Methodological implementation of mixed linear models in multi-locus genome-wide association studies

Abstract The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on rando...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 19; no. 4; pp. 700 - 712
Main Authors Wen, Yang-Jun, Zhang, Hanwen, Ni, Yuan-Li, Huang, Bo, Zhang, Jin, Feng, Jian-Ying, Wang, Shi-Bo, Dunwell, Jim M, Zhang, Yuan-Ming, Wu, Rongling
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.07.2018
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.
AbstractList Abstract The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.
The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.
The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.
The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P -values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.
Author Wen, Yang-Jun
Zhang, Jin
Ni, Yuan-Li
Huang, Bo
Dunwell, Jim M
Feng, Jian-Ying
Zhang, Yuan-Ming
Zhang, Hanwen
Wu, Rongling
Wang, Shi-Bo
AuthorAffiliation 5 Public Health Sciences and Statistics and Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, USA
6 Center for Computational Biology, Beijing Forestry University, Beijing, China
4 School of Agriculture, Policy and Development, University of Reading, Berkshire, UK
2 Applied Science, University of British Columbia, Columbia, Canada
3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
AuthorAffiliation_xml – name: 2 Applied Science, University of British Columbia, Columbia, Canada
– name: 5 Public Health Sciences and Statistics and Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, USA
– name: 4 School of Agriculture, Policy and Development, University of Reading, Berkshire, UK
– name: 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
– name: 6 Center for Computational Biology, Beijing Forestry University, Beijing, China
– name: 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
Author_xml – sequence: 1
  givenname: Yang-Jun
  surname: Wen
  fullname: Wen, Yang-Jun
  organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
– sequence: 2
  givenname: Hanwen
  surname: Zhang
  fullname: Zhang, Hanwen
  email: soyzhang@njau.edu.cn
  organization: Applied Science, University of British Columbia, Columbia, Canada
– sequence: 3
  givenname: Yuan-Li
  surname: Ni
  fullname: Ni, Yuan-Li
  organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
– sequence: 4
  givenname: Bo
  surname: Huang
  fullname: Huang, Bo
  organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
– sequence: 5
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  email: soyzhang@njau.edu.cn
  organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
– sequence: 6
  givenname: Jian-Ying
  surname: Feng
  fullname: Feng, Jian-Ying
  organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
– sequence: 7
  givenname: Shi-Bo
  surname: Wang
  fullname: Wang, Shi-Bo
  organization: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
– sequence: 8
  givenname: Jim M
  surname: Dunwell
  fullname: Dunwell, Jim M
  organization: School of Agriculture, Policy and Development, University of Reading, Berkshire, UK
– sequence: 9
  givenname: Yuan-Ming
  surname: Zhang
  fullname: Zhang, Yuan-Ming
  email: soyzhang@njau.edu.cn
  organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
– sequence: 10
  givenname: Rongling
  surname: Wu
  fullname: Wu, Rongling
  email: rwu@phs.psu.edu
  organization: Public Health Sciences and Statistics and Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28158525$$D View this record in MEDLINE/PubMed
BookMark eNqFkltrFTEUhYNU7EVf_AESEEEKY5NMLpMXQYq2Qosv-hwymT2nKbkcJzNW_705TC22SH3agf2txc7e6xDtpZwAoZeUvKNEtye970_6_oZy8QQdUK5Uw4nge7u3VI3gst1Hh6VcE8KI6ugztM86KjrBxAFylzBf5SGHvPHOBuzjNkCENNvZ54TziKP_CQMOPoGdcMwDhIJ9wnEJs29CdkvBG0g5QnPjB8C2lOz8qi7zMngoz9HT0YYCL27rEfr26ePX0_Pm4svZ59MPF40TrZgbBYQAV3aUVKjeaTZQNYrBQa9htEIPnHactFLBoHXLHaNa0ZG3mnRKcgvtEXq_-m6XPkIVpnmywWwnH-30y2Trzf1O8ldmk38YWdfFNK0Gb28Npvx9gTKb6IuDEGyCvBTDOCdSd0TI_6K0k0K0jHU79PUD9DovU6qbMKwlgmghaVepV38Pfzf1n1NV4HgF3JRLmWC8QygxuxyYmgOz5qDC5AHs_HrS-nEf_i15s0rysn3M-jdzq8Sh
CitedBy_id crossref_primary_10_1038_hdy_2017_8
crossref_primary_10_1016_j_scienta_2023_112838
crossref_primary_10_1016_j_ygeno_2020_08_006
crossref_primary_10_1186_s12870_022_03900_6
crossref_primary_10_1186_s12870_024_05956_y
crossref_primary_10_3389_fpls_2019_01483
crossref_primary_10_3389_fpls_2022_927673
crossref_primary_10_3389_fgene_2023_1306519
crossref_primary_10_1038_s41598_025_91199_2
crossref_primary_10_3390_ijms21051577
crossref_primary_10_3390_agronomy14061183
crossref_primary_10_1111_pbr_13014
crossref_primary_10_1128_spectrum_01764_23
crossref_primary_10_3389_fpls_2022_1026581
crossref_primary_10_1038_s42003_023_04938_4
crossref_primary_10_1016_j_psj_2023_103191
crossref_primary_10_3390_plants12162970
crossref_primary_10_1016_j_cj_2020_07_004
crossref_primary_10_1093_gpbjnl_qzae020
crossref_primary_10_3390_vetsci12020109
crossref_primary_10_3389_fpls_2021_769247
crossref_primary_10_1016_j_molp_2022_02_012
crossref_primary_10_3389_fpls_2024_1386877
crossref_primary_10_3390_ijms25094667
crossref_primary_10_3390_plants11141826
crossref_primary_10_1186_s12870_024_05097_2
crossref_primary_10_1007_s10722_024_02066_4
crossref_primary_10_1007_s11032_023_01381_5
crossref_primary_10_3389_fhort_2024_1448159
crossref_primary_10_3390_plants12122367
crossref_primary_10_1007_s00122_020_03731_9
crossref_primary_10_1186_s13068_022_02191_1
crossref_primary_10_3389_fpls_2023_1229495
crossref_primary_10_1007_s11032_021_01209_0
crossref_primary_10_3389_fhort_2024_1365567
crossref_primary_10_3389_fpls_2023_1139574
crossref_primary_10_3389_fpls_2023_1241908
crossref_primary_10_3390_agriculture11070667
crossref_primary_10_3390_d15060724
crossref_primary_10_1186_s12870_020_02603_0
crossref_primary_10_1080_13102818_2022_2155569
crossref_primary_10_3389_fpls_2018_00611
crossref_primary_10_1038_s41598_019_45919_0
crossref_primary_10_1111_pce_13577
crossref_primary_10_48017_dj_v9i1_2798
crossref_primary_10_1371_journal_pone_0233366
crossref_primary_10_1002_tpg2_20436
crossref_primary_10_3390_genes11080892
crossref_primary_10_1016_j_plantsci_2019_110338
crossref_primary_10_3389_fpls_2021_697688
crossref_primary_10_3389_fpls_2024_1403276
crossref_primary_10_1016_j_xplc_2024_101196
crossref_primary_10_1186_s12864_020_6742_6
crossref_primary_10_3389_fpls_2019_00964
crossref_primary_10_1186_s12870_025_06285_4
crossref_primary_10_3389_fpls_2023_1250854
crossref_primary_10_1016_j_indcrop_2020_113004
crossref_primary_10_3389_fpls_2021_644799
crossref_primary_10_1093_jxb_erz256
crossref_primary_10_3390_ani9060305
crossref_primary_10_3390_ijms22137188
crossref_primary_10_3389_fpls_2018_01982
crossref_primary_10_3390_genes11121496
crossref_primary_10_1016_S2095_3119_21_63701_2
crossref_primary_10_3389_fpls_2018_01067
crossref_primary_10_1016_j_cj_2020_04_008
crossref_primary_10_1016_j_indcrop_2019_04_010
crossref_primary_10_1038_s41598_019_49737_2
crossref_primary_10_1002_bimj_202300130
crossref_primary_10_1111_tpj_14788
crossref_primary_10_3389_fgene_2022_961009
crossref_primary_10_1002_tpg2_20505
crossref_primary_10_1186_s12870_020_02604_z
crossref_primary_10_3389_fpls_2021_809522
crossref_primary_10_3390_plants13172520
crossref_primary_10_3389_fpls_2021_666796
crossref_primary_10_1002_tpg2_20500
crossref_primary_10_1007_s10722_023_01657_x
crossref_primary_10_3389_fpls_2020_00009
crossref_primary_10_3390_plants10102039
crossref_primary_10_1093_jas_skad121
crossref_primary_10_1038_s41598_019_54519_x
crossref_primary_10_1186_s12870_021_03146_8
crossref_primary_10_3389_fpls_2023_1194119
crossref_primary_10_1007_s00122_023_04528_2
crossref_primary_10_3389_fpls_2021_635914
crossref_primary_10_1016_j_sajb_2025_02_039
crossref_primary_10_3389_fpls_2022_1016551
crossref_primary_10_3389_fgene_2022_811924
crossref_primary_10_1016_j_psj_2022_102402
crossref_primary_10_1186_s12864_020_06833_2
crossref_primary_10_3389_fpls_2018_01169
crossref_primary_10_1186_s12870_020_02676_x
crossref_primary_10_1038_s41598_020_62034_7
crossref_primary_10_3390_ijms23094960
crossref_primary_10_3390_math12131944
crossref_primary_10_1007_s11032_025_01538_4
crossref_primary_10_1186_s13068_024_02489_2
crossref_primary_10_1007_s11032_020_01140_w
crossref_primary_10_1038_s41598_017_12778_6
crossref_primary_10_3390_genes10060419
crossref_primary_10_3390_plants13182638
crossref_primary_10_1038_s41598_021_83581_7
crossref_primary_10_1038_s41598_021_87964_8
crossref_primary_10_1038_s41598_021_95629_9
crossref_primary_10_1371_journal_pcbi_1012142
crossref_primary_10_1038_s41437_022_00525_1
crossref_primary_10_1038_s41598_024_64093_6
crossref_primary_10_1186_s12863_021_01017_7
crossref_primary_10_1186_s12870_024_04976_y
crossref_primary_10_3389_fgene_2020_00689
crossref_primary_10_3389_fpls_2022_946700
crossref_primary_10_1111_pbr_13226
crossref_primary_10_3389_fpls_2024_1469381
crossref_primary_10_1002_ps_7598
crossref_primary_10_1186_s12864_024_11037_z
crossref_primary_10_1186_s12917_024_04428_7
crossref_primary_10_1038_s41437_017_0007_4
crossref_primary_10_1007_s11032_019_1063_7
crossref_primary_10_3389_fpls_2018_01196
crossref_primary_10_1186_s12870_025_06135_3
crossref_primary_10_1038_s41598_018_30154_w
crossref_primary_10_1007_s11032_021_01230_3
crossref_primary_10_3389_fgene_2023_1292009
crossref_primary_10_3390_ijms231810575
crossref_primary_10_1038_s41598_019_39808_9
crossref_primary_10_1111_mec_16297
crossref_primary_10_1186_s12870_023_04215_w
crossref_primary_10_1007_s11033_023_08309_4
crossref_primary_10_1007_s00122_019_03398_x
crossref_primary_10_1007_s00299_024_03172_4
crossref_primary_10_1002_tpg2_20077
crossref_primary_10_3389_fgene_2020_590012
crossref_primary_10_3390_agronomy14102214
crossref_primary_10_3390_plants13131784
crossref_primary_10_3389_fpls_2024_1460353
crossref_primary_10_1007_s00122_024_04638_5
crossref_primary_10_3389_fpls_2021_695503
crossref_primary_10_3390_genes15081032
crossref_primary_10_1007_s00122_020_03691_0
crossref_primary_10_1038_s41598_021_03566_4
crossref_primary_10_3389_fpls_2024_1366173
crossref_primary_10_1093_hr_uhad243
crossref_primary_10_1007_s00344_024_11517_2
crossref_primary_10_3389_fpls_2023_1247181
crossref_primary_10_3390_agronomy14081762
crossref_primary_10_1007_s00122_021_03841_y
crossref_primary_10_3389_fgene_2021_742752
crossref_primary_10_13005_bbra_2988
crossref_primary_10_1186_s12870_023_04177_z
crossref_primary_10_3390_plants13243501
crossref_primary_10_1016_j_csbj_2022_06_014
crossref_primary_10_1007_s11032_022_01310_y
crossref_primary_10_3389_fgene_2021_701658
crossref_primary_10_1038_s41598_023_42856_x
crossref_primary_10_1007_s10142_023_01224_8
crossref_primary_10_1186_s12864_025_11344_z
crossref_primary_10_3389_fpls_2021_699569
crossref_primary_10_1111_tpj_14999
crossref_primary_10_1038_s41598_017_18800_1
crossref_primary_10_1111_jwas_12782
crossref_primary_10_3389_fpls_2018_01405
crossref_primary_10_3390_ijms26031126
crossref_primary_10_1002_tpg2_20136
crossref_primary_10_1038_s41598_020_78907_w
crossref_primary_10_1007_s11032_021_01239_8
crossref_primary_10_3390_ijms20020359
crossref_primary_10_1038_s41598_020_69890_3
crossref_primary_10_1016_j_envexpbot_2022_105019
crossref_primary_10_1016_j_gpb_2020_06_006
crossref_primary_10_3389_fgene_2021_745361
crossref_primary_10_1016_j_jia_2023_11_048
crossref_primary_10_1038_s41598_021_86127_z
crossref_primary_10_3389_fpls_2020_583738
crossref_primary_10_1186_s12870_024_04810_5
crossref_primary_10_3389_fpls_2018_01683
crossref_primary_10_3389_fgene_2021_649196
crossref_primary_10_1186_s12870_021_03127_x
crossref_primary_10_3390_genes14122126
crossref_primary_10_3390_ijms25031918
crossref_primary_10_3390_ijms232113546
crossref_primary_10_3389_fpls_2018_01311
crossref_primary_10_3389_fgene_2023_1168150
crossref_primary_10_3390_ijms23105538
crossref_primary_10_3390_ijms21165649
crossref_primary_10_1016_j_ajhg_2023_08_007
crossref_primary_10_3389_fpls_2021_777028
crossref_primary_10_1016_j_stress_2024_100707
crossref_primary_10_3389_fpls_2022_989847
crossref_primary_10_3389_fpls_2023_1221395
crossref_primary_10_3389_fpls_2019_00100
crossref_primary_10_3389_fpls_2019_01794
crossref_primary_10_3390_plants10112475
crossref_primary_10_1186_s12864_022_08676_5
crossref_primary_10_3389_fpls_2018_01464
crossref_primary_10_1590_1984_70332024v24n2a25
crossref_primary_10_1186_s12864_019_5992_7
crossref_primary_10_1016_j_ygeno_2021_07_014
crossref_primary_10_1016_j_indcrop_2024_118706
crossref_primary_10_1186_s12870_021_03046_x
crossref_primary_10_3389_fpls_2023_1304388
crossref_primary_10_3389_fpls_2023_1166728
crossref_primary_10_1016_j_plantsci_2024_112281
crossref_primary_10_1111_pbi_70011
crossref_primary_10_1186_s12870_024_05897_6
crossref_primary_10_3389_fpls_2023_1340767
crossref_primary_10_3835_plantgenome2019_05_0036
crossref_primary_10_3390_genes13122193
crossref_primary_10_3390_biom11101516
crossref_primary_10_1007_s00122_025_04858_3
crossref_primary_10_3389_fpls_2018_01690
crossref_primary_10_3389_fpls_2023_1166282
crossref_primary_10_3390_ijms242417624
crossref_primary_10_3389_fpls_2023_1182548
crossref_primary_10_1186_s12864_023_09757_9
crossref_primary_10_1038_s41598_024_51358_3
crossref_primary_10_3389_fpls_2021_748829
crossref_primary_10_3389_fpls_2022_1033120
crossref_primary_10_1007_s00122_020_03756_0
crossref_primary_10_1007_s00438_021_01785_y
crossref_primary_10_1093_bioinformatics_btaa294
crossref_primary_10_3390_genes11070714
crossref_primary_10_32604_phyton_2023_030928
crossref_primary_10_20900_cbgg20220002
crossref_primary_10_1186_s12870_021_03093_4
crossref_primary_10_1186_s12870_024_05754_6
crossref_primary_10_3389_fpls_2022_1048860
crossref_primary_10_3389_fpls_2023_1179357
crossref_primary_10_3389_fpls_2022_969301
crossref_primary_10_3389_fgene_2019_00905
crossref_primary_10_1016_j_csbj_2024_11_046
crossref_primary_10_3389_fgene_2020_507038
crossref_primary_10_1016_j_indcrop_2019_111877
crossref_primary_10_1016_j_jia_2024_03_037
crossref_primary_10_1186_s12864_023_09820_5
crossref_primary_10_3390_plants11192504
crossref_primary_10_1007_s00122_022_04104_0
crossref_primary_10_1038_s41437_019_0279_y
crossref_primary_10_3389_fpls_2018_01226
crossref_primary_10_3389_fpls_2022_1076744
crossref_primary_10_3390_genes14112004
crossref_primary_10_1038_s41598_020_80391_1
crossref_primary_10_1016_j_cj_2021_07_008
Cites_doi 10.1371/journal.pgen.0030004
10.1534/genetics.107.080101
10.1038/nmeth.1681
10.1214/09-STS306
10.1371/journal.pgen.1003264
10.1371/journal.pgen.1004969
10.1038/ng.3190
10.2307/2533274
10.1002/gepi.20543
10.1038/hdy.2009.180
10.2174/1875036201307010027
10.1104/pp.112.196725
10.1371/journal.pone.0017773
10.1371/journal.pgen.1000130
10.1038/srep19444
10.1038/ng.546
10.1038/nature08800
10.1371/journal.pone.0107684
10.1038/srep18376
10.1038/srep29951
10.1038/ng.2410
10.1105/tpc.108.059139
10.1111/j.1469-1809.2010.00597.x
10.1038/ng.3211
10.1038/ng.548
10.1038/ng.2314
10.1016/j.ajhg.2010.11.011
10.1007/s13253-010-0046-2
10.1186/s12915-014-0073-5
10.1111/j.1541-0420.2006.00711.x
10.1109/TPAMI.2003.1227989
10.1038/ng1702
10.1534/genetics.104.033217
10.1038/ng.2310
10.1534/genetics.107.085589
10.1534/genetics.113.157032
10.1038/ng1543
10.1534/genetics.115.179945
10.1038/nmeth.2037
10.1038/nrg2813
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press. 2017
The Author 2017. Published by Oxford University Press.
Copyright_xml – notice: The Author 2017. Published by Oxford University Press. 2017
– notice: The Author 2017. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1093/bib/bbw145
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 712
ExternalDocumentID PMC6054291
28158525
10_1093_bib_bbw145
10.1093/bib/bbw145
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Huazhong Agricultural University
  grantid: 2014RC020
  funderid: 10.13039/501100007925
– fundername: National Natural Science Foundation of China
  grantid: 31571268; 31301229
  funderid: 10.13039/501100001809
– fundername: ; ;
  grantid: 31571268; 31301229
– fundername: ; ;
  grantid: 2014RC020
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c535t-7e00e47af6157bc92d17f5dceb9efa59d41840367ed9934c21971f43908764ae3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 13:29:36 EDT 2025
Fri Jul 11 04:57:10 EDT 2025
Thu Jul 10 19:26:44 EDT 2025
Mon Jun 30 09:03:38 EDT 2025
Thu Apr 03 07:03:05 EDT 2025
Tue Jul 01 03:39:25 EDT 2025
Thu Apr 24 22:54:36 EDT 2025
Wed Apr 02 07:03:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords mixed linear model
random effect
multi-locus model
genome-wide association study
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-7e00e47af6157bc92d17f5dceb9efa59d41840367ed9934c21971f43908764ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbw145
PMID 28158525
PQID 2305095618
PQPubID 26846
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6054291
proquest_miscellaneous_2440698056
proquest_miscellaneous_1865532286
proquest_journals_2305095618
pubmed_primary_28158525
crossref_primary_10_1093_bib_bbw145
crossref_citationtrail_10_1093_bib_bbw145
oup_primary_10_1093_bib_bbw145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-20
PublicationDateYYYYMMDD 2018-07-20
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2018
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Li ( key 20180720034911_bbw145-B19) 2014; 12
Wang ( key 20180720034911_bbw145-B24) 2014; 9
Searle ( key 20180720034911_bbw145-B41) 1978
Zhou ( key 20180720034911_bbw145-B15) 2013; 9
Hoggart ( key 20180720034911_bbw145-B10) 2008; 4
Wang ( key 20180720034911_bbw145-B7) 2016; 6
Bulik-Sullivan ( key 20180720034911_bbw145-B6) 2015; 47
Yang ( key 20180720034911_bbw145-B36) 2011; 88
Demidenko ( key 20180720034911_bbw145-B42) 2013
Kang ( key 20180720034911_bbw145-B20) 2010; 42
Wen ( key 20180720034911_bbw145-B14) 2015; 5
Goddard ( key 20180720034911_bbw145-B25) 2009; 24
Li ( key 20180720034911_bbw145-B5) 2013; 7
Lippert ( key 20180720034911_bbw145-B21) 2011; 8
Lü ( key 20180720034911_bbw145-B13) 2011; 6
Xu ( key 20180720034911_bbw145-B28) 2010; 105
Atwell ( key 20180720034911_bbw145-B29) 2010; 465
Zhang ( key 20180720034911_bbw145-B18) 2010; 42
Figueiredo ( key 20180720034911_bbw145-B44) 2003; 25
Kang ( key 20180720034911_bbw145-B3) 2008; 178
Loh ( key 20180720034911_bbw145-B27) 2015; 47
Zhang ( key 20180720034911_bbw145-B1) 2005; 169
Price ( key 20180720034911_bbw145-B37) 2010; 11
Searle ( key 20180720034911_bbw145-B40) 2006
Ayers ( key 20180720034911_bbw145-B11) 2010; 34
Gilmour ( key 20180720034911_bbw145-B39) 1995; 51
Zhao ( key 20180720034911_bbw145-B43) 2007; 3
Wang ( key 20180720034911_bbw145-B9) 2010; 16
Stenvik ( key 20180720034911_bbw145-B32) 2008; 20
Wei ( key 20180720034911_bbw145-B34) 2016; 202
Listgarten ( key 20180720034911_bbw145-B22) 2012; 9
Wang ( key 20180720034911_bbw145-B35) 2016; 6
Schmid ( key 20180720034911_bbw145-B31) 2005; 37
Wang ( key 20180720034911_bbw145-B38) 2004
Yi ( key 20180720034911_bbw145-B8) 2008; 179
Zhou ( key 20180720034911_bbw145-B4) 2012; 44
Moser ( key 20180720034911_bbw145-B16) 2015; 11
Segura ( key 20180720034911_bbw145-B17) 2012; 44
Xu ( key 20180720034911_bbw145-B30) 2007; 63
Xu ( key 20180720034911_bbw145-B26) 2013; 195
Yu ( key 20180720034911_bbw145-B2) 2006; 38
Heyndrickx ( key 20180720034911_bbw145-B33) 2012; 159
Cho ( key 20180720034911_bbw145-B12) 2010; 74
Svishcheva ( key 20180720034911_bbw145-B23) 2012; 44
28334354 - Brief Bioinform. 2017 Sep 1;18(5):906
References_xml – volume: 3
  start-page: e4
  year: 2007
  ident: key 20180720034911_bbw145-B43
  article-title: An Arabidopsis example of association mapping in structured samples
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030004
– volume-title: Variance Components
  year: 2006
  ident: key 20180720034911_bbw145-B40
– volume: 178
  start-page: 1709
  year: 2008
  ident: key 20180720034911_bbw145-B3
  article-title: Efficient control of population structure in model organism association mapping
  publication-title: Genetics
  doi: 10.1534/genetics.107.080101
– volume: 8
  start-page: 833
  year: 2011
  ident: key 20180720034911_bbw145-B21
  article-title: Fast linear mixed models for genome-wide association studies
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1681
– volume: 24
  start-page: 517
  year: 2009
  ident: key 20180720034911_bbw145-B25
  article-title: Estimating effects and making predictions from genome-wide marker data
  publication-title: Stat Sci
  doi: 10.1214/09-STS306
– volume: 9
  start-page: e1003264.
  year: 2013
  ident: key 20180720034911_bbw145-B15
  article-title: Polygenic modeling with Bayesian sparse linear mixed models
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003264
– volume-title: An Introduction to Linear Models
  year: 2004
  ident: key 20180720034911_bbw145-B38
– volume-title: A Detailed Description of Recent Methods of Estimating Variance Components, with Applications in Animal Breeding
  year: 1978
  ident: key 20180720034911_bbw145-B41
– volume: 11
  start-page:  e1004969
  year: 2015
  ident: key 20180720034911_bbw145-B16
  article-title: Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004969
– volume: 47
  start-page: 284
  year: 2015
  ident: key 20180720034911_bbw145-B27
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat Genet
  doi: 10.1038/ng.3190
– volume: 51
  start-page:  1440
  year: 1995
  ident: key 20180720034911_bbw145-B39
  article-title: Average information REML: an efficient algorithm for variance parameters estimation in linear mixed models
  publication-title: Biometrics
  doi: 10.2307/2533274
– volume: 34
  start-page: 879
  year: 2010
  ident: key 20180720034911_bbw145-B11
  article-title: SNP selection in genome-wide and candidate gene studies via penalized logistic regression
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20543
– volume: 105
  start-page: 483
  year: 2010
  ident: key 20180720034911_bbw145-B28
  article-title: An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects
  publication-title: Heredity
  doi: 10.1038/hdy.2009.180
– volume: 7
  start-page: 27
  year: 2013
  ident: key 20180720034911_bbw145-B5
  article-title: Genetic Studies: the linear mixed models in genome-wide association studies
  publication-title: The Open Bioinformatics Journal
  doi: 10.2174/1875036201307010027
– volume: 159
  start-page: 884
  year: 2012
  ident: key 20180720034911_bbw145-B33
  article-title: Systematic identification of functional plant modules through the integration of complementary data sources
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.196725
– volume: 6
  start-page: e17773.
  year: 2011
  ident: key 20180720034911_bbw145-B13
  article-title: Epistatic association mapping in homozygous crop cultivars
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017773
– volume: 4
  start-page: e1000130
  year: 2008
  ident: key 20180720034911_bbw145-B10
  article-title: Simultaneous analysis of all SNPs in genome- wide and re-sequencing association studies
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000130
– volume: 6
  start-page: 19444
  year: 2016
  ident: key 20180720034911_bbw145-B7
  article-title: Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology
  publication-title: Sci Rep
  doi: 10.1038/srep19444
– volume: 42
  start-page: 355
  year: 2010
  ident: key 20180720034911_bbw145-B18
  article-title: Mixed linear model approach adapted for genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.546
– volume: 465
  start-page:  627
  year: 2010
  ident: key 20180720034911_bbw145-B29
  article-title: Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines
  publication-title: Nature
  doi: 10.1038/nature08800
– volume: 9
  start-page: e107684
  year: 2014
  ident: key 20180720034911_bbw145-B24
  article-title: A SUPER powerful method for genome wide association study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0107684
– volume: 5
  start-page: 18376
  year: 2015
  ident: key 20180720034911_bbw145-B14
  article-title: Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design
  publication-title: Sci Rep
  doi: 10.1038/srep18376
– volume: 6
  start-page: 29951
  year: 2016
  ident: key 20180720034911_bbw145-B35
  article-title: Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology
  publication-title: Sci Rep
  doi: 10.1038/srep29951
– volume: 44
  start-page: 1166
  year: 2012
  ident: key 20180720034911_bbw145-B23
  article-title: Rapid variance components-based method for whole-genome association analysis
  publication-title: Nat Genet
  doi: 10.1038/ng.2410
– volume: 20
  start-page: 1805
  year: 2008
  ident: key 20180720034911_bbw145-B32
  article-title: The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059139
– volume: 74
  start-page: 416
  year: 2010
  ident: key 20180720034911_bbw145-B12
  article-title: Joint identification of multiple genetic variants via Elastic-Net variable selection in a genome- wide association analysis
  publication-title: Ann Hum Genet
  doi: 10.1111/j.1469-1809.2010.00597.x
– volume: 47
  start-page: 291
  year: 2015
  ident: key 20180720034911_bbw145-B6
  article-title: LD score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.3211
– volume: 42
  start-page: 348
  year: 2010
  ident: key 20180720034911_bbw145-B20
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.548
– volume: 44
  start-page: 825
  year: 2012
  ident: key 20180720034911_bbw145-B17
  article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations
  publication-title: Nat Genet
  doi: 10.1038/ng.2314
– volume: 88
  start-page: 76
  year: 2011
  ident: key 20180720034911_bbw145-B36
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 16
  start-page: 170
  year: 2010
  ident: key 20180720034911_bbw145-B9
  article-title: Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO
  publication-title: J Agric Biol Environ Stat
  doi: 10.1007/s13253-010-0046-2
– volume: 12
  start-page: 73
  year: 2014
  ident: key 20180720034911_bbw145-B19
  article-title: Enrichment of statistical power for genome-wide association studies
  publication-title: BMC Biol
  doi: 10.1186/s12915-014-0073-5
– volume: 63
  start-page:  513
  year: 2007
  ident: key 20180720034911_bbw145-B30
  article-title: An empirical Bayes method for estimating epistatic effects of quantitative trait loci
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00711.x
– volume-title: Mixed Models: Theory and Applications with R
  year: 2013
  ident: key 20180720034911_bbw145-B42
– volume: 25
  start-page: 1151
  year: 2003
  ident: key 20180720034911_bbw145-B44
  article-title: Adaptive sparseness for supervised learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2003.1227989
– volume: 38
  start-page: 203
  year: 2006
  ident: key 20180720034911_bbw145-B2
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness
  publication-title: Nat Genet
  doi: 10.1038/ng1702
– volume: 169
  start-page: 2267
  year: 2005
  ident: key 20180720034911_bbw145-B1
  article-title: Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.)
  publication-title: Genetics
  doi: 10.1534/genetics.104.033217
– volume: 44
  start-page: 821
  year: 2012
  ident: key 20180720034911_bbw145-B4
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.2310
– volume: 179
  start-page: 1045
  issue: 2
  year: 2008
  ident: key 20180720034911_bbw145-B8
  article-title: Bayesian LASSO for quantitative trait loci mapping
  publication-title: Genetics
  doi: 10.1534/genetics.107.085589
– volume: 195
  start-page: 1209
  year: 2013
  ident: key 20180720034911_bbw145-B26
  article-title: Mapping quantitative trait loci by controlling polygenic background effects
  publication-title: Genetics
  doi: 10.1534/genetics.113.157032
– volume: 37
  start-page: 501
  year: 2005
  ident: key 20180720034911_bbw145-B31
  article-title: A gene expression map of Arabidopsis thaliana development
  publication-title: Nat Genet
  doi: 10.1038/ng1543
– volume: 202
  start-page: 471
  year: 2016
  ident: key 20180720034911_bbw145-B34
  article-title: A random-model approach to QTL mapping in multiparent advanced generation intercross (MAGIC) populations
  publication-title: Genetics
  doi: 10.1534/genetics.115.179945
– volume: 9
  start-page: 525
  issue: 6
  year: 2012
  ident: key 20180720034911_bbw145-B22
  article-title: Improved linear mixed models for genome-wide association studies
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2037
– volume: 11
  start-page: 459
  year: 2010
  ident: key 20180720034911_bbw145-B37
  article-title: New approaches to population stratification in genome-wide association studies
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2813
– reference: 28334354 - Brief Bioinform. 2017 Sep 1;18(5):906
SSID ssj0020781
Score 2.6251633
Snippet Abstract The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been...
The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 700
SubjectTerms Algorithms
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Background noise
Bayes Theorem
Bayesian analysis
Computer Simulation
Covariance matrix
Eigenvalues
Empirical analysis
Genome-wide association studies
genome-wide association study
Genome-Wide Association Study - methods
Genomes
Linear Models
Loci
Models, Genetic
Multifactorial Inheritance
Nucleotides
Phenotype
Polygenic inheritance
Polymorphism
Polymorphism, Single Nucleotide
quantitative traits
Single-nucleotide polymorphism
Software Review
variance covariance matrix
Title Methodological implementation of mixed linear models in multi-locus genome-wide association studies
URI https://www.ncbi.nlm.nih.gov/pubmed/28158525
https://www.proquest.com/docview/2305095618
https://www.proquest.com/docview/1865532286
https://www.proquest.com/docview/2440698056
https://pubmed.ncbi.nlm.nih.gov/PMC6054291
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwELUQEhIXVAqlC3TlCi49WDiJEzvHqgKhSksvIO0tsuOJGqmbrTa7Av49M_mCIErPnkj2jO15E8-8YezcuByiUIIwYCOhFIY7qVRKpCoPHVVySk_FybOb5PpO_ZzH8y6Jpn7jCT-NLlzpLpy7DxSVkqP3JYb821_zIawiupq2hkgLInfvSUhHn47czqiU7QWifJ0Y-cLTXH1gex1E5N9bm-6zLag-sp22aeTjActnTdPn_tLi5aJPAScd82XBF-UDeE740a540-qm5mXFm9xBgc5rU3OiZl2AuC89cPtsIV63aYWH7O7q8vbHtehaJYg8juK10CAlKG0LBCja5WnoA13EuA6XQmHj1CuK5KJEg0dAgnYIUh0UCEaIkU5ZiD6x7WpZwWfGAaRX1nrrCq28dCaMCmsLJUEmkBgzYd96TWZ5xyNO7Sz-ZO17dpSh1rNW6xN2Nsj-bdkz3pSaokHeFTjtbZV1R6zOMHaKiUUxwBl9HYbxcNCLh61guamzgMpu8coyyb9lEN_IJDUIBCfsqDX_MJXQBBhOhTgBPdoYgwCRc49HqvJ3Q9KNYSK6-uD4f2s7YbuIwQz9Lg7lKdterzbwBXHO2k2bbf4EvRz-bA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodological+implementation+of+mixed+linear+models+in+multi-locus+genome-wide+association+studies&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wen%2C+Yang-Jun&rft.au=Zhang%2C+Hanwen&rft.au=Ni%2C+Yuan-Li&rft.au=Huang%2C+Bo&rft.date=2018-07-20&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=19&rft.issue=4&rft.spage=700&rft.epage=712&rft_id=info:doi/10.1093%2Fbib%2Fbbw145&rft.externalDocID=10.1093%2Fbib%2Fbbw145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon