Semiconductor Gas Sensors: Materials, Technology, Design, and Application
This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabricat...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 22; p. 6694 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.11.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies. |
---|---|
AbstractList | This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies. This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies. This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH 3 , but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies. This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH , but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies. |
Author | Milovanovic, Vladimir Stamenkovic, Zoran Vasiljevic, Zorka Z. Nikolic, Maria Vesna |
AuthorAffiliation | 1 Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; mariavesna@imsi.rs (M.V.N.); zorkav@imsi.rs (Z.Z.V.) 3 IHP—Leibniz-Institut Für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany 2 Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia; vlada@kg.ac.rs |
AuthorAffiliation_xml | – name: 1 Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; mariavesna@imsi.rs (M.V.N.); zorkav@imsi.rs (Z.Z.V.) – name: 3 IHP—Leibniz-Institut Für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany – name: 2 Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia; vlada@kg.ac.rs |
Author_xml | – sequence: 1 givenname: Maria Vesna orcidid: 0000-0001-5035-0170 surname: Nikolic fullname: Nikolic, Maria Vesna – sequence: 2 givenname: Vladimir surname: Milovanovic fullname: Milovanovic, Vladimir – sequence: 3 givenname: Zorka Z. orcidid: 0000-0002-7817-8648 surname: Vasiljevic fullname: Vasiljevic, Zorka Z. – sequence: 4 givenname: Zoran orcidid: 0000-0002-6078-413X surname: Stamenkovic fullname: Stamenkovic, Zoran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33238459$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktvEzEQgC1URB9w4A-glbiAlFCvX-vlgFQVKJGKOLScrVl7NnW0sVN7F6n_HjcpUVtxsmV__mbGM8fkIMSAhLyt6SfOW3qaGWVMqVa8IEe1YGKuGaMHj_aH5DjnFaWMc65fkUPOGddCtkdkcYVrb2Nwkx1jqi4gV1cYckz5c_UTRkwehjyrrtHehDjE5d2s-orZL8OsguCqs81m8BZGH8Nr8rIvLL55WE_I7-_frs9_zC9_XSzOzy7nVnI5zkUnGimxrrVswXWCWsFrqZgFx61i2POu14yrpmMCQHElqQQQ1mmBVrKen5DFzusirMwm-TWkOxPBm-1BTEsDafR2QKMlSIat7Z2WwmneddTprmFCqRoVr4vry861mbo1OothTDA8kT69Cf7GLOMf0zSUCi2K4MODIMXbCfNo1j5bHAYIGKdsSiihaKlQF_T9M3QVpxTKV22plism7jN69zijfSr_OlaAjzvApphzwn6P1NTcT4PZT0NhT5-x1o_bZpVi_PCfF38BgpK0KQ |
CitedBy_id | crossref_primary_10_1002_adfm_202207065 crossref_primary_10_1007_s10854_023_10279_z crossref_primary_10_1186_s11671_023_03798_5 crossref_primary_10_3389_fchem_2023_1174207 crossref_primary_10_3390_nano12122120 crossref_primary_10_1016_j_colsurfa_2023_132203 crossref_primary_10_1007_s13391_024_00498_9 crossref_primary_10_1039_D2RA06307G crossref_primary_10_3390_s21134387 crossref_primary_10_1016_j_surfin_2023_103404 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_26634_jit_12_2_20107 crossref_primary_10_1016_j_trechm_2023_10_003 crossref_primary_10_1016_j_talo_2024_100290 crossref_primary_10_3390_nano14181521 crossref_primary_10_1016_j_snb_2024_135729 crossref_primary_10_1088_1742_6596_2114_1_012040 crossref_primary_10_1149_1945_7111_ac6e0a crossref_primary_10_1021_acsami_4c01077 crossref_primary_10_1021_acsanm_3c03846 crossref_primary_10_1016_j_jaap_2022_105527 crossref_primary_10_1109_JSEN_2025_3531888 crossref_primary_10_3390_su141811516 crossref_primary_10_1016_j_snb_2024_137225 crossref_primary_10_1007_s11581_023_05333_z crossref_primary_10_1016_j_sna_2022_114106 crossref_primary_10_1016_j_snb_2023_134477 crossref_primary_10_3390_bios14050248 crossref_primary_10_3390_s24227188 crossref_primary_10_3390_en16062559 crossref_primary_10_3390_nano14010026 crossref_primary_10_1016_j_snb_2023_134000 crossref_primary_10_1021_acs_iecr_3c02288 crossref_primary_10_1007_s42341_024_00555_y crossref_primary_10_1088_1361_6641_ac01a3 crossref_primary_10_3390_s24196475 crossref_primary_10_3390_app11209536 crossref_primary_10_3390_bios12100882 crossref_primary_10_1016_j_porgcoat_2023_107632 crossref_primary_10_2139_ssrn_4107074 crossref_primary_10_1016_j_cej_2024_154014 crossref_primary_10_1016_j_envpol_2022_119119 crossref_primary_10_1364_OE_533328 crossref_primary_10_3390_electronics13071252 crossref_primary_10_1016_j_chemosphere_2021_130641 crossref_primary_10_1016_j_sna_2025_116233 crossref_primary_10_1016_j_jcis_2024_07_221 crossref_primary_10_1016_j_ijoes_2023_100314 crossref_primary_10_1016_j_trac_2024_117664 crossref_primary_10_1007_s00216_023_04986_z crossref_primary_10_20517_ss_2024_09 crossref_primary_10_3390_s21103403 crossref_primary_10_1007_s10570_024_05833_9 crossref_primary_10_1016_j_snb_2024_136710 crossref_primary_10_3390_s23010052 crossref_primary_10_1016_j_apsusc_2022_156257 crossref_primary_10_3390_fire6070248 crossref_primary_10_1016_j_snb_2024_136958 crossref_primary_10_3390_pr9101791 crossref_primary_10_1016_j_talanta_2024_127019 crossref_primary_10_3389_fmats_2022_906838 crossref_primary_10_1109_JSEN_2024_3407651 crossref_primary_10_1149_2162_8777_acd1ad crossref_primary_10_1016_j_mssp_2024_109100 crossref_primary_10_1039_D4NJ03925D crossref_primary_10_1016_j_ceramint_2024_05_439 crossref_primary_10_1021_acssensors_2c00639 crossref_primary_10_1038_s41598_024_62939_7 crossref_primary_10_1002_adsr_202400066 crossref_primary_10_1063_5_0186269 crossref_primary_10_15222_TKEA2021_5_6_11 crossref_primary_10_3390_coatings14111438 crossref_primary_10_3390_molecules29163741 crossref_primary_10_1016_j_jmrt_2023_03_162 crossref_primary_10_1021_acsanm_4c01795 crossref_primary_10_3390_chemosensors9090244 crossref_primary_10_1016_j_surfin_2024_103958 crossref_primary_10_3390_chemosensors11030156 crossref_primary_10_3390_chemosensors12040060 crossref_primary_10_3390_s22218150 crossref_primary_10_1016_j_jallcom_2023_170568 crossref_primary_10_3390_coatings13101771 crossref_primary_10_1016_j_snb_2023_133810 crossref_primary_10_1016_j_surfin_2021_101673 crossref_primary_10_1016_j_flatc_2023_100584 crossref_primary_10_1088_1361_6463_ad32a7 crossref_primary_10_1111_jfpe_70035 crossref_primary_10_3390_nano13121835 crossref_primary_10_1016_j_micrna_2024_207830 crossref_primary_10_1016_j_mseb_2023_117029 crossref_primary_10_1016_j_apsusc_2023_159108 crossref_primary_10_1109_RBME_2024_3481360 crossref_primary_10_1002_admt_202301347 crossref_primary_10_1149_2754_2726_ad0736 crossref_primary_10_3390_s23239548 crossref_primary_10_3390_chemosensors12090198 crossref_primary_10_1038_s41598_024_81279_0 crossref_primary_10_1016_j_ceramint_2024_10_450 crossref_primary_10_1016_j_comptc_2023_114186 crossref_primary_10_1088_1402_4896_ad4d2a crossref_primary_10_1109_JSEN_2022_3185176 crossref_primary_10_3389_fenvc_2022_926233 crossref_primary_10_3390_s24020602 crossref_primary_10_1109_TIM_2023_3273691 crossref_primary_10_1007_s10854_024_13549_6 crossref_primary_10_1016_j_talo_2025_100411 crossref_primary_10_1007_s12633_024_03126_1 crossref_primary_10_1016_j_aej_2025_02_100 crossref_primary_10_1016_j_sna_2022_113578 crossref_primary_10_1016_j_measurement_2022_112077 crossref_primary_10_1134_S1063785023900844 crossref_primary_10_3390_s21134357 crossref_primary_10_1039_D3RA01279D crossref_primary_10_3390_s22041530 crossref_primary_10_1080_00207543_2023_2217282 crossref_primary_10_1016_j_cej_2024_151874 crossref_primary_10_1021_acssensors_4c00186 crossref_primary_10_3390_s23020882 crossref_primary_10_1080_05704928_2024_2302608 crossref_primary_10_29059_cienciauat_v17i2_1632 crossref_primary_10_1108_SR_09_2022_0339 crossref_primary_10_3390_ma16175893 crossref_primary_10_1360_TB_2023_0340 crossref_primary_10_1002_cnma_202400491 crossref_primary_10_3390_nano11112773 crossref_primary_10_3390_s21051907 crossref_primary_10_1016_j_comptc_2022_113801 crossref_primary_10_1149_2162_8777_ace5d8 crossref_primary_10_3390_c11010004 crossref_primary_10_46670_JSST_2024_33_5_310 crossref_primary_10_1016_j_snb_2025_137554 crossref_primary_10_1021_acssensors_2c01086 crossref_primary_10_1007_s10098_024_02774_6 crossref_primary_10_1007_s10479_024_06428_0 crossref_primary_10_1016_j_cplett_2024_141779 crossref_primary_10_1016_j_snb_2024_135780 crossref_primary_10_3390_s24144560 crossref_primary_10_3390_s23239525 crossref_primary_10_1016_j_jallcom_2025_179080 crossref_primary_10_1002_admt_202300030 crossref_primary_10_1016_j_jeurceramsoc_2025_117353 crossref_primary_10_1021_acs_langmuir_4c04850 crossref_primary_10_1007_s12633_024_03092_8 crossref_primary_10_1016_j_heliyon_2024_e31634 crossref_primary_10_1063_5_0153029 crossref_primary_10_3390_s21041326 crossref_primary_10_1016_j_flatc_2024_100716 crossref_primary_10_3390_jcs7040156 crossref_primary_10_3390_s24072147 crossref_primary_10_1007_s10751_024_02042_5 crossref_primary_10_1007_s11220_024_00469_2 crossref_primary_10_1007_s11664_024_11564_1 crossref_primary_10_3390_nano11092318 crossref_primary_10_1016_j_snb_2024_136199 crossref_primary_10_3390_s21175783 crossref_primary_10_1016_j_partic_2024_03_004 crossref_primary_10_3390_en16186499 crossref_primary_10_1016_j_matchemphys_2022_126871 crossref_primary_10_1557_s43578_022_00755_3 crossref_primary_10_1007_s00604_024_06750_1 crossref_primary_10_3390_ma17143502 crossref_primary_10_1016_j_cap_2022_07_007 crossref_primary_10_1016_j_cej_2025_160608 crossref_primary_10_1021_acsomega_4c11045 crossref_primary_10_1088_2631_7990_ad3316 crossref_primary_10_1007_s11244_022_01564_y crossref_primary_10_3390_s24072252 crossref_primary_10_1016_j_talanta_2025_127752 crossref_primary_10_1016_j_mtcomm_2025_111867 crossref_primary_10_1016_j_ceramint_2021_12_273 crossref_primary_10_1016_j_surfin_2024_105098 crossref_primary_10_3390_toxics11080658 crossref_primary_10_1016_j_snb_2025_137453 crossref_primary_10_1007_s42247_024_00967_9 crossref_primary_10_3390_s21134425 crossref_primary_10_1002_ep_14126 crossref_primary_10_3390_chemosensors11040248 crossref_primary_10_3390_technologies11060156 crossref_primary_10_1063_5_0220697 crossref_primary_10_1088_2631_8695_aca6d1 crossref_primary_10_1155_2021_6988676 crossref_primary_10_1039_D4NR04681A crossref_primary_10_3390_chemosensors11090506 crossref_primary_10_3390_nano11102700 crossref_primary_10_1149_2754_2726_acbe0c crossref_primary_10_3390_mi15020264 crossref_primary_10_1002_adsr_202300035 crossref_primary_10_1016_j_chphi_2024_100604 crossref_primary_10_1016_j_nantod_2021_101265 crossref_primary_10_3390_ma17235825 crossref_primary_10_3390_mi16020118 crossref_primary_10_1007_s10854_024_13260_6 crossref_primary_10_3389_fchem_2025_1538217 crossref_primary_10_1016_j_sna_2022_113657 crossref_primary_10_1007_s10904_021_02198_5 crossref_primary_10_1016_j_microc_2025_113083 crossref_primary_10_1002_eem2_12570 crossref_primary_10_1007_s10854_023_11730_x crossref_primary_10_3390_nano13040668 crossref_primary_10_1016_j_surfin_2024_104869 crossref_primary_10_3390_molecules28186710 crossref_primary_10_1016_j_mseb_2021_115272 crossref_primary_10_1088_1361_6528_ac9288 crossref_primary_10_1002_elan_202400246 crossref_primary_10_3390_chemosensors10030112 crossref_primary_10_3390_chemosensors13020038 crossref_primary_10_1002_pssa_202400633 crossref_primary_10_3390_membranes12060555 crossref_primary_10_3390_ma15248728 crossref_primary_10_1016_j_snb_2022_132843 crossref_primary_10_1109_TIM_2025_3547517 crossref_primary_10_1149_1945_7111_ac7c40 crossref_primary_10_1007_s10854_024_12398_7 crossref_primary_10_1016_j_apsusc_2025_162618 crossref_primary_10_1149_1945_7111_aca839 crossref_primary_10_3390_chemosensors10070267 crossref_primary_10_1016_j_sna_2022_114044 crossref_primary_10_1016_j_matpr_2022_06_180 crossref_primary_10_1007_s00339_024_07849_1 crossref_primary_10_1109_JSEN_2024_3438073 crossref_primary_10_3390_ma16051868 crossref_primary_10_1002_aisy_202200169 crossref_primary_10_1002_mame_202300346 crossref_primary_10_1002_tcr_202300350 crossref_primary_10_1038_s41598_023_34697_5 crossref_primary_10_1063_5_0170089 crossref_primary_10_1109_JSEN_2022_3210007 crossref_primary_10_1140_epjb_s10051_023_00601_3 crossref_primary_10_1007_s10853_024_09376_z crossref_primary_10_1016_j_jii_2024_100715 crossref_primary_10_1016_j_snb_2023_134733 crossref_primary_10_1299_transjsme_23_00158 crossref_primary_10_3390_nano11020552 crossref_primary_10_1007_s11696_024_03525_z crossref_primary_10_1021_acsanm_4c02127 crossref_primary_10_1038_s43246_024_00693_z crossref_primary_10_1016_j_surfin_2025_105995 crossref_primary_10_1016_j_jes_2024_07_027 crossref_primary_10_1021_acsami_4c15743 crossref_primary_10_3390_s23177444 crossref_primary_10_1021_acsomega_3c09460 crossref_primary_10_1039_D3TC01126G crossref_primary_10_1016_j_bios_2022_114319 crossref_primary_10_1016_j_prime_2024_100496 crossref_primary_10_1039_D3NR04040B crossref_primary_10_3390_s25051634 crossref_primary_10_1016_j_tifs_2024_104369 crossref_primary_10_1109_TIM_2023_3293879 crossref_primary_10_18321_cpc21_4_227_236 crossref_primary_10_1016_j_trac_2023_117185 crossref_primary_10_1016_j_inoche_2023_110847 crossref_primary_10_1088_2631_8695_ad861f crossref_primary_10_3390_nano12203651 crossref_primary_10_54919_physics_53_2023_42 crossref_primary_10_1021_acs_accounts_4c00319 crossref_primary_10_1109_JSEN_2024_3349862 crossref_primary_10_1007_s10854_024_12873_1 crossref_primary_10_3390_s24237851 crossref_primary_10_1007_s11082_023_05934_y crossref_primary_10_1016_j_microc_2024_112369 crossref_primary_10_1007_s10904_024_03052_0 crossref_primary_10_1002_cssc_202402342 crossref_primary_10_1016_j_physleta_2024_129487 crossref_primary_10_1002_adfm_202415971 crossref_primary_10_1063_5_0151942 crossref_primary_10_1088_1361_6439_aca4db crossref_primary_10_1007_s12668_024_01301_7 crossref_primary_10_1016_j_nanoso_2021_100824 crossref_primary_10_1016_j_sna_2025_116445 crossref_primary_10_1039_D2TA10014B crossref_primary_10_1016_j_jmrt_2024_06_237 crossref_primary_10_3390_nano13020344 crossref_primary_10_1016_j_diamond_2024_111348 crossref_primary_10_1155_2023_7427986 crossref_primary_10_1016_j_talanta_2024_127085 crossref_primary_10_1016_j_sna_2025_116439 crossref_primary_10_3390_chemosensors12030042 crossref_primary_10_1016_j_ceramint_2024_11_084 crossref_primary_10_1016_j_trac_2023_117282 crossref_primary_10_1016_j_bios_2023_115642 crossref_primary_10_1557_s43580_025_01137_7 crossref_primary_10_3390_photonics10101106 crossref_primary_10_1016_j_iref_2023_11_002 crossref_primary_10_3390_coatings14060693 crossref_primary_10_1016_j_cossms_2024_101160 crossref_primary_10_3389_fsens_2023_1250756 crossref_primary_10_1016_j_jallcom_2024_175930 crossref_primary_10_1016_j_jece_2022_108543 crossref_primary_10_1016_j_microc_2025_113446 crossref_primary_10_1016_j_ccr_2022_214517 crossref_primary_10_1016_j_mtcomm_2023_107831 crossref_primary_10_1088_1742_6596_2809_1_012004 crossref_primary_10_1021_acssuschemeng_4c01670 crossref_primary_10_3390_app15052522 crossref_primary_10_3390_s23063265 crossref_primary_10_2298_PAC2203237O crossref_primary_10_1039_D1RA07731G crossref_primary_10_1016_j_mssp_2024_108850 crossref_primary_10_3390_chemosensors10110482 crossref_primary_10_1080_10408347_2022_2088226 crossref_primary_10_1088_1361_6501_ad440f crossref_primary_10_3390_chemosensors9060125 crossref_primary_10_3390_nano13182549 crossref_primary_10_1016_j_ceramint_2024_07_206 crossref_primary_10_1021_acsaelm_4c01527 crossref_primary_10_1016_j_mtcomm_2024_108310 crossref_primary_10_1016_j_mtcomm_2022_105241 crossref_primary_10_1007_s13538_024_01546_3 crossref_primary_10_1016_j_sna_2023_114676 crossref_primary_10_1007_s10904_023_02650_8 crossref_primary_10_1016_j_mser_2021_100629 crossref_primary_10_1016_j_ijhydene_2024_07_253 crossref_primary_10_3390_chemosensors10020057 crossref_primary_10_1016_j_sna_2024_115707 crossref_primary_10_1007_s11106_024_00402_y crossref_primary_10_1109_JSEN_2022_3199254 crossref_primary_10_3390_chemosensors10100436 crossref_primary_10_1080_16583655_2023_2265631 crossref_primary_10_1007_s00339_024_07958_x crossref_primary_10_1007_s10854_024_13292_y crossref_primary_10_1021_acsaelm_4c00567 crossref_primary_10_1007_s40820_022_00956_9 crossref_primary_10_3390_chemosensors10110479 crossref_primary_10_1039_D4RA00881B crossref_primary_10_3390_chemosensors10110478 crossref_primary_10_1049_ote2_70002 crossref_primary_10_3390_mi13010026 crossref_primary_10_3390_ma14154263 |
Cites_doi | 10.3390/met5031371 10.1016/0925-4005(94)01247-4 10.1016/j.snb.2016.01.015 10.1063/1.1755123 10.1016/j.snb.2004.09.027 10.1007/s00604-014-1160-6 10.1021/jp0688355 10.1021/acsami.5b00161 10.1016/j.jallcom.2018.03.307 10.3390/s19143049 10.1002/adfm.201202332 10.1016/j.snb.2016.12.009 10.3390/chemosensors5030021 10.3390/s90705099 10.1109/JSEN.2015.2391286 10.1016/j.sna.2017.10.021 10.1016/j.snb.2011.04.070 10.1016/S0925-4005(01)00666-9 10.1109/JSEN.2019.2939039 10.3390/s19030478 10.1016/j.snb.2019.127217 10.1016/S0925-4005(99)00241-5 10.3390/chemosensors3010001 10.3390/s16071135 10.1002/adfm.202004448 10.1108/SR-07-2015-0115 10.3390/s20174961 10.3390/s18041052 10.1126/science.287.5453.622 10.1016/j.snb.2008.01.054 10.1007/978-0-387-09665-0 10.1016/j.apsusc.2017.08.229 10.1016/S0925-4005(01)01072-3 10.1109/JIOT.2014.2329189 10.1149/2.0152003JES 10.1109/JMEMS.2017.2657788 10.1016/j.snb.2004.11.067 10.3390/atmos10050261 10.1021/acs.chemrev.6b00187 10.1098/rsos.181662 10.1109/JSEN.2010.2046409 10.3390/s19020362 10.1016/j.apmt.2017.09.001 10.1002/adma.201804285 10.1007/s002160051490 10.1002/adma.201907082 10.1016/j.snb.2004.02.028 10.1016/j.vacuum.2006.05.004 10.1109/6.715180 10.1021/acs.chemrev.8b00311 10.1016/j.aca.2018.09.020 10.1016/j.snb.2012.09.034 10.1007/s12598-020-01608-w 10.1016/j.snb.2015.08.027 10.3390/s130912070 10.1088/0957-4484/27/20/205701 10.3390/su11215952 10.1109/JSEN.2006.881399 10.3390/proceedings2019014049 10.1007/s002160050844 10.1557/mrs2004.208 10.1039/C8RA01184B 10.1021/ac60191a001 10.1016/j.ceramint.2004.06.015 10.1149/1945-7111/ab7e23 10.1016/j.snb.2010.06.070 10.1021/am405088q 10.1016/0925-4005(95)85098-8 10.1016/j.snb.2016.08.053 10.4271/2007-01-3149 10.1109/JSEN.2020.2983135 10.1533/9780857098665 10.1109/DDECS50862.2020.9095743 10.3390/s18113638 10.1109/JSEN.2017.2749334 10.1016/j.snb.2010.04.034 10.1016/j.synthmet.2014.01.002 10.1016/j.snb.2004.11.001 10.3390/s16071072 10.1016/j.snb.2016.09.098 10.3390/s120709635 10.1016/j.talanta.2009.07.057 10.1016/S0925-4005(01)00719-5 10.1109/JSEN.2014.2375203 10.3390/chemosensors8020039 10.1039/C7TA06221D 10.1016/j.snb.2003.07.010 10.1016/j.matchemphys.2014.04.009 10.1016/j.snb.2017.11.131 10.1021/acs.analchem.7b03491 10.1007/s10854-017-8342-z 10.3390/s17020303 10.3390/nano10101940 10.1016/j.vacuum.2019.04.061 10.1021/acs.nanolett.6b01713 10.1016/j.measurement.2011.12.012 10.1016/j.snb.2014.05.080 10.1039/c3ta13823b 10.1016/S0925-4005(01)00670-0 10.1016/j.snb.2017.11.063 10.3390/s100605469 10.1016/j.snb.2017.04.194 10.3390/s17071653 10.3390/s19061285 10.1021/ar400070m 10.1021/acsanm.9b01176 10.1016/j.apsusc.2019.03.198 10.1021/acssensors.9b00303 10.1016/j.jcis.2018.05.006 10.1016/S0925-4005(03)00213-2 10.1016/j.apsusc.2005.07.015 10.3390/s19091957 10.1088/0957-4484/17/19/037 10.1126/science.287.5459.1801 10.1016/j.snb.2017.11.066 10.1021/acsami.9b13946 10.1039/C9TA07855J 10.1007/s10854-019-01598-1 10.1007/BF01340692 10.1007/s40145-018-0309-x 10.1038/nmat1967 10.1155/2009/493904 10.1016/0925-4005(95)85177-1 10.1016/j.snb.2018.09.063 10.1016/j.aca.2014.03.014 10.1016/j.jallcom.2019.06.329 10.1088/0957-4484/20/44/445502 10.1016/j.snb.2008.09.010 10.3390/proceedings2130993 10.1002/pssa.201026443 10.1007/s10854-015-4200-z 10.1108/02602280410525977 10.3389/fchem.2020.00174 10.1016/S0925-4005(00)00496-2 10.1016/j.snb.2008.01.028 10.1016/j.snb.2011.04.028 10.3390/s19051230 10.1002/j.1538-7305.1953.tb01420.x 10.1016/j.snb.2018.06.030 10.1016/j.snb.2015.06.023 10.1016/j.snb.2003.06.002 10.1016/j.snb.2018.12.097 10.1007/s40820-014-0023-3 10.1109/TIM.2015.2506319 10.3390/s20082418 10.1021/acssensors.5b00123 10.1016/S0955-2219(03)00442-4 10.1016/S0925-4005(00)00390-7 10.1016/j.snb.2006.09.047 10.3390/s19051180 10.1016/j.snb.2016.06.042 10.1038/35104535 10.3390/s90806058 10.1016/j.tsf.2011.04.186 10.1016/j.matlet.2017.06.119 10.1016/j.apsusc.2018.02.122 10.1063/1.4746417 10.1016/j.snb.2003.11.012 10.1021/ic300749a 10.1016/j.snb.2013.04.100 10.1016/j.mseb.2020.114547 10.1002/admi.201901329 10.3390/s19143183 10.3390/foods8010016 10.1016/j.snb.2011.03.043 10.1016/j.snb.2014.05.081 10.1016/j.poly.2018.06.037 10.1016/j.snb.2010.09.027 10.1016/j.snb.2008.03.035 10.1016/j.snb.2012.08.073 10.1016/j.ccr.2020.213272 10.1016/S0925-4005(03)00233-8 10.1016/j.snb.2013.12.050 10.3390/s16111815 10.1016/j.ceramint.2016.10.035 10.1016/j.snb.2018.01.117 10.1021/acsami.7b00673 10.1111/ijac.13190 10.1016/j.snb.2019.03.074 10.1016/j.snb.2011.11.050 10.3390/s7030267 10.1016/j.snb.2016.08.080 10.1002/admt.201800703 10.1016/j.snb.2018.11.125 10.1107/S0021889811038970 10.3390/mi9110557 10.1016/j.snb.2010.07.013 10.1109/JSEN.2003.820330 10.1016/j.snb.2008.11.007 10.1038/s41699-019-0125-3 10.1016/j.mseb.2017.12.036 10.3390/s17020281 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s20226694 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_85a52e9cfd854d83bb0d8b724661e631 PMC7700484 33238459 10_3390_s20226694 |
Genre | Journal Article Review |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-4b4755e11859adb40c431562cad3c62ef3bf82367b24aa636505aa4cd84ec52f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:09:58 EDT 2025 Thu Aug 21 14:30:55 EDT 2025 Fri Jul 11 06:25:48 EDT 2025 Fri Jul 25 20:44:05 EDT 2025 Thu Apr 03 06:57:32 EDT 2025 Tue Jul 01 03:55:56 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | semiconductor gas sensors gas sensor applications gas sensing materials sensing technology |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-4b4755e11859adb40c431562cad3c62ef3bf82367b24aa636505aa4cd84ec52f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6078-413X 0000-0002-7817-8648 0000-0001-5035-0170 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20226694 |
PMID | 33238459 |
PQID | 2464936241 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_85a52e9cfd854d83bb0d8b724661e631 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700484 proquest_miscellaneous_2464604318 proquest_journals_2464936241 pubmed_primary_33238459 crossref_primary_10_3390_s20226694 crossref_citationtrail_10_3390_s20226694 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201123 |
PublicationDateYYYYMMDD | 2020-11-23 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_137 Fort (ref_80) 2010; 148 Zhang (ref_138) 2018; 749 Volanti (ref_44) 2013; 23 ref_90 Araujo (ref_103) 2019; 8 Tan (ref_181) 2020; 4 Mohtasebi (ref_211) 2009; 9 Fu (ref_147) 2019; 4 Bai (ref_27) 2007; 7 Ivanov (ref_71) 2004; 99 ref_125 Chiu (ref_37) 2007; 111 Khan (ref_146) 2014; 15 Konvalina (ref_190) 2014; 47 Arshak (ref_18) 2004; 24 Nikolic (ref_59) 2019; 30 Lakard (ref_121) 2015; 15 Blank (ref_4) 2016; 228 Gardner (ref_163) 2010; 10 Rossi (ref_203) 2016; 65 Giberti (ref_40) 2011; 208 Mochida (ref_66) 1995; 25 Jaisutti (ref_111) 2017; 9 Khan (ref_7) 2014; 1 Cao (ref_98) 2015; 220 Vincent (ref_42) 2017; 239 Sutka (ref_53) 2016; 222 Tang (ref_134) 2020; 8 ref_156 Carrotta (ref_38) 2009; 137 Gebeauer (ref_149) 2018; 526 Comini (ref_102) 2001; 77 Tulliani (ref_56) 2005; 31 Sharma (ref_32) 2014; 194 Kim (ref_99) 2017; 240 Kong (ref_129) 2000; 287 Mirzaei (ref_112) 2018; 258 Sakthivel (ref_152) 2017; 17 ref_144 Xu (ref_116) 2012; 51 Wang (ref_28) 2009; 2009 Liu (ref_79) 2017; 239 Hamilton (ref_117) 2005; 107 Pokhrel (ref_48) 2008; 113 Su (ref_120) 2009; 80 Shaver (ref_24) 1967; 11 Wu (ref_150) 2019; 3 Zhu (ref_91) 2017; 267 Talazac (ref_200) 2004; 4 ref_212 Jia (ref_115) 2019; 481 Singkammo (ref_84) 2015; 7 Lin (ref_170) 2019; 31 Yang (ref_197) 2020; 8 Liu (ref_148) 2015; 15 Cantalini (ref_100) 2004; 24 Galatsis (ref_78) 2003; 93 ref_202 ref_205 ref_204 Matindoust (ref_209) 2016; 36 ref_207 Liu (ref_12) 2012; 12 ref_208 Ramgir (ref_77) 2006; 252 Lai (ref_85) 2019; 166 Nagle (ref_179) 1998; 9 Steinbach (ref_47) 2010; 151 Prajapati (ref_201) 2017; 26 Mao (ref_29) 2014; 2 Xing (ref_187) 2019; 19 Blaschke (ref_206) 2006; 6 Mittal (ref_131) 2014; 203 Tulliani (ref_55) 2013; 13 Liu (ref_94) 2011; 156 Li (ref_113) 2018; 442 Lee (ref_161) 1999; 60 Song (ref_64) 2019; 283 Lee (ref_73) 2008; 132 Kim (ref_109) 2018; 258 Nikolic (ref_60) 2018; 227 Meng (ref_110) 2018; 273 Kumar (ref_89) 2015; 7 Kang (ref_196) 2018; 8 Falsafi (ref_57) 2017; 43 Leghrib (ref_133) 2011; 520 ref_107 Lu (ref_135) 2009; 20 Zhang (ref_33) 2019; 2019 Yang (ref_45) 2013; 185 Zhu (ref_39) 2018; 427 Chou (ref_93) 2015; 15 Wu (ref_155) 2010; 150 Galstyan (ref_58) 2020; 303 Wei (ref_83) 2004; 101 Wang (ref_142) 2018; 152 Mirzaei (ref_11) 2016; 27 Mercante (ref_63) 2019; 2 Galatsis (ref_41) 2002; 83 Barsan (ref_69) 1999; 365 Fine (ref_3) 2010; 10 Sun (ref_52) 2017; 5 Navale (ref_119) 2014; 189 Patel (ref_65) 1994; 21 ref_13 Neri (ref_20) 2015; 3 ref_10 Yoon (ref_49) 2014; 202 Jun (ref_118) 2003; 96 Wang (ref_96) 2016; 1 Zhang (ref_143) 2020; 413 Ram (ref_127) 2005; 106 Paolesse (ref_191) 2014; 824 ref_25 Ma (ref_97) 2012; 174 Wang (ref_76) 2006; 81 ref_26 Ryu (ref_61) 2003; 96 Choi (ref_194) 2014; 6 Kim (ref_126) 2005; 108 Shen (ref_75) 2009; 135 Hyodo (ref_154) 2001; 77 Momma (ref_34) 2011; 44 Heiland (ref_22) 1954; 138 Li (ref_114) 2018; 248 Seiyama (ref_23) 1962; 34 Rimoldi (ref_104) 2019; 6 Patil (ref_31) 2012; 45 Capone (ref_62) 2000; 69 Yu (ref_46) 2017; 206 Dey (ref_180) 2018; 229 Lee (ref_141) 2020; 12 Mokoena (ref_92) 2019; 805 Qi (ref_87) 2008; 133 Hagleitner (ref_169) 2001; 414 Potyrailo (ref_17) 2016; 116 Dong (ref_72) 2011; 157 Kang (ref_16) 2017; 250 Meng (ref_15) 2019; 119 Shu (ref_86) 2017; 89 Schedin (ref_136) 2007; 6 Sheklurev (ref_157) 2020; 12 Wang (ref_81) 2019; 283 ref_173 ref_172 Ren (ref_183) 2020; 167 ref_175 ref_174 ref_177 Lee (ref_140) 2019; 4 ref_176 ref_51 Zappa (ref_101) 2018; 1039 ref_178 Funazaki (ref_210) 1995; 25 Nikolic (ref_54) 2019; 16 Lei (ref_128) 2014; 181 Collins (ref_130) 2000; 287 Rieu (ref_151) 2016; 236 ref_162 Li (ref_108) 2018; 258 ref_164 ref_166 ref_165 ref_168 Corbat (ref_153) 2012; 161 ref_167 Liu (ref_82) 2018; 264 Kaur (ref_95) 2016; 27 Wilson (ref_19) 2009; 9 ref_171 Velumani (ref_105) 2018; 29 Ryan (ref_124) 2004; 29 Dai (ref_14) 2020; 49 Wang (ref_88) 2006; 17 Black (ref_182) 2011; 157 Majumdar (ref_30) 2014; 147 ref_195 ref_35 Nikolic (ref_106) 2020; 20 ref_199 ref_198 Cho (ref_189) 2016; 16 Choi (ref_160) 2020; 30 Brattain (ref_21) 1952; 32 Lee (ref_36) 2000; 67 Gangopadhyay (ref_123) 2001; 77 Choi (ref_159) 2019; 289 Wong (ref_132) 2003; 93 Naveen (ref_122) 2017; 9 Barsan (ref_68) 2007; 121 Lee (ref_139) 2020; 167 Kappler (ref_70) 1998; 361 ref_184 ref_186 ref_185 ref_43 ref_188 Choi (ref_74) 2010; 150 ref_1 Schipani (ref_67) 2012; 2 Steinhauer (ref_158) 2013; 187 ref_2 Nikolic (ref_50) 2020; 257 ref_193 ref_192 ref_9 ref_8 Fuertes (ref_213) 2016; 2016 Jeo (ref_145) 2020; 32 ref_5 ref_6 |
References_xml | – volume: 15 start-page: 1371 year: 2015 ident: ref_121 article-title: Gas sensors based on electrodeposited polymers publication-title: Metals doi: 10.3390/met5031371 – ident: ref_9 – volume: 21 start-page: 193 year: 1994 ident: ref_65 article-title: Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films publication-title: Sens. Actuators B doi: 10.1016/0925-4005(94)01247-4 – volume: 228 start-page: 416 year: 2016 ident: ref_4 article-title: Recent trends of ceramic humidity sensors development: A review publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.01.015 – volume: 11 start-page: 255 year: 1967 ident: ref_24 article-title: Activated tungsten oxide gas detectors publication-title: Appl. Phys. Lett. doi: 10.1063/1.1755123 – volume: 106 start-page: 750 year: 2005 ident: ref_127 article-title: CO gas sensing from ultrathin nano-composite conducting polymer film publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.09.027 – volume: 181 start-page: 707 year: 2014 ident: ref_128 article-title: Conducting polymer composites with grapheme for use in chemical sensors and biosensors publication-title: Microchim. Acta doi: 10.1007/s00604-014-1160-6 – volume: 111 start-page: 7256 year: 2007 ident: ref_37 article-title: Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol publication-title: J. Phys. Chem. C doi: 10.1021/jp0688355 – volume: 7 start-page: 3077 year: 2015 ident: ref_84 article-title: Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00161 – volume: 749 start-page: 355 year: 2018 ident: ref_138 article-title: The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.307 – ident: ref_156 doi: 10.3390/s19143049 – volume: 23 start-page: 1759 year: 2013 ident: ref_44 article-title: The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202332 – volume: 248 start-page: 812 year: 2018 ident: ref_114 article-title: Study on TiO2-SnO2 core shell heterostrucutre nanofibers with different work function and its application in gas sensor publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.12.009 – ident: ref_137 doi: 10.3390/chemosensors5030021 – volume: 9 start-page: 5099 year: 2009 ident: ref_19 article-title: Applications and advances in electronic-nose technologies publication-title: Sensors doi: 10.3390/s90705099 – ident: ref_184 – volume: 15 start-page: 3711 year: 2015 ident: ref_93 article-title: On the ammonia gas sensing performance of a RF-sputtered NiO thin film sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2391286 – volume: 267 start-page: 242 year: 2017 ident: ref_91 article-title: Room-temperature gas sensing of ZnO-based gas sensors: A review publication-title: Sens. Actuators A doi: 10.1016/j.sna.2017.10.021 – volume: 157 start-page: 329 year: 2011 ident: ref_182 article-title: Hydrogen sensors—A review publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.04.070 – volume: 77 start-page: 16 year: 2001 ident: ref_102 article-title: CO sensing properties of titanium and iron oxide nanosized thin films publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00666-9 – volume: 19 start-page: 12418 year: 2019 ident: ref_187 article-title: FireNose on mobile robot in harsh environments publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2939039 – ident: ref_174 doi: 10.3390/s19030478 – volume: 303 start-page: 127217 year: 2020 ident: ref_58 article-title: Highly sensitive and selective detection of dimethylamine through Nb doping of TiO2 nanotubes for potential use in seafood quality control publication-title: Sens. Actuators B doi: 10.1016/j.snb.2019.127217 – volume: 60 start-page: 35 year: 1999 ident: ref_161 article-title: Temperature modulation in semiconductor gas sensing publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(99)00241-5 – volume: 3 start-page: 1 year: 2015 ident: ref_20 article-title: First fifty years of chemoresistive gas sensors publication-title: Chemosensors doi: 10.3390/chemosensors3010001 – ident: ref_51 doi: 10.3390/s16071135 – volume: 15 start-page: 1 year: 2015 ident: ref_148 article-title: Recent advances in inkjet printing synthesis of functional metal oxides publication-title: Particuology – volume: 30 start-page: 2004448 year: 2020 ident: ref_160 article-title: Perfectly aligned, air-suspended nanowire array heater and its application in an always-on-gas sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004448 – volume: 36 start-page: 169 year: 2016 ident: ref_209 article-title: Food quality and safety monitoring using gas sensor array in intelligent packaging publication-title: Sens. Rev. doi: 10.1108/SR-07-2015-0115 – ident: ref_172 doi: 10.3390/s20174961 – ident: ref_166 doi: 10.3390/s18041052 – volume: 287 start-page: 622 year: 2000 ident: ref_129 article-title: Nanotube molecular wires as chemical sensors publication-title: Science doi: 10.1126/science.287.5453.622 – volume: 113 start-page: 78 year: 2008 ident: ref_48 article-title: Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.01.054 – ident: ref_205 doi: 10.1007/978-0-387-09665-0 – volume: 427 start-page: 281 year: 2018 ident: ref_39 article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.229 – volume: 83 start-page: 276 year: 2002 ident: ref_41 article-title: Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)01072-3 – volume: 1 start-page: 300 year: 2014 ident: ref_7 article-title: Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future Internet of Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2329189 – volume: 167 start-page: 037515 year: 2020 ident: ref_139 article-title: Recent exploration of two-dimensional MXenes for gas sensing: From a theoretical to an experimental view publication-title: J. Electrochem. Soc. doi: 10.1149/2.0152003JES – volume: 26 start-page: 433 year: 2017 ident: ref_201 article-title: Single chip gas sensor array for air quality monitoring publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2017.2657788 – volume: 108 start-page: 285 year: 2005 ident: ref_126 article-title: Portable electronic nose system based on the carbon black-polymer composite sensor array publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.11.067 – ident: ref_177 doi: 10.3390/atmos10050261 – volume: 116 start-page: 11877 year: 2016 ident: ref_17 article-title: Multivariable sensors for ubiquitous monitoring of gases in the Era of Internet of Things and Industrial Internet publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00187 – volume: 6 start-page: 181662 year: 2019 ident: ref_104 article-title: Role of the growth step on the structural, optical and surface features of TiO2/SnO2 composites publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.181662 – volume: 10 start-page: 1833 year: 2010 ident: ref_163 article-title: CMOS interfacing for integrated gas sensors: A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2010.2046409 – ident: ref_176 doi: 10.3390/s19020362 – volume: 9 start-page: 419 year: 2017 ident: ref_122 article-title: Applications of conducting polymer composites to electrochemical sensors: A review publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.09.001 – volume: 31 start-page: 1804285 year: 2019 ident: ref_170 article-title: Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates publication-title: Adv. Mater. doi: 10.1002/adma.201804285 – volume: 365 start-page: 287 year: 1999 ident: ref_69 article-title: Fundamental and practical aspects in the design of nanoscaled SnO2 sensors: A status report publication-title: Fresneius J. Anal. Chem. doi: 10.1007/s002160051490 – volume: 32 start-page: 1907082 year: 2020 ident: ref_145 article-title: Geometrically structured nanomaterials for nanosensors, NEMS and nanosieves publication-title: Adv. Mater. doi: 10.1002/adma.201907082 – volume: 101 start-page: 81 year: 2004 ident: ref_83 article-title: A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.02.028 – ident: ref_25 – volume: 81 start-page: 394 year: 2006 ident: ref_76 article-title: Preparation and Co gas sensing behavior of Au-doped SnO2 sensors publication-title: Vacuum doi: 10.1016/j.vacuum.2006.05.004 – volume: 9 start-page: 22 year: 1998 ident: ref_179 article-title: The how and why of electronic noses publication-title: IEEE Spectr. doi: 10.1109/6.715180 – volume: 119 start-page: 478 year: 2019 ident: ref_15 article-title: Electrically-transduced chemical sensors based on two-dimensional nanomaterials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00311 – volume: 1039 start-page: 1 year: 2018 ident: ref_101 article-title: Metal oxide-based heterostructures for gas sensors—A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.09.020 – volume: 187 start-page: 50 year: 2013 ident: ref_158 article-title: Gas sensing properties of novel CuO nanowire devices publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.09.034 – ident: ref_144 doi: 10.1007/s12598-020-01608-w – ident: ref_185 – volume: 222 start-page: 95 year: 2016 ident: ref_53 article-title: Spinel ferrite oxide semiconductor gas sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.08.027 – volume: 13 start-page: 12070 year: 2013 ident: ref_55 article-title: Strontium-doped hematite as a possible humidity sensing material for soil water content determination publication-title: Sensors doi: 10.3390/s130912070 – volume: 27 start-page: 205701 year: 2016 ident: ref_95 article-title: Nickel oxide nanowires: Vapour liquid solid synthesis and integration into a gas sensing device publication-title: Nanotechnology doi: 10.1088/0957-4484/27/20/205701 – volume: 49 start-page: 1756 year: 2020 ident: ref_14 article-title: Printed gas sensors publication-title: Chem. Rev. – ident: ref_5 doi: 10.3390/su11215952 – volume: 6 start-page: 1298 year: 2006 ident: ref_206 article-title: MEMS gas-sensor array for monitoring the perceived car-cabin air quality publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2006.881399 – ident: ref_193 doi: 10.3390/proceedings2019014049 – volume: 2016 start-page: 4046061 year: 2016 ident: ref_213 article-title: Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety publication-title: J. Sens. – volume: 361 start-page: 110 year: 1998 ident: ref_70 article-title: Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors publication-title: Fresneius J. Anal. Chem. doi: 10.1007/s002160050844 – volume: 29 start-page: 714 year: 2004 ident: ref_124 article-title: Polymer-carbon black composite sensors in an Electronic nose for air-quality monitoring publication-title: MRS Bull. doi: 10.1557/mrs2004.208 – volume: 8 start-page: 11991 year: 2018 ident: ref_196 article-title: Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn publication-title: RSC Adv. doi: 10.1039/C8RA01184B – volume: 34 start-page: 1502 year: 1962 ident: ref_23 article-title: A new detector for gaseous components using semiconductor thin film publication-title: Anal. Chem. doi: 10.1021/ac60191a001 – volume: 31 start-page: 507 year: 2005 ident: ref_56 article-title: Influence of dopants on the electrical resistance of hematite-based humidity sensors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2004.06.015 – volume: 167 start-page: 067528 year: 2020 ident: ref_183 article-title: Review-Resistive type hydrogen sensors based on zinc-oxide nanostructures publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab7e23 – volume: 150 start-page: 296 year: 2010 ident: ref_155 article-title: Wafer-scale synthesis of grapheme by chemical vapor deposition and its application in hydrogen sensing publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.06.070 – ident: ref_8 – volume: 6 start-page: 2588 year: 2014 ident: ref_194 article-title: Selective detection of acetone and hydrogen sulfide for diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405088q – volume: 25 start-page: 433 year: 1995 ident: ref_66 article-title: Highly sensitive and selective H2S gas sensor from r.f. sputtered SnO2 thin film publication-title: Sens. Actuators B doi: 10.1016/0925-4005(95)85098-8 – volume: 239 start-page: 501 year: 2017 ident: ref_79 article-title: The effect of Ni doping concentration on the gas sensing properties of Ni-doped SnO2 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.08.053 – ident: ref_125 doi: 10.4271/2007-01-3149 – volume: 20 start-page: 7509 year: 2020 ident: ref_106 article-title: Nanocomposite Zn2SnO4/SnO2 thick films as a humidity sensing material publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2983135 – ident: ref_198 doi: 10.1533/9780857098665 – ident: ref_13 doi: 10.1109/DDECS50862.2020.9095743 – ident: ref_35 doi: 10.3390/s18113638 – volume: 17 start-page: 6529 year: 2017 ident: ref_152 article-title: High performance CuO rectangles-based room temperature flexible NH3 sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2749334 – volume: 148 start-page: 283 year: 2010 ident: ref_80 article-title: Metal-oxide nanowire sensors for CO detection: Characterization and modeling publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.04.034 – volume: 189 start-page: 94 year: 2014 ident: ref_119 article-title: Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films publication-title: Synth. Met. doi: 10.1016/j.synthmet.2014.01.002 – volume: 107 start-page: 424 year: 2005 ident: ref_117 article-title: Polypyrrole materials for detection and discrimination of volatile organic compounds publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.11.001 – ident: ref_204 doi: 10.3390/s16071072 – volume: 240 start-page: 1049 year: 2017 ident: ref_99 article-title: A strategy for ultrasensitive and selective detection of methylamine using p-type Cr2O3: Morphological design of sensing materials, control of charge carrier concentrations and configurational tuning of Au catalysts publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.09.098 – volume: 12 start-page: 9635 year: 2012 ident: ref_12 article-title: A survey on gas sensing technology publication-title: Sensors doi: 10.3390/s120709635 – volume: 80 start-page: 763 year: 2009 ident: ref_120 article-title: Flexible NH3 sensors fabricated by in-situ self-assembly of polypyrrole publication-title: Talanta doi: 10.1016/j.talanta.2009.07.057 – volume: 77 start-page: 326 year: 2001 ident: ref_123 article-title: Conducting polymer composites: Novel materials for gas sensing publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00719-5 – volume: 15 start-page: 3164 year: 2014 ident: ref_146 article-title: Technologies for printing sensors and electronics over large flexible substrates publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2375203 – ident: ref_107 doi: 10.3390/chemosensors8020039 – volume: 5 start-page: 20534 year: 2017 ident: ref_52 article-title: Morphological zinc-stannate: Synthesis, fundamental properties and applications publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06221D – volume: 96 start-page: 717 year: 2003 ident: ref_61 article-title: ZnO sol-gel derived porous film for gas sensing publication-title: Sens. Actuators B doi: 10.1016/j.snb.2003.07.010 – ident: ref_167 – volume: 147 start-page: 79 year: 2014 ident: ref_30 article-title: Enhanced performance of CNT/SnO2 thick film gas sensors towards hydrogen publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.04.009 – ident: ref_2 – volume: 258 start-page: 436 year: 2018 ident: ref_108 article-title: Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.11.131 – volume: 89 start-page: 11135 year: 2017 ident: ref_86 article-title: Cu2+ doped SnO2 nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b03491 – volume: 29 start-page: 3999 year: 2018 ident: ref_105 article-title: Impedometric humidity sensing characteristics of SnO2 thin films and SnO2-ZnO composite thin films grown by magnetron sputtering publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-8342-z – ident: ref_173 doi: 10.3390/s17020303 – ident: ref_90 doi: 10.3390/nano10101940 – volume: 166 start-page: 155 year: 2019 ident: ref_85 article-title: Characteristics of Au-doped SnO2-ZnO heteronanostructures for gas sensing applications publication-title: Vacuum doi: 10.1016/j.vacuum.2019.04.061 – volume: 16 start-page: 4508 year: 2016 ident: ref_189 article-title: High resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01713 – volume: 45 start-page: 243 year: 2012 ident: ref_31 article-title: Measurements on room temperature gas sensing properties of CSA doped polyaniline-ZnO nanocomposites publication-title: Measurement doi: 10.1016/j.measurement.2011.12.012 – volume: 203 start-page: 349 year: 2014 ident: ref_131 article-title: Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning publication-title: Sens. Actuators B doi: 10.1016/j.snb.2014.05.080 – volume: 2 start-page: 5573 year: 2014 ident: ref_29 article-title: Nanocarbon-based gas sensors: Progress and challenges publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13823b – volume: 77 start-page: 41 year: 2001 ident: ref_154 article-title: Gas sensing properties of semiconductor heterolayer sensors fabricated y slide-off transfer printing publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00670-0 – volume: 258 start-page: 204 year: 2018 ident: ref_109 article-title: SnO2 (n)—NiO (p) composite nanowebs: Gas sensing properties and sensing mechanisms publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.11.063 – ident: ref_175 – volume: 10 start-page: 5469 year: 2010 ident: ref_3 article-title: Metal oxide semi-conductor gas sensors in environmental monitoring publication-title: Sensors doi: 10.3390/s100605469 – volume: 250 start-page: 574 year: 2017 ident: ref_16 article-title: Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing toward highly integrated and multiplexed gas sensor applications publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.04.194 – ident: ref_199 doi: 10.3390/s17071653 – ident: ref_26 doi: 10.3390/s19061285 – volume: 47 start-page: 66 year: 2014 ident: ref_190 article-title: Sensors for breath testing: From nano-materials to comprehensive disease detection publication-title: Acc. Chem. Res. doi: 10.1021/ar400070m – ident: ref_1 – volume: 2 start-page: 4026 year: 2019 ident: ref_63 article-title: Electrospun ceramic fibers and hybrid nanofiber composites for gas sensing publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01176 – volume: 481 start-page: 1001 year: 2019 ident: ref_115 article-title: Hierarchical porous nanorod@core-shell α-Fe2O3/TiO2 microspheres: Synthesis, characterization and gas sensing applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.198 – volume: 4 start-page: 1603 year: 2019 ident: ref_140 article-title: Two dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward non polar gases publication-title: ACS Sens. doi: 10.1021/acssensors.9b00303 – volume: 526 start-page: 400 year: 2018 ident: ref_149 article-title: Tailoring metal oxide nanoparticle dispersions for inkjet printing publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.05.006 – volume: 93 start-page: 327 year: 2003 ident: ref_132 article-title: A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(03)00213-2 – volume: 252 start-page: 4298 year: 2006 ident: ref_77 article-title: CO sensor derived from mesostructured Au-doped SnO2 thin film publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.07.015 – ident: ref_10 – ident: ref_188 doi: 10.3390/s19091957 – volume: 17 start-page: 4995 year: 2006 ident: ref_88 article-title: Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications publication-title: Nanotechnology doi: 10.1088/0957-4484/17/19/037 – volume: 287 start-page: 1801 year: 2000 ident: ref_130 article-title: Extreme oxygen sensitivity of electronic properties of carbon nanotubes publication-title: Science doi: 10.1126/science.287.5459.1801 – volume: 258 start-page: 270 year: 2018 ident: ref_112 article-title: How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.11.066 – volume: 12 start-page: 7392 year: 2020 ident: ref_157 article-title: Highly sensitive gas sensors based on grapheme nanoribons grown by chemical vapor deposition publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13946 – volume: 8 start-page: 6487 year: 2020 ident: ref_197 article-title: Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07855J – volume: 30 start-page: 12399 year: 2019 ident: ref_59 article-title: Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3) publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-01598-1 – volume: 138 start-page: 459 year: 1954 ident: ref_22 article-title: Zum einfluss von wasserstoff auf die elektrische leitfaegkeit von ZnO-kristallen publication-title: Z. Phys. doi: 10.1007/BF01340692 – volume: 8 start-page: 40145 year: 2019 ident: ref_103 article-title: TiO2/WO3 heterogeneous structures prepared by electrospinning and sintering steps: Characterization and analysis of the impedance variation to humidity publication-title: J. Adv. Ceram. doi: 10.1007/s40145-018-0309-x – volume: 6 start-page: 652 year: 2007 ident: ref_136 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat. Mater. doi: 10.1038/nmat1967 – volume: 2009 start-page: 493904 year: 2009 ident: ref_28 article-title: A review of carbon nanotubes—Based gas sensors publication-title: J. Sens. doi: 10.1155/2009/493904 – volume: 25 start-page: 797 year: 1995 ident: ref_210 article-title: Application of semiconductor gas sensor to quality control of meat freshness in food industry publication-title: Sens. Actuators B doi: 10.1016/0925-4005(95)85177-1 – volume: 227 start-page: 654 year: 2018 ident: ref_60 article-title: Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) thick films publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.09.063 – volume: 824 start-page: 1 year: 2014 ident: ref_191 article-title: Solid-state gas sensors for breath analysis: A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2014.03.014 – volume: 805 start-page: 267 year: 2019 ident: ref_92 article-title: A review on recent progress of p-type nickel oxide based gas sensors. Future perspectives publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.329 – volume: 20 start-page: 445502 year: 2009 ident: ref_135 article-title: Reduced graphene oxide for room-temperature gas sensors publication-title: Nanotechnology doi: 10.1088/0957-4484/20/44/445502 – volume: 135 start-page: 524 year: 2009 ident: ref_75 article-title: Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.09.010 – ident: ref_192 doi: 10.3390/proceedings2130993 – volume: 208 start-page: 118 year: 2011 ident: ref_40 article-title: Permittivity measurements in nanostructured TiO2 gas sensors publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201026443 – volume: 27 start-page: 3109 year: 2016 ident: ref_11 article-title: α-Fe2O3 based nanomaterials as gas sensors publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-4200-z – volume: 24 start-page: 181 year: 2004 ident: ref_18 article-title: A review of gas sensors employed in electronic nose applications publication-title: Sens. Rev. doi: 10.1108/02602280410525977 – volume: 8 start-page: 174 year: 2020 ident: ref_134 article-title: The functionalized single-walled carbon nanotube gas sensor with Pd nanoparticles for hydrogen detection in high-voltage transformers publication-title: Front. Chem. doi: 10.3389/fchem.2020.00174 – volume: 69 start-page: 230 year: 2000 ident: ref_62 article-title: Analysis of vapors and foods by means of an electronic nose based on a sol-gel metal-oxide sensors array publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00496-2 – volume: 132 start-page: 239 year: 2008 ident: ref_73 article-title: Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.01.028 – volume: 156 start-page: 251 year: 2011 ident: ref_94 article-title: Synthesis and enhanced gas-sensing properties of ultralong nanowires assembled with NiO nanocrystals publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.04.028 – ident: ref_195 doi: 10.3390/s19051230 – volume: 32 start-page: 1 year: 1952 ident: ref_21 article-title: Surface properties of Germanium publication-title: Bell. Syst. Tech. J. doi: 10.1002/j.1538-7305.1953.tb01420.x – volume: 273 start-page: 418 year: 2018 ident: ref_110 article-title: Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.06.030 – volume: 220 start-page: 910 year: 2015 ident: ref_98 article-title: Highly sensitive low-temperature triethylamine sensor based on mesoporous microspheres publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.06.023 – ident: ref_208 – volume: 96 start-page: 576 year: 2003 ident: ref_118 article-title: Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions publication-title: Sens. Actuators B doi: 10.1016/j.snb.2003.06.002 – volume: 283 start-page: 793 year: 2019 ident: ref_64 article-title: One step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.12.097 – volume: 7 start-page: 97 year: 2015 ident: ref_89 article-title: Zinc oxide nanostructures for NO2 gas sensor applications publication-title: Nano-Micro Lett. doi: 10.1007/s40820-014-0023-3 – volume: 65 start-page: 765 year: 2016 ident: ref_203 article-title: Autonomous gas detection and mapping with unmanned aerial vehicles publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2506319 – ident: ref_168 – ident: ref_165 – ident: ref_6 doi: 10.3390/s20082418 – volume: 1 start-page: 131 year: 2016 ident: ref_96 article-title: Design of superior ethanol gas sensor based on Al-doped NiO nanorod flowers publication-title: ACS Sens. doi: 10.1021/acssensors.5b00123 – volume: 24 start-page: 1421 year: 2004 ident: ref_100 article-title: Cr2O3, WO3 single and Cr/W binary oxide prepared by physical methods for gas sensing applications publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(03)00442-4 – volume: 67 start-page: 122 year: 2000 ident: ref_36 article-title: Comparison study of SnO2 thin and thick-film gas sensors publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00390-7 – volume: 121 start-page: 18035 year: 2007 ident: ref_68 article-title: Metal oxide-based sensor research: How to? publication-title: Sens. Actuators B doi: 10.1016/j.snb.2006.09.047 – ident: ref_178 doi: 10.3390/s19051180 – volume: 236 start-page: 1091 year: 2016 ident: ref_151 article-title: Fully inkjet printed SnO2 gas sensor on plastic substrate publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.06.042 – volume: 414 start-page: 293 year: 2001 ident: ref_169 article-title: Smart single-chip gas sensor microsystem publication-title: Nature doi: 10.1038/35104535 – volume: 9 start-page: 6058 year: 2009 ident: ref_211 article-title: Meat quality assessment by electronic nose (machine olfaction technology) publication-title: Sensors doi: 10.3390/s90806058 – volume: 520 start-page: 966 year: 2011 ident: ref_133 article-title: Gas sensors based on doped CNT/SnO2 composites for NO2 detection at room temperature publication-title: Thin Solid Film. doi: 10.1016/j.tsf.2011.04.186 – volume: 206 start-page: 80 year: 2017 ident: ref_46 article-title: Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.06.119 – ident: ref_207 – volume: 442 start-page: 30 year: 2018 ident: ref_113 article-title: Designing of WO3-SnO2 core-shell nanofibers and their enhanced gas sensing performance based on different work function publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.122 – volume: 2 start-page: 032138 year: 2012 ident: ref_67 article-title: Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films publication-title: AIP Adv. doi: 10.1063/1.4746417 – volume: 99 start-page: 201 year: 2004 ident: ref_71 article-title: Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces publication-title: Sens. Actuators B doi: 10.1016/j.snb.2003.11.012 – volume: 51 start-page: 7733 year: 2012 ident: ref_116 article-title: NiO@ZnO heterostructured nanotubes: Coelectrospinning fabrication, characterization and highly enhanced gas sensing properties publication-title: Inorg. Chem. doi: 10.1021/ic300749a – volume: 185 start-page: 156 year: 2013 ident: ref_45 article-title: Facile microwave assisted hydrothermal synthesis of varied shaped CuO nanoparticles and their gas sensing properties publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.04.100 – volume: 257 start-page: 114547 year: 2020 ident: ref_50 article-title: Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2020.114547 – volume: 2019 start-page: 1901329 year: 2019 ident: ref_33 article-title: Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901329 – ident: ref_202 doi: 10.3390/s19143183 – ident: ref_212 doi: 10.3390/foods8010016 – volume: 157 start-page: 154 year: 2011 ident: ref_72 article-title: Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.03.043 – volume: 202 start-page: 263 year: 2014 ident: ref_49 article-title: Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity publication-title: Sens. Actuators B doi: 10.1016/j.snb.2014.05.081 – volume: 152 start-page: 155 year: 2018 ident: ref_142 article-title: MOFs derived nanomaterials for gas sensing publication-title: Polyhedron doi: 10.1016/j.poly.2018.06.037 – volume: 151 start-page: 162 year: 2010 ident: ref_47 article-title: H2 gas sensor performance of NiO at high temperatures in gas mixtures publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.09.027 – volume: 133 start-page: 638 year: 2008 ident: ref_87 article-title: Properties of humidity sensing ZnO nanorods—Base sensor fabricated by screen-printing publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.03.035 – volume: 174 start-page: 325 year: 2012 ident: ref_97 article-title: Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.08.073 – volume: 413 start-page: 213272 year: 2020 ident: ref_143 article-title: Diversiform metal-oxide based hybrid nanostructures for gas sensing with versatile prospects publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213272 – volume: 93 start-page: 562 year: 2003 ident: ref_78 article-title: p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(03)00233-8 – volume: 194 start-page: 213 year: 2014 ident: ref_32 article-title: MWCNT-conducting polymer composite based ammonia gas sensors; A new approach for complete recovery process publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.12.050 – ident: ref_43 doi: 10.3390/s16111815 – volume: 43 start-page: 1029 year: 2017 ident: ref_57 article-title: Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.10.035 – volume: 12 start-page: 9 year: 2020 ident: ref_141 article-title: Room temperature, highly durable Ti3C2TxMXene/Graphene hybrid fibers for NH3 gas sensing publication-title: ACS Appl. Mater. Interfaces – volume: 264 start-page: 91 year: 2018 ident: ref_82 article-title: Rolled-up SnO2 nanomembranes: A new platform for efficient gas sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.01.117 – volume: 9 start-page: 8796 year: 2017 ident: ref_111 article-title: Ultrasensitive room-temperature operable gas sensors using p-type Na:ZnO nanoflowers for diabetes detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00673 – volume: 4 start-page: 104 year: 2020 ident: ref_181 article-title: Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality related properties determination: A review publication-title: Artif. Intell. Agric. – volume: 16 start-page: 981 year: 2019 ident: ref_54 article-title: Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/ijac.13190 – volume: 289 start-page: 153 year: 2019 ident: ref_159 article-title: Batch-fabricated CO gas sensor in large area (8-inch) with sub-10mW power operation publication-title: Sens. Actuators B doi: 10.1016/j.snb.2019.03.074 – volume: 161 start-page: 862 year: 2012 ident: ref_153 article-title: Drop-coated metal-oxide gas sensor on polyimide foil with reduced power consumption for wireless applications publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.11.050 – volume: 7 start-page: 267 year: 2007 ident: ref_27 article-title: Gas sensors based on conducting polymers publication-title: Sensors doi: 10.3390/s7030267 – volume: 239 start-page: 1051 year: 2017 ident: ref_42 article-title: Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.08.080 – volume: 4 start-page: 180703 year: 2019 ident: ref_147 article-title: Fabrication of large-area bimodal sensors by all-inkjet printing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800703 – ident: ref_186 – ident: ref_164 – volume: 283 start-page: 714 year: 2019 ident: ref_81 article-title: Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.11.125 – volume: 44 start-page: 1271 year: 2011 ident: ref_34 article-title: Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – ident: ref_162 doi: 10.3390/mi9110557 – volume: 150 start-page: 191 year: 2010 ident: ref_74 article-title: Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.07.013 – volume: 4 start-page: 45 year: 2004 ident: ref_200 article-title: Improvement in sensitivity and selectivity of InP-based gas sensors: Pseudo-Schottky diodes with palladium metallizations publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2003.820330 – volume: 137 start-page: 164 year: 2009 ident: ref_38 article-title: ZnO gas sensors: A comparison between nanoparticles and nanoterapods—Based thick films publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.11.007 – volume: 3 start-page: 42 year: 2019 ident: ref_150 article-title: Inkjet printed CMOS integrated graphene-metal oxide sensors for breath analysis publication-title: NPJ 2D Mater. Appl. doi: 10.1038/s41699-019-0125-3 – volume: 229 start-page: 206 year: 2018 ident: ref_180 article-title: Semiconductor metal oxide gas sensors: A review publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2017.12.036 – ident: ref_171 doi: 10.3390/s17020281 |
SSID | ssj0023338 |
Score | 2.6939063 |
SecondaryResourceType | review_article |
Snippet | This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6694 |
SubjectTerms | Air pollution Carbon dioxide Carbon monoxide Communication Data analysis Electric properties Energy consumption Fossil fuels gas sensing materials gas sensor applications Greenhouse gases Hydrogen Internet access Internet of Things Multivariate analysis Nitrogen dioxide Nuclear power plants Organic chemicals Pattern recognition Principal components analysis Review semiconductor gas sensors sensing technology Sensors Sulfur VOCs Volatile organic compounds Zinc oxides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTu0B0VIgLUVu1QOHjcjaY8fpDUoprQQXQOIWjT8ikKqk2l3-f8dxNuwiJC69ZubgzNia9-LJG8a-mqoovCwxL0LZ5OCEpzMHIteA00B4Q5vU5Xupz2_g9626XRn1FXvCkjxwCtyRUahEqFzjjQJvpLWFN7YUQIUl6P4PakE1b0mmBqoliXklHSFJpP5oThSfKlEFa9WnF-l_Dlk-bZBcqThnW2xzgIr8OC3xLXsV2nfszYqA4Db7dRV727s2irZ2M_4T5_yKeGk3m3_jF7hIu2vCH7-fT_hp37Ix4dh6fvx4e_2e3Zz9uP5-ng_DEXKnpFrkYKFUKhA_UBV6C4UjKEBgxqGXTovQSNvEYealFYCoJSExhQjOGwhOiUbusI22a8Me440SjoC2sVNRABbOVA40ElFCjY1qfMYOl0Gr3aAcHgdY_KmJQcT41mN8M_ZldP2b5DKeczqJkR8dosJ1_4DyXg95r1_Ke8b2l3mrh2M3r8kKFZVkIPPn0UwHJt6CYBu6h-Sjo6SQydhuSvO4EikJwYCqMlaubYC1pa5b2vu7XpS7jHMCDHz4H-_2kb0WkdZPp7mQ-2xjMXsInwj7LOxBv83_AavlAOA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB0fIVaCsXceCwURN77DhcUKHdtkhwKZV6i_yVgoSSstn-f8ZJNttFFVd7DtZ4xn7PHr0BeK_LLPOiMGkWijpFxz3lHPJUockD4Q2lhyrf7-rsEr9eyavxwa0byypXZ2J_UPvWxTfyQ44KSzptMf908yeNXaPi7-rYQuMhPMrppoklXXp-OhEuQfxrUBMSRO0POyL6ZFXixh3US_Xfhy__LZO8c-_Mn8HTETCyo2GHt-FBaHbgyR0ZwedwfhEr3NsmSre2C3ZqOnZB7LRddB_ZN7McYmzG1q_oM3bcF27MmGk8O1r_Yb-Ay_nJjy9n6dgiIXVSyGWKFgspA7EEWRpvMXMECAjSOOOFUzzUwtaxpXlhORqjBOExaQw6rzE4yWvxEraatgmvgdWSO4Lb2uY8Q5M5XTpUhuiSUaaWtU_gw8pplRv1w2Mbi98V8Yjo32rybwLvJtObQTTjPqPP0fOTQdS57gfaxXU1pk2lpZE8lK72WqLXwtrMa1tQMKg8KJEnsLvat2pMvq5ah0oCB9M0pU38CzFNaG8HGxWFhXQCr4ZtnlYiBOEYlGUCxUYAbCx1c6b59bOX5i5itwCNb_6_rLfwmEfanucpF7uwtVzchj3CNku73wfwX5ZB-IU priority: 102 providerName: ProQuest |
Title | Semiconductor Gas Sensors: Materials, Technology, Design, and Application |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33238459 https://www.proquest.com/docview/2464936241 https://www.proquest.com/docview/2464604318 https://pubmed.ncbi.nlm.nih.gov/PMC7700484 https://doaj.org/article/85a52e9cfd854d83bb0d8b724661e631 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB76A6R9EH8brUcUH3y4aLI7m90IIq32WoUWsR7cW9jsbqxQEs1dQf97Z5NLeif35EseshNYZmeY78sO3wC8VFkcWy51FDtZRmiYpZxDFqWoE0d4I1Vdl-95ejrFzzMx24J-xubSgfON1M7Pk5o2V69___rznhL-nWecRNnfzInAU53JcBt2qSBJP8jgDIfLBMaJhnWiQuvme3CLcypZ6IVKV6pSK96_CXH-2zi5Uokmd-D2EkKGh92Z34UtV92D_RVhwfvw6cL3vNeVF3Otm_BEz8ML4qt1M38bnulFF3Xj8Oa_-jj82LZyjENd2fDw5lb7AUwnx98-nEbLoQmREVwsIixQCuGIN4hM2wJjQxCBQI7RlpuUuZIXpR9yLguGWqecEJrQGo1V6IxgJX8IO1VduccQloIZAuCqSFiMOjYqM5hqIlA61aUobQCveqflZqko7gdbXOXELLyr88HVAbwYTH92MhqbjI685wcDr3zdvqib7_kykXIltGAuM6VVAq3iRRFbVUiGBDRcypMADvpzy_toymkVMyrVSMvPh2VKJH87oitXX3c2qZcaUgE86o552EkfJgHItQBY2-r6SvXjshXrln5-gMIn__3lU9hjnuMnScT4Aewsmmv3jIDQohjBtpxJeqrJyQh2j47Pv3wdtT8VRm0C_AVvCwuz |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGBxGGjJvbYcZAQKpTtLn1c2kq9pY7tABJKymYrxJ_iNzJOstkuqrj1Go8iazzj-cYefwPwWmVxbHmqo9ilZYSGWfI5ZJFEnTjCG1J1Vb4HcnKMX07EyRr8WbyF8WWViz2x3ahtbfwZ-SZDiRnttph8OPsZ-a5R_nZ10UKjM4td9_sXpWzN--k2re8bxsafjz5Nor6rQGQEF_MIC0yFcASsRaZtgbGhGEoowGjLjWSu5EXpu4CnBUOtJScII7RGYxU6I1jJ6b_X4DpyiuT-Zfp4Z0jwOOV7HXsRDcabDaMAKWWGKzGvbQ1wGZ79tyzzQpwb34HbPUANtzqLugtrrroHty7QFt6H6aGvqK8rTxVbz8Id3YSHlA3Xs-ZduK_nnU2PwuWp_SjcbgtFRqGubLi1vDN_AMdXoryHsF7VlXsMYSmYIXivioTFqGOjMoNSU3qmpS5FaQN4u1Babnq-ct8240dOeYvXbz7oN4BXg-hZR9JxmdBHr_lBwPNqtx_q2de8d9NcCS2Yy0xplUCreFHEVhUpGZ9MnORJABuLdct7Z2_ypWkG8HIYJjf1dy-6cvV5JyM9kZEK4FG3zMNMOCfchCILIF0xgJWpro5U37-1VOCp706g8Mn_p_UCbkyO9vfyvenB7lO4yfyRQZJEjG_A-nx27p4RrpoXz1tjDuH0qr3nL2ioNRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHho1MRfcZAQ2ujKyqCa2CbtLTi2A0goGU0nxL_GX8c5SdMVTbztNT5F1vnO9zv7_DuAFyqNIssSHUYuKUJuqEWf4zSUXMcO8YZUbZXvTO4d8w8n4mQD_izfwviyyuWe2GzUtjL-jHxEueQp7rY8HhVdWcTBePL29GfoO0j5m9ZlO43WRPbd71-YvtVvpmNc65eUTnaP3u2FXYeB0AgmFiHPeSKEQ5AtUm1zHhmMp4gIjLbMSOoKlhe-I3iSU661ZAhnhNbcWMWdEbRg-N8rsJn4rGgAmzu7s4PPfbrHMPtruYwYS6NRTTFcSpnytQjYNAq4CN3-W6R5LupNbsKNDq6S7da-bsGGK2_D9XMkhndgeujr66vSE8dWc_Je1-QQc-NqXr8mn_SitfAhWZ3hD8m4KRsZEl1asr26Qb8Lx5eivnswKKvSPQBSCGoQ7Ks8phHXkVGp4VJjsqalLkRhA3i1VFpmOvZy30TjR4ZZjNdv1us3gOe96GlL2XGR0I7XfC_gWbabD9X8a9Y5baaEFtSlprBKcKtYnkdW5QmaooydZHEAW8t1yzrXr7OVoQbwrB9Gp_U3Mbp01VkrIz2tkQrgfrvM_UwYQxTFRRpAsmYAa1NdHym_f2uIwRPfq0Dxh_-f1lO4ip6TfZzO9h_BNerPD-I4pGwLBov5mXuMIGuRP-msmcCXy3agv9vcOq4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconductor+Gas+Sensors%3A+Materials%2C+Technology%2C+Design%2C+and+Application&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nikolic%2C+Maria+Vesna&rft.au=Milovanovic%2C+Vladimir&rft.au=Vasiljevic%2C+Zorka+Z.&rft.au=Stamenkovic%2C+Zoran&rft.date=2020-11-23&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=22&rft_id=info:doi/10.3390%2Fs20226694&rft_id=info%3Apmid%2F33238459&rft.externalDocID=PMC7700484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |