sequence: 15
  givenname: David
  surname: Piwnica-Worms
  fullname: Piwnica-Worms, David
– sequence: 16
  givenname: Joshua A
  surname: Kritzer
  fullname: Kritzer, Joshua A
– sequence: 17
  givenname: Zhen
  surname: Lu
  fullname: Lu, Zhen
– sequence: 18
  givenname: Robert C
  surname: Bast
  fullname: Bast, Robert C
– sequence: 19
  givenname: Steven W
  surname: Millward
  fullname: Millward, Steven W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34163626$$D View this record in MEDLINE/PubMed
BookMark eNpd0c1r2zAYBnBROvqR5rL7hmGXUUgn6ZVl-TIIabu1BHZoexaK_LpRcCxXsgP576c1abZVFwneHw-SnnNy3PoWCfnI6BWjUH6raLQUJIXVETnjVLCJzKE8Ppw5PSXjGFc0LQCW8-KEnIJgEiSXZ2R67QLaHqsMN74ZeufbzNeZ3drG2azDrncVxqz2IXPt0i3cmzBD77uled5ekA-1aSKO9_uIPN3ePM5-Tua_ftzNpvOJzSHvJ4qx2kAtKEcGdFEVVqKSRYmCCVkqYNKWitbGqoKj4ZYpVhSiUBIEz2uOMCLfd7ndsFhjZbHtg2l0F9zahK32xun_J61b6me_0SmohBJSwNd9QPAvA8Zer1202DSmRT9EzXMhlEq_RBP98o6u_BDa9LykKOeU51IkdblTNvgYA9aHyzCq_5Sjr-nD7LWc-4Q__3v9A32rIoFPOxCiPUz_tgu_AWd1lEQ
CitedBy_id crossref_primary_10_3892_mmr_2021_12405
crossref_primary_10_1039_D1CS00160D
crossref_primary_10_1002_ijch_202300167
crossref_primary_10_1016_j_aichem_2023_100022
crossref_primary_10_1021_acschembio_4c00211
crossref_primary_10_1016_j_bbamcr_2023_119473
crossref_primary_10_1111_cas_15803
crossref_primary_10_1002_cbic_202300009
crossref_primary_10_1016_j_medidd_2022_100145
crossref_primary_10_1080_14787210_2024_2360684
crossref_primary_10_1021_acsinfecdis_2c00435
crossref_primary_10_2174_1568009622666220428102741
crossref_primary_10_1089_ars_2022_0055
crossref_primary_10_3389_fonc_2022_992171
crossref_primary_10_1016_j_snb_2021_131023
crossref_primary_10_1021_acschembio_2c00218
crossref_primary_10_1016_j_bcp_2022_115403
crossref_primary_10_1038_s41598_021_95461_1
crossref_primary_10_1002_cmdc_202300679
crossref_primary_10_1016_j_tips_2021_11_008
crossref_primary_10_1021_acs_jmedchem_2c01837
crossref_primary_10_1021_jacs_2c04699
Cites_doi 10.1038/cddis.2017.21
10.1016/j.ejca.2014.01.011
10.1038/ncb1007-1102
10.1038/ncomms6475
10.1080/15548627.2015.1009787
10.1021/jacs.8b06144
10.1158/2159-8290.CD-19-0292
10.1016/bs.mie.2020.03.003
10.1093/nar/gkv456
10.33549/physiolres.933526
10.1172/JCI73941
10.1038/nrc3262
10.1021/ja031625a
10.1016/j.celrep.2014.10.058
10.1021/acs.chemrev.9b00008
10.1002/path.5222
10.1080/15548627.2017.1287651
10.1016/j.ejca.2003.11.028
10.1038/cddis.2013.350
10.1038/nchembio.664
10.4161/auto.7.3.14487
10.1021/jacs.8b06738
10.1093/toxsci/kfj141
10.1016/S0076-6879(08)04011-1
10.1155/2018/8023821
10.1242/jcs.126128
10.1074/jbc.M702824200
10.1534/genetics.117.300064
10.1002/cbic.201600253
10.1021/cb3005403
10.1021/ja054373h
10.1080/15548627.2016.1185590
10.1074/jbc.M114.558288
10.1111/j.1365-2443.2008.01238.x
10.1021/ja0563455
10.1016/j.jmb.2019.07.016
10.1038/s41467-019-10059-6
10.1158/0008-5472.CAN-14-0303
10.1039/C4MD00131A
10.1126/science.1099191
10.1073/pnas.1304790110
10.1038/cr.2013.168
10.1073/pnas.94.23.12297
10.1016/j.addr.2016.06.002
10.1021/acs.bioconjchem.6b00678
10.1016/j.drudis.2008.10.009
10.1016/j.ygyno.2015.05.040
10.1016/0014-4827(83)90443-3
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d0sc03603j
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef

Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 3543
ExternalDocumentID 10_1039_D0SC03603J
34163626
d0sc03603j
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA247220
– fundername: NCI NIH HHS
  grantid: P50 CA217685
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: R21 CA181994
– fundername: NIGMS NIH HHS
  grantid: R01 GM127585
– fundername: NCI NIH HHS
  grantid: T32 CA196561
– fundername: ;
  grantid: P30 CA16672; P50 CA217685; R01 CA135354; R21 CA181994
– fundername: ;
  grantid: Unassigned
– fundername: ;
  grantid: RP200166-IIRA
– fundername: ;
  grantid: GM 127585
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
-JG
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
H13
HZ~
NPM
PGMZT
RAOCF
RNS
AAYXX
AFPKN
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c535t-811fa3f402e130bd7c6e8679e414698316c980fac872ea2c1817747863425f2e3
IEDL.DBID RPM
ISSN 2041-6520
IngestDate Tue Sep 17 21:27:37 EDT 2024
Sat Oct 26 04:44:34 EDT 2024
Thu Oct 10 15:23:39 EDT 2024
Fri Aug 23 01:58:29 EDT 2024
Tue Oct 29 09:22:44 EDT 2024
Sat Jan 08 03:48:11 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-811fa3f402e130bd7c6e8679e414698316c980fac872ea2c1817747863425f2e3
Notes 10.1039/d0sc03603j
Electronic supplementary information (ESI) available: Full experimental details are available and include all synthetic methods for small molecules and SUPR peptides, supplemental figures (Table S1 and Fig. S1-S7), and compound characterization data (Fig. S8-S28). See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8572-0020
0000-0002-2120-7217
0000-0002-6038-0098
0000-0002-9263-9877
0000-0001-8647-0975
0000-0001-8994-649X
0000-0003-2878-6781
0000-0002-3231-7075
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179393/
PMID 34163626
PQID 2502202564
PQPubID 2047492
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179393
rsc_primary_d0sc03603j
pubmed_primary_34163626
proquest_journals_2502202564
crossref_primary_10_1039_D0SC03603J
proquest_miscellaneous_2544880030
PublicationCentury 2000
PublicationDate 20210113
PublicationDateYYYYMMDD 2021-01-13
PublicationDate_xml – month: 1
  year: 2021
  text: 20210113
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Chu (D0SC03603J-(cit26)/*[position()=1]) 2015; 6
Noda (D0SC03603J-(cit17)/*[position()=1]) 2008; 13
Deprey (D0SC03603J-(cit32)/*[position()=1]) 2020; 641
Han (D0SC03603J-(cit10)/*[position()=1]) 2018; 52
Sui (D0SC03603J-(cit12)/*[position()=1]) 2013; 4
Peraro (D0SC03603J-(cit33)/*[position()=1]) 2018; 140
Fiacco (D0SC03603J-(cit28)/*[position()=1]) 2016; 17
White (D0SC03603J-(cit24)/*[position()=1]) 2011; 7
Skytte Rasmussen (D0SC03603J-(cit38)/*[position()=1]) 2017; 13
Roberts (D0SC03603J-(cit30)/*[position()=1]) 1997; 94
Kelland (D0SC03603J-(cit48)/*[position()=1]) 2004; 40
White (D0SC03603J-(cit7)/*[position()=1]) 2015; 125
Rezai (D0SC03603J-(cit23)/*[position()=1]) 2006; 128
Millward (D0SC03603J-(cit31)/*[position()=1]) 2005; 127
Gray (D0SC03603J-(cit40)/*[position()=1]) 2017; 207
Liu (D0SC03603J-(cit52)/*[position()=1]) 2015; 11
Jiang (D0SC03603J-(cit41)/*[position()=1]) 2017; 38
Xie (D0SC03603J-(cit3)/*[position()=1]) 2007; 9
Feng (D0SC03603J-(cit2)/*[position()=1]) 2014; 24
Birgisdottir (D0SC03603J-(cit37)/*[position()=1]) 2013; 126
Walensky (D0SC03603J-(cit44)/*[position()=1]) 2004; 305
Johansen (D0SC03603J-(cit4)/*[position()=1]) 2011; 7
Faulstich (D0SC03603J-(cit21)/*[position()=1]) 1983; 144
Kritzer (D0SC03603J-(cit27)/*[position()=1]) 2004; 126
Mitra (D0SC03603J-(cit43)/*[position()=1]) 2015; 138
Okamoto (D0SC03603J-(cit46)/*[position()=1]) 2013; 8
Marinkovic (D0SC03603J-(cit16)/*[position()=1]) 2018; 2018
Pankiv (D0SC03603J-(cit5)/*[position()=1]) 2007; 282
Li (D0SC03603J-(cit45)/*[position()=1]) 2014; 9
White (D0SC03603J-(cit6)/*[position()=1]) 2012; 12
Paglin (D0SC03603J-(cit13)/*[position()=1]) 2001; 61
Ballister (D0SC03603J-(cit34)/*[position()=1]) 2014; 5
Wang (D0SC03603J-(cit42)/*[position()=1]) 2014; 289
Letschert (D0SC03603J-(cit20)/*[position()=1]) 2006; 91
Wirth (D0SC03603J-(cit19)/*[position()=1]) 2019; 10
Hashimoto (D0SC03603J-(cit9)/*[position()=1]) 2014; 50
Messai (D0SC03603J-(cit51)/*[position()=1]) 2014; 74
Baginska (D0SC03603J-(cit50)/*[position()=1]) 2013; 110
Wen (D0SC03603J-(cit11)/*[position()=1]) 2017; 8
Lu (D0SC03603J-(cit8)/*[position()=1]) 2008; 118
Pisaneschi (D0SC03603J-(cit29)/*[position()=1]) 2017; 28
Dougherty (D0SC03603J-(cit22)/*[position()=1]) 2019; 119
Kurcinski (D0SC03603J-(cit35)/*[position()=1]) 2015; 43
Smith (D0SC03603J-(cit14)/*[position()=1]) 2019; 247
Rhodes (D0SC03603J-(cit25)/*[position()=1]) 2018; 140
Szadvari (D0SC03603J-(cit49)/*[position()=1]) 2016; 65
Cheng (D0SC03603J-(cit1)/*[position()=1]) 2016; 12
Komin (D0SC03603J-(cit47)/*[position()=1]) 2017; 110–111
Amaravadi (D0SC03603J-(cit15)/*[position()=1]) 2019; 9
Fuller (D0SC03603J-(cit18)/*[position()=1]) 2009; 14
Chu (D0SC03603J-(cit36)/*[position()=1]) 2009; 453
Johansen (D0SC03603J-(cit39)/*[position()=1]) 2020; 432
References_xml – volume: 8
  start-page: e2593
  issue: 2
  year: 2017
  ident: D0SC03603J-(cit11)/*[position()=1]
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.21
  contributor:
    fullname: Wen
– volume: 38
  start-page: 3668
  issue: 6
  year: 2017
  ident: D0SC03603J-(cit41)/*[position()=1]
  publication-title: Oncol. Rep.
  contributor:
    fullname: Jiang
– volume: 50
  start-page: 1382
  issue: 7
  year: 2014
  ident: D0SC03603J-(cit9)/*[position()=1]
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2014.01.011
  contributor:
    fullname: Hashimoto
– volume: 9
  start-page: 1102
  issue: 10
  year: 2007
  ident: D0SC03603J-(cit3)/*[position()=1]
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1007-1102
  contributor:
    fullname: Xie
– volume: 5
  start-page: 5475
  year: 2014
  ident: D0SC03603J-(cit34)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6475
  contributor:
    fullname: Ballister
– volume: 11
  start-page: 271
  issue: 2
  year: 2015
  ident: D0SC03603J-(cit52)/*[position()=1]
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1009787
  contributor:
    fullname: Liu
– volume: 140
  start-page: 11360
  issue: 36
  year: 2018
  ident: D0SC03603J-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06144
  contributor:
    fullname: Peraro
– volume: 9
  start-page: 1167
  issue: 9
  year: 2019
  ident: D0SC03603J-(cit15)/*[position()=1]
  publication-title: Cancer Discovery
  doi: 10.1158/2159-8290.CD-19-0292
  contributor:
    fullname: Amaravadi
– volume: 641
  start-page: 277
  year: 2020
  ident: D0SC03603J-(cit32)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2020.03.003
  contributor:
    fullname: Deprey
– volume: 118
  start-page: 3917
  issue: 12
  year: 2008
  ident: D0SC03603J-(cit8)/*[position()=1]
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Lu
– volume: 43
  start-page: W419
  issue: W1
  year: 2015
  ident: D0SC03603J-(cit35)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv456
  contributor:
    fullname: Kurcinski
– volume: 65
  start-page: S441
  issue: suppl. 4
  year: 2016
  ident: D0SC03603J-(cit49)/*[position()=1]
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.933526
  contributor:
    fullname: Szadvari
– volume: 125
  start-page: 42
  issue: 1
  year: 2015
  ident: D0SC03603J-(cit7)/*[position()=1]
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI73941
  contributor:
    fullname: White
– volume: 12
  start-page: 401
  issue: 6
  year: 2012
  ident: D0SC03603J-(cit6)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3262
  contributor:
    fullname: White
– volume: 126
  start-page: 9468
  issue: 31
  year: 2004
  ident: D0SC03603J-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja031625a
  contributor:
    fullname: Kritzer
– volume: 9
  start-page: 1946
  issue: 5
  year: 2014
  ident: D0SC03603J-(cit45)/*[position()=1]
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.058
  contributor:
    fullname: Li
– volume: 119
  start-page: 10241
  issue: 17
  year: 2019
  ident: D0SC03603J-(cit22)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00008
  contributor:
    fullname: Dougherty
– volume: 247
  start-page: 708
  issue: 5
  year: 2019
  ident: D0SC03603J-(cit14)/*[position()=1]
  publication-title: J. Pathol.: Clin. Res.
  doi: 10.1002/path.5222
  contributor:
    fullname: Smith
– volume: 13
  start-page: 834
  issue: 5
  year: 2017
  ident: D0SC03603J-(cit38)/*[position()=1]
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1287651
  contributor:
    fullname: Skytte Rasmussen
– volume: 40
  start-page: 827
  issue: 6
  year: 2004
  ident: D0SC03603J-(cit48)/*[position()=1]
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2003.11.028
  contributor:
    fullname: Kelland
– volume: 4
  start-page: e838
  year: 2013
  ident: D0SC03603J-(cit12)/*[position()=1]
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.350
  contributor:
    fullname: Sui
– volume: 7
  start-page: 810
  issue: 11
  year: 2011
  ident: D0SC03603J-(cit24)/*[position()=1]
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.664
  contributor:
    fullname: White
– volume: 7
  start-page: 279
  issue: 3
  year: 2011
  ident: D0SC03603J-(cit4)/*[position()=1]
  publication-title: Autophagy
  doi: 10.4161/auto.7.3.14487
  contributor:
    fullname: Johansen
– volume: 140
  start-page: 12102
  issue: 38
  year: 2018
  ident: D0SC03603J-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06738
  contributor:
    fullname: Rhodes
– volume: 91
  start-page: 140
  issue: 1
  year: 2006
  ident: D0SC03603J-(cit20)/*[position()=1]
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfj141
  contributor:
    fullname: Letschert
– volume: 453
  start-page: 217
  year: 2009
  ident: D0SC03603J-(cit36)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(08)04011-1
  contributor:
    fullname: Chu
– volume: 2018
  start-page: 8023821
  year: 2018
  ident: D0SC03603J-(cit16)/*[position()=1]
  publication-title: Oxid. Med. Cell. Longevity
  doi: 10.1155/2018/8023821
  contributor:
    fullname: Marinkovic
– volume: 126
  start-page: 3237
  issue: pt 15
  year: 2013
  ident: D0SC03603J-(cit37)/*[position()=1]
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.126128
  contributor:
    fullname: Birgisdottir
– volume: 282
  start-page: 24131
  issue: 33
  year: 2007
  ident: D0SC03603J-(cit5)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
  contributor:
    fullname: Pankiv
– volume: 207
  start-page: 53
  issue: 1
  year: 2017
  ident: D0SC03603J-(cit40)/*[position()=1]
  publication-title: Genetics
  doi: 10.1534/genetics.117.300064
  contributor:
    fullname: Gray
– volume: 17
  start-page: 1643
  issue: 17
  year: 2016
  ident: D0SC03603J-(cit28)/*[position()=1]
  publication-title: Chembiochem
  doi: 10.1002/cbic.201600253
  contributor:
    fullname: Fiacco
– volume: 8
  start-page: 297
  issue: 2
  year: 2013
  ident: D0SC03603J-(cit46)/*[position()=1]
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb3005403
  contributor:
    fullname: Okamoto
– volume: 127
  start-page: 14142
  issue: 41
  year: 2005
  ident: D0SC03603J-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054373h
  contributor:
    fullname: Millward
– volume: 12
  start-page: 1330
  issue: 8
  year: 2016
  ident: D0SC03603J-(cit1)/*[position()=1]
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1185590
  contributor:
    fullname: Cheng
– volume: 289
  start-page: 17163
  issue: 24
  year: 2014
  ident: D0SC03603J-(cit42)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.558288
  contributor:
    fullname: Wang
– volume: 13
  start-page: 1211
  issue: 12
  year: 2008
  ident: D0SC03603J-(cit17)/*[position()=1]
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2008.01238.x
  contributor:
    fullname: Noda
– volume: 128
  start-page: 2510
  issue: 8
  year: 2006
  ident: D0SC03603J-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0563455
  contributor:
    fullname: Rezai
– volume: 432
  start-page: 80
  issue: 1
  year: 2020
  ident: D0SC03603J-(cit39)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.07.016
  contributor:
    fullname: Johansen
– volume: 10
  start-page: 2055
  issue: 1
  year: 2019
  ident: D0SC03603J-(cit19)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10059-6
  contributor:
    fullname: Wirth
– volume: 74
  start-page: 6820
  issue: 23
  year: 2014
  ident: D0SC03603J-(cit51)/*[position()=1]
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0303
  contributor:
    fullname: Messai
– volume: 6
  start-page: 111
  issue: 1
  year: 2015
  ident: D0SC03603J-(cit26)/*[position()=1]
  publication-title: MedChemComm
  doi: 10.1039/C4MD00131A
  contributor:
    fullname: Chu
– volume: 61
  start-page: 439
  issue: 2
  year: 2001
  ident: D0SC03603J-(cit13)/*[position()=1]
  publication-title: Cancer Res.
  contributor:
    fullname: Paglin
– volume: 52
  start-page: 1057
  issue: 4
  year: 2018
  ident: D0SC03603J-(cit10)/*[position()=1]
  publication-title: Int. J. Oncol.
  contributor:
    fullname: Han
– volume: 305
  start-page: 1466
  issue: 5689
  year: 2004
  ident: D0SC03603J-(cit44)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1099191
  contributor:
    fullname: Walensky
– volume: 110
  start-page: 17450
  issue: 43
  year: 2013
  ident: D0SC03603J-(cit50)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1304790110
  contributor:
    fullname: Baginska
– volume: 24
  start-page: 24
  issue: 1
  year: 2014
  ident: D0SC03603J-(cit2)/*[position()=1]
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.168
  contributor:
    fullname: Feng
– volume: 94
  start-page: 12297
  issue: 23
  year: 1997
  ident: D0SC03603J-(cit30)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.23.12297
  contributor:
    fullname: Roberts
– volume: 110–111
  start-page: 52
  year: 2017
  ident: D0SC03603J-(cit47)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2016.06.002
  contributor:
    fullname: Komin
– volume: 28
  start-page: 583
  issue: 2
  year: 2017
  ident: D0SC03603J-(cit29)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.6b00678
  contributor:
    fullname: Pisaneschi
– volume: 14
  start-page: 155
  issue: 3–4
  year: 2009
  ident: D0SC03603J-(cit18)/*[position()=1]
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2008.10.009
  contributor:
    fullname: Fuller
– volume: 138
  start-page: 372
  issue: 2
  year: 2015
  ident: D0SC03603J-(cit43)/*[position()=1]
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2015.05.040
  contributor:
    fullname: Mitra
– volume: 144
  start-page: 73
  issue: 1
  year: 1983
  ident: D0SC03603J-(cit21)/*[position()=1]
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(83)90443-3
  contributor:
    fullname: Faulstich
SSID ssj0000331527
Score 2.4839852
Snippet In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy...
SourceID pubmedcentral
proquest
crossref
pubmed
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3526
SubjectTerms Adapter proteins
Adapters
Autophagy
Binding
Biocompatibility
Cancer
Chemistry
Health services
Inhibitors
Organochlorine compounds
Ovarian cancer
Peptides
Platinum
Proteins
Toxicity
Title Directed evolution of cyclic peptides for inhibition of autophagy
URI https://www.ncbi.nlm.nih.gov/pubmed/34163626
https://www.proquest.com/docview/2502202564
https://www.proquest.com/docview/2544880030
https://pubmed.ncbi.nlm.nih.gov/PMC8179393
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5RJg1e0H7ACD-qoO3V1LEdJ3lEZQghMU1snbqnyL44IwjSirZI_PfYbtyBeOM5pyQ6f777Lr58B_Atz7hNEhkSLZUmgjNFlK0jiKlrXSidM0T3vePyhzwfiYtxOl6DNPwL45v2UTfH7e3dcdtc-97K6R0OQp_Y4OflMHeoKvigBz0L0Gclug-_nHejWhkVCZEpo0GWlBeDis7QBm3KbzbhPXdsRDpdhec56RXRfN0v2bsP40F8Gjr7AFsdf4xPlu_5EdZM-wk2hmFs22c4WQYxU8XmoYNVPKljfMTbBuOpa2KpzCy2XDVu2utGN8FCLZzGgPr3uA2js--_h-ekm5NAMOXpnORJUite20rQ2IykqwylcTp6RiRuPiRPJBY5rRXmGTOKoU3qmZPNl9xu2JoZvgPr7aQ1uxBrIXlFJaq0YkLXmBshKGLlmAmtpIzga_BUOV3KYZT-GJsX5Sn9NfSuvYjgIDix7LbErLRcizHHsEQER6vL1jnuhEK1ZrJwNsIFFBt4Iviy9PnqMWGxIsherMbKwAllv7xi8eMFszu8RLBj121l_x8Ke2--5T5sMtfkQhOS8ANYn98vzKFlKXPd99V932OzD--u_ozGf58AmS3oKA
link.rule.ids 230,315,730,783,787,867,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BlQoX6BcQPtpU7dW7ju04yRFtQVvKokqFiltkT5ySAtkVu4tEf33tJN5CObVnjxI5M555jp_fAHxME26LRIJES6WJ4EwRZfcRxJSlzpROGaL73zE6lcNzcXwRXyxB7O_CNKR91FWvvr7p1dVlw62c3GDf88T6X0eD1EVVxvvL8MyuVyofbNKbBMx516yVURERGTPqhUl51i_oFG3apvznGjznDo9Ip6zwsCo9gZpPGZPLt75BSFOIjjbgu59Cyz-56s1nuoe__lJ3_Oc5voD1DpqGB-3wS1gy9StYHfiOcK_hoM2PpgjNXRex4bgM8R6vKwwnjh9TmGloYXBY1ZeVrryFmjv5AvXj_g2cHx2eDYaka8FAMObxjKRRVCpe2k2mscVOFwlK4yT6jIhc60keScxSWipME2YUQ4sXEqfIL7nNBSUzfBNW6nFttiHUQvKCSlRxwYQuMTVCUMTCgR5aSBnAB--CfNIqbeTNCTnP8k_026Dx2XEAe947ebfaprmFcYw58CYCeL8Yth_HHX6o2oznzka4XGVzWgBbrTMXr_FREEDyyM0LA6fB_XjEuq3R4u7cFMCmDYiF_Z8Y2_nvR76D1eHZ6CQ_-Xz6ZRfWmOPS0IhEfA9WZrdzs2_B0Ey_bUL_N_jWB3E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKlEuQD9o00Kbqr1649iOkxzRworSgpBaJNRLZE8cSAvZFbuLRH997STeLuXG2aNEzhvPvIlHbwA-Zym3SSJFoqXSRHCmiLJ1BDFVpXOlM4bo_nccn8jDM3F0npwvjfpqm_ZR14Pm6nrQ1Jdtb-XkGiPfJxadHg8z51U5jyZlFa3AU3tmabZUqLdBmPN-YCujIiYyYdSLk_I8KukUbeim_Nc6rHHHSaRTV1jOTA_o5sOuyZUbPySkTUajTfjpt9H1oPwezGd6gH_-U3h81D63YKOnqOFeZ_IcnpjmBTwb-slwL2Gvi5OmDM1t77nhuArxDq9qDCeuT6Y009DS4bBuLmtdews1dzIG6uLuFZyNDn4MD0k_ioFgwpMZyeK4UryyxaaxSU-XKUrjpPqMiN0ISh5LzDNaKcxSZhRDyxtSp8wvuY0JFTN8G1abcWPeQKiF5CWVqJKSCV1hZoSgiKUjP7SUMoBPHoZi0iluFO1NOc-Lffp92OJ2FMCOR6joT920sHSOMUfiRAAfF8v247hLENWY8dzZCBezbGwL4HUH6OI13hMCSO9BvTBwWtz3Vyx0rSZ3D1UA29YpFvb__Oztox_5AdZO90fFty8nX9_BOnMtNTQmMd-B1dnN3OxaTjTT71vv_wtPeQnx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directed+evolution+of+cyclic+peptides+for+inhibition+of+autophagy&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Gray%2C+Joshua+P&rft.au=Uddin%2C+Md+Nasir&rft.au=Chaudhari%2C+Rajan&rft.au=Sutton%2C+Margie+N&rft.date=2021-01-13&rft.issn=2041-6520&rft.volume=12&rft.issue=10&rft.spage=3526&rft_id=info:doi/10.1039%2Fd0sc03603j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon