Methodological implementation of mixed linear models in multi-locus genome-wide association studies
Abstract The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on rando...
Saved in:
Published in | Briefings in bioinformatics Vol. 19; no. 4; pp. 700 - 712 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
20.07.2018
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS. |
---|---|
AbstractList | Abstract
The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS. The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS. The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS. The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P -values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS. |
Author | Wen, Yang-Jun Zhang, Jin Ni, Yuan-Li Huang, Bo Dunwell, Jim M Feng, Jian-Ying Zhang, Yuan-Ming Zhang, Hanwen Wu, Rongling Wang, Shi-Bo |
AuthorAffiliation | 5 Public Health Sciences and Statistics and Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, USA 6 Center for Computational Biology, Beijing Forestry University, Beijing, China 4 School of Agriculture, Policy and Development, University of Reading, Berkshire, UK 2 Applied Science, University of British Columbia, Columbia, Canada 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China |
AuthorAffiliation_xml | – name: 2 Applied Science, University of British Columbia, Columbia, Canada – name: 5 Public Health Sciences and Statistics and Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, USA – name: 4 School of Agriculture, Policy and Development, University of Reading, Berkshire, UK – name: 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China – name: 6 Center for Computational Biology, Beijing Forestry University, Beijing, China – name: 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China |
Author_xml | – sequence: 1 givenname: Yang-Jun surname: Wen fullname: Wen, Yang-Jun organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China – sequence: 2 givenname: Hanwen surname: Zhang fullname: Zhang, Hanwen email: soyzhang@njau.edu.cn organization: Applied Science, University of British Columbia, Columbia, Canada – sequence: 3 givenname: Yuan-Li surname: Ni fullname: Ni, Yuan-Li organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China – sequence: 4 givenname: Bo surname: Huang fullname: Huang, Bo organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China – sequence: 5 givenname: Jin surname: Zhang fullname: Zhang, Jin email: soyzhang@njau.edu.cn organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China – sequence: 6 givenname: Jian-Ying surname: Feng fullname: Feng, Jian-Ying organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China – sequence: 7 givenname: Shi-Bo surname: Wang fullname: Wang, Shi-Bo organization: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China – sequence: 8 givenname: Jim M surname: Dunwell fullname: Dunwell, Jim M organization: School of Agriculture, Policy and Development, University of Reading, Berkshire, UK – sequence: 9 givenname: Yuan-Ming surname: Zhang fullname: Zhang, Yuan-Ming email: soyzhang@njau.edu.cn organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China – sequence: 10 givenname: Rongling surname: Wu fullname: Wu, Rongling email: rwu@phs.psu.edu organization: Public Health Sciences and Statistics and Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28158525$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkltrFTEUhYNU7EVf_AESEEEKY5NMLpMXQYq2Qosv-hwymT2nKbkcJzNW_705TC22SH3agf2txc7e6xDtpZwAoZeUvKNEtye970_6_oZy8QQdUK5Uw4nge7u3VI3gst1Hh6VcE8KI6ugztM86KjrBxAFylzBf5SGHvPHOBuzjNkCENNvZ54TziKP_CQMOPoGdcMwDhIJ9wnEJs29CdkvBG0g5QnPjB8C2lOz8qi7zMngoz9HT0YYCL27rEfr26ePX0_Pm4svZ59MPF40TrZgbBYQAV3aUVKjeaTZQNYrBQa9htEIPnHactFLBoHXLHaNa0ZG3mnRKcgvtEXq_-m6XPkIVpnmywWwnH-30y2Trzf1O8ldmk38YWdfFNK0Gb28Npvx9gTKb6IuDEGyCvBTDOCdSd0TI_6K0k0K0jHU79PUD9DovU6qbMKwlgmghaVepV38Pfzf1n1NV4HgF3JRLmWC8QygxuxyYmgOz5qDC5AHs_HrS-nEf_i15s0rysn3M-jdzq8Sh |
CitedBy_id | crossref_primary_10_1038_hdy_2017_8 crossref_primary_10_1016_j_scienta_2023_112838 crossref_primary_10_1016_j_ygeno_2020_08_006 crossref_primary_10_1186_s12870_022_03900_6 crossref_primary_10_1186_s12870_024_05956_y crossref_primary_10_3389_fpls_2019_01483 crossref_primary_10_3389_fpls_2022_927673 crossref_primary_10_3389_fgene_2023_1306519 crossref_primary_10_1038_s41598_025_91199_2 crossref_primary_10_3390_ijms21051577 crossref_primary_10_3390_agronomy14061183 crossref_primary_10_1111_pbr_13014 crossref_primary_10_1128_spectrum_01764_23 crossref_primary_10_3389_fpls_2022_1026581 crossref_primary_10_1038_s42003_023_04938_4 crossref_primary_10_1016_j_psj_2023_103191 crossref_primary_10_3390_plants12162970 crossref_primary_10_1016_j_cj_2020_07_004 crossref_primary_10_1093_gpbjnl_qzae020 crossref_primary_10_3390_vetsci12020109 crossref_primary_10_3389_fpls_2021_769247 crossref_primary_10_1016_j_molp_2022_02_012 crossref_primary_10_3389_fpls_2024_1386877 crossref_primary_10_3390_ijms25094667 crossref_primary_10_3390_plants11141826 crossref_primary_10_1186_s12870_024_05097_2 crossref_primary_10_1007_s10722_024_02066_4 crossref_primary_10_1007_s11032_023_01381_5 crossref_primary_10_3389_fhort_2024_1448159 crossref_primary_10_3390_plants12122367 crossref_primary_10_1007_s00122_020_03731_9 crossref_primary_10_1186_s13068_022_02191_1 crossref_primary_10_3389_fpls_2023_1229495 crossref_primary_10_1007_s11032_021_01209_0 crossref_primary_10_3389_fhort_2024_1365567 crossref_primary_10_3389_fpls_2023_1139574 crossref_primary_10_3389_fpls_2023_1241908 crossref_primary_10_3390_agriculture11070667 crossref_primary_10_3390_d15060724 crossref_primary_10_1186_s12870_020_02603_0 crossref_primary_10_1080_13102818_2022_2155569 crossref_primary_10_3389_fpls_2018_00611 crossref_primary_10_1038_s41598_019_45919_0 crossref_primary_10_1111_pce_13577 crossref_primary_10_48017_dj_v9i1_2798 crossref_primary_10_1371_journal_pone_0233366 crossref_primary_10_1002_tpg2_20436 crossref_primary_10_3390_genes11080892 crossref_primary_10_1016_j_plantsci_2019_110338 crossref_primary_10_3389_fpls_2021_697688 crossref_primary_10_3389_fpls_2024_1403276 crossref_primary_10_1016_j_xplc_2024_101196 crossref_primary_10_1186_s12864_020_6742_6 crossref_primary_10_3389_fpls_2019_00964 crossref_primary_10_1186_s12870_025_06285_4 crossref_primary_10_3389_fpls_2023_1250854 crossref_primary_10_1016_j_indcrop_2020_113004 crossref_primary_10_3389_fpls_2021_644799 crossref_primary_10_1093_jxb_erz256 crossref_primary_10_3390_ani9060305 crossref_primary_10_3390_ijms22137188 crossref_primary_10_3389_fpls_2018_01982 crossref_primary_10_3390_genes11121496 crossref_primary_10_1016_S2095_3119_21_63701_2 crossref_primary_10_3389_fpls_2018_01067 crossref_primary_10_1016_j_cj_2020_04_008 crossref_primary_10_1016_j_indcrop_2019_04_010 crossref_primary_10_1038_s41598_019_49737_2 crossref_primary_10_1002_bimj_202300130 crossref_primary_10_1111_tpj_14788 crossref_primary_10_3389_fgene_2022_961009 crossref_primary_10_1002_tpg2_20505 crossref_primary_10_1186_s12870_020_02604_z crossref_primary_10_3389_fpls_2021_809522 crossref_primary_10_3390_plants13172520 crossref_primary_10_3389_fpls_2021_666796 crossref_primary_10_1002_tpg2_20500 crossref_primary_10_1007_s10722_023_01657_x crossref_primary_10_3389_fpls_2020_00009 crossref_primary_10_3390_plants10102039 crossref_primary_10_1093_jas_skad121 crossref_primary_10_1038_s41598_019_54519_x crossref_primary_10_1186_s12870_021_03146_8 crossref_primary_10_3389_fpls_2023_1194119 crossref_primary_10_1007_s00122_023_04528_2 crossref_primary_10_3389_fpls_2021_635914 crossref_primary_10_1016_j_sajb_2025_02_039 crossref_primary_10_3389_fpls_2022_1016551 crossref_primary_10_3389_fgene_2022_811924 crossref_primary_10_1016_j_psj_2022_102402 crossref_primary_10_1186_s12864_020_06833_2 crossref_primary_10_3389_fpls_2018_01169 crossref_primary_10_1186_s12870_020_02676_x crossref_primary_10_1038_s41598_020_62034_7 crossref_primary_10_3390_ijms23094960 crossref_primary_10_3390_math12131944 crossref_primary_10_1007_s11032_025_01538_4 crossref_primary_10_1186_s13068_024_02489_2 crossref_primary_10_1007_s11032_020_01140_w crossref_primary_10_1038_s41598_017_12778_6 crossref_primary_10_3390_genes10060419 crossref_primary_10_3390_plants13182638 crossref_primary_10_1038_s41598_021_83581_7 crossref_primary_10_1038_s41598_021_87964_8 crossref_primary_10_1038_s41598_021_95629_9 crossref_primary_10_1371_journal_pcbi_1012142 crossref_primary_10_1038_s41437_022_00525_1 crossref_primary_10_1038_s41598_024_64093_6 crossref_primary_10_1186_s12863_021_01017_7 crossref_primary_10_1186_s12870_024_04976_y crossref_primary_10_3389_fgene_2020_00689 crossref_primary_10_3389_fpls_2022_946700 crossref_primary_10_1111_pbr_13226 crossref_primary_10_3389_fpls_2024_1469381 crossref_primary_10_1002_ps_7598 crossref_primary_10_1186_s12864_024_11037_z crossref_primary_10_1186_s12917_024_04428_7 crossref_primary_10_1038_s41437_017_0007_4 crossref_primary_10_1007_s11032_019_1063_7 crossref_primary_10_3389_fpls_2018_01196 crossref_primary_10_1186_s12870_025_06135_3 crossref_primary_10_1038_s41598_018_30154_w crossref_primary_10_1007_s11032_021_01230_3 crossref_primary_10_3389_fgene_2023_1292009 crossref_primary_10_3390_ijms231810575 crossref_primary_10_1038_s41598_019_39808_9 crossref_primary_10_1111_mec_16297 crossref_primary_10_1186_s12870_023_04215_w crossref_primary_10_1007_s11033_023_08309_4 crossref_primary_10_1007_s00122_019_03398_x crossref_primary_10_1007_s00299_024_03172_4 crossref_primary_10_1002_tpg2_20077 crossref_primary_10_3389_fgene_2020_590012 crossref_primary_10_3390_agronomy14102214 crossref_primary_10_3390_plants13131784 crossref_primary_10_3389_fpls_2024_1460353 crossref_primary_10_1007_s00122_024_04638_5 crossref_primary_10_3389_fpls_2021_695503 crossref_primary_10_3390_genes15081032 crossref_primary_10_1007_s00122_020_03691_0 crossref_primary_10_1038_s41598_021_03566_4 crossref_primary_10_3389_fpls_2024_1366173 crossref_primary_10_1093_hr_uhad243 crossref_primary_10_1007_s00344_024_11517_2 crossref_primary_10_3389_fpls_2023_1247181 crossref_primary_10_3390_agronomy14081762 crossref_primary_10_1007_s00122_021_03841_y crossref_primary_10_3389_fgene_2021_742752 crossref_primary_10_13005_bbra_2988 crossref_primary_10_1186_s12870_023_04177_z crossref_primary_10_3390_plants13243501 crossref_primary_10_1016_j_csbj_2022_06_014 crossref_primary_10_1007_s11032_022_01310_y crossref_primary_10_3389_fgene_2021_701658 crossref_primary_10_1038_s41598_023_42856_x crossref_primary_10_1007_s10142_023_01224_8 crossref_primary_10_1186_s12864_025_11344_z crossref_primary_10_3389_fpls_2021_699569 crossref_primary_10_1111_tpj_14999 crossref_primary_10_1038_s41598_017_18800_1 crossref_primary_10_1111_jwas_12782 crossref_primary_10_3389_fpls_2018_01405 crossref_primary_10_3390_ijms26031126 crossref_primary_10_1002_tpg2_20136 crossref_primary_10_1038_s41598_020_78907_w crossref_primary_10_1007_s11032_021_01239_8 crossref_primary_10_3390_ijms20020359 crossref_primary_10_1038_s41598_020_69890_3 crossref_primary_10_1016_j_envexpbot_2022_105019 crossref_primary_10_1016_j_gpb_2020_06_006 crossref_primary_10_3389_fgene_2021_745361 crossref_primary_10_1016_j_jia_2023_11_048 crossref_primary_10_1038_s41598_021_86127_z crossref_primary_10_3389_fpls_2020_583738 crossref_primary_10_1186_s12870_024_04810_5 crossref_primary_10_3389_fpls_2018_01683 crossref_primary_10_3389_fgene_2021_649196 crossref_primary_10_1186_s12870_021_03127_x crossref_primary_10_3390_genes14122126 crossref_primary_10_3390_ijms25031918 crossref_primary_10_3390_ijms232113546 crossref_primary_10_3389_fpls_2018_01311 crossref_primary_10_3389_fgene_2023_1168150 crossref_primary_10_3390_ijms23105538 crossref_primary_10_3390_ijms21165649 crossref_primary_10_1016_j_ajhg_2023_08_007 crossref_primary_10_3389_fpls_2021_777028 crossref_primary_10_1016_j_stress_2024_100707 crossref_primary_10_3389_fpls_2022_989847 crossref_primary_10_3389_fpls_2023_1221395 crossref_primary_10_3389_fpls_2019_00100 crossref_primary_10_3389_fpls_2019_01794 crossref_primary_10_3390_plants10112475 crossref_primary_10_1186_s12864_022_08676_5 crossref_primary_10_3389_fpls_2018_01464 crossref_primary_10_1590_1984_70332024v24n2a25 crossref_primary_10_1186_s12864_019_5992_7 crossref_primary_10_1016_j_ygeno_2021_07_014 crossref_primary_10_1016_j_indcrop_2024_118706 crossref_primary_10_1186_s12870_021_03046_x crossref_primary_10_3389_fpls_2023_1304388 crossref_primary_10_3389_fpls_2023_1166728 crossref_primary_10_1016_j_plantsci_2024_112281 crossref_primary_10_1111_pbi_70011 crossref_primary_10_1186_s12870_024_05897_6 crossref_primary_10_3389_fpls_2023_1340767 crossref_primary_10_3835_plantgenome2019_05_0036 crossref_primary_10_3390_genes13122193 crossref_primary_10_3390_biom11101516 crossref_primary_10_1007_s00122_025_04858_3 crossref_primary_10_3389_fpls_2018_01690 crossref_primary_10_3389_fpls_2023_1166282 crossref_primary_10_3390_ijms242417624 crossref_primary_10_3389_fpls_2023_1182548 crossref_primary_10_1186_s12864_023_09757_9 crossref_primary_10_1038_s41598_024_51358_3 crossref_primary_10_3389_fpls_2021_748829 crossref_primary_10_3389_fpls_2022_1033120 crossref_primary_10_1007_s00122_020_03756_0 crossref_primary_10_1007_s00438_021_01785_y crossref_primary_10_1093_bioinformatics_btaa294 crossref_primary_10_3390_genes11070714 crossref_primary_10_32604_phyton_2023_030928 crossref_primary_10_20900_cbgg20220002 crossref_primary_10_1186_s12870_021_03093_4 crossref_primary_10_1186_s12870_024_05754_6 crossref_primary_10_3389_fpls_2022_1048860 crossref_primary_10_3389_fpls_2023_1179357 crossref_primary_10_3389_fpls_2022_969301 crossref_primary_10_3389_fgene_2019_00905 crossref_primary_10_1016_j_csbj_2024_11_046 crossref_primary_10_3389_fgene_2020_507038 crossref_primary_10_1016_j_indcrop_2019_111877 crossref_primary_10_1016_j_jia_2024_03_037 crossref_primary_10_1186_s12864_023_09820_5 crossref_primary_10_3390_plants11192504 crossref_primary_10_1007_s00122_022_04104_0 crossref_primary_10_1038_s41437_019_0279_y crossref_primary_10_3389_fpls_2018_01226 crossref_primary_10_3389_fpls_2022_1076744 crossref_primary_10_3390_genes14112004 crossref_primary_10_1038_s41598_020_80391_1 crossref_primary_10_1016_j_cj_2021_07_008 |
Cites_doi | 10.1371/journal.pgen.0030004 10.1534/genetics.107.080101 10.1038/nmeth.1681 10.1214/09-STS306 10.1371/journal.pgen.1003264 10.1371/journal.pgen.1004969 10.1038/ng.3190 10.2307/2533274 10.1002/gepi.20543 10.1038/hdy.2009.180 10.2174/1875036201307010027 10.1104/pp.112.196725 10.1371/journal.pone.0017773 10.1371/journal.pgen.1000130 10.1038/srep19444 10.1038/ng.546 10.1038/nature08800 10.1371/journal.pone.0107684 10.1038/srep18376 10.1038/srep29951 10.1038/ng.2410 10.1105/tpc.108.059139 10.1111/j.1469-1809.2010.00597.x 10.1038/ng.3211 10.1038/ng.548 10.1038/ng.2314 10.1016/j.ajhg.2010.11.011 10.1007/s13253-010-0046-2 10.1186/s12915-014-0073-5 10.1111/j.1541-0420.2006.00711.x 10.1109/TPAMI.2003.1227989 10.1038/ng1702 10.1534/genetics.104.033217 10.1038/ng.2310 10.1534/genetics.107.085589 10.1534/genetics.113.157032 10.1038/ng1543 10.1534/genetics.115.179945 10.1038/nmeth.2037 10.1038/nrg2813 |
ContentType | Journal Article |
Copyright | The Author 2017. Published by Oxford University Press. 2017 The Author 2017. Published by Oxford University Press. |
Copyright_xml | – notice: The Author 2017. Published by Oxford University Press. 2017 – notice: The Author 2017. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1093/bib/bbw145 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 712 |
ExternalDocumentID | PMC6054291 28158525 10_1093_bib_bbw145 10.1093/bib/bbw145 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Huazhong Agricultural University grantid: 2014RC020 funderid: 10.13039/501100007925 – fundername: National Natural Science Foundation of China grantid: 31571268; 31301229 funderid: 10.13039/501100001809 – fundername: ; ; grantid: 31571268; 31301229 – fundername: ; ; grantid: 2014RC020 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c535t-7e00e47af6157bc92d17f5dceb9efa59d41840367ed9934c21971f43908764ae3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 13:29:36 EDT 2025 Fri Jul 11 04:57:10 EDT 2025 Thu Jul 10 19:26:44 EDT 2025 Mon Jun 30 09:03:38 EDT 2025 Thu Apr 03 07:03:05 EDT 2025 Tue Jul 01 03:39:25 EDT 2025 Thu Apr 24 22:54:36 EDT 2025 Wed Apr 02 07:03:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | mixed linear model random effect multi-locus model genome-wide association study |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-7e00e47af6157bc92d17f5dceb9efa59d41840367ed9934c21971f43908764ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbw145 |
PMID | 28158525 |
PQID | 2305095618 |
PQPubID | 26846 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6054291 proquest_miscellaneous_2440698056 proquest_miscellaneous_1865532286 proquest_journals_2305095618 pubmed_primary_28158525 crossref_primary_10_1093_bib_bbw145 crossref_citationtrail_10_1093_bib_bbw145 oup_primary_10_1093_bib_bbw145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-20 |
PublicationDateYYYYMMDD | 2018-07-20 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2018 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Li ( key 20180720034911_bbw145-B19) 2014; 12 Wang ( key 20180720034911_bbw145-B24) 2014; 9 Searle ( key 20180720034911_bbw145-B41) 1978 Zhou ( key 20180720034911_bbw145-B15) 2013; 9 Hoggart ( key 20180720034911_bbw145-B10) 2008; 4 Wang ( key 20180720034911_bbw145-B7) 2016; 6 Bulik-Sullivan ( key 20180720034911_bbw145-B6) 2015; 47 Yang ( key 20180720034911_bbw145-B36) 2011; 88 Demidenko ( key 20180720034911_bbw145-B42) 2013 Kang ( key 20180720034911_bbw145-B20) 2010; 42 Wen ( key 20180720034911_bbw145-B14) 2015; 5 Goddard ( key 20180720034911_bbw145-B25) 2009; 24 Li ( key 20180720034911_bbw145-B5) 2013; 7 Lippert ( key 20180720034911_bbw145-B21) 2011; 8 Lü ( key 20180720034911_bbw145-B13) 2011; 6 Xu ( key 20180720034911_bbw145-B28) 2010; 105 Atwell ( key 20180720034911_bbw145-B29) 2010; 465 Zhang ( key 20180720034911_bbw145-B18) 2010; 42 Figueiredo ( key 20180720034911_bbw145-B44) 2003; 25 Kang ( key 20180720034911_bbw145-B3) 2008; 178 Loh ( key 20180720034911_bbw145-B27) 2015; 47 Zhang ( key 20180720034911_bbw145-B1) 2005; 169 Price ( key 20180720034911_bbw145-B37) 2010; 11 Searle ( key 20180720034911_bbw145-B40) 2006 Ayers ( key 20180720034911_bbw145-B11) 2010; 34 Gilmour ( key 20180720034911_bbw145-B39) 1995; 51 Zhao ( key 20180720034911_bbw145-B43) 2007; 3 Wang ( key 20180720034911_bbw145-B9) 2010; 16 Stenvik ( key 20180720034911_bbw145-B32) 2008; 20 Wei ( key 20180720034911_bbw145-B34) 2016; 202 Listgarten ( key 20180720034911_bbw145-B22) 2012; 9 Wang ( key 20180720034911_bbw145-B35) 2016; 6 Schmid ( key 20180720034911_bbw145-B31) 2005; 37 Wang ( key 20180720034911_bbw145-B38) 2004 Yi ( key 20180720034911_bbw145-B8) 2008; 179 Zhou ( key 20180720034911_bbw145-B4) 2012; 44 Moser ( key 20180720034911_bbw145-B16) 2015; 11 Segura ( key 20180720034911_bbw145-B17) 2012; 44 Xu ( key 20180720034911_bbw145-B30) 2007; 63 Xu ( key 20180720034911_bbw145-B26) 2013; 195 Yu ( key 20180720034911_bbw145-B2) 2006; 38 Heyndrickx ( key 20180720034911_bbw145-B33) 2012; 159 Cho ( key 20180720034911_bbw145-B12) 2010; 74 Svishcheva ( key 20180720034911_bbw145-B23) 2012; 44 28334354 - Brief Bioinform. 2017 Sep 1;18(5):906 |
References_xml | – volume: 3 start-page: e4 year: 2007 ident: key 20180720034911_bbw145-B43 article-title: An Arabidopsis example of association mapping in structured samples publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030004 – volume-title: Variance Components year: 2006 ident: key 20180720034911_bbw145-B40 – volume: 178 start-page: 1709 year: 2008 ident: key 20180720034911_bbw145-B3 article-title: Efficient control of population structure in model organism association mapping publication-title: Genetics doi: 10.1534/genetics.107.080101 – volume: 8 start-page: 833 year: 2011 ident: key 20180720034911_bbw145-B21 article-title: Fast linear mixed models for genome-wide association studies publication-title: Nat Methods doi: 10.1038/nmeth.1681 – volume: 24 start-page: 517 year: 2009 ident: key 20180720034911_bbw145-B25 article-title: Estimating effects and making predictions from genome-wide marker data publication-title: Stat Sci doi: 10.1214/09-STS306 – volume: 9 start-page: e1003264. year: 2013 ident: key 20180720034911_bbw145-B15 article-title: Polygenic modeling with Bayesian sparse linear mixed models publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003264 – volume-title: An Introduction to Linear Models year: 2004 ident: key 20180720034911_bbw145-B38 – volume-title: A Detailed Description of Recent Methods of Estimating Variance Components, with Applications in Animal Breeding year: 1978 ident: key 20180720034911_bbw145-B41 – volume: 11 start-page: e1004969 year: 2015 ident: key 20180720034911_bbw145-B16 article-title: Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004969 – volume: 47 start-page: 284 year: 2015 ident: key 20180720034911_bbw145-B27 article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts publication-title: Nat Genet doi: 10.1038/ng.3190 – volume: 51 start-page: 1440 year: 1995 ident: key 20180720034911_bbw145-B39 article-title: Average information REML: an efficient algorithm for variance parameters estimation in linear mixed models publication-title: Biometrics doi: 10.2307/2533274 – volume: 34 start-page: 879 year: 2010 ident: key 20180720034911_bbw145-B11 article-title: SNP selection in genome-wide and candidate gene studies via penalized logistic regression publication-title: Genet Epidemiol doi: 10.1002/gepi.20543 – volume: 105 start-page: 483 year: 2010 ident: key 20180720034911_bbw145-B28 article-title: An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects publication-title: Heredity doi: 10.1038/hdy.2009.180 – volume: 7 start-page: 27 year: 2013 ident: key 20180720034911_bbw145-B5 article-title: Genetic Studies: the linear mixed models in genome-wide association studies publication-title: The Open Bioinformatics Journal doi: 10.2174/1875036201307010027 – volume: 159 start-page: 884 year: 2012 ident: key 20180720034911_bbw145-B33 article-title: Systematic identification of functional plant modules through the integration of complementary data sources publication-title: Plant Physiol doi: 10.1104/pp.112.196725 – volume: 6 start-page: e17773. year: 2011 ident: key 20180720034911_bbw145-B13 article-title: Epistatic association mapping in homozygous crop cultivars publication-title: PLoS One doi: 10.1371/journal.pone.0017773 – volume: 4 start-page: e1000130 year: 2008 ident: key 20180720034911_bbw145-B10 article-title: Simultaneous analysis of all SNPs in genome- wide and re-sequencing association studies publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000130 – volume: 6 start-page: 19444 year: 2016 ident: key 20180720034911_bbw145-B7 article-title: Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology publication-title: Sci Rep doi: 10.1038/srep19444 – volume: 42 start-page: 355 year: 2010 ident: key 20180720034911_bbw145-B18 article-title: Mixed linear model approach adapted for genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng.546 – volume: 465 start-page: 627 year: 2010 ident: key 20180720034911_bbw145-B29 article-title: Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines publication-title: Nature doi: 10.1038/nature08800 – volume: 9 start-page: e107684 year: 2014 ident: key 20180720034911_bbw145-B24 article-title: A SUPER powerful method for genome wide association study publication-title: PLoS One doi: 10.1371/journal.pone.0107684 – volume: 5 start-page: 18376 year: 2015 ident: key 20180720034911_bbw145-B14 article-title: Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design publication-title: Sci Rep doi: 10.1038/srep18376 – volume: 6 start-page: 29951 year: 2016 ident: key 20180720034911_bbw145-B35 article-title: Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology publication-title: Sci Rep doi: 10.1038/srep29951 – volume: 44 start-page: 1166 year: 2012 ident: key 20180720034911_bbw145-B23 article-title: Rapid variance components-based method for whole-genome association analysis publication-title: Nat Genet doi: 10.1038/ng.2410 – volume: 20 start-page: 1805 year: 2008 ident: key 20180720034911_bbw145-B32 article-title: The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2 publication-title: Plant Cell doi: 10.1105/tpc.108.059139 – volume: 74 start-page: 416 year: 2010 ident: key 20180720034911_bbw145-B12 article-title: Joint identification of multiple genetic variants via Elastic-Net variable selection in a genome- wide association analysis publication-title: Ann Hum Genet doi: 10.1111/j.1469-1809.2010.00597.x – volume: 47 start-page: 291 year: 2015 ident: key 20180720034911_bbw145-B6 article-title: LD score regression distinguishes confounding from polygenicity in genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng.3211 – volume: 42 start-page: 348 year: 2010 ident: key 20180720034911_bbw145-B20 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng.548 – volume: 44 start-page: 825 year: 2012 ident: key 20180720034911_bbw145-B17 article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations publication-title: Nat Genet doi: 10.1038/ng.2314 – volume: 88 start-page: 76 year: 2011 ident: key 20180720034911_bbw145-B36 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2010.11.011 – volume: 16 start-page: 170 year: 2010 ident: key 20180720034911_bbw145-B9 article-title: Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO publication-title: J Agric Biol Environ Stat doi: 10.1007/s13253-010-0046-2 – volume: 12 start-page: 73 year: 2014 ident: key 20180720034911_bbw145-B19 article-title: Enrichment of statistical power for genome-wide association studies publication-title: BMC Biol doi: 10.1186/s12915-014-0073-5 – volume: 63 start-page: 513 year: 2007 ident: key 20180720034911_bbw145-B30 article-title: An empirical Bayes method for estimating epistatic effects of quantitative trait loci publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00711.x – volume-title: Mixed Models: Theory and Applications with R year: 2013 ident: key 20180720034911_bbw145-B42 – volume: 25 start-page: 1151 year: 2003 ident: key 20180720034911_bbw145-B44 article-title: Adaptive sparseness for supervised learning publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2003.1227989 – volume: 38 start-page: 203 year: 2006 ident: key 20180720034911_bbw145-B2 article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness publication-title: Nat Genet doi: 10.1038/ng1702 – volume: 169 start-page: 2267 year: 2005 ident: key 20180720034911_bbw145-B1 article-title: Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.) publication-title: Genetics doi: 10.1534/genetics.104.033217 – volume: 44 start-page: 821 year: 2012 ident: key 20180720034911_bbw145-B4 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nat Genet doi: 10.1038/ng.2310 – volume: 179 start-page: 1045 issue: 2 year: 2008 ident: key 20180720034911_bbw145-B8 article-title: Bayesian LASSO for quantitative trait loci mapping publication-title: Genetics doi: 10.1534/genetics.107.085589 – volume: 195 start-page: 1209 year: 2013 ident: key 20180720034911_bbw145-B26 article-title: Mapping quantitative trait loci by controlling polygenic background effects publication-title: Genetics doi: 10.1534/genetics.113.157032 – volume: 37 start-page: 501 year: 2005 ident: key 20180720034911_bbw145-B31 article-title: A gene expression map of Arabidopsis thaliana development publication-title: Nat Genet doi: 10.1038/ng1543 – volume: 202 start-page: 471 year: 2016 ident: key 20180720034911_bbw145-B34 article-title: A random-model approach to QTL mapping in multiparent advanced generation intercross (MAGIC) populations publication-title: Genetics doi: 10.1534/genetics.115.179945 – volume: 9 start-page: 525 issue: 6 year: 2012 ident: key 20180720034911_bbw145-B22 article-title: Improved linear mixed models for genome-wide association studies publication-title: Nat Methods doi: 10.1038/nmeth.2037 – volume: 11 start-page: 459 year: 2010 ident: key 20180720034911_bbw145-B37 article-title: New approaches to population stratification in genome-wide association studies publication-title: Nat Rev Genet doi: 10.1038/nrg2813 – reference: 28334354 - Brief Bioinform. 2017 Sep 1;18(5):906 |
SSID | ssj0020781 |
Score | 2.6251633 |
Snippet | Abstract
The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been... The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 700 |
SubjectTerms | Algorithms Arabidopsis - genetics Arabidopsis Proteins - genetics Background noise Bayes Theorem Bayesian analysis Computer Simulation Covariance matrix Eigenvalues Empirical analysis Genome-wide association studies genome-wide association study Genome-Wide Association Study - methods Genomes Linear Models Loci Models, Genetic Multifactorial Inheritance Nucleotides Phenotype Polygenic inheritance Polymorphism Polymorphism, Single Nucleotide quantitative traits Single-nucleotide polymorphism Software Review variance covariance matrix |
Title | Methodological implementation of mixed linear models in multi-locus genome-wide association studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28158525 https://www.proquest.com/docview/2305095618 https://www.proquest.com/docview/1865532286 https://www.proquest.com/docview/2440698056 https://pubmed.ncbi.nlm.nih.gov/PMC6054291 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwELUQEhIXVAqlC3TlCi49WDiJEzvHqgKhSksvIO0tsuOJGqmbrTa7Av49M_mCIErPnkj2jO15E8-8YezcuByiUIIwYCOhFIY7qVRKpCoPHVVySk_FybOb5PpO_ZzH8y6Jpn7jCT-NLlzpLpy7DxSVkqP3JYb821_zIawiupq2hkgLInfvSUhHn47czqiU7QWifJ0Y-cLTXH1gex1E5N9bm-6zLag-sp22aeTjActnTdPn_tLi5aJPAScd82XBF-UDeE740a540-qm5mXFm9xBgc5rU3OiZl2AuC89cPtsIV63aYWH7O7q8vbHtehaJYg8juK10CAlKG0LBCja5WnoA13EuA6XQmHj1CuK5KJEg0dAgnYIUh0UCEaIkU5ZiD6x7WpZwWfGAaRX1nrrCq28dCaMCmsLJUEmkBgzYd96TWZ5xyNO7Sz-ZO17dpSh1rNW6xN2Nsj-bdkz3pSaokHeFTjtbZV1R6zOMHaKiUUxwBl9HYbxcNCLh61guamzgMpu8coyyb9lEN_IJDUIBCfsqDX_MJXQBBhOhTgBPdoYgwCRc49HqvJ3Q9KNYSK6-uD4f2s7YbuIwQz9Lg7lKdterzbwBXHO2k2bbf4EvRz-bA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodological+implementation+of+mixed+linear+models+in+multi-locus+genome-wide+association+studies&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wen%2C+Yang-Jun&rft.au=Zhang%2C+Hanwen&rft.au=Ni%2C+Yuan-Li&rft.au=Huang%2C+Bo&rft.date=2018-07-20&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=19&rft.issue=4&rft.spage=700&rft.epage=712&rft_id=info:doi/10.1093%2Fbib%2Fbbw145&rft.externalDocID=10.1093%2Fbib%2Fbbw145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |