A Comprehensive Survey on Local Differential Privacy toward Data Statistics and Analysis
Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Lo...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 24; p. 7030 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.12.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user’s data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP. |
---|---|
AbstractList | Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user's data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user's data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP. Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user’s data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP. |
Author | Feng, Jingyu Yang, Xinyu Wang, Teng Zhang, Xuefeng |
AuthorAffiliation | 2 School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; yxyphd@mail.xjtu.edu.cn 1 School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; zhangxuefeng3@163.com (X.Z.); fengjy@xupt.edu.cn (J.F.) |
AuthorAffiliation_xml | – name: 2 School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; yxyphd@mail.xjtu.edu.cn – name: 1 School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; zhangxuefeng3@163.com (X.Z.); fengjy@xupt.edu.cn (J.F.) |
Author_xml | – sequence: 1 givenname: Teng orcidid: 0000-0003-3067-4674 surname: Wang fullname: Wang, Teng – sequence: 2 givenname: Xuefeng orcidid: 0000-0001-6056-667X surname: Zhang fullname: Zhang, Xuefeng – sequence: 3 givenname: Jingyu surname: Feng fullname: Feng, Jingyu – sequence: 4 givenname: Xinyu surname: Yang fullname: Yang, Xinyu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33302517$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhi1URNvAgT-AVuJSDqHjj7V3L0hRykelSCAVJG7WrNduHW3Wwd4Nyr_HS0rUVpzGM378asbvnJOTPvSWkNcU3nNew2ViwIQCDs_IGRVMzCvG4OTB-ZScp7QGYJzz6gU5zQFYSdUZ-bkolmGzjfbO9snvbHEzxp3dF6EvVsFgV1x552y0_eBz8i36HZp9MYTfGNviCgcsbgYcfBq8SQX2bbHosdsnn16S5w67ZF_dxxn58enj9-WX-err5-vlYjU3JS-HuWi5KyslqgoMlE7KRtQOEaCm4JR1YETbKuMMKltTKRxK3pSmZpXjhjPKZ-T6oNsGXOtt9BuMex3Q67-FEG81xtxdZ3VjpQBoQFasFjmpoCkRam5Mg1RmuRn5cNDajs3GtiZPHbF7JPr4pvd3-jbstFKS05pngYt7gRh-jTYNeuOTsV2HvQ1j0pNLkknJZUbfPkHXYYz58yZK1qUCRctMvXnY0bGVfwZm4N0BMDGkFK07IhT0tBz6uByZvXzCGj-ZF6ZhfPefF38A6VK6SQ |
CitedBy_id | crossref_primary_10_1155_2023_2959503 crossref_primary_10_1109_ACCESS_2021_3067138 crossref_primary_10_1016_j_cose_2024_104178 crossref_primary_10_3390_app14072864 crossref_primary_10_1109_JIOT_2024_3371828 crossref_primary_10_1109_TDSC_2022_3210017 crossref_primary_10_1007_s10115_023_01838_1 crossref_primary_10_14778_3603581_3603583 crossref_primary_10_1109_TSP_2023_3244092 crossref_primary_10_1016_j_cose_2022_102967 crossref_primary_10_1016_j_ins_2024_120164 crossref_primary_10_1038_s41597_022_01561_6 crossref_primary_10_1109_ACCESS_2021_3092687 crossref_primary_10_1109_ACCESS_2022_3208715 crossref_primary_10_1145_3643137 crossref_primary_10_1109_ACCESS_2021_3124309 crossref_primary_10_1007_s40745_023_00475_3 crossref_primary_10_1016_j_jisa_2025_104002 crossref_primary_10_1109_TETC_2023_3317393 crossref_primary_10_1109_JIOT_2024_3456134 crossref_primary_10_3390_make6010015 crossref_primary_10_1016_j_jksuci_2022_04_013 crossref_primary_10_3390_electronics11234007 crossref_primary_10_1016_j_cose_2022_103036 crossref_primary_10_1016_j_comnet_2023_109637 crossref_primary_10_1109_JIOT_2024_3397908 crossref_primary_10_3390_en14092385 crossref_primary_10_3390_app132212389 crossref_primary_10_3390_electronics11233958 crossref_primary_10_1109_TIT_2024_3511498 crossref_primary_10_1007_s12083_023_01609_3 crossref_primary_10_1016_j_cose_2022_102934 crossref_primary_10_3390_app13074600 crossref_primary_10_3390_s23031115 crossref_primary_10_3390_info14090487 crossref_primary_10_1016_j_cose_2023_103291 crossref_primary_10_1016_j_knosys_2023_110475 crossref_primary_10_1016_j_comnet_2024_110830 crossref_primary_10_1007_s10207_024_00973_2 crossref_primary_10_1002_wics_1615 crossref_primary_10_1109_JAS_2024_124215 |
Cites_doi | 10.1109/ACCESS.2016.2577036 10.1109/JIOT.2020.2977220 10.1145/3378679.3394533 10.1186/s13673-019-0195-4 10.1109/ICDE.2018.00079 10.1145/2818183 10.1109/TKDE.2018.2866863 10.1109/TKDE.2017.2697856 10.1145/3357384.3357954 10.1145/3055031.3055090 10.1109/INFOCOM.2017.8056977 10.1155/2020/8829523 10.1109/TKDE.2018.2824328 10.1145/3339474 10.1080/01621459.2017.1389735 10.14778/3352063.3352119 10.1177/0192512102023004002 10.1016/j.tcs.2019.12.019 10.1145/3319535.3354253 10.1145/2746539.2746632 10.1109/JIOT.2017.2683200 10.1145/2857705.2857708 10.1145/2588555.2588575 10.1109/MIS.2020.3010335 10.1016/j.knosys.2017.02.004 10.1177/1550147720919698 10.1137/090756090 10.1515/popets-2016-0015 10.1109/TSG.2014.2343997 10.1109/SP.2019.00018 10.1109/ICDE.2017.58 10.1145/3320269.3405441 10.1109/ICDE.2019.00151 10.1109/CIT.2016.57 10.1016/j.ins.2018.12.085 10.1145/1142351.1142373 10.1145/3299869.3300102 10.1017/CBO9781107446984.002 10.1109/SP.2018.00035 10.1007/978-3-319-60033-8_35 10.1145/2660267.2660348 10.1109/TSC.2017.2674662 10.1109/TSG.2013.2240319 10.1609/aaai.v34i04.6096 10.1007/s41019-015-0001-x 10.24963/ijcai.2021/217 10.1109/JIOT.2020.3037194 10.1007/978-3-642-39077-7_5 10.1007/11681878_14 10.1109/ICDE.2017.132 10.1109/SP.2017.35 10.1109/INFOCOM.2019.8737527 10.1145/3219819.3220076 10.1109/ICDE48307.2020.00204 10.1109/JIOT.2017.2714189 10.1007/978-3-319-59870-3_14 10.1109/FOCS.2007.66 10.1007/978-3-319-42836-9_23 10.1016/j.cose.2019.101699 10.1145/3196959.3196981 10.1109/ICDE.2019.00063 10.1109/ICEIEC49280.2020.9152325 10.1109/ACCESS.2019.2909559 10.1145/362686.362692 10.1109/TSC.2018.2791601 10.1109/JIOT.2020.2967734 10.1561/0400000042 10.1016/j.ijhcs.2014.12.003 10.14778/3339490.3339496 10.1145/3243734.3243742 10.1017/CBO9781139176224 10.1109/ICHI.2017.49 10.1145/3318464.3389700 10.1145/2976749.2978318 10.1007/978-3-030-59410-7_33 10.1145/2976749.2978409 10.1007/978-3-319-55753-3_34 10.1109/GLOCOM.2015.7417364 10.1109/TBDATA.2017.2715334 10.1109/ICDE.2016.7498248 10.1109/TKDE.2018.2841360 10.1109/TIFS.2020.2985524 10.1155/2014/686151 10.1109/ACCESS.2019.2899099 10.1109/TII.2018.2809672 10.1109/SP.2011.40 10.1109/TKDE.2017.2761759 10.1109/TIFS.2020.2988575 10.14778/2732269.2732271 10.1109/MSP.2017.2743240 10.1109/SP.2017.41 10.1109/CNS.2019.8802778 10.1145/3397271.3401053 10.1016/j.ins.2016.08.011 10.1145/1749603.1749605 10.1007/978-981-15-3281-8_2 10.1007/978-3-319-61176-1_7 10.1109/JIOT.2019.2897005 10.1109/SmartIoT.2019.00050 10.1080/01621459.1965.10480775 10.1016/j.jpdc.2019.09.009 10.1109/TKDE.2018.2885749 10.14778/3352063.3352085 10.1109/MDM.2019.00-80 10.1109/FOCS.2013.53 10.1016/j.ins.2019.06.021 10.1145/1806689.1806787 10.1109/TKDE.2018.2805356 10.1109/JIOT.2019.2952146 10.1109/JIOT.2017.2694844 10.1109/TDSC.2019.2949041 10.1109/ICDE48307.2020.00050 10.1109/TCSS.2018.2877045 10.1145/3183713.3196906 10.1109/ISIT44484.2020.9174426 10.1145/3219819.3226070 10.1145/2810103.2813677 10.1016/j.neucom.2018.11.104 10.1109/GLOCOM.2017.8253989 10.1109/TIFS.2018.2812146 10.1109/JIOT.2019.2936512 10.1109/FOCS.2019.00015 10.1109/INFOCOM.2014.6847974 10.1145/2508859.2516735 10.1007/s10586-017-1078-y 10.1109/INFOCOM.2018.8486234 10.1109/TPDS.2019.2899097 10.1007/978-3-642-31594-7_39 10.1109/ICDM.2017.48 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s20247030 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_be6400b068294be680b5a093ccba163c PMC7763193 33302517 10_3390_s20247030 |
Genre | Journal Article Review |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-4d3f5874880c05f66b49faa00910f7ef0c4dd7cfca7e9164fa63b5c928f3c3213 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:21 EDT 2025 Thu Aug 21 18:06:03 EDT 2025 Mon Jul 21 09:26:32 EDT 2025 Fri Jul 25 20:14:17 EDT 2025 Wed Feb 19 02:30:00 EST 2025 Tue Jul 01 03:55:58 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | enabling mechanisms data statistics and analysis local differential privacy applications |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-4d3f5874880c05f66b49faa00910f7ef0c4dd7cfca7e9164fa63b5c928f3c3213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6056-667X 0000-0003-3067-4674 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20247030 |
PMID | 33302517 |
PQID | 2469570715 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be6400b068294be680b5a093ccba163c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7763193 proquest_miscellaneous_2470626636 proquest_journals_2469570715 pubmed_primary_33302517 crossref_primary_10_3390_s20247030 crossref_citationtrail_10_3390_s20247030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201208 |
PublicationDateYYYYMMDD | 2020-12-08 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201208 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_93 ref_92 ref_139 ref_91 ref_138 ref_90 Guo (ref_201) 2019; 502 ref_131 ref_99 ref_130 ref_98 ref_132 ref_96 ref_135 ref_95 ref_134 NIE (ref_57) 2019; 31 Fanti (ref_87) 2016; 2016 Yu (ref_14) 2016; 4 ref_126 ref_125 ref_128 ref_127 ref_129 ref_120 ref_121 ref_124 ref_123 Wang (ref_142) 2020; 809 Kasiviswanathan (ref_25) 2011; 40 Osia (ref_147) 2020; 7 ref_159 ref_71 ref_151 ref_79 ref_150 Jiang (ref_200) 2019; 482 ref_78 ref_153 ref_152 ref_76 ref_75 ref_154 ref_74 ref_73 Bloom (ref_66) 1970; 13 Cormode (ref_68) 2019; 12 Hino (ref_16) 2013; 4 Xiong (ref_41) 2020; 2020 Guo (ref_2) 2015; 48 Chaudhuri (ref_137) 2011; 12 ref_148 ref_82 ref_81 ref_80 ref_140 ref_88 ref_141 ref_86 ref_85 ref_146 ref_84 ref_145 Li (ref_100) 2014; 7 Sun (ref_83) 2014; 2014 Zhao (ref_77) 2019; 7 Kessler (ref_172) 2019; 12 ref_203 ref_202 Wang (ref_70) 2019; 30 Li (ref_158) 2020; 37 Zheng (ref_160) 2020; 35 Karapiperis (ref_133) 2018; 30 Ou (ref_175) 2020; 7 Zhao (ref_39) 2019; 76 Lin (ref_173) 2017; 4 ref_114 ref_117 Jeong (ref_196) 2019; 22 ref_116 ref_119 ref_118 Krzywicki (ref_6) 2015; 76 ref_110 ref_113 Cao (ref_112) 2019; 31 Liu (ref_198) 2018; 11 Ren (ref_72) 2018; 13 ref_104 ref_103 ref_106 Fung (ref_10) 2010; 42 ref_105 Cao (ref_161) 2020; 16 Shin (ref_199) 2018; 30 ref_107 Wei (ref_164) 2020; 15 ref_109 ref_102 ref_101 Arachchige (ref_34) 2019; 7 Liu (ref_189) 2020; 391 Gao (ref_191) 2018; 5 Yao (ref_8) 2014; 6 Barbosa (ref_18) 2016; 370 Kim (ref_89) 2020; 32 ref_19 Yang (ref_12) 2017; 4 ref_17 Xia (ref_136) 2020; 90 ref_24 ref_23 ref_21 ref_20 Xu (ref_149) 2019; 6 Fan (ref_143) 2020; 135 Lu (ref_4) 2019; 31 ref_29 ref_28 ref_27 ref_26 Jarrett (ref_5) 2018; 11 Duchi (ref_115) 2018; 113 (ref_13) 2016; 1 Liu (ref_9) 2018; 15 Warner (ref_43) 1965; 60 Kairouz (ref_182) 2016; 17 Zhao (ref_122) 2019; 7 Zhu (ref_11) 2017; 29 ref_50 Reilly (ref_97) 2002; 23 ref_58 Wei (ref_195) 2020; 15 ref_56 ref_55 ref_174 ref_54 Wang (ref_111) 2017; 122 ref_177 ref_53 ref_176 ref_52 ref_179 ref_51 ref_178 ref_180 ref_59 ref_181 ref_61 Xu (ref_108) 2019; 12 ref_60 ref_169 Sun (ref_15) 2020; 60 ref_69 ref_162 ref_67 ref_163 ref_65 ref_166 ref_64 ref_165 ref_63 ref_168 ref_62 Yin (ref_144) 2019; 9 ref_167 ref_171 ref_170 Dwork (ref_22) 2014; 9 ref_36 ref_35 ref_194 ref_197 ref_33 ref_32 ref_31 ref_30 Yang (ref_156) 2019; 10 ref_38 Yang (ref_157) 2019; 13 ref_37 Arulkumaran (ref_155) 2017; 34 ref_47 ref_184 ref_46 ref_183 ref_45 ref_186 ref_44 ref_185 ref_188 Cheng (ref_1) 2017; 4 ref_42 ref_187 ref_40 ref_3 ref_190 ref_49 ref_193 ref_48 ref_192 ref_7 |
References_xml | – volume: 4 start-page: 2751 year: 2016 ident: ref_14 article-title: Big privacy: Challenges and opportunities of privacy study in the age of big data publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2577036 – ident: ref_178 – volume: 7 start-page: 5246 year: 2020 ident: ref_175 article-title: Singular Spectrum Analysis for Local Differential Privacy of Classifications in the Smart Grid publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2977220 – ident: ref_165 doi: 10.1145/3378679.3394533 – volume: 9 start-page: 33 year: 2019 ident: ref_144 article-title: Local privacy protection classification based on human-centric computing publication-title: Hum.-Centric Comput. Inf. Sci. doi: 10.1186/s13673-019-0195-4 – ident: ref_184 – ident: ref_88 doi: 10.1109/ICDE.2018.00079 – volume: 48 start-page: 1 year: 2015 ident: ref_2 article-title: Mobile Crowd Sensing and Computing: The Review of an Emerging Human-Powered Sensing Paradigm publication-title: ACM Comput. Surv. doi: 10.1145/2818183 – volume: 11 start-page: 864 year: 2018 ident: ref_198 article-title: When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing publication-title: IEEE Trans. Serv. Comput. – volume: 31 start-page: 1630 year: 2019 ident: ref_4 article-title: A Study on Big Knowledge and Its Engineering Issues publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2866863 – volume: 29 start-page: 1619 year: 2017 ident: ref_11 article-title: Differentially Private Data Publishing and Analysis: A Survey publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2697856 – ident: ref_166 – ident: ref_19 doi: 10.1145/3357384.3357954 – ident: ref_129 doi: 10.1145/3055031.3055090 – ident: ref_94 doi: 10.1109/INFOCOM.2017.8056977 – volume: 2020 start-page: 8829523 year: 2020 ident: ref_41 article-title: A Comprehensive Survey on Local Differential Privacy publication-title: Secur. Commun. Netw. doi: 10.1155/2020/8829523 – volume: 31 start-page: 1281 year: 2019 ident: ref_112 article-title: Quantifying Differential Privacy in Continuous Data Release Under Temporal Correlations publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2824328 – volume: 10 start-page: 1 year: 2019 ident: ref_156 article-title: Federated Machine Learning: Concept and Applications publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3339474 – volume: 113 start-page: 182 year: 2018 ident: ref_115 article-title: Minimax optimal procedures for locally private estimation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1389735 – volume: 12 start-page: 1998 year: 2019 ident: ref_172 article-title: SAP HANA goes private: From privacy research to privacy aware enterprise analytics publication-title: Proc. VLDB Endow. doi: 10.14778/3352063.3352119 – volume: 23 start-page: 355 year: 2002 ident: ref_97 article-title: Social choice in the south seas: Electoral innovation and the borda count in the pacific island countries publication-title: Int. Political Sci. Rev. doi: 10.1177/0192512102023004002 – volume: 809 start-page: 296 year: 2020 ident: ref_142 article-title: Principal component analysis in the local differential privacy model publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2019.12.019 – ident: ref_194 doi: 10.1145/3319535.3354253 – ident: ref_61 doi: 10.1145/2746539.2746632 – volume: 4 start-page: 1125 year: 2017 ident: ref_173 article-title: A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2683200 – ident: ref_128 doi: 10.1145/2857705.2857708 – ident: ref_106 doi: 10.1145/2588555.2588575 – volume: 35 start-page: 5 year: 2020 ident: ref_160 article-title: Preserving User Privacy For Machine Learning: Local Differential Privacy or Federated Machine Learning publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2020.3010335 – volume: 122 start-page: 167 year: 2017 ident: ref_111 article-title: CTS-DP: Publishing correlated time-series data via differential privacy publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.02.004 – volume: 16 start-page: 1 year: 2020 ident: ref_161 article-title: IFed: A novel federated learning framework for local differential privacy in Power Internet of Things publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147720919698 – volume: 40 start-page: 793 year: 2011 ident: ref_25 article-title: What can we learn privately? publication-title: SIAM J. Comput. doi: 10.1137/090756090 – volume: 2016 start-page: 41 year: 2016 ident: ref_87 article-title: Building a with the unknown: Privacy-preserving learning of associations and data dictionaries publication-title: Priv. Enhancing Technol. doi: 10.1515/popets-2016-0015 – volume: 6 start-page: 199 year: 2014 ident: ref_8 article-title: Efficient histogram estimation for smart grid data processing with the loglog-Bloom-filter publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2343997 – ident: ref_90 doi: 10.1109/SP.2019.00018 – ident: ref_132 doi: 10.1109/ICDE.2017.58 – ident: ref_60 doi: 10.1145/3320269.3405441 – ident: ref_95 doi: 10.1109/ICDE.2019.00151 – ident: ref_148 – ident: ref_71 doi: 10.1109/CIT.2016.57 – volume: 482 start-page: 248 year: 2019 ident: ref_200 article-title: Towards a more reliable privacy-preserving recommender system publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.12.085 – ident: ref_78 doi: 10.1145/1142351.1142373 – ident: ref_102 doi: 10.1145/3299869.3300102 – ident: ref_179 – ident: ref_64 – ident: ref_154 – ident: ref_98 doi: 10.1017/CBO9781107446984.002 – volume: 60 start-page: 146 year: 2020 ident: ref_15 article-title: Privacy and security in the big data paradigm publication-title: J. Comput. Inf. Syst. – ident: ref_109 – ident: ref_84 doi: 10.1109/SP.2018.00035 – ident: ref_185 – ident: ref_190 doi: 10.1007/978-3-319-60033-8_35 – ident: ref_27 doi: 10.1145/2660267.2660348 – volume: 11 start-page: 202 year: 2018 ident: ref_5 article-title: Crowdsourcing, Mixed Elastic Systems and Human-Enhanced Computing— A Survey publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2017.2674662 – ident: ref_49 – volume: 4 start-page: 1048 year: 2013 ident: ref_16 article-title: A versatile clustering method for electricity consumption pattern analysis in households publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2013.2240319 – ident: ref_32 – ident: ref_33 doi: 10.1609/aaai.v34i04.6096 – ident: ref_26 – volume: 1 start-page: 21 year: 2016 ident: ref_13 article-title: Big data privacy: Challenges to privacy principles and models publication-title: Data Sci. Eng. doi: 10.1007/s41019-015-0001-x – ident: ref_169 doi: 10.24963/ijcai.2021/217 – ident: ref_127 – ident: ref_176 doi: 10.1109/JIOT.2020.3037194 – ident: ref_55 doi: 10.1007/978-3-642-39077-7_5 – ident: ref_151 – ident: ref_45 doi: 10.1007/11681878_14 – ident: ref_188 – ident: ref_110 doi: 10.1109/ICDE.2017.132 – ident: ref_139 – ident: ref_138 doi: 10.1109/SP.2017.35 – volume: 12 start-page: 1069 year: 2011 ident: ref_137 article-title: Differentially private empirical risk minimization publication-title: J. Mach. Learn. Res. – ident: ref_82 doi: 10.1109/INFOCOM.2019.8737527 – ident: ref_121 doi: 10.1145/3219819.3220076 – ident: ref_193 doi: 10.1109/ICDE48307.2020.00204 – volume: 4 start-page: 1489 year: 2017 ident: ref_1 article-title: Mobile Big Data: The Fuel for Data-Driven Wireless publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2714189 – ident: ref_20 – ident: ref_93 – ident: ref_145 – ident: ref_135 doi: 10.1007/978-3-319-59870-3_14 – ident: ref_183 – ident: ref_46 doi: 10.1109/FOCS.2007.66 – ident: ref_65 doi: 10.1007/978-3-319-42836-9_23 – volume: 90 start-page: 1 year: 2020 ident: ref_136 article-title: Distributed K-Means clustering guaranteeing local differential privacy publication-title: Comput. Secur. doi: 10.1016/j.cose.2019.101699 – ident: ref_81 doi: 10.1145/3196959.3196981 – ident: ref_37 – ident: ref_21 – ident: ref_167 – ident: ref_29 doi: 10.1109/ICDE.2019.00063 – ident: ref_192 doi: 10.1109/ICEIEC49280.2020.9152325 – volume: 7 start-page: 48901 year: 2019 ident: ref_122 article-title: Differential Privacy Preservation in Deep Learning: Challenges, Opportunities and Solutions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909559 – ident: ref_54 – volume: 13 start-page: 422 year: 1970 ident: ref_66 article-title: Space/time trade-offs in hash coding with allowable errors publication-title: Commun. ACM doi: 10.1145/362686.362692 – ident: ref_3 doi: 10.1109/TSC.2018.2791601 – volume: 7 start-page: 4505 year: 2020 ident: ref_147 article-title: A hybrid deep learning architecture for privacy-preserving mobile analytics publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2967734 – volume: 9 start-page: 211 year: 2014 ident: ref_22 article-title: The algorithmic foundations of differential privacy publication-title: Found. Trends® Theor. Comput. Sci. doi: 10.1561/0400000042 – ident: ref_150 – ident: ref_105 – volume: 76 start-page: 50 year: 2015 ident: ref_6 article-title: Collaborative filtering for people-to-people recommendation in online dating: Data analysis and user trial publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2014.12.003 – ident: ref_99 – volume: 12 start-page: 1126 year: 2019 ident: ref_68 article-title: Answering range queries under local differential privacy publication-title: Proc. VLDB Endow. doi: 10.14778/3339490.3339496 – ident: ref_117 – ident: ref_74 doi: 10.1145/3243734.3243742 – ident: ref_80 – ident: ref_126 doi: 10.1017/CBO9781139176224 – ident: ref_51 – ident: ref_101 doi: 10.1109/ICHI.2017.49 – ident: ref_104 doi: 10.1145/3318464.3389700 – ident: ref_123 – ident: ref_146 – ident: ref_141 – ident: ref_119 doi: 10.1145/2976749.2978318 – volume: 37 start-page: 50 year: 2020 ident: ref_158 article-title: Federated Learning: Challenges, Methods, and Future Directions publication-title: IEEE Signal Process. Mag. – ident: ref_168 doi: 10.1007/978-3-030-59410-7_33 – ident: ref_152 – ident: ref_30 doi: 10.1145/2976749.2978409 – ident: ref_62 – ident: ref_134 doi: 10.1007/978-3-319-55753-3_34 – ident: ref_203 doi: 10.1109/GLOCOM.2015.7417364 – ident: ref_23 doi: 10.1109/TBDATA.2017.2715334 – ident: ref_187 – ident: ref_7 doi: 10.1109/ICDE.2016.7498248 – ident: ref_28 – volume: 31 start-page: 655 year: 2019 ident: ref_57 article-title: A Utility-Optimized Framework for Personalized Private Histogram Estimation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2841360 – ident: ref_140 – volume: 15 start-page: 3239 year: 2020 ident: ref_195 article-title: AsgLDP: Collecting and Generating Decentralized Attributed Graphs With Local Differential Privacy publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.2985524 – ident: ref_86 – volume: 2014 start-page: 686151 year: 2014 ident: ref_83 article-title: Personalized privacy-preserving frequent itemset mining using randomized response publication-title: Sci. World J. doi: 10.1155/2014/686151 – ident: ref_67 – ident: ref_92 – volume: 76 start-page: 1 year: 2019 ident: ref_39 article-title: A survey of local differential privacy for securing internet of vehicles publication-title: J. Supercomput. – ident: ref_44 – ident: ref_163 – volume: 7 start-page: 31435 year: 2019 ident: ref_77 article-title: LDPart: Effective Location-Record Data Publication via Local Differential Privacy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899099 – volume: 15 start-page: 1767 year: 2018 ident: ref_9 article-title: A practical privacy-preserving data aggregation (3PDA) scheme for smart grid publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2809672 – ident: ref_197 doi: 10.1109/SP.2011.40 – volume: 30 start-page: 292 year: 2018 ident: ref_133 article-title: FEDERAL: A framework for distance-aware privacy-preserving record linkage publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2761759 – ident: ref_75 – ident: ref_50 – volume: 15 start-page: 3454 year: 2020 ident: ref_164 article-title: Federated learning with differential privacy: Algorithms and performance analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.2988575 – volume: 7 start-page: 341 year: 2014 ident: ref_100 article-title: A Data- and Workload-Aware Query Answering Algorithm for Range Queries Under Differential Privacy publication-title: Proc. VLDB Endow. doi: 10.14778/2732269.2732271 – volume: 34 start-page: 26 year: 2017 ident: ref_155 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – ident: ref_116 doi: 10.1109/SP.2017.41 – ident: ref_103 doi: 10.1109/CNS.2019.8802778 – ident: ref_202 doi: 10.1145/3397271.3401053 – volume: 370 start-page: 355 year: 2016 ident: ref_18 article-title: A technique to provide differential privacy for appliance usage in smart metering publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.08.011 – volume: 42 start-page: 1 year: 2010 ident: ref_10 article-title: Privacy-preserving data publishing: A survey of recent developments publication-title: ACM Comput. Surv. doi: 10.1145/1749603.1749605 – ident: ref_36 doi: 10.1007/978-981-15-3281-8_2 – ident: ref_181 doi: 10.1007/978-3-319-61176-1_7 – volume: 6 start-page: 5140 year: 2019 ident: ref_149 article-title: EdgeSanitizer: Locally Differentially Private Deep Inference at the Edge for Mobile Data Analytics publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2897005 – ident: ref_113 – ident: ref_159 – volume: 17 start-page: 1 year: 2016 ident: ref_182 article-title: Extremal Mechanisms for Local Differential Privacy publication-title: J. Mach. Learn. Res. – ident: ref_171 – ident: ref_177 doi: 10.1109/SmartIoT.2019.00050 – volume: 60 start-page: 63 year: 1965 ident: ref_43 article-title: Randomized response: A survey technique for eliminating evasive answer bias publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1965.10480775 – volume: 135 start-page: 70 year: 2020 ident: ref_143 article-title: Privacy preserving classification on local differential privacy in data centers publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2019.09.009 – ident: ref_180 – volume: 32 start-page: 479 year: 2020 ident: ref_89 article-title: Learning New Words from Keystroke Data with Local Differential Privacy publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2885749 – volume: 12 start-page: 1862 year: 2019 ident: ref_108 article-title: DPSAaS: Multi-Dimensional Data Sharing and Analytics as Services under Local Differential Privacy publication-title: Proc. VLDB Endow. doi: 10.14778/3352063.3352085 – ident: ref_35 – ident: ref_38 doi: 10.1109/MDM.2019.00-80 – ident: ref_58 – ident: ref_47 doi: 10.1109/FOCS.2013.53 – ident: ref_52 – volume: 502 start-page: 229 year: 2019 ident: ref_201 article-title: Locally differentially private item-based collaborative filtering publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.06.021 – ident: ref_114 doi: 10.1145/1806689.1806787 – ident: ref_107 – ident: ref_131 – ident: ref_124 – volume: 30 start-page: 1770 year: 2018 ident: ref_199 article-title: Privacy enhanced matrix factorization for recommendation with local differential privacy publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2805356 – volume: 7 start-page: 5827 year: 2019 ident: ref_34 article-title: Local Differential Privacy for Deep Learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2952146 – volume: 4 start-page: 1250 year: 2017 ident: ref_12 article-title: A survey on security and privacy issues in Internet-of-Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2694844 – ident: ref_56 doi: 10.1109/TDSC.2019.2949041 – ident: ref_40 – ident: ref_59 doi: 10.1109/ICDE48307.2020.00050 – ident: ref_153 – ident: ref_63 – ident: ref_125 – ident: ref_130 – volume: 5 start-page: 1009 year: 2018 ident: ref_191 article-title: Local differential privately anonymizing online social networks under hrg-based model publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2018.2877045 – ident: ref_96 – ident: ref_186 – ident: ref_31 doi: 10.1145/3183713.3196906 – ident: ref_69 doi: 10.1109/INFOCOM.2017.8056977 – ident: ref_162 doi: 10.1109/ISIT44484.2020.9174426 – ident: ref_24 doi: 10.1145/3219819.3226070 – ident: ref_118 doi: 10.1145/2810103.2813677 – ident: ref_42 doi: 10.1109/FOCS.2013.53 – volume: 391 start-page: 273 year: 2020 ident: ref_189 article-title: Local differential privacy for social network publishing publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.104 – ident: ref_85 – ident: ref_73 doi: 10.1109/GLOCOM.2017.8253989 – ident: ref_170 – volume: 13 start-page: 2151 year: 2018 ident: ref_72 article-title: LoPub: High-Dimensional Crowdsourced Data Publication with Local Differential Privacy publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2812146 – volume: 13 start-page: 1 year: 2019 ident: ref_157 article-title: Federated learning publication-title: Synth. Lect. Artif. Intell. Mach. Learn. – ident: ref_174 doi: 10.1109/JIOT.2019.2936512 – ident: ref_48 doi: 10.1109/FOCS.2019.00015 – ident: ref_91 – ident: ref_17 doi: 10.1109/INFOCOM.2014.6847974 – ident: ref_53 doi: 10.1145/2508859.2516735 – volume: 22 start-page: 1837 year: 2019 ident: ref_196 article-title: Big data and rule-based recommendation system in Internet of Things publication-title: Clust. Comput. doi: 10.1007/s10586-017-1078-y – ident: ref_76 doi: 10.1109/INFOCOM.2018.8486234 – volume: 30 start-page: 2046 year: 2019 ident: ref_70 article-title: Local Differential Private Data Aggregation for Discrete Distribution Estimation publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2019.2899097 – ident: ref_79 doi: 10.1007/978-3-642-31594-7_39 – ident: ref_120 doi: 10.1109/ICDM.2017.48 |
SSID | ssj0023338 |
Score | 2.5616121 |
SecondaryResourceType | review_article |
Snippet | Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7030 |
SubjectTerms | Algorithms applications Big Data data statistics and analysis enabling mechanisms Hypothesis testing Internet of Things local differential privacy Machine learning Privacy Probability Recommender systems Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnOgBAS2QFipTceglIuuP2HvkowihtqpEkfYW2c5EIKEsWrJI_Htmkmy0i5C49BIpsQ_OeMbznjx-BjiyPjiJfpSWih5aYpmOkU-jYemNpxQl2-Njv__klzf6amImS1d9cU1YJw_cGe44YE5uFrLcybGmF5cF44mGxxg8YYnIqy_lvAWZ6qmWIubV6QgpIvXHj0TxtW1LnZeyTyvS_xayfF0guZRxLjZho4eK4qQb4hZ8wHobPi4JCH6CyYnggJ7hbVeHLq7nsyd8FtNa_OIkJc77-08oju_F39ndk4_PomlLZcW5b7xgsNlpNQtfl2KhUfIZbi5-_ju7TPu7EtJolGlSXarKOMvhGDNT5XnQ48r7jOFAZbHKoi5LG6voLRIi1JXPVTBxLF2lopIjtQNr9bTGPRDIO3NhFHgHU2scuRIlUtYnakaLoXMJ_FjYsIi9kDjfZ3FfEKFgcxeDuRP4PnR96NQz3up0yhMxdGDB6_YDuUHRu0HxnhsksL-YxqKPwsdCEvc3lkCUSeBwaKb44U0RX-N0zn1sRqQuV3kCu92sDyMhL2ol3RKwK_6wMtTVlvruttXotrRuEzb-8j_-7SusS2b5XETj9mGtmc3xgKBQE761Xv8CnvsHxQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAOXKImfsTOCRXKUiFASFBpb5FfoZWqpGSzlfrvmXG8YRdVXCIlnoNlex5fZvwNIW-UsZoFU-aew0Ow4PM64G204I004KJYvD729Vt1fCI-L-Uy_XBbpbLKjU2Mhtr3Dv-RHzDAcVKBQ5TvLn7n2DUKs6uphcZNcqsET4MlXXrxaQZcHPDXxCbEAdofrADoCxULnrd8UKTqvy6-_LdMcsvvLO6RuylgpIfTDt8nN0L3gNzZohF8SJaHFNV6CKdTNTr9sR4uwxXtO_oFXRU9Sl1QQJvP6ffh7NK4KzrGgll6ZEZDMeScGJup6TzdMJU8IieLjz8_HOepY0LuJJdjLjxvpVaolK6QbVVZUbfGFBgUtCq0hRPeK9c6owLEhaI1FbfS1Uy33HFW8sdkr-u78JTQgPk5W1rMYwoRSu0DC-D7AaCBSdQ6I283a9i4RCeOXS3OG4AVuNzNvNwZeT2LXkwcGtcJvceNmAWQ9jp-6IdfTdKixoYKbI4tKs1qAS-6sNIUNXfOGggsXUb2N9vYJF1cNX9PTkZezcOgRZgaMV3o1yijCoB2Fa8y8mTa9XkmcIoisVtG1M552Jnq7kh3dhqZuhVYb4iQn_1_Ws_JbYYoHotk9D7ZG4d1eAGhzmhfxvP8B7R0_0w priority: 102 providerName: ProQuest |
Title | A Comprehensive Survey on Local Differential Privacy toward Data Statistics and Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33302517 https://www.proquest.com/docview/2469570715 https://www.proquest.com/docview/2470626636 https://pubmed.ncbi.nlm.nih.gov/PMC7763193 https://doaj.org/article/be6400b068294be680b5a093ccba163c |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4k2grAziwCWQje3YOSDU0i4VolUFrLS3yHYcWmmVhTRbsf-embzUoD1wsZTYkazxjOebjP0NwBtlrI69mYY5x0bEPg9TT7fRfG6kQRcVN9fHzs6T07n4spCLHehrbHYCvN4a2lE9qXm1fPfn9-YjGvwHijgxZH9_jQG8IM3dhX10SIoKGZyJIZkQc94UtKY7XSH6w6glGBp_OnJLDXv_Nsj578nJW65odh_udRiSHbaL_gB2fPkQ7t5iFnwEi0NGll75y_aAOvu-rm78hq1K9pW8FzvuCqOggS_ZRXV1Y9yG1c0ZWnZsasMIhbYkzsyUOevJSx7DfHby49Np2BVRCJ3ksg5FzgupFdmpi2SRJFakhTER4YRC-SJyIs-VK5xRHqGiKEzCrXRprAvueDzlT2CvXJX-GTBPKTs7tZTaFMJPde5jj3AAYzbcJbUO4G0vw8x1DONU6GKZYaRB4s4GcQfwehj6q6XV2DboiBZiGEBM2M2LVfUz6wwrsz7BbchGiY5TgQ86stJEKXfOGsSaLoCDfhmzXruyWCSpVIiuZACvhm40LMqWmNKv1jRGRRjtJTwJ4Gm76sNMUKMarrcA1EgfRlMd95RXlw15t8INHUHz8_8RwAu4E1N4T6dn9AHs1dXav0QMVNsJ7KqFwlbPPk9g_-jk_OLbpPmfMGl0_y-cEwhK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVq1o88DggVlmVLtxUSrbS3YDtOW6lK2uxu0f4pfiMzebGLKm69REpsRZY9nm_GM_4G4G2kTcydHviZwIfkLvMTR7fRXKaVRoji9fWx_YNwfCS_TdV0A353d2EorbLTibWizkpLZ-TbHP04FSEgqo_nFz5VjaLoaldCoxGLPbf8hS7b7MPuENf3HeejL4efx35bVcC3Sqi5LzORqzgiwbWBysPQyCTXOiDgzCOXB1ZmWWRzqyOHtpPMdSiMsgmPc2EFHwj87w24KQUiOd1MH33tHTyB_l7DXoSNwfaMIwBGdYL1CubVpQGusmf_TctcwbnRPbjbGqhsp5Go-7DhigdwZ4W28CFMdxipkcqdNNnv7MeiunRLVhZsQtDIhm3VFdQeZ-x7dXqp7ZLN6wRdNtRzzcjEbRiimS4y1jGjPIKja5nLx7BZlIV7CsxRPNAMDMVNpXSDOHPcoa2BDiGq4Dj24H03h6lt6cupisZZim4MTXfaT7cHb_qu5w1nx1WdPtFC9B2IZrv-UFbHabtrU-NC1HEmCGOeSHyJA6N0kAhrjUZD1nqw1S1j2u79WfpXUj143TfjrqVQjC5cuaA-UYCuZChCD540q96PBKWoJpLzIFqTh7WhrrcUpyc1M3iEaIEW-bP_D-sV3Bof7k_Sye7B3nO4zekEgRJ04i3YnFcL9wLNrLl5Wcs2g5_XvZn-ANTnPHs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHiJmtpJnDwgtNFVGxtVBUzqW7Adh02akpGmQ_3X-Ou4yxctmnjbS6TEp8g6n-_Dd_4dwBupdMStGrmpwIfPberGlm6j2VQFCk0Ur6-PfZ6GByf-p3kw34Lf3V0YKqvsdGKtqNPC0Bn5kGMcF0g0iMEwa8siZuPJh4ufLnWQokxr106jEZEju_qF4dvi_eEY1_ot55P9bx8P3LbDgGsCEVSun4osiCQJsfGCLAy1H2dKeWREM2kzz_hpKk1mlLToR_mZCoUOTMyjTBjBRwL_ewO2JUVFA9je25_OvvThnsDor8EyEiL2hguO5lDW5dZrFrBuFHCVd_tvkeaa1ZvchTutu8p2G_m6B1s2vw-310AMH8B8l5FSKe1pUwvPvi7LS7tiRc6OyVCycduDBXXJOZuVZ5fKrFhVl-uysaoUI4e3wYtmKk9Zh5PyEE6uhZuPYJAXuX0CzFJ2UI80ZVF9346i1HKLngeGh6iQo8iBdx0PE9OCmVNPjfMEgxpid9Kz24HXPelFg-BxFdEeLURPQKDb9Yei_JG0ezjRNkSNp70w4rGPL5GnA-XFwhit0K01Dux0y5i0mmCR_JVbB171w7iHKTGjclssiUZ6GFiGInTgcbPq_UxQimpYOQfkhjxsTHVzJD87rXHCJdoO9M-f_n9aL-EmbqTk-HB69AxucTpOoGqdaAcGVbm0z9HnqvSLVrgZfL_u_fQHqkdCDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+on+Local+Differential+Privacy+toward+Data+Statistics+and+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Teng&rft.au=Zhang%2C+Xuefeng&rft.au=Feng%2C+Jingyu&rft.au=Yang%2C+Xinyu&rft.date=2020-12-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=24&rft.spage=7030&rft_id=info:doi/10.3390%2Fs20247030&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20247030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |