A Comprehensive Survey on Local Differential Privacy toward Data Statistics and Analysis

Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Lo...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 24; p. 7030
Main Authors Wang, Teng, Zhang, Xuefeng, Feng, Jingyu, Yang, Xinyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.12.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user’s data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.
AbstractList Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user's data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user's data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.
Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user’s data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.
Author Feng, Jingyu
Yang, Xinyu
Wang, Teng
Zhang, Xuefeng
AuthorAffiliation 2 School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; yxyphd@mail.xjtu.edu.cn
1 School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; zhangxuefeng3@163.com (X.Z.); fengjy@xupt.edu.cn (J.F.)
AuthorAffiliation_xml – name: 2 School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; yxyphd@mail.xjtu.edu.cn
– name: 1 School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; zhangxuefeng3@163.com (X.Z.); fengjy@xupt.edu.cn (J.F.)
Author_xml – sequence: 1
  givenname: Teng
  orcidid: 0000-0003-3067-4674
  surname: Wang
  fullname: Wang, Teng
– sequence: 2
  givenname: Xuefeng
  orcidid: 0000-0001-6056-667X
  surname: Zhang
  fullname: Zhang, Xuefeng
– sequence: 3
  givenname: Jingyu
  surname: Feng
  fullname: Feng, Jingyu
– sequence: 4
  givenname: Xinyu
  surname: Yang
  fullname: Yang, Xinyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33302517$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhi1URNvAgT-AVuJSDqHjj7V3L0hRykelSCAVJG7WrNduHW3Wwd4Nyr_HS0rUVpzGM378asbvnJOTPvSWkNcU3nNew2ViwIQCDs_IGRVMzCvG4OTB-ZScp7QGYJzz6gU5zQFYSdUZ-bkolmGzjfbO9snvbHEzxp3dF6EvVsFgV1x552y0_eBz8i36HZp9MYTfGNviCgcsbgYcfBq8SQX2bbHosdsnn16S5w67ZF_dxxn58enj9-WX-err5-vlYjU3JS-HuWi5KyslqgoMlE7KRtQOEaCm4JR1YETbKuMMKltTKRxK3pSmZpXjhjPKZ-T6oNsGXOtt9BuMex3Q67-FEG81xtxdZ3VjpQBoQFasFjmpoCkRam5Mg1RmuRn5cNDajs3GtiZPHbF7JPr4pvd3-jbstFKS05pngYt7gRh-jTYNeuOTsV2HvQ1j0pNLkknJZUbfPkHXYYz58yZK1qUCRctMvXnY0bGVfwZm4N0BMDGkFK07IhT0tBz6uByZvXzCGj-ZF6ZhfPefF38A6VK6SQ
CitedBy_id crossref_primary_10_1155_2023_2959503
crossref_primary_10_1109_ACCESS_2021_3067138
crossref_primary_10_1016_j_cose_2024_104178
crossref_primary_10_3390_app14072864
crossref_primary_10_1109_JIOT_2024_3371828
crossref_primary_10_1109_TDSC_2022_3210017
crossref_primary_10_1007_s10115_023_01838_1
crossref_primary_10_14778_3603581_3603583
crossref_primary_10_1109_TSP_2023_3244092
crossref_primary_10_1016_j_cose_2022_102967
crossref_primary_10_1016_j_ins_2024_120164
crossref_primary_10_1038_s41597_022_01561_6
crossref_primary_10_1109_ACCESS_2021_3092687
crossref_primary_10_1109_ACCESS_2022_3208715
crossref_primary_10_1145_3643137
crossref_primary_10_1109_ACCESS_2021_3124309
crossref_primary_10_1007_s40745_023_00475_3
crossref_primary_10_1016_j_jisa_2025_104002
crossref_primary_10_1109_TETC_2023_3317393
crossref_primary_10_1109_JIOT_2024_3456134
crossref_primary_10_3390_make6010015
crossref_primary_10_1016_j_jksuci_2022_04_013
crossref_primary_10_3390_electronics11234007
crossref_primary_10_1016_j_cose_2022_103036
crossref_primary_10_1016_j_comnet_2023_109637
crossref_primary_10_1109_JIOT_2024_3397908
crossref_primary_10_3390_en14092385
crossref_primary_10_3390_app132212389
crossref_primary_10_3390_electronics11233958
crossref_primary_10_1109_TIT_2024_3511498
crossref_primary_10_1007_s12083_023_01609_3
crossref_primary_10_1016_j_cose_2022_102934
crossref_primary_10_3390_app13074600
crossref_primary_10_3390_s23031115
crossref_primary_10_3390_info14090487
crossref_primary_10_1016_j_cose_2023_103291
crossref_primary_10_1016_j_knosys_2023_110475
crossref_primary_10_1016_j_comnet_2024_110830
crossref_primary_10_1007_s10207_024_00973_2
crossref_primary_10_1002_wics_1615
crossref_primary_10_1109_JAS_2024_124215
Cites_doi 10.1109/ACCESS.2016.2577036
10.1109/JIOT.2020.2977220
10.1145/3378679.3394533
10.1186/s13673-019-0195-4
10.1109/ICDE.2018.00079
10.1145/2818183
10.1109/TKDE.2018.2866863
10.1109/TKDE.2017.2697856
10.1145/3357384.3357954
10.1145/3055031.3055090
10.1109/INFOCOM.2017.8056977
10.1155/2020/8829523
10.1109/TKDE.2018.2824328
10.1145/3339474
10.1080/01621459.2017.1389735
10.14778/3352063.3352119
10.1177/0192512102023004002
10.1016/j.tcs.2019.12.019
10.1145/3319535.3354253
10.1145/2746539.2746632
10.1109/JIOT.2017.2683200
10.1145/2857705.2857708
10.1145/2588555.2588575
10.1109/MIS.2020.3010335
10.1016/j.knosys.2017.02.004
10.1177/1550147720919698
10.1137/090756090
10.1515/popets-2016-0015
10.1109/TSG.2014.2343997
10.1109/SP.2019.00018
10.1109/ICDE.2017.58
10.1145/3320269.3405441
10.1109/ICDE.2019.00151
10.1109/CIT.2016.57
10.1016/j.ins.2018.12.085
10.1145/1142351.1142373
10.1145/3299869.3300102
10.1017/CBO9781107446984.002
10.1109/SP.2018.00035
10.1007/978-3-319-60033-8_35
10.1145/2660267.2660348
10.1109/TSC.2017.2674662
10.1109/TSG.2013.2240319
10.1609/aaai.v34i04.6096
10.1007/s41019-015-0001-x
10.24963/ijcai.2021/217
10.1109/JIOT.2020.3037194
10.1007/978-3-642-39077-7_5
10.1007/11681878_14
10.1109/ICDE.2017.132
10.1109/SP.2017.35
10.1109/INFOCOM.2019.8737527
10.1145/3219819.3220076
10.1109/ICDE48307.2020.00204
10.1109/JIOT.2017.2714189
10.1007/978-3-319-59870-3_14
10.1109/FOCS.2007.66
10.1007/978-3-319-42836-9_23
10.1016/j.cose.2019.101699
10.1145/3196959.3196981
10.1109/ICDE.2019.00063
10.1109/ICEIEC49280.2020.9152325
10.1109/ACCESS.2019.2909559
10.1145/362686.362692
10.1109/TSC.2018.2791601
10.1109/JIOT.2020.2967734
10.1561/0400000042
10.1016/j.ijhcs.2014.12.003
10.14778/3339490.3339496
10.1145/3243734.3243742
10.1017/CBO9781139176224
10.1109/ICHI.2017.49
10.1145/3318464.3389700
10.1145/2976749.2978318
10.1007/978-3-030-59410-7_33
10.1145/2976749.2978409
10.1007/978-3-319-55753-3_34
10.1109/GLOCOM.2015.7417364
10.1109/TBDATA.2017.2715334
10.1109/ICDE.2016.7498248
10.1109/TKDE.2018.2841360
10.1109/TIFS.2020.2985524
10.1155/2014/686151
10.1109/ACCESS.2019.2899099
10.1109/TII.2018.2809672
10.1109/SP.2011.40
10.1109/TKDE.2017.2761759
10.1109/TIFS.2020.2988575
10.14778/2732269.2732271
10.1109/MSP.2017.2743240
10.1109/SP.2017.41
10.1109/CNS.2019.8802778
10.1145/3397271.3401053
10.1016/j.ins.2016.08.011
10.1145/1749603.1749605
10.1007/978-981-15-3281-8_2
10.1007/978-3-319-61176-1_7
10.1109/JIOT.2019.2897005
10.1109/SmartIoT.2019.00050
10.1080/01621459.1965.10480775
10.1016/j.jpdc.2019.09.009
10.1109/TKDE.2018.2885749
10.14778/3352063.3352085
10.1109/MDM.2019.00-80
10.1109/FOCS.2013.53
10.1016/j.ins.2019.06.021
10.1145/1806689.1806787
10.1109/TKDE.2018.2805356
10.1109/JIOT.2019.2952146
10.1109/JIOT.2017.2694844
10.1109/TDSC.2019.2949041
10.1109/ICDE48307.2020.00050
10.1109/TCSS.2018.2877045
10.1145/3183713.3196906
10.1109/ISIT44484.2020.9174426
10.1145/3219819.3226070
10.1145/2810103.2813677
10.1016/j.neucom.2018.11.104
10.1109/GLOCOM.2017.8253989
10.1109/TIFS.2018.2812146
10.1109/JIOT.2019.2936512
10.1109/FOCS.2019.00015
10.1109/INFOCOM.2014.6847974
10.1145/2508859.2516735
10.1007/s10586-017-1078-y
10.1109/INFOCOM.2018.8486234
10.1109/TPDS.2019.2899097
10.1007/978-3-642-31594-7_39
10.1109/ICDM.2017.48
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s20247030
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_be6400b068294be680b5a093ccba163c
PMC7763193
33302517
10_3390_s20247030
Genre Journal Article
Review
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c535t-4d3f5874880c05f66b49faa00910f7ef0c4dd7cfca7e9164fa63b5c928f3c3213
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:21 EDT 2025
Thu Aug 21 18:06:03 EDT 2025
Mon Jul 21 09:26:32 EDT 2025
Fri Jul 25 20:14:17 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Tue Jul 01 03:55:58 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords enabling mechanisms
data statistics and analysis
local differential privacy
applications
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-4d3f5874880c05f66b49faa00910f7ef0c4dd7cfca7e9164fa63b5c928f3c3213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6056-667X
0000-0003-3067-4674
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20247030
PMID 33302517
PQID 2469570715
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_be6400b068294be680b5a093ccba163c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7763193
proquest_miscellaneous_2470626636
proquest_journals_2469570715
pubmed_primary_33302517
crossref_primary_10_3390_s20247030
crossref_citationtrail_10_3390_s20247030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201208
PublicationDateYYYYMMDD 2020-12-08
PublicationDate_xml – month: 12
  year: 2020
  text: 20201208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_93
ref_92
ref_139
ref_91
ref_138
ref_90
Guo (ref_201) 2019; 502
ref_131
ref_99
ref_130
ref_98
ref_132
ref_96
ref_135
ref_95
ref_134
NIE (ref_57) 2019; 31
Fanti (ref_87) 2016; 2016
Yu (ref_14) 2016; 4
ref_126
ref_125
ref_128
ref_127
ref_129
ref_120
ref_121
ref_124
ref_123
Wang (ref_142) 2020; 809
Kasiviswanathan (ref_25) 2011; 40
Osia (ref_147) 2020; 7
ref_159
ref_71
ref_151
ref_79
ref_150
Jiang (ref_200) 2019; 482
ref_78
ref_153
ref_152
ref_76
ref_75
ref_154
ref_74
ref_73
Bloom (ref_66) 1970; 13
Cormode (ref_68) 2019; 12
Hino (ref_16) 2013; 4
Xiong (ref_41) 2020; 2020
Guo (ref_2) 2015; 48
Chaudhuri (ref_137) 2011; 12
ref_148
ref_82
ref_81
ref_80
ref_140
ref_88
ref_141
ref_86
ref_85
ref_146
ref_84
ref_145
Li (ref_100) 2014; 7
Sun (ref_83) 2014; 2014
Zhao (ref_77) 2019; 7
Kessler (ref_172) 2019; 12
ref_203
ref_202
Wang (ref_70) 2019; 30
Li (ref_158) 2020; 37
Zheng (ref_160) 2020; 35
Karapiperis (ref_133) 2018; 30
Ou (ref_175) 2020; 7
Zhao (ref_39) 2019; 76
Lin (ref_173) 2017; 4
ref_114
ref_117
Jeong (ref_196) 2019; 22
ref_116
ref_119
ref_118
Krzywicki (ref_6) 2015; 76
ref_110
ref_113
Cao (ref_112) 2019; 31
Liu (ref_198) 2018; 11
Ren (ref_72) 2018; 13
ref_104
ref_103
ref_106
Fung (ref_10) 2010; 42
ref_105
Cao (ref_161) 2020; 16
Shin (ref_199) 2018; 30
ref_107
Wei (ref_164) 2020; 15
ref_109
ref_102
ref_101
Arachchige (ref_34) 2019; 7
Liu (ref_189) 2020; 391
Gao (ref_191) 2018; 5
Yao (ref_8) 2014; 6
Barbosa (ref_18) 2016; 370
Kim (ref_89) 2020; 32
ref_19
Yang (ref_12) 2017; 4
ref_17
Xia (ref_136) 2020; 90
ref_24
ref_23
ref_21
ref_20
Xu (ref_149) 2019; 6
Fan (ref_143) 2020; 135
Lu (ref_4) 2019; 31
ref_29
ref_28
ref_27
ref_26
Jarrett (ref_5) 2018; 11
Duchi (ref_115) 2018; 113
(ref_13) 2016; 1
Liu (ref_9) 2018; 15
Warner (ref_43) 1965; 60
Kairouz (ref_182) 2016; 17
Zhao (ref_122) 2019; 7
Zhu (ref_11) 2017; 29
ref_50
Reilly (ref_97) 2002; 23
ref_58
Wei (ref_195) 2020; 15
ref_56
ref_55
ref_174
ref_54
Wang (ref_111) 2017; 122
ref_177
ref_53
ref_176
ref_52
ref_179
ref_51
ref_178
ref_180
ref_59
ref_181
ref_61
Xu (ref_108) 2019; 12
ref_60
ref_169
Sun (ref_15) 2020; 60
ref_69
ref_162
ref_67
ref_163
ref_65
ref_166
ref_64
ref_165
ref_63
ref_168
ref_62
Yin (ref_144) 2019; 9
ref_167
ref_171
ref_170
Dwork (ref_22) 2014; 9
ref_36
ref_35
ref_194
ref_197
ref_33
ref_32
ref_31
ref_30
Yang (ref_156) 2019; 10
ref_38
Yang (ref_157) 2019; 13
ref_37
Arulkumaran (ref_155) 2017; 34
ref_47
ref_184
ref_46
ref_183
ref_45
ref_186
ref_44
ref_185
ref_188
Cheng (ref_1) 2017; 4
ref_42
ref_187
ref_40
ref_3
ref_190
ref_49
ref_193
ref_48
ref_192
ref_7
References_xml – volume: 4
  start-page: 2751
  year: 2016
  ident: ref_14
  article-title: Big privacy: Challenges and opportunities of privacy study in the age of big data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2577036
– ident: ref_178
– volume: 7
  start-page: 5246
  year: 2020
  ident: ref_175
  article-title: Singular Spectrum Analysis for Local Differential Privacy of Classifications in the Smart Grid
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2977220
– ident: ref_165
  doi: 10.1145/3378679.3394533
– volume: 9
  start-page: 33
  year: 2019
  ident: ref_144
  article-title: Local privacy protection classification based on human-centric computing
  publication-title: Hum.-Centric Comput. Inf. Sci.
  doi: 10.1186/s13673-019-0195-4
– ident: ref_184
– ident: ref_88
  doi: 10.1109/ICDE.2018.00079
– volume: 48
  start-page: 1
  year: 2015
  ident: ref_2
  article-title: Mobile Crowd Sensing and Computing: The Review of an Emerging Human-Powered Sensing Paradigm
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2818183
– volume: 11
  start-page: 864
  year: 2018
  ident: ref_198
  article-title: When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing
  publication-title: IEEE Trans. Serv. Comput.
– volume: 31
  start-page: 1630
  year: 2019
  ident: ref_4
  article-title: A Study on Big Knowledge and Its Engineering Issues
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2866863
– volume: 29
  start-page: 1619
  year: 2017
  ident: ref_11
  article-title: Differentially Private Data Publishing and Analysis: A Survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2697856
– ident: ref_166
– ident: ref_19
  doi: 10.1145/3357384.3357954
– ident: ref_129
  doi: 10.1145/3055031.3055090
– ident: ref_94
  doi: 10.1109/INFOCOM.2017.8056977
– volume: 2020
  start-page: 8829523
  year: 2020
  ident: ref_41
  article-title: A Comprehensive Survey on Local Differential Privacy
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2020/8829523
– volume: 31
  start-page: 1281
  year: 2019
  ident: ref_112
  article-title: Quantifying Differential Privacy in Continuous Data Release Under Temporal Correlations
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2824328
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_156
  article-title: Federated Machine Learning: Concept and Applications
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3339474
– volume: 113
  start-page: 182
  year: 2018
  ident: ref_115
  article-title: Minimax optimal procedures for locally private estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1389735
– volume: 12
  start-page: 1998
  year: 2019
  ident: ref_172
  article-title: SAP HANA goes private: From privacy research to privacy aware enterprise analytics
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3352063.3352119
– volume: 23
  start-page: 355
  year: 2002
  ident: ref_97
  article-title: Social choice in the south seas: Electoral innovation and the borda count in the pacific island countries
  publication-title: Int. Political Sci. Rev.
  doi: 10.1177/0192512102023004002
– volume: 809
  start-page: 296
  year: 2020
  ident: ref_142
  article-title: Principal component analysis in the local differential privacy model
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.12.019
– ident: ref_194
  doi: 10.1145/3319535.3354253
– ident: ref_61
  doi: 10.1145/2746539.2746632
– volume: 4
  start-page: 1125
  year: 2017
  ident: ref_173
  article-title: A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2683200
– ident: ref_128
  doi: 10.1145/2857705.2857708
– ident: ref_106
  doi: 10.1145/2588555.2588575
– volume: 35
  start-page: 5
  year: 2020
  ident: ref_160
  article-title: Preserving User Privacy For Machine Learning: Local Differential Privacy or Federated Machine Learning
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2020.3010335
– volume: 122
  start-page: 167
  year: 2017
  ident: ref_111
  article-title: CTS-DP: Publishing correlated time-series data via differential privacy
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.02.004
– volume: 16
  start-page: 1
  year: 2020
  ident: ref_161
  article-title: IFed: A novel federated learning framework for local differential privacy in Power Internet of Things
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147720919698
– volume: 40
  start-page: 793
  year: 2011
  ident: ref_25
  article-title: What can we learn privately?
  publication-title: SIAM J. Comput.
  doi: 10.1137/090756090
– volume: 2016
  start-page: 41
  year: 2016
  ident: ref_87
  article-title: Building a with the unknown: Privacy-preserving learning of associations and data dictionaries
  publication-title: Priv. Enhancing Technol.
  doi: 10.1515/popets-2016-0015
– volume: 6
  start-page: 199
  year: 2014
  ident: ref_8
  article-title: Efficient histogram estimation for smart grid data processing with the loglog-Bloom-filter
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2343997
– ident: ref_90
  doi: 10.1109/SP.2019.00018
– ident: ref_132
  doi: 10.1109/ICDE.2017.58
– ident: ref_60
  doi: 10.1145/3320269.3405441
– ident: ref_95
  doi: 10.1109/ICDE.2019.00151
– ident: ref_148
– ident: ref_71
  doi: 10.1109/CIT.2016.57
– volume: 482
  start-page: 248
  year: 2019
  ident: ref_200
  article-title: Towards a more reliable privacy-preserving recommender system
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.085
– ident: ref_78
  doi: 10.1145/1142351.1142373
– ident: ref_102
  doi: 10.1145/3299869.3300102
– ident: ref_179
– ident: ref_64
– ident: ref_154
– ident: ref_98
  doi: 10.1017/CBO9781107446984.002
– volume: 60
  start-page: 146
  year: 2020
  ident: ref_15
  article-title: Privacy and security in the big data paradigm
  publication-title: J. Comput. Inf. Syst.
– ident: ref_109
– ident: ref_84
  doi: 10.1109/SP.2018.00035
– ident: ref_185
– ident: ref_190
  doi: 10.1007/978-3-319-60033-8_35
– ident: ref_27
  doi: 10.1145/2660267.2660348
– volume: 11
  start-page: 202
  year: 2018
  ident: ref_5
  article-title: Crowdsourcing, Mixed Elastic Systems and Human-Enhanced Computing— A Survey
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2017.2674662
– ident: ref_49
– volume: 4
  start-page: 1048
  year: 2013
  ident: ref_16
  article-title: A versatile clustering method for electricity consumption pattern analysis in households
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2240319
– ident: ref_32
– ident: ref_33
  doi: 10.1609/aaai.v34i04.6096
– ident: ref_26
– volume: 1
  start-page: 21
  year: 2016
  ident: ref_13
  article-title: Big data privacy: Challenges to privacy principles and models
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-015-0001-x
– ident: ref_169
  doi: 10.24963/ijcai.2021/217
– ident: ref_127
– ident: ref_176
  doi: 10.1109/JIOT.2020.3037194
– ident: ref_55
  doi: 10.1007/978-3-642-39077-7_5
– ident: ref_151
– ident: ref_45
  doi: 10.1007/11681878_14
– ident: ref_188
– ident: ref_110
  doi: 10.1109/ICDE.2017.132
– ident: ref_139
– ident: ref_138
  doi: 10.1109/SP.2017.35
– volume: 12
  start-page: 1069
  year: 2011
  ident: ref_137
  article-title: Differentially private empirical risk minimization
  publication-title: J. Mach. Learn. Res.
– ident: ref_82
  doi: 10.1109/INFOCOM.2019.8737527
– ident: ref_121
  doi: 10.1145/3219819.3220076
– ident: ref_193
  doi: 10.1109/ICDE48307.2020.00204
– volume: 4
  start-page: 1489
  year: 2017
  ident: ref_1
  article-title: Mobile Big Data: The Fuel for Data-Driven Wireless
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2714189
– ident: ref_20
– ident: ref_93
– ident: ref_145
– ident: ref_135
  doi: 10.1007/978-3-319-59870-3_14
– ident: ref_183
– ident: ref_46
  doi: 10.1109/FOCS.2007.66
– ident: ref_65
  doi: 10.1007/978-3-319-42836-9_23
– volume: 90
  start-page: 1
  year: 2020
  ident: ref_136
  article-title: Distributed K-Means clustering guaranteeing local differential privacy
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2019.101699
– ident: ref_81
  doi: 10.1145/3196959.3196981
– ident: ref_37
– ident: ref_21
– ident: ref_167
– ident: ref_29
  doi: 10.1109/ICDE.2019.00063
– ident: ref_192
  doi: 10.1109/ICEIEC49280.2020.9152325
– volume: 7
  start-page: 48901
  year: 2019
  ident: ref_122
  article-title: Differential Privacy Preservation in Deep Learning: Challenges, Opportunities and Solutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909559
– ident: ref_54
– volume: 13
  start-page: 422
  year: 1970
  ident: ref_66
  article-title: Space/time trade-offs in hash coding with allowable errors
  publication-title: Commun. ACM
  doi: 10.1145/362686.362692
– ident: ref_3
  doi: 10.1109/TSC.2018.2791601
– volume: 7
  start-page: 4505
  year: 2020
  ident: ref_147
  article-title: A hybrid deep learning architecture for privacy-preserving mobile analytics
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2967734
– volume: 9
  start-page: 211
  year: 2014
  ident: ref_22
  article-title: The algorithmic foundations of differential privacy
  publication-title: Found. Trends® Theor. Comput. Sci.
  doi: 10.1561/0400000042
– ident: ref_150
– ident: ref_105
– volume: 76
  start-page: 50
  year: 2015
  ident: ref_6
  article-title: Collaborative filtering for people-to-people recommendation in online dating: Data analysis and user trial
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2014.12.003
– ident: ref_99
– volume: 12
  start-page: 1126
  year: 2019
  ident: ref_68
  article-title: Answering range queries under local differential privacy
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3339490.3339496
– ident: ref_117
– ident: ref_74
  doi: 10.1145/3243734.3243742
– ident: ref_80
– ident: ref_126
  doi: 10.1017/CBO9781139176224
– ident: ref_51
– ident: ref_101
  doi: 10.1109/ICHI.2017.49
– ident: ref_104
  doi: 10.1145/3318464.3389700
– ident: ref_123
– ident: ref_146
– ident: ref_141
– ident: ref_119
  doi: 10.1145/2976749.2978318
– volume: 37
  start-page: 50
  year: 2020
  ident: ref_158
  article-title: Federated Learning: Challenges, Methods, and Future Directions
  publication-title: IEEE Signal Process. Mag.
– ident: ref_168
  doi: 10.1007/978-3-030-59410-7_33
– ident: ref_152
– ident: ref_30
  doi: 10.1145/2976749.2978409
– ident: ref_62
– ident: ref_134
  doi: 10.1007/978-3-319-55753-3_34
– ident: ref_203
  doi: 10.1109/GLOCOM.2015.7417364
– ident: ref_23
  doi: 10.1109/TBDATA.2017.2715334
– ident: ref_187
– ident: ref_7
  doi: 10.1109/ICDE.2016.7498248
– ident: ref_28
– volume: 31
  start-page: 655
  year: 2019
  ident: ref_57
  article-title: A Utility-Optimized Framework for Personalized Private Histogram Estimation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2841360
– ident: ref_140
– volume: 15
  start-page: 3239
  year: 2020
  ident: ref_195
  article-title: AsgLDP: Collecting and Generating Decentralized Attributed Graphs With Local Differential Privacy
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.2985524
– ident: ref_86
– volume: 2014
  start-page: 686151
  year: 2014
  ident: ref_83
  article-title: Personalized privacy-preserving frequent itemset mining using randomized response
  publication-title: Sci. World J.
  doi: 10.1155/2014/686151
– ident: ref_67
– ident: ref_92
– volume: 76
  start-page: 1
  year: 2019
  ident: ref_39
  article-title: A survey of local differential privacy for securing internet of vehicles
  publication-title: J. Supercomput.
– ident: ref_44
– ident: ref_163
– volume: 7
  start-page: 31435
  year: 2019
  ident: ref_77
  article-title: LDPart: Effective Location-Record Data Publication via Local Differential Privacy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899099
– volume: 15
  start-page: 1767
  year: 2018
  ident: ref_9
  article-title: A practical privacy-preserving data aggregation (3PDA) scheme for smart grid
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2809672
– ident: ref_197
  doi: 10.1109/SP.2011.40
– volume: 30
  start-page: 292
  year: 2018
  ident: ref_133
  article-title: FEDERAL: A framework for distance-aware privacy-preserving record linkage
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2761759
– ident: ref_75
– ident: ref_50
– volume: 15
  start-page: 3454
  year: 2020
  ident: ref_164
  article-title: Federated learning with differential privacy: Algorithms and performance analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.2988575
– volume: 7
  start-page: 341
  year: 2014
  ident: ref_100
  article-title: A Data- and Workload-Aware Query Answering Algorithm for Range Queries Under Differential Privacy
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2732269.2732271
– volume: 34
  start-page: 26
  year: 2017
  ident: ref_155
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2743240
– ident: ref_116
  doi: 10.1109/SP.2017.41
– ident: ref_103
  doi: 10.1109/CNS.2019.8802778
– ident: ref_202
  doi: 10.1145/3397271.3401053
– volume: 370
  start-page: 355
  year: 2016
  ident: ref_18
  article-title: A technique to provide differential privacy for appliance usage in smart metering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.08.011
– volume: 42
  start-page: 1
  year: 2010
  ident: ref_10
  article-title: Privacy-preserving data publishing: A survey of recent developments
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1749603.1749605
– ident: ref_36
  doi: 10.1007/978-981-15-3281-8_2
– ident: ref_181
  doi: 10.1007/978-3-319-61176-1_7
– volume: 6
  start-page: 5140
  year: 2019
  ident: ref_149
  article-title: EdgeSanitizer: Locally Differentially Private Deep Inference at the Edge for Mobile Data Analytics
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2897005
– ident: ref_113
– ident: ref_159
– volume: 17
  start-page: 1
  year: 2016
  ident: ref_182
  article-title: Extremal Mechanisms for Local Differential Privacy
  publication-title: J. Mach. Learn. Res.
– ident: ref_171
– ident: ref_177
  doi: 10.1109/SmartIoT.2019.00050
– volume: 60
  start-page: 63
  year: 1965
  ident: ref_43
  article-title: Randomized response: A survey technique for eliminating evasive answer bias
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1965.10480775
– volume: 135
  start-page: 70
  year: 2020
  ident: ref_143
  article-title: Privacy preserving classification on local differential privacy in data centers
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2019.09.009
– ident: ref_180
– volume: 32
  start-page: 479
  year: 2020
  ident: ref_89
  article-title: Learning New Words from Keystroke Data with Local Differential Privacy
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2885749
– volume: 12
  start-page: 1862
  year: 2019
  ident: ref_108
  article-title: DPSAaS: Multi-Dimensional Data Sharing and Analytics as Services under Local Differential Privacy
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3352063.3352085
– ident: ref_35
– ident: ref_38
  doi: 10.1109/MDM.2019.00-80
– ident: ref_58
– ident: ref_47
  doi: 10.1109/FOCS.2013.53
– ident: ref_52
– volume: 502
  start-page: 229
  year: 2019
  ident: ref_201
  article-title: Locally differentially private item-based collaborative filtering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.06.021
– ident: ref_114
  doi: 10.1145/1806689.1806787
– ident: ref_107
– ident: ref_131
– ident: ref_124
– volume: 30
  start-page: 1770
  year: 2018
  ident: ref_199
  article-title: Privacy enhanced matrix factorization for recommendation with local differential privacy
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2805356
– volume: 7
  start-page: 5827
  year: 2019
  ident: ref_34
  article-title: Local Differential Privacy for Deep Learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2952146
– volume: 4
  start-page: 1250
  year: 2017
  ident: ref_12
  article-title: A survey on security and privacy issues in Internet-of-Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2694844
– ident: ref_56
  doi: 10.1109/TDSC.2019.2949041
– ident: ref_40
– ident: ref_59
  doi: 10.1109/ICDE48307.2020.00050
– ident: ref_153
– ident: ref_63
– ident: ref_125
– ident: ref_130
– volume: 5
  start-page: 1009
  year: 2018
  ident: ref_191
  article-title: Local differential privately anonymizing online social networks under hrg-based model
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2018.2877045
– ident: ref_96
– ident: ref_186
– ident: ref_31
  doi: 10.1145/3183713.3196906
– ident: ref_69
  doi: 10.1109/INFOCOM.2017.8056977
– ident: ref_162
  doi: 10.1109/ISIT44484.2020.9174426
– ident: ref_24
  doi: 10.1145/3219819.3226070
– ident: ref_118
  doi: 10.1145/2810103.2813677
– ident: ref_42
  doi: 10.1109/FOCS.2013.53
– volume: 391
  start-page: 273
  year: 2020
  ident: ref_189
  article-title: Local differential privacy for social network publishing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.104
– ident: ref_85
– ident: ref_73
  doi: 10.1109/GLOCOM.2017.8253989
– ident: ref_170
– volume: 13
  start-page: 2151
  year: 2018
  ident: ref_72
  article-title: LoPub: High-Dimensional Crowdsourced Data Publication with Local Differential Privacy
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2812146
– volume: 13
  start-page: 1
  year: 2019
  ident: ref_157
  article-title: Federated learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
– ident: ref_174
  doi: 10.1109/JIOT.2019.2936512
– ident: ref_48
  doi: 10.1109/FOCS.2019.00015
– ident: ref_91
– ident: ref_17
  doi: 10.1109/INFOCOM.2014.6847974
– ident: ref_53
  doi: 10.1145/2508859.2516735
– volume: 22
  start-page: 1837
  year: 2019
  ident: ref_196
  article-title: Big data and rule-based recommendation system in Internet of Things
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-1078-y
– ident: ref_76
  doi: 10.1109/INFOCOM.2018.8486234
– volume: 30
  start-page: 2046
  year: 2019
  ident: ref_70
  article-title: Local Differential Private Data Aggregation for Discrete Distribution Estimation
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2019.2899097
– ident: ref_79
  doi: 10.1007/978-3-642-31594-7_39
– ident: ref_120
  doi: 10.1109/ICDM.2017.48
SSID ssj0023338
Score 2.5616121
SecondaryResourceType review_article
Snippet Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7030
SubjectTerms Algorithms
applications
Big Data
data statistics and analysis
enabling mechanisms
Hypothesis testing
Internet of Things
local differential privacy
Machine learning
Privacy
Probability
Recommender systems
Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnOgBAS2QFipTceglIuuP2HvkowihtqpEkfYW2c5EIKEsWrJI_Htmkmy0i5C49BIpsQ_OeMbznjx-BjiyPjiJfpSWih5aYpmOkU-jYemNpxQl2-Njv__klzf6amImS1d9cU1YJw_cGe44YE5uFrLcybGmF5cF44mGxxg8YYnIqy_lvAWZ6qmWIubV6QgpIvXHj0TxtW1LnZeyTyvS_xayfF0guZRxLjZho4eK4qQb4hZ8wHobPi4JCH6CyYnggJ7hbVeHLq7nsyd8FtNa_OIkJc77-08oju_F39ndk4_PomlLZcW5b7xgsNlpNQtfl2KhUfIZbi5-_ju7TPu7EtJolGlSXarKOMvhGDNT5XnQ48r7jOFAZbHKoi5LG6voLRIi1JXPVTBxLF2lopIjtQNr9bTGPRDIO3NhFHgHU2scuRIlUtYnakaLoXMJ_FjYsIi9kDjfZ3FfEKFgcxeDuRP4PnR96NQz3up0yhMxdGDB6_YDuUHRu0HxnhsksL-YxqKPwsdCEvc3lkCUSeBwaKb44U0RX-N0zn1sRqQuV3kCu92sDyMhL2ol3RKwK_6wMtTVlvruttXotrRuEzb-8j_-7SusS2b5XETj9mGtmc3xgKBQE761Xv8CnvsHxQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAOXKImfsTOCRXKUiFASFBpb5FfoZWqpGSzlfrvmXG8YRdVXCIlnoNlex5fZvwNIW-UsZoFU-aew0Ow4PM64G204I004KJYvD729Vt1fCI-L-Uy_XBbpbLKjU2Mhtr3Dv-RHzDAcVKBQ5TvLn7n2DUKs6uphcZNcqsET4MlXXrxaQZcHPDXxCbEAdofrADoCxULnrd8UKTqvy6-_LdMcsvvLO6RuylgpIfTDt8nN0L3gNzZohF8SJaHFNV6CKdTNTr9sR4uwxXtO_oFXRU9Sl1QQJvP6ffh7NK4KzrGgll6ZEZDMeScGJup6TzdMJU8IieLjz8_HOepY0LuJJdjLjxvpVaolK6QbVVZUbfGFBgUtCq0hRPeK9c6owLEhaI1FbfS1Uy33HFW8sdkr-u78JTQgPk5W1rMYwoRSu0DC-D7AaCBSdQ6I283a9i4RCeOXS3OG4AVuNzNvNwZeT2LXkwcGtcJvceNmAWQ9jp-6IdfTdKixoYKbI4tKs1qAS-6sNIUNXfOGggsXUb2N9vYJF1cNX9PTkZezcOgRZgaMV3o1yijCoB2Fa8y8mTa9XkmcIoisVtG1M552Jnq7kh3dhqZuhVYb4iQn_1_Ws_JbYYoHotk9D7ZG4d1eAGhzmhfxvP8B7R0_0w
  priority: 102
  providerName: ProQuest
Title A Comprehensive Survey on Local Differential Privacy toward Data Statistics and Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/33302517
https://www.proquest.com/docview/2469570715
https://www.proquest.com/docview/2470626636
https://pubmed.ncbi.nlm.nih.gov/PMC7763193
https://doaj.org/article/be6400b068294be680b5a093ccba163c
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4k2grAziwCWQje3YOSDU0i4VolUFrLS3yHYcWmmVhTRbsf-embzUoD1wsZTYkazxjOebjP0NwBtlrI69mYY5x0bEPg9TT7fRfG6kQRcVN9fHzs6T07n4spCLHehrbHYCvN4a2lE9qXm1fPfn9-YjGvwHijgxZH9_jQG8IM3dhX10SIoKGZyJIZkQc94UtKY7XSH6w6glGBp_OnJLDXv_Nsj578nJW65odh_udRiSHbaL_gB2fPkQ7t5iFnwEi0NGll75y_aAOvu-rm78hq1K9pW8FzvuCqOggS_ZRXV1Y9yG1c0ZWnZsasMIhbYkzsyUOevJSx7DfHby49Np2BVRCJ3ksg5FzgupFdmpi2SRJFakhTER4YRC-SJyIs-VK5xRHqGiKEzCrXRprAvueDzlT2CvXJX-GTBPKTs7tZTaFMJPde5jj3AAYzbcJbUO4G0vw8x1DONU6GKZYaRB4s4GcQfwehj6q6XV2DboiBZiGEBM2M2LVfUz6wwrsz7BbchGiY5TgQ86stJEKXfOGsSaLoCDfhmzXruyWCSpVIiuZACvhm40LMqWmNKv1jRGRRjtJTwJ4Gm76sNMUKMarrcA1EgfRlMd95RXlw15t8INHUHz8_8RwAu4E1N4T6dn9AHs1dXav0QMVNsJ7KqFwlbPPk9g_-jk_OLbpPmfMGl0_y-cEwhK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVq1o88DggVlmVLtxUSrbS3YDtOW6lK2uxu0f4pfiMzebGLKm69REpsRZY9nm_GM_4G4G2kTcydHviZwIfkLvMTR7fRXKaVRoji9fWx_YNwfCS_TdV0A353d2EorbLTibWizkpLZ-TbHP04FSEgqo_nFz5VjaLoaldCoxGLPbf8hS7b7MPuENf3HeejL4efx35bVcC3Sqi5LzORqzgiwbWBysPQyCTXOiDgzCOXB1ZmWWRzqyOHtpPMdSiMsgmPc2EFHwj87w24KQUiOd1MH33tHTyB_l7DXoSNwfaMIwBGdYL1CubVpQGusmf_TctcwbnRPbjbGqhsp5Go-7DhigdwZ4W28CFMdxipkcqdNNnv7MeiunRLVhZsQtDIhm3VFdQeZ-x7dXqp7ZLN6wRdNtRzzcjEbRiimS4y1jGjPIKja5nLx7BZlIV7CsxRPNAMDMVNpXSDOHPcoa2BDiGq4Dj24H03h6lt6cupisZZim4MTXfaT7cHb_qu5w1nx1WdPtFC9B2IZrv-UFbHabtrU-NC1HEmCGOeSHyJA6N0kAhrjUZD1nqw1S1j2u79WfpXUj143TfjrqVQjC5cuaA-UYCuZChCD540q96PBKWoJpLzIFqTh7WhrrcUpyc1M3iEaIEW-bP_D-sV3Bof7k_Sye7B3nO4zekEgRJ04i3YnFcL9wLNrLl5Wcs2g5_XvZn-ANTnPHs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHiJmtpJnDwgtNFVGxtVBUzqW7Adh02akpGmQ_3X-Ou4yxctmnjbS6TEp8g6n-_Dd_4dwBupdMStGrmpwIfPberGlm6j2VQFCk0Ur6-PfZ6GByf-p3kw34Lf3V0YKqvsdGKtqNPC0Bn5kGMcF0g0iMEwa8siZuPJh4ufLnWQokxr106jEZEju_qF4dvi_eEY1_ot55P9bx8P3LbDgGsCEVSun4osiCQJsfGCLAy1H2dKeWREM2kzz_hpKk1mlLToR_mZCoUOTMyjTBjBRwL_ewO2JUVFA9je25_OvvThnsDor8EyEiL2hguO5lDW5dZrFrBuFHCVd_tvkeaa1ZvchTutu8p2G_m6B1s2vw-310AMH8B8l5FSKe1pUwvPvi7LS7tiRc6OyVCycduDBXXJOZuVZ5fKrFhVl-uysaoUI4e3wYtmKk9Zh5PyEE6uhZuPYJAXuX0CzFJ2UI80ZVF9346i1HKLngeGh6iQo8iBdx0PE9OCmVNPjfMEgxpid9Kz24HXPelFg-BxFdEeLURPQKDb9Yei_JG0ezjRNkSNp70w4rGPL5GnA-XFwhit0K01Dux0y5i0mmCR_JVbB171w7iHKTGjclssiUZ6GFiGInTgcbPq_UxQimpYOQfkhjxsTHVzJD87rXHCJdoO9M-f_n9aL-EmbqTk-HB69AxucTpOoGqdaAcGVbm0z9HnqvSLVrgZfL_u_fQHqkdCDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+on+Local+Differential+Privacy+toward+Data+Statistics+and+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Teng&rft.au=Zhang%2C+Xuefeng&rft.au=Feng%2C+Jingyu&rft.au=Yang%2C+Xinyu&rft.date=2020-12-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=24&rft.spage=7030&rft_id=info:doi/10.3390%2Fs20247030&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20247030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon