Semiconductor Gas Sensors: Materials, Technology, Design, and Application

This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabricat...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 22; p. 6694
Main Authors Nikolic, Maria Vesna, Milovanovic, Vladimir, Vasiljevic, Zorka Z., Stamenkovic, Zoran
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.11.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
AbstractList This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH 3 , but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH , but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
Author Milovanovic, Vladimir
Stamenkovic, Zoran
Vasiljevic, Zorka Z.
Nikolic, Maria Vesna
AuthorAffiliation 1 Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; mariavesna@imsi.rs (M.V.N.); zorkav@imsi.rs (Z.Z.V.)
3 IHP—Leibniz-Institut Für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
2 Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia; vlada@kg.ac.rs
AuthorAffiliation_xml – name: 1 Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; mariavesna@imsi.rs (M.V.N.); zorkav@imsi.rs (Z.Z.V.)
– name: 3 IHP—Leibniz-Institut Für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
– name: 2 Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia; vlada@kg.ac.rs
Author_xml – sequence: 1
  givenname: Maria Vesna
  orcidid: 0000-0001-5035-0170
  surname: Nikolic
  fullname: Nikolic, Maria Vesna
– sequence: 2
  givenname: Vladimir
  surname: Milovanovic
  fullname: Milovanovic, Vladimir
– sequence: 3
  givenname: Zorka Z.
  orcidid: 0000-0002-7817-8648
  surname: Vasiljevic
  fullname: Vasiljevic, Zorka Z.
– sequence: 4
  givenname: Zoran
  orcidid: 0000-0002-6078-413X
  surname: Stamenkovic
  fullname: Stamenkovic, Zoran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33238459$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEQgC1URB9w4A-glbiAlFCvX-vlgFQVKJGKOLScrVl7NnW0sVN7F6n_HjcpUVtxsmV__mbGM8fkIMSAhLyt6SfOW3qaGWVMqVa8IEe1YGKuGaMHj_aH5DjnFaWMc65fkUPOGddCtkdkcYVrb2Nwkx1jqi4gV1cYckz5c_UTRkwehjyrrtHehDjE5d2s-orZL8OsguCqs81m8BZGH8Nr8rIvLL55WE_I7-_frs9_zC9_XSzOzy7nVnI5zkUnGimxrrVswXWCWsFrqZgFx61i2POu14yrpmMCQHElqQQQ1mmBVrKen5DFzusirMwm-TWkOxPBm-1BTEsDafR2QKMlSIat7Z2WwmneddTprmFCqRoVr4vry861mbo1OothTDA8kT69Cf7GLOMf0zSUCi2K4MODIMXbCfNo1j5bHAYIGKdsSiihaKlQF_T9M3QVpxTKV22plism7jN69zijfSr_OlaAjzvApphzwn6P1NTcT4PZT0NhT5-x1o_bZpVi_PCfF38BgpK0KQ
CitedBy_id crossref_primary_10_1002_adfm_202207065
crossref_primary_10_1007_s10854_023_10279_z
crossref_primary_10_1186_s11671_023_03798_5
crossref_primary_10_3389_fchem_2023_1174207
crossref_primary_10_3390_nano12122120
crossref_primary_10_1016_j_colsurfa_2023_132203
crossref_primary_10_1007_s13391_024_00498_9
crossref_primary_10_1039_D2RA06307G
crossref_primary_10_3390_s21134387
crossref_primary_10_1016_j_surfin_2023_103404
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_26634_jit_12_2_20107
crossref_primary_10_1016_j_trechm_2023_10_003
crossref_primary_10_1016_j_talo_2024_100290
crossref_primary_10_3390_nano14181521
crossref_primary_10_1016_j_snb_2024_135729
crossref_primary_10_1088_1742_6596_2114_1_012040
crossref_primary_10_1149_1945_7111_ac6e0a
crossref_primary_10_1021_acsami_4c01077
crossref_primary_10_1021_acsanm_3c03846
crossref_primary_10_1016_j_jaap_2022_105527
crossref_primary_10_1109_JSEN_2025_3531888
crossref_primary_10_3390_su141811516
crossref_primary_10_1016_j_snb_2024_137225
crossref_primary_10_1007_s11581_023_05333_z
crossref_primary_10_1016_j_sna_2022_114106
crossref_primary_10_1016_j_snb_2023_134477
crossref_primary_10_3390_bios14050248
crossref_primary_10_3390_s24227188
crossref_primary_10_3390_en16062559
crossref_primary_10_3390_nano14010026
crossref_primary_10_1016_j_snb_2023_134000
crossref_primary_10_1021_acs_iecr_3c02288
crossref_primary_10_1007_s42341_024_00555_y
crossref_primary_10_1088_1361_6641_ac01a3
crossref_primary_10_3390_s24196475
crossref_primary_10_3390_app11209536
crossref_primary_10_3390_bios12100882
crossref_primary_10_1016_j_porgcoat_2023_107632
crossref_primary_10_2139_ssrn_4107074
crossref_primary_10_1016_j_cej_2024_154014
crossref_primary_10_1016_j_envpol_2022_119119
crossref_primary_10_1364_OE_533328
crossref_primary_10_3390_electronics13071252
crossref_primary_10_1016_j_chemosphere_2021_130641
crossref_primary_10_1016_j_sna_2025_116233
crossref_primary_10_1016_j_jcis_2024_07_221
crossref_primary_10_1016_j_ijoes_2023_100314
crossref_primary_10_1016_j_trac_2024_117664
crossref_primary_10_1007_s00216_023_04986_z
crossref_primary_10_20517_ss_2024_09
crossref_primary_10_3390_s21103403
crossref_primary_10_1007_s10570_024_05833_9
crossref_primary_10_1016_j_snb_2024_136710
crossref_primary_10_3390_s23010052
crossref_primary_10_1016_j_apsusc_2022_156257
crossref_primary_10_3390_fire6070248
crossref_primary_10_1016_j_snb_2024_136958
crossref_primary_10_3390_pr9101791
crossref_primary_10_1016_j_talanta_2024_127019
crossref_primary_10_3389_fmats_2022_906838
crossref_primary_10_1109_JSEN_2024_3407651
crossref_primary_10_1149_2162_8777_acd1ad
crossref_primary_10_1016_j_mssp_2024_109100
crossref_primary_10_1039_D4NJ03925D
crossref_primary_10_1016_j_ceramint_2024_05_439
crossref_primary_10_1021_acssensors_2c00639
crossref_primary_10_1038_s41598_024_62939_7
crossref_primary_10_1002_adsr_202400066
crossref_primary_10_1063_5_0186269
crossref_primary_10_15222_TKEA2021_5_6_11
crossref_primary_10_3390_coatings14111438
crossref_primary_10_3390_molecules29163741
crossref_primary_10_1016_j_jmrt_2023_03_162
crossref_primary_10_1021_acsanm_4c01795
crossref_primary_10_3390_chemosensors9090244
crossref_primary_10_1016_j_surfin_2024_103958
crossref_primary_10_3390_chemosensors11030156
crossref_primary_10_3390_chemosensors12040060
crossref_primary_10_3390_s22218150
crossref_primary_10_1016_j_jallcom_2023_170568
crossref_primary_10_3390_coatings13101771
crossref_primary_10_1016_j_snb_2023_133810
crossref_primary_10_1016_j_surfin_2021_101673
crossref_primary_10_1016_j_flatc_2023_100584
crossref_primary_10_1088_1361_6463_ad32a7
crossref_primary_10_1111_jfpe_70035
crossref_primary_10_3390_nano13121835
crossref_primary_10_1016_j_micrna_2024_207830
crossref_primary_10_1016_j_mseb_2023_117029
crossref_primary_10_1016_j_apsusc_2023_159108
crossref_primary_10_1109_RBME_2024_3481360
crossref_primary_10_1002_admt_202301347
crossref_primary_10_1149_2754_2726_ad0736
crossref_primary_10_3390_s23239548
crossref_primary_10_3390_chemosensors12090198
crossref_primary_10_1038_s41598_024_81279_0
crossref_primary_10_1016_j_ceramint_2024_10_450
crossref_primary_10_1016_j_comptc_2023_114186
crossref_primary_10_1088_1402_4896_ad4d2a
crossref_primary_10_1109_JSEN_2022_3185176
crossref_primary_10_3389_fenvc_2022_926233
crossref_primary_10_3390_s24020602
crossref_primary_10_1109_TIM_2023_3273691
crossref_primary_10_1007_s10854_024_13549_6
crossref_primary_10_1016_j_talo_2025_100411
crossref_primary_10_1007_s12633_024_03126_1
crossref_primary_10_1016_j_aej_2025_02_100
crossref_primary_10_1016_j_sna_2022_113578
crossref_primary_10_1016_j_measurement_2022_112077
crossref_primary_10_1134_S1063785023900844
crossref_primary_10_3390_s21134357
crossref_primary_10_1039_D3RA01279D
crossref_primary_10_3390_s22041530
crossref_primary_10_1080_00207543_2023_2217282
crossref_primary_10_1016_j_cej_2024_151874
crossref_primary_10_1021_acssensors_4c00186
crossref_primary_10_3390_s23020882
crossref_primary_10_1080_05704928_2024_2302608
crossref_primary_10_29059_cienciauat_v17i2_1632
crossref_primary_10_1108_SR_09_2022_0339
crossref_primary_10_3390_ma16175893
crossref_primary_10_1360_TB_2023_0340
crossref_primary_10_1002_cnma_202400491
crossref_primary_10_3390_nano11112773
crossref_primary_10_3390_s21051907
crossref_primary_10_1016_j_comptc_2022_113801
crossref_primary_10_1149_2162_8777_ace5d8
crossref_primary_10_3390_c11010004
crossref_primary_10_46670_JSST_2024_33_5_310
crossref_primary_10_1016_j_snb_2025_137554
crossref_primary_10_1021_acssensors_2c01086
crossref_primary_10_1007_s10098_024_02774_6
crossref_primary_10_1007_s10479_024_06428_0
crossref_primary_10_1016_j_cplett_2024_141779
crossref_primary_10_1016_j_snb_2024_135780
crossref_primary_10_3390_s24144560
crossref_primary_10_3390_s23239525
crossref_primary_10_1016_j_jallcom_2025_179080
crossref_primary_10_1002_admt_202300030
crossref_primary_10_1016_j_jeurceramsoc_2025_117353
crossref_primary_10_1021_acs_langmuir_4c04850
crossref_primary_10_1007_s12633_024_03092_8
crossref_primary_10_1016_j_heliyon_2024_e31634
crossref_primary_10_1063_5_0153029
crossref_primary_10_3390_s21041326
crossref_primary_10_1016_j_flatc_2024_100716
crossref_primary_10_3390_jcs7040156
crossref_primary_10_3390_s24072147
crossref_primary_10_1007_s10751_024_02042_5
crossref_primary_10_1007_s11220_024_00469_2
crossref_primary_10_1007_s11664_024_11564_1
crossref_primary_10_3390_nano11092318
crossref_primary_10_1016_j_snb_2024_136199
crossref_primary_10_3390_s21175783
crossref_primary_10_1016_j_partic_2024_03_004
crossref_primary_10_3390_en16186499
crossref_primary_10_1016_j_matchemphys_2022_126871
crossref_primary_10_1557_s43578_022_00755_3
crossref_primary_10_1007_s00604_024_06750_1
crossref_primary_10_3390_ma17143502
crossref_primary_10_1016_j_cap_2022_07_007
crossref_primary_10_1016_j_cej_2025_160608
crossref_primary_10_1021_acsomega_4c11045
crossref_primary_10_1088_2631_7990_ad3316
crossref_primary_10_1007_s11244_022_01564_y
crossref_primary_10_3390_s24072252
crossref_primary_10_1016_j_talanta_2025_127752
crossref_primary_10_1016_j_mtcomm_2025_111867
crossref_primary_10_1016_j_ceramint_2021_12_273
crossref_primary_10_1016_j_surfin_2024_105098
crossref_primary_10_3390_toxics11080658
crossref_primary_10_1016_j_snb_2025_137453
crossref_primary_10_1007_s42247_024_00967_9
crossref_primary_10_3390_s21134425
crossref_primary_10_1002_ep_14126
crossref_primary_10_3390_chemosensors11040248
crossref_primary_10_3390_technologies11060156
crossref_primary_10_1063_5_0220697
crossref_primary_10_1088_2631_8695_aca6d1
crossref_primary_10_1155_2021_6988676
crossref_primary_10_1039_D4NR04681A
crossref_primary_10_3390_chemosensors11090506
crossref_primary_10_3390_nano11102700
crossref_primary_10_1149_2754_2726_acbe0c
crossref_primary_10_3390_mi15020264
crossref_primary_10_1002_adsr_202300035
crossref_primary_10_1016_j_chphi_2024_100604
crossref_primary_10_1016_j_nantod_2021_101265
crossref_primary_10_3390_ma17235825
crossref_primary_10_3390_mi16020118
crossref_primary_10_1007_s10854_024_13260_6
crossref_primary_10_3389_fchem_2025_1538217
crossref_primary_10_1016_j_sna_2022_113657
crossref_primary_10_1007_s10904_021_02198_5
crossref_primary_10_1016_j_microc_2025_113083
crossref_primary_10_1002_eem2_12570
crossref_primary_10_1007_s10854_023_11730_x
crossref_primary_10_3390_nano13040668
crossref_primary_10_1016_j_surfin_2024_104869
crossref_primary_10_3390_molecules28186710
crossref_primary_10_1016_j_mseb_2021_115272
crossref_primary_10_1088_1361_6528_ac9288
crossref_primary_10_1002_elan_202400246
crossref_primary_10_3390_chemosensors10030112
crossref_primary_10_3390_chemosensors13020038
crossref_primary_10_1002_pssa_202400633
crossref_primary_10_3390_membranes12060555
crossref_primary_10_3390_ma15248728
crossref_primary_10_1016_j_snb_2022_132843
crossref_primary_10_1109_TIM_2025_3547517
crossref_primary_10_1149_1945_7111_ac7c40
crossref_primary_10_1007_s10854_024_12398_7
crossref_primary_10_1016_j_apsusc_2025_162618
crossref_primary_10_1149_1945_7111_aca839
crossref_primary_10_3390_chemosensors10070267
crossref_primary_10_1016_j_sna_2022_114044
crossref_primary_10_1016_j_matpr_2022_06_180
crossref_primary_10_1007_s00339_024_07849_1
crossref_primary_10_1109_JSEN_2024_3438073
crossref_primary_10_3390_ma16051868
crossref_primary_10_1002_aisy_202200169
crossref_primary_10_1002_mame_202300346
crossref_primary_10_1002_tcr_202300350
crossref_primary_10_1038_s41598_023_34697_5
crossref_primary_10_1063_5_0170089
crossref_primary_10_1109_JSEN_2022_3210007
crossref_primary_10_1140_epjb_s10051_023_00601_3
crossref_primary_10_1007_s10853_024_09376_z
crossref_primary_10_1016_j_jii_2024_100715
crossref_primary_10_1016_j_snb_2023_134733
crossref_primary_10_1299_transjsme_23_00158
crossref_primary_10_3390_nano11020552
crossref_primary_10_1007_s11696_024_03525_z
crossref_primary_10_1021_acsanm_4c02127
crossref_primary_10_1038_s43246_024_00693_z
crossref_primary_10_1016_j_surfin_2025_105995
crossref_primary_10_1016_j_jes_2024_07_027
crossref_primary_10_1021_acsami_4c15743
crossref_primary_10_3390_s23177444
crossref_primary_10_1021_acsomega_3c09460
crossref_primary_10_1039_D3TC01126G
crossref_primary_10_1016_j_bios_2022_114319
crossref_primary_10_1016_j_prime_2024_100496
crossref_primary_10_1039_D3NR04040B
crossref_primary_10_3390_s25051634
crossref_primary_10_1016_j_tifs_2024_104369
crossref_primary_10_1109_TIM_2023_3293879
crossref_primary_10_18321_cpc21_4_227_236
crossref_primary_10_1016_j_trac_2023_117185
crossref_primary_10_1016_j_inoche_2023_110847
crossref_primary_10_1088_2631_8695_ad861f
crossref_primary_10_3390_nano12203651
crossref_primary_10_54919_physics_53_2023_42
crossref_primary_10_1021_acs_accounts_4c00319
crossref_primary_10_1109_JSEN_2024_3349862
crossref_primary_10_1007_s10854_024_12873_1
crossref_primary_10_3390_s24237851
crossref_primary_10_1007_s11082_023_05934_y
crossref_primary_10_1016_j_microc_2024_112369
crossref_primary_10_1007_s10904_024_03052_0
crossref_primary_10_1002_cssc_202402342
crossref_primary_10_1016_j_physleta_2024_129487
crossref_primary_10_1002_adfm_202415971
crossref_primary_10_1063_5_0151942
crossref_primary_10_1088_1361_6439_aca4db
crossref_primary_10_1007_s12668_024_01301_7
crossref_primary_10_1016_j_nanoso_2021_100824
crossref_primary_10_1016_j_sna_2025_116445
crossref_primary_10_1039_D2TA10014B
crossref_primary_10_1016_j_jmrt_2024_06_237
crossref_primary_10_3390_nano13020344
crossref_primary_10_1016_j_diamond_2024_111348
crossref_primary_10_1155_2023_7427986
crossref_primary_10_1016_j_talanta_2024_127085
crossref_primary_10_1016_j_sna_2025_116439
crossref_primary_10_3390_chemosensors12030042
crossref_primary_10_1016_j_ceramint_2024_11_084
crossref_primary_10_1016_j_trac_2023_117282
crossref_primary_10_1016_j_bios_2023_115642
crossref_primary_10_1557_s43580_025_01137_7
crossref_primary_10_3390_photonics10101106
crossref_primary_10_1016_j_iref_2023_11_002
crossref_primary_10_3390_coatings14060693
crossref_primary_10_1016_j_cossms_2024_101160
crossref_primary_10_3389_fsens_2023_1250756
crossref_primary_10_1016_j_jallcom_2024_175930
crossref_primary_10_1016_j_jece_2022_108543
crossref_primary_10_1016_j_microc_2025_113446
crossref_primary_10_1016_j_ccr_2022_214517
crossref_primary_10_1016_j_mtcomm_2023_107831
crossref_primary_10_1088_1742_6596_2809_1_012004
crossref_primary_10_1021_acssuschemeng_4c01670
crossref_primary_10_3390_app15052522
crossref_primary_10_3390_s23063265
crossref_primary_10_2298_PAC2203237O
crossref_primary_10_1039_D1RA07731G
crossref_primary_10_1016_j_mssp_2024_108850
crossref_primary_10_3390_chemosensors10110482
crossref_primary_10_1080_10408347_2022_2088226
crossref_primary_10_1088_1361_6501_ad440f
crossref_primary_10_3390_chemosensors9060125
crossref_primary_10_3390_nano13182549
crossref_primary_10_1016_j_ceramint_2024_07_206
crossref_primary_10_1021_acsaelm_4c01527
crossref_primary_10_1016_j_mtcomm_2024_108310
crossref_primary_10_1016_j_mtcomm_2022_105241
crossref_primary_10_1007_s13538_024_01546_3
crossref_primary_10_1016_j_sna_2023_114676
crossref_primary_10_1007_s10904_023_02650_8
crossref_primary_10_1016_j_mser_2021_100629
crossref_primary_10_1016_j_ijhydene_2024_07_253
crossref_primary_10_3390_chemosensors10020057
crossref_primary_10_1016_j_sna_2024_115707
crossref_primary_10_1007_s11106_024_00402_y
crossref_primary_10_1109_JSEN_2022_3199254
crossref_primary_10_3390_chemosensors10100436
crossref_primary_10_1080_16583655_2023_2265631
crossref_primary_10_1007_s00339_024_07958_x
crossref_primary_10_1007_s10854_024_13292_y
crossref_primary_10_1021_acsaelm_4c00567
crossref_primary_10_1007_s40820_022_00956_9
crossref_primary_10_3390_chemosensors10110479
crossref_primary_10_1039_D4RA00881B
crossref_primary_10_3390_chemosensors10110478
crossref_primary_10_1049_ote2_70002
crossref_primary_10_3390_mi13010026
crossref_primary_10_3390_ma14154263
Cites_doi 10.3390/met5031371
10.1016/0925-4005(94)01247-4
10.1016/j.snb.2016.01.015
10.1063/1.1755123
10.1016/j.snb.2004.09.027
10.1007/s00604-014-1160-6
10.1021/jp0688355
10.1021/acsami.5b00161
10.1016/j.jallcom.2018.03.307
10.3390/s19143049
10.1002/adfm.201202332
10.1016/j.snb.2016.12.009
10.3390/chemosensors5030021
10.3390/s90705099
10.1109/JSEN.2015.2391286
10.1016/j.sna.2017.10.021
10.1016/j.snb.2011.04.070
10.1016/S0925-4005(01)00666-9
10.1109/JSEN.2019.2939039
10.3390/s19030478
10.1016/j.snb.2019.127217
10.1016/S0925-4005(99)00241-5
10.3390/chemosensors3010001
10.3390/s16071135
10.1002/adfm.202004448
10.1108/SR-07-2015-0115
10.3390/s20174961
10.3390/s18041052
10.1126/science.287.5453.622
10.1016/j.snb.2008.01.054
10.1007/978-0-387-09665-0
10.1016/j.apsusc.2017.08.229
10.1016/S0925-4005(01)01072-3
10.1109/JIOT.2014.2329189
10.1149/2.0152003JES
10.1109/JMEMS.2017.2657788
10.1016/j.snb.2004.11.067
10.3390/atmos10050261
10.1021/acs.chemrev.6b00187
10.1098/rsos.181662
10.1109/JSEN.2010.2046409
10.3390/s19020362
10.1016/j.apmt.2017.09.001
10.1002/adma.201804285
10.1007/s002160051490
10.1002/adma.201907082
10.1016/j.snb.2004.02.028
10.1016/j.vacuum.2006.05.004
10.1109/6.715180
10.1021/acs.chemrev.8b00311
10.1016/j.aca.2018.09.020
10.1016/j.snb.2012.09.034
10.1007/s12598-020-01608-w
10.1016/j.snb.2015.08.027
10.3390/s130912070
10.1088/0957-4484/27/20/205701
10.3390/su11215952
10.1109/JSEN.2006.881399
10.3390/proceedings2019014049
10.1007/s002160050844
10.1557/mrs2004.208
10.1039/C8RA01184B
10.1021/ac60191a001
10.1016/j.ceramint.2004.06.015
10.1149/1945-7111/ab7e23
10.1016/j.snb.2010.06.070
10.1021/am405088q
10.1016/0925-4005(95)85098-8
10.1016/j.snb.2016.08.053
10.4271/2007-01-3149
10.1109/JSEN.2020.2983135
10.1533/9780857098665
10.1109/DDECS50862.2020.9095743
10.3390/s18113638
10.1109/JSEN.2017.2749334
10.1016/j.snb.2010.04.034
10.1016/j.synthmet.2014.01.002
10.1016/j.snb.2004.11.001
10.3390/s16071072
10.1016/j.snb.2016.09.098
10.3390/s120709635
10.1016/j.talanta.2009.07.057
10.1016/S0925-4005(01)00719-5
10.1109/JSEN.2014.2375203
10.3390/chemosensors8020039
10.1039/C7TA06221D
10.1016/j.snb.2003.07.010
10.1016/j.matchemphys.2014.04.009
10.1016/j.snb.2017.11.131
10.1021/acs.analchem.7b03491
10.1007/s10854-017-8342-z
10.3390/s17020303
10.3390/nano10101940
10.1016/j.vacuum.2019.04.061
10.1021/acs.nanolett.6b01713
10.1016/j.measurement.2011.12.012
10.1016/j.snb.2014.05.080
10.1039/c3ta13823b
10.1016/S0925-4005(01)00670-0
10.1016/j.snb.2017.11.063
10.3390/s100605469
10.1016/j.snb.2017.04.194
10.3390/s17071653
10.3390/s19061285
10.1021/ar400070m
10.1021/acsanm.9b01176
10.1016/j.apsusc.2019.03.198
10.1021/acssensors.9b00303
10.1016/j.jcis.2018.05.006
10.1016/S0925-4005(03)00213-2
10.1016/j.apsusc.2005.07.015
10.3390/s19091957
10.1088/0957-4484/17/19/037
10.1126/science.287.5459.1801
10.1016/j.snb.2017.11.066
10.1021/acsami.9b13946
10.1039/C9TA07855J
10.1007/s10854-019-01598-1
10.1007/BF01340692
10.1007/s40145-018-0309-x
10.1038/nmat1967
10.1155/2009/493904
10.1016/0925-4005(95)85177-1
10.1016/j.snb.2018.09.063
10.1016/j.aca.2014.03.014
10.1016/j.jallcom.2019.06.329
10.1088/0957-4484/20/44/445502
10.1016/j.snb.2008.09.010
10.3390/proceedings2130993
10.1002/pssa.201026443
10.1007/s10854-015-4200-z
10.1108/02602280410525977
10.3389/fchem.2020.00174
10.1016/S0925-4005(00)00496-2
10.1016/j.snb.2008.01.028
10.1016/j.snb.2011.04.028
10.3390/s19051230
10.1002/j.1538-7305.1953.tb01420.x
10.1016/j.snb.2018.06.030
10.1016/j.snb.2015.06.023
10.1016/j.snb.2003.06.002
10.1016/j.snb.2018.12.097
10.1007/s40820-014-0023-3
10.1109/TIM.2015.2506319
10.3390/s20082418
10.1021/acssensors.5b00123
10.1016/S0955-2219(03)00442-4
10.1016/S0925-4005(00)00390-7
10.1016/j.snb.2006.09.047
10.3390/s19051180
10.1016/j.snb.2016.06.042
10.1038/35104535
10.3390/s90806058
10.1016/j.tsf.2011.04.186
10.1016/j.matlet.2017.06.119
10.1016/j.apsusc.2018.02.122
10.1063/1.4746417
10.1016/j.snb.2003.11.012
10.1021/ic300749a
10.1016/j.snb.2013.04.100
10.1016/j.mseb.2020.114547
10.1002/admi.201901329
10.3390/s19143183
10.3390/foods8010016
10.1016/j.snb.2011.03.043
10.1016/j.snb.2014.05.081
10.1016/j.poly.2018.06.037
10.1016/j.snb.2010.09.027
10.1016/j.snb.2008.03.035
10.1016/j.snb.2012.08.073
10.1016/j.ccr.2020.213272
10.1016/S0925-4005(03)00233-8
10.1016/j.snb.2013.12.050
10.3390/s16111815
10.1016/j.ceramint.2016.10.035
10.1016/j.snb.2018.01.117
10.1021/acsami.7b00673
10.1111/ijac.13190
10.1016/j.snb.2019.03.074
10.1016/j.snb.2011.11.050
10.3390/s7030267
10.1016/j.snb.2016.08.080
10.1002/admt.201800703
10.1016/j.snb.2018.11.125
10.1107/S0021889811038970
10.3390/mi9110557
10.1016/j.snb.2010.07.013
10.1109/JSEN.2003.820330
10.1016/j.snb.2008.11.007
10.1038/s41699-019-0125-3
10.1016/j.mseb.2017.12.036
10.3390/s17020281
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20226694
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_85a52e9cfd854d83bb0d8b724661e631
PMC7700484
33238459
10_3390_s20226694
Genre Journal Article
Review
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c535t-4b4755e11859adb40c431562cad3c62ef3bf82367b24aa636505aa4cd84ec52f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:09:58 EDT 2025
Thu Aug 21 14:30:55 EDT 2025
Fri Jul 11 06:25:48 EDT 2025
Fri Jul 25 20:44:05 EDT 2025
Thu Apr 03 06:57:32 EDT 2025
Tue Jul 01 03:55:56 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords semiconductor gas sensors
gas sensor applications
gas sensing materials
sensing technology
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-4b4755e11859adb40c431562cad3c62ef3bf82367b24aa636505aa4cd84ec52f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6078-413X
0000-0002-7817-8648
0000-0001-5035-0170
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20226694
PMID 33238459
PQID 2464936241
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_85a52e9cfd854d83bb0d8b724661e631
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700484
proquest_miscellaneous_2464604318
proquest_journals_2464936241
pubmed_primary_33238459
crossref_primary_10_3390_s20226694
crossref_citationtrail_10_3390_s20226694
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201123
PublicationDateYYYYMMDD 2020-11-23
PublicationDate_xml – month: 11
  year: 2020
  text: 20201123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_137
Fort (ref_80) 2010; 148
Zhang (ref_138) 2018; 749
Volanti (ref_44) 2013; 23
ref_90
Araujo (ref_103) 2019; 8
Tan (ref_181) 2020; 4
Mohtasebi (ref_211) 2009; 9
Fu (ref_147) 2019; 4
Bai (ref_27) 2007; 7
Ivanov (ref_71) 2004; 99
ref_125
Chiu (ref_37) 2007; 111
Khan (ref_146) 2014; 15
Konvalina (ref_190) 2014; 47
Arshak (ref_18) 2004; 24
Nikolic (ref_59) 2019; 30
Lakard (ref_121) 2015; 15
Blank (ref_4) 2016; 228
Gardner (ref_163) 2010; 10
Rossi (ref_203) 2016; 65
Giberti (ref_40) 2011; 208
Mochida (ref_66) 1995; 25
Jaisutti (ref_111) 2017; 9
Khan (ref_7) 2014; 1
Cao (ref_98) 2015; 220
Vincent (ref_42) 2017; 239
Sutka (ref_53) 2016; 222
Tang (ref_134) 2020; 8
ref_156
Carrotta (ref_38) 2009; 137
Gebeauer (ref_149) 2018; 526
Comini (ref_102) 2001; 77
Tulliani (ref_56) 2005; 31
Sharma (ref_32) 2014; 194
Kim (ref_99) 2017; 240
Kong (ref_129) 2000; 287
Mirzaei (ref_112) 2018; 258
Sakthivel (ref_152) 2017; 17
ref_144
Xu (ref_116) 2012; 51
Wang (ref_28) 2009; 2009
Liu (ref_79) 2017; 239
Hamilton (ref_117) 2005; 107
Pokhrel (ref_48) 2008; 113
Su (ref_120) 2009; 80
Shaver (ref_24) 1967; 11
Wu (ref_150) 2019; 3
Zhu (ref_91) 2017; 267
Talazac (ref_200) 2004; 4
ref_212
Jia (ref_115) 2019; 481
Singkammo (ref_84) 2015; 7
Lin (ref_170) 2019; 31
Yang (ref_197) 2020; 8
Liu (ref_148) 2015; 15
Cantalini (ref_100) 2004; 24
Galatsis (ref_78) 2003; 93
ref_202
ref_205
ref_204
Matindoust (ref_209) 2016; 36
ref_207
Liu (ref_12) 2012; 12
ref_208
Ramgir (ref_77) 2006; 252
Lai (ref_85) 2019; 166
Nagle (ref_179) 1998; 9
Steinbach (ref_47) 2010; 151
Prajapati (ref_201) 2017; 26
Mao (ref_29) 2014; 2
Xing (ref_187) 2019; 19
Blaschke (ref_206) 2006; 6
Mittal (ref_131) 2014; 203
Tulliani (ref_55) 2013; 13
Liu (ref_94) 2011; 156
Li (ref_113) 2018; 442
Lee (ref_161) 1999; 60
Song (ref_64) 2019; 283
Lee (ref_73) 2008; 132
Kim (ref_109) 2018; 258
Nikolic (ref_60) 2018; 227
Meng (ref_110) 2018; 273
Kumar (ref_89) 2015; 7
Kang (ref_196) 2018; 8
Falsafi (ref_57) 2017; 43
Leghrib (ref_133) 2011; 520
ref_107
Lu (ref_135) 2009; 20
Zhang (ref_33) 2019; 2019
Yang (ref_45) 2013; 185
Zhu (ref_39) 2018; 427
Chou (ref_93) 2015; 15
Wu (ref_155) 2010; 150
Galstyan (ref_58) 2020; 303
Wei (ref_83) 2004; 101
Wang (ref_142) 2018; 152
Mirzaei (ref_11) 2016; 27
Mercante (ref_63) 2019; 2
Galatsis (ref_41) 2002; 83
Barsan (ref_69) 1999; 365
Fine (ref_3) 2010; 10
Sun (ref_52) 2017; 5
Navale (ref_119) 2014; 189
Patel (ref_65) 1994; 21
ref_13
Neri (ref_20) 2015; 3
ref_10
Yoon (ref_49) 2014; 202
Jun (ref_118) 2003; 96
Wang (ref_96) 2016; 1
Zhang (ref_143) 2020; 413
Ram (ref_127) 2005; 106
Paolesse (ref_191) 2014; 824
ref_25
Ma (ref_97) 2012; 174
Wang (ref_76) 2006; 81
ref_26
Ryu (ref_61) 2003; 96
Choi (ref_194) 2014; 6
Kim (ref_126) 2005; 108
Shen (ref_75) 2009; 135
Hyodo (ref_154) 2001; 77
Momma (ref_34) 2011; 44
Heiland (ref_22) 1954; 138
Li (ref_114) 2018; 248
Seiyama (ref_23) 1962; 34
Rimoldi (ref_104) 2019; 6
Patil (ref_31) 2012; 45
Capone (ref_62) 2000; 69
Yu (ref_46) 2017; 206
Dey (ref_180) 2018; 229
Lee (ref_141) 2020; 12
Mokoena (ref_92) 2019; 805
Qi (ref_87) 2008; 133
Hagleitner (ref_169) 2001; 414
Potyrailo (ref_17) 2016; 116
Dong (ref_72) 2011; 157
Kang (ref_16) 2017; 250
Meng (ref_15) 2019; 119
Shu (ref_86) 2017; 89
Schedin (ref_136) 2007; 6
Sheklurev (ref_157) 2020; 12
Wang (ref_81) 2019; 283
ref_173
ref_172
Ren (ref_183) 2020; 167
ref_175
ref_174
ref_177
Lee (ref_140) 2019; 4
ref_176
ref_51
Zappa (ref_101) 2018; 1039
ref_178
Funazaki (ref_210) 1995; 25
Nikolic (ref_54) 2019; 16
Lei (ref_128) 2014; 181
Collins (ref_130) 2000; 287
Rieu (ref_151) 2016; 236
ref_162
Li (ref_108) 2018; 258
ref_164
ref_166
ref_165
ref_168
Corbat (ref_153) 2012; 161
ref_167
Liu (ref_82) 2018; 264
Kaur (ref_95) 2016; 27
Wilson (ref_19) 2009; 9
ref_171
Velumani (ref_105) 2018; 29
Ryan (ref_124) 2004; 29
Dai (ref_14) 2020; 49
Wang (ref_88) 2006; 17
Black (ref_182) 2011; 157
Majumdar (ref_30) 2014; 147
ref_195
ref_35
Nikolic (ref_106) 2020; 20
ref_199
ref_198
Cho (ref_189) 2016; 16
Choi (ref_160) 2020; 30
Brattain (ref_21) 1952; 32
Lee (ref_36) 2000; 67
Gangopadhyay (ref_123) 2001; 77
Choi (ref_159) 2019; 289
Wong (ref_132) 2003; 93
Naveen (ref_122) 2017; 9
Barsan (ref_68) 2007; 121
Lee (ref_139) 2020; 167
Kappler (ref_70) 1998; 361
ref_184
ref_186
ref_185
ref_43
ref_188
Choi (ref_74) 2010; 150
ref_1
Schipani (ref_67) 2012; 2
Steinhauer (ref_158) 2013; 187
ref_2
Nikolic (ref_50) 2020; 257
ref_193
ref_192
ref_9
ref_8
Fuertes (ref_213) 2016; 2016
Jeo (ref_145) 2020; 32
ref_5
ref_6
References_xml – volume: 15
  start-page: 1371
  year: 2015
  ident: ref_121
  article-title: Gas sensors based on electrodeposited polymers
  publication-title: Metals
  doi: 10.3390/met5031371
– ident: ref_9
– volume: 21
  start-page: 193
  year: 1994
  ident: ref_65
  article-title: Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(94)01247-4
– volume: 228
  start-page: 416
  year: 2016
  ident: ref_4
  article-title: Recent trends of ceramic humidity sensors development: A review
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.01.015
– volume: 11
  start-page: 255
  year: 1967
  ident: ref_24
  article-title: Activated tungsten oxide gas detectors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1755123
– volume: 106
  start-page: 750
  year: 2005
  ident: ref_127
  article-title: CO gas sensing from ultrathin nano-composite conducting polymer film
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.09.027
– volume: 181
  start-page: 707
  year: 2014
  ident: ref_128
  article-title: Conducting polymer composites with grapheme for use in chemical sensors and biosensors
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-014-1160-6
– volume: 111
  start-page: 7256
  year: 2007
  ident: ref_37
  article-title: Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0688355
– volume: 7
  start-page: 3077
  year: 2015
  ident: ref_84
  article-title: Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00161
– volume: 749
  start-page: 355
  year: 2018
  ident: ref_138
  article-title: The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.03.307
– ident: ref_156
  doi: 10.3390/s19143049
– volume: 23
  start-page: 1759
  year: 2013
  ident: ref_44
  article-title: The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202332
– volume: 248
  start-page: 812
  year: 2018
  ident: ref_114
  article-title: Study on TiO2-SnO2 core shell heterostrucutre nanofibers with different work function and its application in gas sensor
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.12.009
– ident: ref_137
  doi: 10.3390/chemosensors5030021
– volume: 9
  start-page: 5099
  year: 2009
  ident: ref_19
  article-title: Applications and advances in electronic-nose technologies
  publication-title: Sensors
  doi: 10.3390/s90705099
– ident: ref_184
– volume: 15
  start-page: 3711
  year: 2015
  ident: ref_93
  article-title: On the ammonia gas sensing performance of a RF-sputtered NiO thin film sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2391286
– volume: 267
  start-page: 242
  year: 2017
  ident: ref_91
  article-title: Room-temperature gas sensing of ZnO-based gas sensors: A review
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2017.10.021
– volume: 157
  start-page: 329
  year: 2011
  ident: ref_182
  article-title: Hydrogen sensors—A review
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.04.070
– volume: 77
  start-page: 16
  year: 2001
  ident: ref_102
  article-title: CO sensing properties of titanium and iron oxide nanosized thin films
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00666-9
– volume: 19
  start-page: 12418
  year: 2019
  ident: ref_187
  article-title: FireNose on mobile robot in harsh environments
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2939039
– ident: ref_174
  doi: 10.3390/s19030478
– volume: 303
  start-page: 127217
  year: 2020
  ident: ref_58
  article-title: Highly sensitive and selective detection of dimethylamine through Nb doping of TiO2 nanotubes for potential use in seafood quality control
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2019.127217
– volume: 60
  start-page: 35
  year: 1999
  ident: ref_161
  article-title: Temperature modulation in semiconductor gas sensing
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(99)00241-5
– volume: 3
  start-page: 1
  year: 2015
  ident: ref_20
  article-title: First fifty years of chemoresistive gas sensors
  publication-title: Chemosensors
  doi: 10.3390/chemosensors3010001
– ident: ref_51
  doi: 10.3390/s16071135
– volume: 15
  start-page: 1
  year: 2015
  ident: ref_148
  article-title: Recent advances in inkjet printing synthesis of functional metal oxides
  publication-title: Particuology
– volume: 30
  start-page: 2004448
  year: 2020
  ident: ref_160
  article-title: Perfectly aligned, air-suspended nanowire array heater and its application in an always-on-gas sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004448
– volume: 36
  start-page: 169
  year: 2016
  ident: ref_209
  article-title: Food quality and safety monitoring using gas sensor array in intelligent packaging
  publication-title: Sens. Rev.
  doi: 10.1108/SR-07-2015-0115
– ident: ref_172
  doi: 10.3390/s20174961
– ident: ref_166
  doi: 10.3390/s18041052
– volume: 287
  start-page: 622
  year: 2000
  ident: ref_129
  article-title: Nanotube molecular wires as chemical sensors
  publication-title: Science
  doi: 10.1126/science.287.5453.622
– volume: 113
  start-page: 78
  year: 2008
  ident: ref_48
  article-title: Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.01.054
– ident: ref_205
  doi: 10.1007/978-0-387-09665-0
– volume: 427
  start-page: 281
  year: 2018
  ident: ref_39
  article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.229
– volume: 83
  start-page: 276
  year: 2002
  ident: ref_41
  article-title: Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)01072-3
– volume: 1
  start-page: 300
  year: 2014
  ident: ref_7
  article-title: Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2329189
– volume: 167
  start-page: 037515
  year: 2020
  ident: ref_139
  article-title: Recent exploration of two-dimensional MXenes for gas sensing: From a theoretical to an experimental view
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0152003JES
– volume: 26
  start-page: 433
  year: 2017
  ident: ref_201
  article-title: Single chip gas sensor array for air quality monitoring
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2017.2657788
– volume: 108
  start-page: 285
  year: 2005
  ident: ref_126
  article-title: Portable electronic nose system based on the carbon black-polymer composite sensor array
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.11.067
– ident: ref_177
  doi: 10.3390/atmos10050261
– volume: 116
  start-page: 11877
  year: 2016
  ident: ref_17
  article-title: Multivariable sensors for ubiquitous monitoring of gases in the Era of Internet of Things and Industrial Internet
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00187
– volume: 6
  start-page: 181662
  year: 2019
  ident: ref_104
  article-title: Role of the growth step on the structural, optical and surface features of TiO2/SnO2 composites
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.181662
– volume: 10
  start-page: 1833
  year: 2010
  ident: ref_163
  article-title: CMOS interfacing for integrated gas sensors: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2010.2046409
– ident: ref_176
  doi: 10.3390/s19020362
– volume: 9
  start-page: 419
  year: 2017
  ident: ref_122
  article-title: Applications of conducting polymer composites to electrochemical sensors: A review
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.09.001
– volume: 31
  start-page: 1804285
  year: 2019
  ident: ref_170
  article-title: Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804285
– volume: 365
  start-page: 287
  year: 1999
  ident: ref_69
  article-title: Fundamental and practical aspects in the design of nanoscaled SnO2 sensors: A status report
  publication-title: Fresneius J. Anal. Chem.
  doi: 10.1007/s002160051490
– volume: 32
  start-page: 1907082
  year: 2020
  ident: ref_145
  article-title: Geometrically structured nanomaterials for nanosensors, NEMS and nanosieves
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907082
– volume: 101
  start-page: 81
  year: 2004
  ident: ref_83
  article-title: A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.02.028
– ident: ref_25
– volume: 81
  start-page: 394
  year: 2006
  ident: ref_76
  article-title: Preparation and Co gas sensing behavior of Au-doped SnO2 sensors
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2006.05.004
– volume: 9
  start-page: 22
  year: 1998
  ident: ref_179
  article-title: The how and why of electronic noses
  publication-title: IEEE Spectr.
  doi: 10.1109/6.715180
– volume: 119
  start-page: 478
  year: 2019
  ident: ref_15
  article-title: Electrically-transduced chemical sensors based on two-dimensional nanomaterials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00311
– volume: 1039
  start-page: 1
  year: 2018
  ident: ref_101
  article-title: Metal oxide-based heterostructures for gas sensors—A review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.09.020
– volume: 187
  start-page: 50
  year: 2013
  ident: ref_158
  article-title: Gas sensing properties of novel CuO nanowire devices
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.09.034
– ident: ref_144
  doi: 10.1007/s12598-020-01608-w
– ident: ref_185
– volume: 222
  start-page: 95
  year: 2016
  ident: ref_53
  article-title: Spinel ferrite oxide semiconductor gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.08.027
– volume: 13
  start-page: 12070
  year: 2013
  ident: ref_55
  article-title: Strontium-doped hematite as a possible humidity sensing material for soil water content determination
  publication-title: Sensors
  doi: 10.3390/s130912070
– volume: 27
  start-page: 205701
  year: 2016
  ident: ref_95
  article-title: Nickel oxide nanowires: Vapour liquid solid synthesis and integration into a gas sensing device
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/20/205701
– volume: 49
  start-page: 1756
  year: 2020
  ident: ref_14
  article-title: Printed gas sensors
  publication-title: Chem. Rev.
– ident: ref_5
  doi: 10.3390/su11215952
– volume: 6
  start-page: 1298
  year: 2006
  ident: ref_206
  article-title: MEMS gas-sensor array for monitoring the perceived car-cabin air quality
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2006.881399
– ident: ref_193
  doi: 10.3390/proceedings2019014049
– volume: 2016
  start-page: 4046061
  year: 2016
  ident: ref_213
  article-title: Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety
  publication-title: J. Sens.
– volume: 361
  start-page: 110
  year: 1998
  ident: ref_70
  article-title: Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors
  publication-title: Fresneius J. Anal. Chem.
  doi: 10.1007/s002160050844
– volume: 29
  start-page: 714
  year: 2004
  ident: ref_124
  article-title: Polymer-carbon black composite sensors in an Electronic nose for air-quality monitoring
  publication-title: MRS Bull.
  doi: 10.1557/mrs2004.208
– volume: 8
  start-page: 11991
  year: 2018
  ident: ref_196
  article-title: Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01184B
– volume: 34
  start-page: 1502
  year: 1962
  ident: ref_23
  article-title: A new detector for gaseous components using semiconductor thin film
  publication-title: Anal. Chem.
  doi: 10.1021/ac60191a001
– volume: 31
  start-page: 507
  year: 2005
  ident: ref_56
  article-title: Influence of dopants on the electrical resistance of hematite-based humidity sensors
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2004.06.015
– volume: 167
  start-page: 067528
  year: 2020
  ident: ref_183
  article-title: Review-Resistive type hydrogen sensors based on zinc-oxide nanostructures
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab7e23
– volume: 150
  start-page: 296
  year: 2010
  ident: ref_155
  article-title: Wafer-scale synthesis of grapheme by chemical vapor deposition and its application in hydrogen sensing
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2010.06.070
– ident: ref_8
– volume: 6
  start-page: 2588
  year: 2014
  ident: ref_194
  article-title: Selective detection of acetone and hydrogen sulfide for diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405088q
– volume: 25
  start-page: 433
  year: 1995
  ident: ref_66
  article-title: Highly sensitive and selective H2S gas sensor from r.f. sputtered SnO2 thin film
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(95)85098-8
– volume: 239
  start-page: 501
  year: 2017
  ident: ref_79
  article-title: The effect of Ni doping concentration on the gas sensing properties of Ni-doped SnO2
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.08.053
– ident: ref_125
  doi: 10.4271/2007-01-3149
– volume: 20
  start-page: 7509
  year: 2020
  ident: ref_106
  article-title: Nanocomposite Zn2SnO4/SnO2 thick films as a humidity sensing material
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2983135
– ident: ref_198
  doi: 10.1533/9780857098665
– ident: ref_13
  doi: 10.1109/DDECS50862.2020.9095743
– ident: ref_35
  doi: 10.3390/s18113638
– volume: 17
  start-page: 6529
  year: 2017
  ident: ref_152
  article-title: High performance CuO rectangles-based room temperature flexible NH3 sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2749334
– volume: 148
  start-page: 283
  year: 2010
  ident: ref_80
  article-title: Metal-oxide nanowire sensors for CO detection: Characterization and modeling
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2010.04.034
– volume: 189
  start-page: 94
  year: 2014
  ident: ref_119
  article-title: Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2014.01.002
– volume: 107
  start-page: 424
  year: 2005
  ident: ref_117
  article-title: Polypyrrole materials for detection and discrimination of volatile organic compounds
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.11.001
– ident: ref_204
  doi: 10.3390/s16071072
– volume: 240
  start-page: 1049
  year: 2017
  ident: ref_99
  article-title: A strategy for ultrasensitive and selective detection of methylamine using p-type Cr2O3: Morphological design of sensing materials, control of charge carrier concentrations and configurational tuning of Au catalysts
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.09.098
– volume: 12
  start-page: 9635
  year: 2012
  ident: ref_12
  article-title: A survey on gas sensing technology
  publication-title: Sensors
  doi: 10.3390/s120709635
– volume: 80
  start-page: 763
  year: 2009
  ident: ref_120
  article-title: Flexible NH3 sensors fabricated by in-situ self-assembly of polypyrrole
  publication-title: Talanta
  doi: 10.1016/j.talanta.2009.07.057
– volume: 77
  start-page: 326
  year: 2001
  ident: ref_123
  article-title: Conducting polymer composites: Novel materials for gas sensing
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00719-5
– volume: 15
  start-page: 3164
  year: 2014
  ident: ref_146
  article-title: Technologies for printing sensors and electronics over large flexible substrates
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2375203
– ident: ref_107
  doi: 10.3390/chemosensors8020039
– volume: 5
  start-page: 20534
  year: 2017
  ident: ref_52
  article-title: Morphological zinc-stannate: Synthesis, fundamental properties and applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06221D
– volume: 96
  start-page: 717
  year: 2003
  ident: ref_61
  article-title: ZnO sol-gel derived porous film for gas sensing
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2003.07.010
– ident: ref_167
– volume: 147
  start-page: 79
  year: 2014
  ident: ref_30
  article-title: Enhanced performance of CNT/SnO2 thick film gas sensors towards hydrogen
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.04.009
– ident: ref_2
– volume: 258
  start-page: 436
  year: 2018
  ident: ref_108
  article-title: Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.11.131
– volume: 89
  start-page: 11135
  year: 2017
  ident: ref_86
  article-title: Cu2+ doped SnO2 nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b03491
– volume: 29
  start-page: 3999
  year: 2018
  ident: ref_105
  article-title: Impedometric humidity sensing characteristics of SnO2 thin films and SnO2-ZnO composite thin films grown by magnetron sputtering
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-8342-z
– ident: ref_173
  doi: 10.3390/s17020303
– ident: ref_90
  doi: 10.3390/nano10101940
– volume: 166
  start-page: 155
  year: 2019
  ident: ref_85
  article-title: Characteristics of Au-doped SnO2-ZnO heteronanostructures for gas sensing applications
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2019.04.061
– volume: 16
  start-page: 4508
  year: 2016
  ident: ref_189
  article-title: High resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01713
– volume: 45
  start-page: 243
  year: 2012
  ident: ref_31
  article-title: Measurements on room temperature gas sensing properties of CSA doped polyaniline-ZnO nanocomposites
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.12.012
– volume: 203
  start-page: 349
  year: 2014
  ident: ref_131
  article-title: Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2014.05.080
– volume: 2
  start-page: 5573
  year: 2014
  ident: ref_29
  article-title: Nanocarbon-based gas sensors: Progress and challenges
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13823b
– volume: 77
  start-page: 41
  year: 2001
  ident: ref_154
  article-title: Gas sensing properties of semiconductor heterolayer sensors fabricated y slide-off transfer printing
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00670-0
– volume: 258
  start-page: 204
  year: 2018
  ident: ref_109
  article-title: SnO2 (n)—NiO (p) composite nanowebs: Gas sensing properties and sensing mechanisms
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.11.063
– ident: ref_175
– volume: 10
  start-page: 5469
  year: 2010
  ident: ref_3
  article-title: Metal oxide semi-conductor gas sensors in environmental monitoring
  publication-title: Sensors
  doi: 10.3390/s100605469
– volume: 250
  start-page: 574
  year: 2017
  ident: ref_16
  article-title: Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing toward highly integrated and multiplexed gas sensor applications
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.04.194
– ident: ref_199
  doi: 10.3390/s17071653
– ident: ref_26
  doi: 10.3390/s19061285
– volume: 47
  start-page: 66
  year: 2014
  ident: ref_190
  article-title: Sensors for breath testing: From nano-materials to comprehensive disease detection
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400070m
– ident: ref_1
– volume: 2
  start-page: 4026
  year: 2019
  ident: ref_63
  article-title: Electrospun ceramic fibers and hybrid nanofiber composites for gas sensing
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01176
– volume: 481
  start-page: 1001
  year: 2019
  ident: ref_115
  article-title: Hierarchical porous nanorod@core-shell α-Fe2O3/TiO2 microspheres: Synthesis, characterization and gas sensing applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.198
– volume: 4
  start-page: 1603
  year: 2019
  ident: ref_140
  article-title: Two dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward non polar gases
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00303
– volume: 526
  start-page: 400
  year: 2018
  ident: ref_149
  article-title: Tailoring metal oxide nanoparticle dispersions for inkjet printing
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.05.006
– volume: 93
  start-page: 327
  year: 2003
  ident: ref_132
  article-title: A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(03)00213-2
– volume: 252
  start-page: 4298
  year: 2006
  ident: ref_77
  article-title: CO sensor derived from mesostructured Au-doped SnO2 thin film
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2005.07.015
– ident: ref_10
– ident: ref_188
  doi: 10.3390/s19091957
– volume: 17
  start-page: 4995
  year: 2006
  ident: ref_88
  article-title: Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/19/037
– volume: 287
  start-page: 1801
  year: 2000
  ident: ref_130
  article-title: Extreme oxygen sensitivity of electronic properties of carbon nanotubes
  publication-title: Science
  doi: 10.1126/science.287.5459.1801
– volume: 258
  start-page: 270
  year: 2018
  ident: ref_112
  article-title: How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.11.066
– volume: 12
  start-page: 7392
  year: 2020
  ident: ref_157
  article-title: Highly sensitive gas sensors based on grapheme nanoribons grown by chemical vapor deposition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13946
– volume: 8
  start-page: 6487
  year: 2020
  ident: ref_197
  article-title: Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07855J
– volume: 30
  start-page: 12399
  year: 2019
  ident: ref_59
  article-title: Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3)
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-01598-1
– volume: 138
  start-page: 459
  year: 1954
  ident: ref_22
  article-title: Zum einfluss von wasserstoff auf die elektrische leitfaegkeit von ZnO-kristallen
  publication-title: Z. Phys.
  doi: 10.1007/BF01340692
– volume: 8
  start-page: 40145
  year: 2019
  ident: ref_103
  article-title: TiO2/WO3 heterogeneous structures prepared by electrospinning and sintering steps: Characterization and analysis of the impedance variation to humidity
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-018-0309-x
– volume: 6
  start-page: 652
  year: 2007
  ident: ref_136
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– volume: 2009
  start-page: 493904
  year: 2009
  ident: ref_28
  article-title: A review of carbon nanotubes—Based gas sensors
  publication-title: J. Sens.
  doi: 10.1155/2009/493904
– volume: 25
  start-page: 797
  year: 1995
  ident: ref_210
  article-title: Application of semiconductor gas sensor to quality control of meat freshness in food industry
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(95)85177-1
– volume: 227
  start-page: 654
  year: 2018
  ident: ref_60
  article-title: Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) thick films
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.09.063
– volume: 824
  start-page: 1
  year: 2014
  ident: ref_191
  article-title: Solid-state gas sensors for breath analysis: A review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.03.014
– volume: 805
  start-page: 267
  year: 2019
  ident: ref_92
  article-title: A review on recent progress of p-type nickel oxide based gas sensors. Future perspectives
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.06.329
– volume: 20
  start-page: 445502
  year: 2009
  ident: ref_135
  article-title: Reduced graphene oxide for room-temperature gas sensors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/44/445502
– volume: 135
  start-page: 524
  year: 2009
  ident: ref_75
  article-title: Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.09.010
– ident: ref_192
  doi: 10.3390/proceedings2130993
– volume: 208
  start-page: 118
  year: 2011
  ident: ref_40
  article-title: Permittivity measurements in nanostructured TiO2 gas sensors
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201026443
– volume: 27
  start-page: 3109
  year: 2016
  ident: ref_11
  article-title: α-Fe2O3 based nanomaterials as gas sensors
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-015-4200-z
– volume: 24
  start-page: 181
  year: 2004
  ident: ref_18
  article-title: A review of gas sensors employed in electronic nose applications
  publication-title: Sens. Rev.
  doi: 10.1108/02602280410525977
– volume: 8
  start-page: 174
  year: 2020
  ident: ref_134
  article-title: The functionalized single-walled carbon nanotube gas sensor with Pd nanoparticles for hydrogen detection in high-voltage transformers
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00174
– volume: 69
  start-page: 230
  year: 2000
  ident: ref_62
  article-title: Analysis of vapors and foods by means of an electronic nose based on a sol-gel metal-oxide sensors array
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00496-2
– volume: 132
  start-page: 239
  year: 2008
  ident: ref_73
  article-title: Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.01.028
– volume: 156
  start-page: 251
  year: 2011
  ident: ref_94
  article-title: Synthesis and enhanced gas-sensing properties of ultralong nanowires assembled with NiO nanocrystals
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.04.028
– ident: ref_195
  doi: 10.3390/s19051230
– volume: 32
  start-page: 1
  year: 1952
  ident: ref_21
  article-title: Surface properties of Germanium
  publication-title: Bell. Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1953.tb01420.x
– volume: 273
  start-page: 418
  year: 2018
  ident: ref_110
  article-title: Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.06.030
– volume: 220
  start-page: 910
  year: 2015
  ident: ref_98
  article-title: Highly sensitive low-temperature triethylamine sensor based on mesoporous microspheres
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.06.023
– ident: ref_208
– volume: 96
  start-page: 576
  year: 2003
  ident: ref_118
  article-title: Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2003.06.002
– volume: 283
  start-page: 793
  year: 2019
  ident: ref_64
  article-title: One step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.12.097
– volume: 7
  start-page: 97
  year: 2015
  ident: ref_89
  article-title: Zinc oxide nanostructures for NO2 gas sensor applications
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-014-0023-3
– volume: 65
  start-page: 765
  year: 2016
  ident: ref_203
  article-title: Autonomous gas detection and mapping with unmanned aerial vehicles
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2506319
– ident: ref_168
– ident: ref_165
– ident: ref_6
  doi: 10.3390/s20082418
– volume: 1
  start-page: 131
  year: 2016
  ident: ref_96
  article-title: Design of superior ethanol gas sensor based on Al-doped NiO nanorod flowers
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.5b00123
– volume: 24
  start-page: 1421
  year: 2004
  ident: ref_100
  article-title: Cr2O3, WO3 single and Cr/W binary oxide prepared by physical methods for gas sensing applications
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(03)00442-4
– volume: 67
  start-page: 122
  year: 2000
  ident: ref_36
  article-title: Comparison study of SnO2 thin and thick-film gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00390-7
– volume: 121
  start-page: 18035
  year: 2007
  ident: ref_68
  article-title: Metal oxide-based sensor research: How to?
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2006.09.047
– ident: ref_178
  doi: 10.3390/s19051180
– volume: 236
  start-page: 1091
  year: 2016
  ident: ref_151
  article-title: Fully inkjet printed SnO2 gas sensor on plastic substrate
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.06.042
– volume: 414
  start-page: 293
  year: 2001
  ident: ref_169
  article-title: Smart single-chip gas sensor microsystem
  publication-title: Nature
  doi: 10.1038/35104535
– volume: 9
  start-page: 6058
  year: 2009
  ident: ref_211
  article-title: Meat quality assessment by electronic nose (machine olfaction technology)
  publication-title: Sensors
  doi: 10.3390/s90806058
– volume: 520
  start-page: 966
  year: 2011
  ident: ref_133
  article-title: Gas sensors based on doped CNT/SnO2 composites for NO2 detection at room temperature
  publication-title: Thin Solid Film.
  doi: 10.1016/j.tsf.2011.04.186
– volume: 206
  start-page: 80
  year: 2017
  ident: ref_46
  article-title: Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.06.119
– ident: ref_207
– volume: 442
  start-page: 30
  year: 2018
  ident: ref_113
  article-title: Designing of WO3-SnO2 core-shell nanofibers and their enhanced gas sensing performance based on different work function
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.122
– volume: 2
  start-page: 032138
  year: 2012
  ident: ref_67
  article-title: Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films
  publication-title: AIP Adv.
  doi: 10.1063/1.4746417
– volume: 99
  start-page: 201
  year: 2004
  ident: ref_71
  article-title: Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2003.11.012
– volume: 51
  start-page: 7733
  year: 2012
  ident: ref_116
  article-title: NiO@ZnO heterostructured nanotubes: Coelectrospinning fabrication, characterization and highly enhanced gas sensing properties
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300749a
– volume: 185
  start-page: 156
  year: 2013
  ident: ref_45
  article-title: Facile microwave assisted hydrothermal synthesis of varied shaped CuO nanoparticles and their gas sensing properties
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2013.04.100
– volume: 257
  start-page: 114547
  year: 2020
  ident: ref_50
  article-title: Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2020.114547
– volume: 2019
  start-page: 1901329
  year: 2019
  ident: ref_33
  article-title: Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901329
– ident: ref_202
  doi: 10.3390/s19143183
– ident: ref_212
  doi: 10.3390/foods8010016
– volume: 157
  start-page: 154
  year: 2011
  ident: ref_72
  article-title: Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.03.043
– volume: 202
  start-page: 263
  year: 2014
  ident: ref_49
  article-title: Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2014.05.081
– volume: 152
  start-page: 155
  year: 2018
  ident: ref_142
  article-title: MOFs derived nanomaterials for gas sensing
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2018.06.037
– volume: 151
  start-page: 162
  year: 2010
  ident: ref_47
  article-title: H2 gas sensor performance of NiO at high temperatures in gas mixtures
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2010.09.027
– volume: 133
  start-page: 638
  year: 2008
  ident: ref_87
  article-title: Properties of humidity sensing ZnO nanorods—Base sensor fabricated by screen-printing
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.03.035
– volume: 174
  start-page: 325
  year: 2012
  ident: ref_97
  article-title: Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.08.073
– volume: 413
  start-page: 213272
  year: 2020
  ident: ref_143
  article-title: Diversiform metal-oxide based hybrid nanostructures for gas sensing with versatile prospects
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213272
– volume: 93
  start-page: 562
  year: 2003
  ident: ref_78
  article-title: p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(03)00233-8
– volume: 194
  start-page: 213
  year: 2014
  ident: ref_32
  article-title: MWCNT-conducting polymer composite based ammonia gas sensors; A new approach for complete recovery process
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2013.12.050
– ident: ref_43
  doi: 10.3390/s16111815
– volume: 43
  start-page: 1029
  year: 2017
  ident: ref_57
  article-title: Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.10.035
– volume: 12
  start-page: 9
  year: 2020
  ident: ref_141
  article-title: Room temperature, highly durable Ti3C2TxMXene/Graphene hybrid fibers for NH3 gas sensing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 264
  start-page: 91
  year: 2018
  ident: ref_82
  article-title: Rolled-up SnO2 nanomembranes: A new platform for efficient gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.01.117
– volume: 9
  start-page: 8796
  year: 2017
  ident: ref_111
  article-title: Ultrasensitive room-temperature operable gas sensors using p-type Na:ZnO nanoflowers for diabetes detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00673
– volume: 4
  start-page: 104
  year: 2020
  ident: ref_181
  article-title: Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality related properties determination: A review
  publication-title: Artif. Intell. Agric.
– volume: 16
  start-page: 981
  year: 2019
  ident: ref_54
  article-title: Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/ijac.13190
– volume: 289
  start-page: 153
  year: 2019
  ident: ref_159
  article-title: Batch-fabricated CO gas sensor in large area (8-inch) with sub-10mW power operation
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2019.03.074
– volume: 161
  start-page: 862
  year: 2012
  ident: ref_153
  article-title: Drop-coated metal-oxide gas sensor on polyimide foil with reduced power consumption for wireless applications
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.11.050
– volume: 7
  start-page: 267
  year: 2007
  ident: ref_27
  article-title: Gas sensors based on conducting polymers
  publication-title: Sensors
  doi: 10.3390/s7030267
– volume: 239
  start-page: 1051
  year: 2017
  ident: ref_42
  article-title: Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.08.080
– volume: 4
  start-page: 180703
  year: 2019
  ident: ref_147
  article-title: Fabrication of large-area bimodal sensors by all-inkjet printing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800703
– ident: ref_186
– ident: ref_164
– volume: 283
  start-page: 714
  year: 2019
  ident: ref_81
  article-title: Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.11.125
– volume: 44
  start-page: 1271
  year: 2011
  ident: ref_34
  article-title: Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– ident: ref_162
  doi: 10.3390/mi9110557
– volume: 150
  start-page: 191
  year: 2010
  ident: ref_74
  article-title: Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2010.07.013
– volume: 4
  start-page: 45
  year: 2004
  ident: ref_200
  article-title: Improvement in sensitivity and selectivity of InP-based gas sensors: Pseudo-Schottky diodes with palladium metallizations
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2003.820330
– volume: 137
  start-page: 164
  year: 2009
  ident: ref_38
  article-title: ZnO gas sensors: A comparison between nanoparticles and nanoterapods—Based thick films
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.11.007
– volume: 3
  start-page: 42
  year: 2019
  ident: ref_150
  article-title: Inkjet printed CMOS integrated graphene-metal oxide sensors for breath analysis
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-019-0125-3
– volume: 229
  start-page: 206
  year: 2018
  ident: ref_180
  article-title: Semiconductor metal oxide gas sensors: A review
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2017.12.036
– ident: ref_171
  doi: 10.3390/s17020281
SSID ssj0023338
Score 2.6939063
SecondaryResourceType review_article
Snippet This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6694
SubjectTerms Air pollution
Carbon dioxide
Carbon monoxide
Communication
Data analysis
Electric properties
Energy consumption
Fossil fuels
gas sensing materials
gas sensor applications
Greenhouse gases
Hydrogen
Internet access
Internet of Things
Multivariate analysis
Nitrogen dioxide
Nuclear power plants
Organic chemicals
Pattern recognition
Principal components analysis
Review
semiconductor gas sensors
sensing technology
Sensors
Sulfur
VOCs
Volatile organic compounds
Zinc oxides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTu0B0VIgLUVu1QOHjcjaY8fpDUoprQQXQOIWjT8ikKqk2l3-f8dxNuwiJC69ZubgzNia9-LJG8a-mqoovCwxL0LZ5OCEpzMHIteA00B4Q5vU5Xupz2_g9626XRn1FXvCkjxwCtyRUahEqFzjjQJvpLWFN7YUQIUl6P4PakE1b0mmBqoliXklHSFJpP5oThSfKlEFa9WnF-l_Dlk-bZBcqThnW2xzgIr8OC3xLXsV2nfszYqA4Db7dRV727s2irZ2M_4T5_yKeGk3m3_jF7hIu2vCH7-fT_hp37Ix4dh6fvx4e_2e3Zz9uP5-ng_DEXKnpFrkYKFUKhA_UBV6C4UjKEBgxqGXTovQSNvEYealFYCoJSExhQjOGwhOiUbusI22a8Me440SjoC2sVNRABbOVA40ElFCjY1qfMYOl0Gr3aAcHgdY_KmJQcT41mN8M_ZldP2b5DKeczqJkR8dosJ1_4DyXg95r1_Ke8b2l3mrh2M3r8kKFZVkIPPn0UwHJt6CYBu6h-Sjo6SQydhuSvO4EikJwYCqMlaubYC1pa5b2vu7XpS7jHMCDHz4H-_2kb0WkdZPp7mQ-2xjMXsInwj7LOxBv83_AavlAOA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB0fIVaCsXceCwURN77DhcUKHdtkhwKZV6i_yVgoSSstn-f8ZJNttFFVd7DtZ4xn7PHr0BeK_LLPOiMGkWijpFxz3lHPJUockD4Q2lhyrf7-rsEr9eyavxwa0byypXZ2J_UPvWxTfyQ44KSzptMf908yeNXaPi7-rYQuMhPMrppoklXXp-OhEuQfxrUBMSRO0POyL6ZFXixh3US_Xfhy__LZO8c-_Mn8HTETCyo2GHt-FBaHbgyR0ZwedwfhEr3NsmSre2C3ZqOnZB7LRddB_ZN7McYmzG1q_oM3bcF27MmGk8O1r_Yb-Ay_nJjy9n6dgiIXVSyGWKFgspA7EEWRpvMXMECAjSOOOFUzzUwtaxpXlhORqjBOExaQw6rzE4yWvxEraatgmvgdWSO4Lb2uY8Q5M5XTpUhuiSUaaWtU_gw8pplRv1w2Mbi98V8Yjo32rybwLvJtObQTTjPqPP0fOTQdS57gfaxXU1pk2lpZE8lK72WqLXwtrMa1tQMKg8KJEnsLvat2pMvq5ah0oCB9M0pU38CzFNaG8HGxWFhXQCr4ZtnlYiBOEYlGUCxUYAbCx1c6b59bOX5i5itwCNb_6_rLfwmEfanucpF7uwtVzchj3CNku73wfwX5ZB-IU
  priority: 102
  providerName: ProQuest
Title Semiconductor Gas Sensors: Materials, Technology, Design, and Application
URI https://www.ncbi.nlm.nih.gov/pubmed/33238459
https://www.proquest.com/docview/2464936241
https://www.proquest.com/docview/2464604318
https://pubmed.ncbi.nlm.nih.gov/PMC7700484
https://doaj.org/article/85a52e9cfd854d83bb0d8b724661e631
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB76A6R9EH8brUcUH3y4aLI7m90IIq32WoUWsR7cW9jsbqxQEs1dQf97Z5NLeif35EseshNYZmeY78sO3wC8VFkcWy51FDtZRmiYpZxDFqWoE0d4I1Vdl-95ejrFzzMx24J-xubSgfON1M7Pk5o2V69___rznhL-nWecRNnfzInAU53JcBt2qSBJP8jgDIfLBMaJhnWiQuvme3CLcypZ6IVKV6pSK96_CXH-2zi5Uokmd-D2EkKGh92Z34UtV92D_RVhwfvw6cL3vNeVF3Otm_BEz8ML4qt1M38bnulFF3Xj8Oa_-jj82LZyjENd2fDw5lb7AUwnx98-nEbLoQmREVwsIixQCuGIN4hM2wJjQxCBQI7RlpuUuZIXpR9yLguGWqecEJrQGo1V6IxgJX8IO1VduccQloIZAuCqSFiMOjYqM5hqIlA61aUobQCveqflZqko7gdbXOXELLyr88HVAbwYTH92MhqbjI685wcDr3zdvqib7_kykXIltGAuM6VVAq3iRRFbVUiGBDRcypMADvpzy_toymkVMyrVSMvPh2VKJH87oitXX3c2qZcaUgE86o552EkfJgHItQBY2-r6SvXjshXrln5-gMIn__3lU9hjnuMnScT4Aewsmmv3jIDQohjBtpxJeqrJyQh2j47Pv3wdtT8VRm0C_AVvCwuz
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGBxGGjJvbYcZAQKpTtLn1c2kq9pY7tABJKymYrxJ_iNzJOstkuqrj1Go8iazzj-cYefwPwWmVxbHmqo9ilZYSGWfI5ZJFEnTjCG1J1Vb4HcnKMX07EyRr8WbyF8WWViz2x3ahtbfwZ-SZDiRnttph8OPsZ-a5R_nZ10UKjM4td9_sXpWzN--k2re8bxsafjz5Nor6rQGQEF_MIC0yFcASsRaZtgbGhGEoowGjLjWSu5EXpu4CnBUOtJScII7RGYxU6I1jJ6b_X4DpyiuT-Zfp4Z0jwOOV7HXsRDcabDaMAKWWGKzGvbQ1wGZ79tyzzQpwb34HbPUANtzqLugtrrroHty7QFt6H6aGvqK8rTxVbz8Id3YSHlA3Xs-ZduK_nnU2PwuWp_SjcbgtFRqGubLi1vDN_AMdXoryHsF7VlXsMYSmYIXivioTFqGOjMoNSU3qmpS5FaQN4u1Babnq-ct8240dOeYvXbz7oN4BXg-hZR9JxmdBHr_lBwPNqtx_q2de8d9NcCS2Yy0xplUCreFHEVhUpGZ9MnORJABuLdct7Z2_ypWkG8HIYJjf1dy-6cvV5JyM9kZEK4FG3zMNMOCfchCILIF0xgJWpro5U37-1VOCp706g8Mn_p_UCbkyO9vfyvenB7lO4yfyRQZJEjG_A-nx27p4RrpoXz1tjDuH0qr3nL2ioNRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHho1MRfcZAQ2ujKyqCa2CbtLTi2A0goGU0nxL_GX8c5SdMVTbztNT5F1vnO9zv7_DuAFyqNIssSHUYuKUJuqEWf4zSUXMcO8YZUbZXvTO4d8w8n4mQD_izfwviyyuWe2GzUtjL-jHxEueQp7rY8HhVdWcTBePL29GfoO0j5m9ZlO43WRPbd71-YvtVvpmNc65eUTnaP3u2FXYeB0AgmFiHPeSKEQ5AtUm1zHhmMp4gIjLbMSOoKlhe-I3iSU661ZAhnhNbcWMWdEbRg-N8rsJn4rGgAmzu7s4PPfbrHMPtruYwYS6NRTTFcSpnytQjYNAq4CN3-W6R5LupNbsKNDq6S7da-bsGGK2_D9XMkhndgeujr66vSE8dWc_Je1-QQc-NqXr8mn_SitfAhWZ3hD8m4KRsZEl1asr26Qb8Lx5eivnswKKvSPQBSCGoQ7Ks8phHXkVGp4VJjsqalLkRhA3i1VFpmOvZy30TjR4ZZjNdv1us3gOe96GlL2XGR0I7XfC_gWbabD9X8a9Y5baaEFtSlprBKcKtYnkdW5QmaooydZHEAW8t1yzrXr7OVoQbwrB9Gp_U3Mbp01VkrIz2tkQrgfrvM_UwYQxTFRRpAsmYAa1NdHym_f2uIwRPfq0Dxh_-f1lO4ip6TfZzO9h_BNerPD-I4pGwLBov5mXuMIGuRP-msmcCXy3agv9vcOq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconductor+Gas+Sensors%3A+Materials%2C+Technology%2C+Design%2C+and+Application&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nikolic%2C+Maria+Vesna&rft.au=Milovanovic%2C+Vladimir&rft.au=Vasiljevic%2C+Zorka+Z.&rft.au=Stamenkovic%2C+Zoran&rft.date=2020-11-23&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=22&rft_id=info:doi/10.3390%2Fs20226694&rft_id=info%3Apmid%2F33238459&rft.externalDocID=PMC7700484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon