Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: a case study in Shenzhen City, China
Background With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to alleviate the degradation of urban habitats and protect natural environments. However, there is considerable uncertainty when constructing ecol...
Saved in:
Published in | Ecological processes Vol. 10; no. 1; p. 63 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
29.09.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to alleviate the degradation of urban habitats and protect natural environments. However, there is considerable uncertainty when constructing ecological networks, especially the different approaches to selecting ecological sources. We used the southern Chinese city of Shenzhen as a study area to construct and optimize ecological networks using a coupling approach. Ecological source areas were extracted using morphological spatial pattern analysis (MSPA) and the landscape index method. Ecological networks were constructed using the minimal cumulative resistance (MCR) model and the gravity model. Stepping stones and ecological fault points were added in corridors to optimize the ecological network.
Results
Ten core areas with maximum importance patch values were extracted by the landscape index method as ecological source areas according to MSPA, after which corridors between ecological sources were constructed based on the MCR model. The constructed ecological networks were optimized using 35 stepping stones and 17 ecological fault points. The optimized ecological networks included 11 important corridors, 34 general corridors, and seven potential corridors. The results of corridor landscape-type analysis showed that a suitable ecological corridor is 60 to 200 m wide.
Conclusions
Overall, our results imply that ecological source areas can be identified virtually, and that ecological networks can be significantly optimized by combining MSPA and MCR models. These results provide a methodological reference for constructing ecological networks, and they will be useful for urban planning and biodiversity protection in Shenzhen and other similar regions around the world. |
---|---|
AbstractList | BackgroundWith the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to alleviate the degradation of urban habitats and protect natural environments. However, there is considerable uncertainty when constructing ecological networks, especially the different approaches to selecting ecological sources. We used the southern Chinese city of Shenzhen as a study area to construct and optimize ecological networks using a coupling approach. Ecological source areas were extracted using morphological spatial pattern analysis (MSPA) and the landscape index method. Ecological networks were constructed using the minimal cumulative resistance (MCR) model and the gravity model. Stepping stones and ecological fault points were added in corridors to optimize the ecological network.ResultsTen core areas with maximum importance patch values were extracted by the landscape index method as ecological source areas according to MSPA, after which corridors between ecological sources were constructed based on the MCR model. The constructed ecological networks were optimized using 35 stepping stones and 17 ecological fault points. The optimized ecological networks included 11 important corridors, 34 general corridors, and seven potential corridors. The results of corridor landscape-type analysis showed that a suitable ecological corridor is 60 to 200 m wide.ConclusionsOverall, our results imply that ecological source areas can be identified virtually, and that ecological networks can be significantly optimized by combining MSPA and MCR models. These results provide a methodological reference for constructing ecological networks, and they will be useful for urban planning and biodiversity protection in Shenzhen and other similar regions around the world. Background With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to alleviate the degradation of urban habitats and protect natural environments. However, there is considerable uncertainty when constructing ecological networks, especially the different approaches to selecting ecological sources. We used the southern Chinese city of Shenzhen as a study area to construct and optimize ecological networks using a coupling approach. Ecological source areas were extracted using morphological spatial pattern analysis (MSPA) and the landscape index method. Ecological networks were constructed using the minimal cumulative resistance (MCR) model and the gravity model. Stepping stones and ecological fault points were added in corridors to optimize the ecological network. Results Ten core areas with maximum importance patch values were extracted by the landscape index method as ecological source areas according to MSPA, after which corridors between ecological sources were constructed based on the MCR model. The constructed ecological networks were optimized using 35 stepping stones and 17 ecological fault points. The optimized ecological networks included 11 important corridors, 34 general corridors, and seven potential corridors. The results of corridor landscape-type analysis showed that a suitable ecological corridor is 60 to 200 m wide. Conclusions Overall, our results imply that ecological source areas can be identified virtually, and that ecological networks can be significantly optimized by combining MSPA and MCR models. These results provide a methodological reference for constructing ecological networks, and they will be useful for urban planning and biodiversity protection in Shenzhen and other similar regions around the world. BACKGROUND: With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to alleviate the degradation of urban habitats and protect natural environments. However, there is considerable uncertainty when constructing ecological networks, especially the different approaches to selecting ecological sources. We used the southern Chinese city of Shenzhen as a study area to construct and optimize ecological networks using a coupling approach. Ecological source areas were extracted using morphological spatial pattern analysis (MSPA) and the landscape index method. Ecological networks were constructed using the minimal cumulative resistance (MCR) model and the gravity model. Stepping stones and ecological fault points were added in corridors to optimize the ecological network. RESULTS: Ten core areas with maximum importance patch values were extracted by the landscape index method as ecological source areas according to MSPA, after which corridors between ecological sources were constructed based on the MCR model. The constructed ecological networks were optimized using 35 stepping stones and 17 ecological fault points. The optimized ecological networks included 11 important corridors, 34 general corridors, and seven potential corridors. The results of corridor landscape-type analysis showed that a suitable ecological corridor is 60 to 200 m wide. CONCLUSIONS: Overall, our results imply that ecological source areas can be identified virtually, and that ecological networks can be significantly optimized by combining MSPA and MCR models. These results provide a methodological reference for constructing ecological networks, and they will be useful for urban planning and biodiversity protection in Shenzhen and other similar regions around the world. Abstract Background With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to alleviate the degradation of urban habitats and protect natural environments. However, there is considerable uncertainty when constructing ecological networks, especially the different approaches to selecting ecological sources. We used the southern Chinese city of Shenzhen as a study area to construct and optimize ecological networks using a coupling approach. Ecological source areas were extracted using morphological spatial pattern analysis (MSPA) and the landscape index method. Ecological networks were constructed using the minimal cumulative resistance (MCR) model and the gravity model. Stepping stones and ecological fault points were added in corridors to optimize the ecological network. Results Ten core areas with maximum importance patch values were extracted by the landscape index method as ecological source areas according to MSPA, after which corridors between ecological sources were constructed based on the MCR model. The constructed ecological networks were optimized using 35 stepping stones and 17 ecological fault points. The optimized ecological networks included 11 important corridors, 34 general corridors, and seven potential corridors. The results of corridor landscape-type analysis showed that a suitable ecological corridor is 60 to 200 m wide. Conclusions Overall, our results imply that ecological source areas can be identified virtually, and that ecological networks can be significantly optimized by combining MSPA and MCR models. These results provide a methodological reference for constructing ecological networks, and they will be useful for urban planning and biodiversity protection in Shenzhen and other similar regions around the world. |
ArticleNumber | 63 |
Author | Yang, Zhi-Guang Guo, Cheng-Xuan Jiang, Zhi-Yun Zhao, Ming-Yue Wu, Bing-Yue Chen, Quan-Ling Li, Yang-Yang Zhang, Yu-Zhe Guo, Ming-Yan |
Author_xml | – sequence: 1 givenname: Yang-Yang surname: Li fullname: Li, Yang-Yang organization: School of Geography, South China Normal University – sequence: 2 givenname: Yu-Zhe surname: Zhang fullname: Zhang, Yu-Zhe organization: School of Geography, South China Normal University – sequence: 3 givenname: Zhi-Yun orcidid: 0000-0002-6457-0016 surname: Jiang fullname: Jiang, Zhi-Yun email: zyjiang@scnu.edu.cn organization: School of Geography, South China Normal University – sequence: 4 givenname: Cheng-Xuan surname: Guo fullname: Guo, Cheng-Xuan organization: School of Geography, South China Normal University – sequence: 5 givenname: Ming-Yue surname: Zhao fullname: Zhao, Ming-Yue organization: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences – sequence: 6 givenname: Zhi-Guang surname: Yang fullname: Yang, Zhi-Guang organization: School of Natural Resources, Faculty of Geographical Science, Beijing Normal University – sequence: 7 givenname: Ming-Yan surname: Guo fullname: Guo, Ming-Yan organization: School of Geography, South China Normal University – sequence: 8 givenname: Bing-Yue surname: Wu fullname: Wu, Bing-Yue organization: School of Geography, South China Normal University – sequence: 9 givenname: Quan-Ling surname: Chen fullname: Chen, Quan-Ling organization: School of Geography, South China Normal University |
BookMark | eNp9ks1u1DAQxyNUJErpC3CyxIUDAX8kdswNrfhYqRIH4GxNnMmul8RebKdo-0g8JaZBBfVQS9aMxr__zNiep9WZDx6r6jmjrxnr5JvEhGKqppzVlArBa_6oOudM85opqs_-859UlykdaFm6YY1W59Wvrc-4i5Cd35E5xOM-TGHnLEwkHUu02GIyRk_Aw3RKLhVnIHmPZHbezQWwy7xMhb1GErEAGbwtp2HAieRAwjG72d0gWWIPnqC9q-Ax_wzxe3pLgFhISFJehhNxnnzZo78pm2xcPr0im73z8Kx6PMKU8PKvvai-fXj_dfOpvvr8cbt5d1XbVrS5bhiKvteacpAUh6EdFYz9iI1UjbKNwE5L0VtkzI5cDdBqOWhWGM5Ad5aJi2q75h0CHMwxljvGkwngzG0gxJ2BmJ2d0KCUPbOD5HSkjbaiZ3RoQLEORtWyVpdcL9dcxxh-LJiymV2yOE3gMSzJcCmk1K3uZEFf3EMPYYnlzQvVKsVZ23SqUHylbAwpRRzvGmTU_JkGs06DKdNgbqfB8CLq7omsy-XDgs8R3PSwVKzSVOr4HcZ_XT2g-g2g5858 |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_113028 crossref_primary_10_1016_j_heliyon_2024_e37870 crossref_primary_10_1016_j_jclepro_2023_138563 crossref_primary_10_1016_j_ecolind_2023_110156 crossref_primary_10_1016_j_ecolind_2023_111443 crossref_primary_10_1016_j_ecolind_2024_112256 crossref_primary_10_3390_rs15092308 crossref_primary_10_3390_land12091733 crossref_primary_10_1002_ieam_4708 crossref_primary_10_1016_j_foar_2024_07_008 crossref_primary_10_1016_j_jenvman_2024_121813 crossref_primary_10_3390_su142416501 crossref_primary_10_3390_su15118478 crossref_primary_10_3390_su14073985 crossref_primary_10_3390_rs15164007 crossref_primary_10_1016_j_tust_2024_106061 crossref_primary_10_3390_ijgi11060328 crossref_primary_10_1016_j_ecolind_2024_111604 crossref_primary_10_3390_land12081643 crossref_primary_10_3390_su16104082 crossref_primary_10_3390_su14084530 crossref_primary_10_3390_su16072875 crossref_primary_10_1016_j_ecolind_2024_111887 crossref_primary_10_3389_fenvs_2024_1325880 crossref_primary_10_3390_land14010026 crossref_primary_10_1016_j_jclepro_2024_143504 crossref_primary_10_1016_j_scitotenv_2024_172302 crossref_primary_10_1007_s11355_023_00585_3 crossref_primary_10_3390_land13101640 crossref_primary_10_1016_j_jnc_2025_126902 crossref_primary_10_3390_f16010001 crossref_primary_10_3389_fsufs_2025_1514478 crossref_primary_10_3390_land11010027 crossref_primary_10_1007_s13157_022_01584_0 crossref_primary_10_22227_2305_5502_2024_2_113_148 crossref_primary_10_3390_rs14194700 crossref_primary_10_3390_su16041704 crossref_primary_10_1016_j_ecoinf_2022_101742 crossref_primary_10_1016_j_ecoinf_2024_102508 crossref_primary_10_1038_s41598_024_67294_1 crossref_primary_10_1088_2515_7620_ac65e4 crossref_primary_10_1038_s41598_024_63391_3 crossref_primary_10_3390_agriculture15020184 crossref_primary_10_3390_land13070935 crossref_primary_10_3390_land11091481 crossref_primary_10_1016_j_ecolind_2023_110787 crossref_primary_10_1016_j_ecolind_2024_111785 crossref_primary_10_3390_land14010093 crossref_primary_10_3390_land13101695 crossref_primary_10_3390_app13106091 crossref_primary_10_3390_rs16173228 crossref_primary_10_3390_su152014756 crossref_primary_10_1016_j_jclepro_2024_143252 crossref_primary_10_1016_j_buildenv_2024_112308 crossref_primary_10_1016_j_jenvman_2023_117692 crossref_primary_10_3390_app142210760 crossref_primary_10_3390_land13050570 crossref_primary_10_1007_s12517_022_10117_2 crossref_primary_10_3390_su16083122 crossref_primary_10_3390_land12061177 crossref_primary_10_1016_j_ecolind_2024_112918 crossref_primary_10_34133_ehs_0253 crossref_primary_10_3390_su16188228 crossref_primary_10_1016_j_jenvman_2024_122294 crossref_primary_10_1007_s10668_023_03170_8 crossref_primary_10_3390_su15032842 crossref_primary_10_3390_ijerph192416505 crossref_primary_10_1016_j_ecolind_2022_109791 crossref_primary_10_3390_d17010050 crossref_primary_10_1007_s11356_023_31271_4 crossref_primary_10_1007_s41324_025_00607_2 crossref_primary_10_3390_land13111729 crossref_primary_10_1016_j_ecolind_2024_112169 crossref_primary_10_3390_land11081226 crossref_primary_10_3390_land12071379 crossref_primary_10_1007_s41742_022_00404_x crossref_primary_10_3390_rs15041061 crossref_primary_10_1007_s11356_023_27495_z crossref_primary_10_1016_j_gecco_2024_e03216 crossref_primary_10_3390_land13010106 crossref_primary_10_3390_su16198628 crossref_primary_10_1007_s11252_024_01588_0 crossref_primary_10_1093_inteam_vjaf027 crossref_primary_10_3390_land12040741 crossref_primary_10_1016_j_ecolind_2024_112800 crossref_primary_10_3390_land12040743 crossref_primary_10_1016_j_ecolind_2024_112524 |
Cites_doi | 10.1016/j.jclepro.2020.124266 10.1016/j.jclepro.2021.126356 10.1029/2011JD015988 10.3390/ijgi9010033 10.1177/0885412218798334 10.1016/j.scitotenv.2020.137151 10.1186/s13717-021-00289-2 10.1016/j.resconrec.2020.105006 10.1002/ldr.3788 10.3390/su10040949 10.3390/f12070847 10.1007/s10980-020-01032-6 10.1007/s10980-020-01027-3 10.1016/j.scitotenv.2020.141868 10.1016/j.biocon.2008.10.006 10.1016/j.landurbplan.2015.06.007 10.1068/b260605 10.1890/07-1861.1 10.1007/s10980-017-0600-1 10.1016/j.ufug.2016.06.013 10.1016/j.ecolind.2008.01.011 10.1002/ldr.3257 10.1002/ldr.2863 10.1016/j.biocon.2009.02.012 10.1016/0169-2046(92)90060-D 10.1080/11263500802410892 10.1016/0169-2046(95)02039-V 10.1016/j.jnc.2017.05.001 10.1016/j.habitatint.2017.11.010 10.1007/s10980-020-01113-6 10.1016/j.ocecoaman.2018.01.005 10.1002/clen.201200448 10.1016/j.landurbplan.2009.11.001 10.1111/brv.12000 10.1126/science.1194255 10.1016/j.ufug.2018.08.001 10.1007/s10980-014-0056-5 10.1016/j.ecolind.2019.04.050 10.1016/j.ecolind.2014.12.029 10.1111/1365-2664.12179 10.1016/j.foreco.2010.09.047 10.1016/S0169-2046(01)00218-3 10.1111/j.1523-1739.1991.tb00384.x 10.1016/j.scitotenv.2017.10.316 10.1016/j.chnaes.2015.07.001 10.1016/j.landurbplan.2005.02.015 10.1016/j.chnaes.2016.12.002 10.1016/j.landurbplan.2013.04.009 10.1016/j.jenvman.2019.109504 10.1016/j.landurbplan.2014.01.025 10.1016/j.scib.2019.03.002 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7S9 L.6 DOA |
DOI | 10.1186/s13717-021-00332-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2192-1709 |
EndPage | 63 |
ExternalDocumentID | oai_doaj_org_article_e66b1cd620f049c3b10d4a718af75159 10_1186_s13717_021_00332_2 |
GeographicLocations | China Shenzhen China |
GeographicLocations_xml | – name: Shenzhen China – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41901027 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province grantid: 2021A1515012208 funderid: http://dx.doi.org/10.13039/501100003453 – fundername: Postdoctoral Research Foundation of China grantid: 2021T140222 and 2018M643110 funderid: http://dx.doi.org/10.13039/501100010031 |
GroupedDBID | -A0 0R~ 4.4 40G 5VS 7XC 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFO ACGFS ACPRK ACULB ADBBV ADINQ AEGXH AEUYN AFGXO AFKRA AFPKN AFRAH AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BBNVY BCNDV BENPR BHPHI C24 C6C CCPQU EBLON EBS EDH GROUPED_DOAJ GX1 HCIFZ IAO IEP ISR ITC KQ8 LK8 M7P M~E OK1 PATMY PIMPY PROAC PYCSY RNS RSV SEV SOJ AASML AAXDM AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO F1W GNUQQ H95 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c535t-41e3bb9902a60edd5f7afbfe46747c43e8963bce11cf27da596d917af21a98c13 |
IEDL.DBID | C24 |
ISSN | 2192-1709 |
IngestDate | Wed Aug 27 01:30:08 EDT 2025 Sun Aug 24 03:49:31 EDT 2025 Fri Jul 25 10:54:02 EDT 2025 Tue Jul 01 04:32:00 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Fri Feb 21 02:48:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | MSPA analysis Ecological resistance surface Ecological corridor Shenzhen City MCR model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-41e3bb9902a60edd5f7afbfe46747c43e8963bce11cf27da596d917af21a98c13 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6457-0016 |
OpenAccessLink | https://link.springer.com/10.1186/s13717-021-00332-2 |
PQID | 2577215487 |
PQPubID | 2034775 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e66b1cd620f049c3b10d4a718af75159 proquest_miscellaneous_2636695986 proquest_journals_2577215487 crossref_primary_10_1186_s13717_021_00332_2 crossref_citationtrail_10_1186_s13717_021_00332_2 springer_journals_10_1186_s13717_021_00332_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-29 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Ecological processes |
PublicationTitleAbbrev | Ecol Process |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Chen, Chen (CR8) 2016; 27 Peng, Wang, Luo, Liu, Li, Hu, Meersmans, Wu (CR41) 2019; 30 Alberti (CR2) 1999; 26 Peng, Pan, Liu, Zhao, Wang (CR40) 2018; 71 Shi, Yu (CR45) 2014; 125 Cheng, Chen, Sun, Kong (CR9) 2018; 616–617 Lynch (CR32) 2019; 34 Opdam, Steingröver, Van Rooij (CR37) 2006; 75 An, Liu, Sun, Shi, Beazley (CR3) 2021 Dondina, Orioli, Colli, Luppi, Bani (CR15) 2018; 33 Gong, Liu, Zhang, Li, Wang, Huang, Clinton, Ji, Li, Bai, Chen, Xu, Zhu, Yuan, Suen, Guo, Li, Zhao, Yang, Yu, Wang, Fu, Yu, Hui, Cheng, Shi, Xiao, Liu, Song (CR20) 2019; 64 Yi, Chen, Jin, Quan, Han, Guan, Jiang (CR56) 2018; 154 Estrada-Carmona, Martínez-Salinas, Declerck, Vílchez-Mendoza, Garbach (CR17) 2019; 250 Saura, Bodin, Fortin (CR44) 2014; 51 Cui, Wang, Sun, Lv (CR11) 2020; 276 Steeneveld, Koopmans, Heusinkveld, van Hove, Holtslag (CR47) 2011; 116 Su, Chen, Liao, Zhang, Wang, Ye, Wang (CR48) 2016; 19 Luo, Wu, Wang, Peng (CR31) 2021; 296 Zhang, Jiang, Li, Yang, Wang, Li (CR59) 2021; 12 Théau, Bernier, Fournier (CR50) 2015; 52 Dai, Liu, Luo (CR13) 2021; 754 Liu, Huang, Tang (CR30) 2020; 36 Ng, Leung, Cheung, Fang (CR34) 2018; 29 Clerici, Vogt (CR10) 2013; 21 Kong, Yin, Nakagoshi, Zong (CR27) 2010; 95 Blasi, Zavattero, Marignani, Smiraglia, Vico (CR6) 2008; 142 Vogt, Ferrari, Lookingbill, Gardner, Riitters, Ostapowicz (CR51) 2009; 9 Carrete, Tella, Blanco, Bertellottl (CR7) 2009; 142 Oliveira, Tobias, Hersperger (CR35) 2018; 10 Zhang, Liu, Yang (CR58) 2020; 161 McRae, Dickson, Keitt, Shah (CR33) 2008; 89 Liu, Dong, Cheng, Zhang, Hou, Dong, Coxixo (CR29) 2017; 38 Vuilleumier, Prelaz-Droux (CR52) 2002; 58 Tang, Gao, Wu (CR49) 2020; 9 CR16 Knaapen, Scheffer, Harms (CR25) 1992; 23 Piri Sahragard, Ajorlo, Karami (CR42) 2021; 10 CR54 Baguette, Blanchet, Legrand, Stevens, Turlure (CR4) 2013; 88 Ahern (CR1) 1995; 33 Opdam, Foppen, Reijnen, Schotman (CR36) 1995; 137 Xiao, Wu, Guo, Ou, Pueppke, Ou, Tao (CR53) 2020; 35 Saunders, Hobbs, Margules (CR43) 1991; 5 Bascompte (CR5) 2010; 329 García-Feced, Saura, Elena-Rosselló (CR18) 2011; 261 Graves, Chandler, Royle, Beier, Kendall (CR21) 2014; 29 Gong, Yu, Joesting, Chen (CR19) 2013; 117 Liu, Chang (CR28) 2015; 35 Peng, Liu, Wu, Lv, Hu (CR38) 2015; 143 Song, Aryal, Tan, Jin, Gao, Wang (CR46) 2021 Heller, Zavaleta (CR22) 2009; 142 CR26 Peng, Zhao, Liu (CR39) 2017; 37 CR24 CR23 Deng, Chen, Yang, Xu (CR14) 2017; 36 Yang, Zeng, Cheng (CR55) 2020; 717 Cunha, Magalhaes (CR12) 2019; 104 Yu, Liu, Xun, Shao (CR57) 2015; 43 CR60 ZH Liu (332_CR30) 2020; 36 SL Ng (332_CR34) 2018; 29 GJ Steeneveld (332_CR47) 2011; 116 CF Gong (332_CR19) 2013; 117 P Vogt (332_CR51) 2009; 9 X Cheng (332_CR9) 2018; 616–617 J Peng (332_CR41) 2019; 30 W Zhang (332_CR58) 2020; 161 J Yang (332_CR55) 2020; 717 L Dai (332_CR13) 2021; 754 XP Chen (332_CR8) 2016; 27 NS Cunha (332_CR12) 2019; 104 JP Knaapen (332_CR25) 1992; 23 L Cui (332_CR11) 2020; 276 P Opdam (332_CR36) 1995; 137 C Blasi (332_CR6) 2008; 142 NE Heller (332_CR22) 2009; 142 332_CR26 Y Song (332_CR46) 2021 O Dondina (332_CR15) 2018; 33 J Peng (332_CR40) 2018; 71 Y Su (332_CR48) 2016; 19 J Ahern (332_CR1) 1995; 33 P Opdam (332_CR37) 2006; 75 AJ Lynch (332_CR32) 2019; 34 F Kong (332_CR27) 2010; 95 M Alberti (332_CR2) 1999; 26 S Vuilleumier (332_CR52) 2002; 58 D Liu (332_CR28) 2015; 35 S Liu (332_CR29) 2017; 38 PJ Shi (332_CR45) 2014; 125 H Piri Sahragard (332_CR42) 2021; 10 332_CR16 SC Xiao (332_CR53) 2020; 35 J Peng (332_CR38) 2015; 143 332_CR60 J Peng (332_CR39) 2017; 37 J Théau (332_CR50) 2015; 52 332_CR24 YZ Zhang (332_CR59) 2021; 12 332_CR23 L Yi (332_CR56) 2018; 154 N Clerici (332_CR10) 2013; 21 T Graves (332_CR21) 2014; 29 DY Yu (332_CR57) 2015; 43 S Saura (332_CR44) 2014; 51 JJ Deng (332_CR14) 2017; 36 M Baguette (332_CR4) 2013; 88 C García-Feced (332_CR18) 2011; 261 P Gong (332_CR20) 2019; 64 J Bascompte (332_CR5) 2010; 329 Y An (332_CR3) 2021 D Saunders (332_CR43) 1991; 5 M Carrete (332_CR7) 2009; 142 YH Tang (332_CR49) 2020; 9 YH Luo (332_CR31) 2021; 296 E Oliveira (332_CR35) 2018; 10 BH McRae (332_CR33) 2008; 89 N Estrada-Carmona (332_CR17) 2019; 250 332_CR54 |
References_xml | – volume: 142 start-page: 540 year: 2008 end-page: 549 ident: CR6 article-title: The concept of land ecological network and its design using a land unit approach publication-title: Plant Biosyst – volume: 142 start-page: 2002 year: 2009 end-page: 2011 ident: CR7 article-title: Effects of habitat degradation on the abundance, richness and diversity of raptors across Neotropical biomes publication-title: Biol Conserv – volume: 276 year: 2020 ident: CR11 article-title: Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.124266 – ident: CR16 – volume: 71 start-page: 110 year: 2018 end-page: 124 ident: CR40 article-title: Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape publication-title: Habitat Int – volume: 296 year: 2021 ident: CR31 article-title: Using stepping-stone theory to evaluate the maintenance of landscape connectivity under China’s ecological control line policy publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126356 – volume: 143 start-page: 56 year: 2015 end-page: 68 ident: CR38 article-title: Linking ecosystem services and landscape patterns to assess urban ecosystem health: a case study in Shenzhen city, China publication-title: Landscape Urban Plan – volume: 137 start-page: S139 issue: 1 year: 1995 end-page: S146 ident: CR36 article-title: The landscape ecological approach in bird conservation: integrating the metapopulation concept into spatial planning publication-title: Ibis – volume: 754 start-page: 141868 year: 2021 ident: CR13 article-title: Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake publication-title: China. Sci Total Environ – ident: CR54 – volume: 19 start-page: 35 year: 2016 end-page: 46 ident: CR48 article-title: Modeling the optimal ecological security pattern for guiding the urban constructed land expansions publication-title: Urban for Urban Green – volume: 104 start-page: 802 year: 2019 end-page: 818 ident: CR12 article-title: Methodology for mapping the national ecological network to mainland Portugal: a planning tool towards a green infrastructure publication-title: Ecol Indic – volume: 116 start-page: D20129 year: 2011 ident: CR47 article-title: Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands publication-title: J Geophys Res-Atmo doi: 10.1029/2011JD015988 – volume: 52 start-page: 444 year: 2015 end-page: 457 ident: CR50 article-title: An evaluation framework based on sustainability-related indicators for the comparison of conceptual approaches for ecological networks publication-title: Ecol Indic – volume: 154 start-page: 121 year: 2018 end-page: 132 ident: CR56 article-title: Impacts of human activities on coastal ecological environment during the rapid urbanization process in Shenzhen, China publication-title: Ocean Coast Manage – volume: 29 start-page: 1201 year: 2014 end-page: 1211 ident: CR21 article-title: Estimating landscape resistance to dispersal publication-title: Landscape Ecol – volume: 21 start-page: 477 year: 2013 end-page: 483 ident: CR10 article-title: Ranking European regions as providers of structural riparian corridors: for conservation and management purposes publication-title: Int J Appl Earth Obs – volume: 37 start-page: 23 year: 2017 end-page: 30 ident: CR39 article-title: Urban ecological corridors construction: a review publication-title: Acta Ecol Sinica – volume: 58 start-page: 157 year: 2002 end-page: 170 ident: CR52 article-title: Map of ecological networks for landscape planning publication-title: Landscape Urban Plan – volume: 33 start-page: 131 year: 1995 end-page: 155 ident: CR1 article-title: Greenways as a planning strategy publication-title: Landscape Urban Plan – volume: 9 start-page: 33 year: 2020 ident: CR49 article-title: Urban ecological corridor network construction: an integration of the least cost path model and the InVEST model publication-title: ISPRS Int J Geo-Inf doi: 10.3390/ijgi9010033 – volume: 34 start-page: 131 year: 2019 end-page: 155 ident: CR32 article-title: Creating effective urban greenways and stepping-stones: four critical gaps in habitat connectivity planning research publication-title: J Plan Lit doi: 10.1177/0885412218798334 – volume: 125 start-page: 290 year: 2014 end-page: 297 ident: CR45 article-title: Assessing urban environmental resources and services of Shenzhen, China: a landscape-based approach for urban planning and sustainability publication-title: Landscape Urban Plan – volume: 30 start-page: 683 year: 2019 end-page: 694 ident: CR41 article-title: Spatial identification of conservation priority areas for urban ecological land: an approach based on water ecosystem services publication-title: Land Degrad Dev – ident: CR60 – volume: 64 start-page: 370 year: 2019 end-page: 373 ident: CR20 article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Sci Bull – volume: 5 start-page: 18 issue: 1 year: 1991 end-page: 32 ident: CR43 article-title: Biological consequences of ecosystem fragmentation: a review publication-title: Conserv Biol – volume: 26 start-page: 623 issue: 4 year: 1999 end-page: 646 ident: CR2 article-title: Modeling the urban ecosystem: a conceptual framework publication-title: Environ Plan B – volume: 250 start-page: 109504 year: 2019 ident: CR17 article-title: Managing the farmscape for connectivity increases conservation value for tropical bird species with different forest-dependencies publication-title: J Environ Manage – ident: CR26 – volume: 117 start-page: 57 year: 2013 end-page: 65 ident: CR19 article-title: Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images publication-title: Landscape Urban Plan – volume: 717 year: 2020 ident: CR55 article-title: Spatial influence of ecological networks on land use intensity publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137151 – volume: 35 start-page: 1 year: 2020 end-page: 18 ident: CR53 article-title: An evaluation framework for designing ecological security patterns and prioritizing ecological corridors: application in Jiangsu Province, China publication-title: Landscape Ecol – volume: 261 start-page: 154 year: 2011 end-page: 161 ident: CR18 article-title: Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation publication-title: Forest Ecol Manag – volume: 10 start-page: 17 year: 2021 ident: CR42 article-title: Landscape structure and suitable habitat analysis for effective restoration planning in semi-arid mountain forests publication-title: Ecol Process doi: 10.1186/s13717-021-00289-2 – volume: 161 year: 2020 ident: CR58 article-title: Urban agglomeration ecological risk transfer model based on Bayesian and ecological network publication-title: Resour Conserv Recy doi: 10.1016/j.resconrec.2020.105006 – volume: 27 start-page: 1611 year: 2016 end-page: 1618 ident: CR8 article-title: Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone publication-title: Chin J Appl Ecol – volume: 89 start-page: 2712 year: 2008 end-page: 2724 ident: CR33 article-title: Using circuit theory to model connectivity in ecology, evolution, and conservation publication-title: Ecology – volume: 36 start-page: 573 year: 2017 end-page: 582 ident: CR14 article-title: Significance evaluation of ecological corridor in an highly-urbanized areas: a case study of Shenzhen publication-title: Geogr Res – volume: 33 start-page: 275 year: 2018 end-page: 287 ident: CR15 article-title: Ecological network design from occurrence data by simulating species perception of the landscape publication-title: Landscape Ecol – year: 2021 ident: CR46 article-title: Comparison of changes in vegetation and land cover types between Shenzhen and Bangkok publication-title: Land Degra Dev doi: 10.1002/ldr.3788 – volume: 88 start-page: 310 year: 2013 end-page: 326 ident: CR4 article-title: Individual dispersal, landscape connectivity and ecological networks publication-title: Biol Rev – volume: 29 start-page: 422 year: 2018 end-page: 432 ident: CR34 article-title: Land degradation effects initiated by trail running events in an urban protected area of Hong Kong publication-title: Land Degrad Dev – volume: 10 start-page: 949 year: 2018 ident: CR35 article-title: Can strategic spatial planning contribute to land degradation reduction in urban regions? State of the art and future research publication-title: Sustainability doi: 10.3390/su10040949 – volume: 51 start-page: 171 year: 2014 end-page: 182 ident: CR44 article-title: Stepping stones are crucial for species’s long-distance dispersal and range expansion through habitat networks publication-title: J App Ecol – volume: 9 start-page: 64 year: 2009 end-page: 71 ident: CR51 article-title: Mapping functional connectivity publication-title: Ecol Indic – volume: 95 start-page: 16 year: 2010 end-page: 27 ident: CR27 article-title: Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling publication-title: Landscape Urban Plan – volume: 142 start-page: 14 year: 2009 end-page: 32 ident: CR22 article-title: Biodiversity management in the face of climate change: a review of 22 years of recommendations publication-title: Biol Conserv – ident: CR23 – volume: 12 start-page: 847 year: 2021 ident: CR59 article-title: Construction and optimization of an urban ecological security pattern based on habitat quality assessment and the minimum cumulative resistance model in Shenzhen City China publication-title: Forests doi: 10.3390/f12070847 – volume: 329 start-page: 765 year: 2010 end-page: 766 ident: CR5 article-title: Structure and dynamics of ecological networks publication-title: Science – volume: 43 start-page: 605 year: 2015 end-page: 613 ident: CR57 article-title: Measuring landscape connectivity in a urban area for biological conservation publication-title: CLEAN-Soil Air Water – volume: 35 start-page: 111 issue: 5 year: 2015 end-page: 121 ident: CR28 article-title: Ecological security research progress in China publication-title: Acta Ecol Sinica – volume: 23 start-page: 1 year: 1992 end-page: 16 ident: CR25 article-title: Estimating habitat isolation in landscape planning publication-title: Landscape Urban Plan – volume: 616–617 start-page: 376 year: 2018 end-page: 385 ident: CR9 article-title: Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China publication-title: Sci Total Environ – volume: 36 start-page: 2043 year: 2020 end-page: 2057 ident: CR30 article-title: Identification of urban flight corridors for migratory birds in the coastal regions of Shenzhen city based on three-dimensional landscapes publication-title: Landscape Ecol doi: 10.1007/s10980-020-01032-6 – volume: 38 start-page: 11 year: 2017 end-page: 20 ident: CR29 article-title: Effects of road network on Asian elephant habitat and connectivity between the nature reserves in Xishuangbanna, Southwest China publication-title: J Nat Conserv – year: 2021 ident: CR3 article-title: Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory publication-title: Landscape Ecol doi: 10.1007/s10980-020-01027-3 – volume: 75 start-page: 322 year: 2006 end-page: 332 ident: CR37 article-title: Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes publication-title: Landscape Urban Plan – ident: CR24 – volume: 296 year: 2021 ident: 332_CR31 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126356 – year: 2021 ident: 332_CR46 publication-title: Land Degra Dev doi: 10.1002/ldr.3788 – volume: 276 year: 2020 ident: 332_CR11 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.124266 – volume: 754 start-page: 141868 year: 2021 ident: 332_CR13 publication-title: China. Sci Total Environ doi: 10.1016/j.scitotenv.2020.141868 – volume: 142 start-page: 14 year: 2009 ident: 332_CR22 publication-title: Biol Conserv doi: 10.1016/j.biocon.2008.10.006 – ident: 332_CR60 – volume: 21 start-page: 477 year: 2013 ident: 332_CR10 publication-title: Int J Appl Earth Obs – volume: 143 start-page: 56 year: 2015 ident: 332_CR38 publication-title: Landscape Urban Plan doi: 10.1016/j.landurbplan.2015.06.007 – volume: 26 start-page: 623 issue: 4 year: 1999 ident: 332_CR2 publication-title: Environ Plan B doi: 10.1068/b260605 – volume: 89 start-page: 2712 year: 2008 ident: 332_CR33 publication-title: Ecology doi: 10.1890/07-1861.1 – ident: 332_CR26 – volume: 33 start-page: 275 year: 2018 ident: 332_CR15 publication-title: Landscape Ecol doi: 10.1007/s10980-017-0600-1 – volume: 19 start-page: 35 year: 2016 ident: 332_CR48 publication-title: Urban for Urban Green doi: 10.1016/j.ufug.2016.06.013 – ident: 332_CR23 – volume: 9 start-page: 64 year: 2009 ident: 332_CR51 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2008.01.011 – volume: 36 start-page: 2043 year: 2020 ident: 332_CR30 publication-title: Landscape Ecol doi: 10.1007/s10980-020-01032-6 – ident: 332_CR54 – volume: 30 start-page: 683 year: 2019 ident: 332_CR41 publication-title: Land Degrad Dev doi: 10.1002/ldr.3257 – volume: 29 start-page: 422 year: 2018 ident: 332_CR34 publication-title: Land Degrad Dev doi: 10.1002/ldr.2863 – volume: 142 start-page: 2002 year: 2009 ident: 332_CR7 publication-title: Biol Conserv doi: 10.1016/j.biocon.2009.02.012 – volume: 36 start-page: 573 year: 2017 ident: 332_CR14 publication-title: Geogr Res – volume: 23 start-page: 1 year: 1992 ident: 332_CR25 publication-title: Landscape Urban Plan doi: 10.1016/0169-2046(92)90060-D – volume: 9 start-page: 33 year: 2020 ident: 332_CR49 publication-title: ISPRS Int J Geo-Inf doi: 10.3390/ijgi9010033 – volume: 142 start-page: 540 year: 2008 ident: 332_CR6 publication-title: Plant Biosyst doi: 10.1080/11263500802410892 – volume: 33 start-page: 131 year: 1995 ident: 332_CR1 publication-title: Landscape Urban Plan doi: 10.1016/0169-2046(95)02039-V – volume: 27 start-page: 1611 year: 2016 ident: 332_CR8 publication-title: Chin J Appl Ecol – volume: 10 start-page: 949 year: 2018 ident: 332_CR35 publication-title: Sustainability doi: 10.3390/su10040949 – volume: 38 start-page: 11 year: 2017 ident: 332_CR29 publication-title: J Nat Conserv doi: 10.1016/j.jnc.2017.05.001 – volume: 71 start-page: 110 year: 2018 ident: 332_CR40 publication-title: Habitat Int doi: 10.1016/j.habitatint.2017.11.010 – volume: 35 start-page: 1 year: 2020 ident: 332_CR53 publication-title: Landscape Ecol doi: 10.1007/s10980-020-01113-6 – volume: 154 start-page: 121 year: 2018 ident: 332_CR56 publication-title: Ocean Coast Manage doi: 10.1016/j.ocecoaman.2018.01.005 – volume: 43 start-page: 605 year: 2015 ident: 332_CR57 publication-title: CLEAN-Soil Air Water doi: 10.1002/clen.201200448 – volume: 95 start-page: 16 year: 2010 ident: 332_CR27 publication-title: Landscape Urban Plan doi: 10.1016/j.landurbplan.2009.11.001 – year: 2021 ident: 332_CR3 publication-title: Landscape Ecol doi: 10.1007/s10980-020-01027-3 – volume: 88 start-page: 310 year: 2013 ident: 332_CR4 publication-title: Biol Rev doi: 10.1111/brv.12000 – volume: 329 start-page: 765 year: 2010 ident: 332_CR5 publication-title: Science doi: 10.1126/science.1194255 – ident: 332_CR16 doi: 10.1016/j.ufug.2018.08.001 – volume: 29 start-page: 1201 year: 2014 ident: 332_CR21 publication-title: Landscape Ecol doi: 10.1007/s10980-014-0056-5 – volume: 12 start-page: 847 year: 2021 ident: 332_CR59 publication-title: Forests doi: 10.3390/f12070847 – volume: 104 start-page: 802 year: 2019 ident: 332_CR12 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.04.050 – volume: 52 start-page: 444 year: 2015 ident: 332_CR50 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2014.12.029 – volume: 51 start-page: 171 year: 2014 ident: 332_CR44 publication-title: J App Ecol doi: 10.1111/1365-2664.12179 – volume: 261 start-page: 154 year: 2011 ident: 332_CR18 publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2010.09.047 – volume: 58 start-page: 157 year: 2002 ident: 332_CR52 publication-title: Landscape Urban Plan doi: 10.1016/S0169-2046(01)00218-3 – volume: 717 year: 2020 ident: 332_CR55 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137151 – volume: 5 start-page: 18 issue: 1 year: 1991 ident: 332_CR43 publication-title: Conserv Biol doi: 10.1111/j.1523-1739.1991.tb00384.x – ident: 332_CR24 – volume: 616–617 start-page: 376 year: 2018 ident: 332_CR9 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.316 – volume: 35 start-page: 111 issue: 5 year: 2015 ident: 332_CR28 publication-title: Acta Ecol Sinica doi: 10.1016/j.chnaes.2015.07.001 – volume: 10 start-page: 17 year: 2021 ident: 332_CR42 publication-title: Ecol Process doi: 10.1186/s13717-021-00289-2 – volume: 137 start-page: S139 issue: 1 year: 1995 ident: 332_CR36 publication-title: Ibis – volume: 34 start-page: 131 year: 2019 ident: 332_CR32 publication-title: J Plan Lit doi: 10.1177/0885412218798334 – volume: 75 start-page: 322 year: 2006 ident: 332_CR37 publication-title: Landscape Urban Plan doi: 10.1016/j.landurbplan.2005.02.015 – volume: 161 year: 2020 ident: 332_CR58 publication-title: Resour Conserv Recy doi: 10.1016/j.resconrec.2020.105006 – volume: 37 start-page: 23 year: 2017 ident: 332_CR39 publication-title: Acta Ecol Sinica doi: 10.1016/j.chnaes.2016.12.002 – volume: 117 start-page: 57 year: 2013 ident: 332_CR19 publication-title: Landscape Urban Plan doi: 10.1016/j.landurbplan.2013.04.009 – volume: 250 start-page: 109504 year: 2019 ident: 332_CR17 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.109504 – volume: 116 start-page: D20129 year: 2011 ident: 332_CR47 publication-title: J Geophys Res-Atmo doi: 10.1029/2011JD015988 – volume: 125 start-page: 290 year: 2014 ident: 332_CR45 publication-title: Landscape Urban Plan doi: 10.1016/j.landurbplan.2014.01.025 – volume: 64 start-page: 370 year: 2019 ident: 332_CR20 publication-title: Sci Bull doi: 10.1016/j.scib.2019.03.002 |
SSID | ssj0000941497 |
Score | 2.4922223 |
Snippet | Background
With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to... BackgroundWith the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to... BACKGROUND: With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great significance to... Abstract Background With the increasing fragmentation of landscape induced by rapid urbanization, the construction of ecological networks is of great... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 63 |
SubjectTerms | Analysis Biodiversity case studies China Corridors Earth and Environmental Science Ecological corridor Ecological effects Ecological resistance surface Environment Environmental protection Gravity landscapes MCR model Morphology MSPA analysis Natural environment Networks Pattern analysis Shenzhen City Spatial analysis uncertainty Urban planning Urbanization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEHwRP7G6yRn45sKatE3bvenYmIK-6GBv4eQLJ9507N4ruD_Jv9KTtL1uwvTFh9LSJm3IOTkf5PT3Y-xVqYxHUzYcQ-V4jSoRucuKW-ewDH2JGNKO7oeP6uS0fn_WnF2j-ko1YSM88Dhx-14pI6xTsgwUzNrKiNLVSBYVQ5t8cbK-5POuJVNfx3o5Cv3b-S-ZTu0vRUWZC08VCYm_THJ5wxNlwP4bUeYfG6PZ3xw_YPenQBHejAN8yO74-IjdPcog0z8es5_vJpwH6gyLgWZrtmKwTEXSdL7I0JkRcMIdoQsHFO9BghNZUAO7XmTyru8eKOlOgSRpAGRuHFgNMJA1WZxfeVhfGozg7eYLcawdXx4AgiU3CBmkFs4jfPri4xUdcEjR_R5kdu4n7PT46PPhCZ94F7htqmbFa-ErY8hNSVSld64JLQYTfCImaW1d-Y5WrbFeCBtk67DplaOsD4MU2HdWVE_ZVhyif8ZAhq61XnkrLNaNMJ3D1nSWZFoKo4wqmJhloO0ESp64Mb7pnJx0So9y0yQ3neWmZcFeb_pcjJAcf239Nol20zLBaecbpGR6UjL9LyUr2PasGHpa40tNxo7S55TxFWx385hWZ9pyweiHNbVRlVJ9wsAv2N6sUL9fcfuwn_-PYb9g92RW-J7LfpttrS7XfodiqJV5mZfLL-w_Gkw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAGB20RfBFvGJslU_wzQ7NTJJJ4ovYsqUKFlELfRvmWgtust3sCvYn-Sv9ZnaSUsE-LLvsTjYh3_XMTM4h5E0utFM6r6jyhaWlEkHInRfUWKty3-ZK-bCi-_lEHJ-Wn86qszThNqRtlWNOjIna9ibMke-jayFYCf31-8UlDapRYXU1SWjcJduYghsEX9sHs5MvX6dZFgQvCAHq8WmZRuwPrEAEQ8POhKBjxim_UZEicf-NbvOfBdJYd44ekgepYYQPGws_Indc95jcm0Wy6d9PyJ-Pie8BD4Z5j3dtzGYwhM3S-L6IFJodqMQ_gh8sYN8HgVZkjgPMeh5FvH45QPAdGkr0BIgaObDqocesMr-4crBeatWBM9MZus0e8uEdKDBYDiGS1cJFB99-uO4KX3CIXf4eRJXup-T0aPb98Jgm_QVqqqJa0ZK5QmssV1yJ3Flb-Vp57V0QKKlNWbgGo1cbx5jxvLaqaoVF9Kc8Z6ptDCueka2u79xzAtw3tXHCGWZUWTHdWFXrxgihc6aFFhlhow2kSeTkQSPjp4wgpRFyYzeJdpPRbpJn5O10zGJDzXHr6INg2mlkoNWOX_TLc5miVDq8IGas4LlH5GQKzXJbKizfyteh8cvI7ugYMsX6IK89MyOvp58xSsPSi-pcv8YxohCiDVz4GdkbHer6L_5_2S9uP-MOuc-jK7eUt7tka7Vcu5fYJa30qxQKfwFGhxOV priority: 102 providerName: ProQuest |
Title | Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: a case study in Shenzhen City, China |
URI | https://link.springer.com/article/10.1186/s13717-021-00332-2 https://www.proquest.com/docview/2577215487 https://www.proquest.com/docview/2636695986 https://doaj.org/article/e66b1cd620f049c3b10d4a718af75159 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB60RfBFvGJsXY7gmx3MTJJJ4tt22VoXLGIt9G2Yq1bcpGx2C_Yn-Ss9M0lWKir4kAvJmWTImXPLnPkOIS9ToZ3SaUGVzyzNlQiF3HlGjbUq9XWqlA8zuu9PxPFZvjgvzodFYd2Y7T5OSUZNHcW6Eq87lmHoQUNKQShAxikq3t0CY_cwrmfDGoevfa4cuv3luELmj01vWKEI1n_Dw_xtUjTamqP75N7gJMK05-oDcss1D8mdeQSY_v6I_Hg3YDxgY1i2-KVGDQZdSJDG42WEzWxADZgjeGIBfT0IUCJLJDCbZSzcdeUAA-7gRCL3IdbFgXULLWqS5cW1g81Kqwac2b6h6fPGuzegwKAJhAhQCxcNnH5xzTVuMEPP_gBiZe7H5Oxo_ml2TIeaC9QUWbGmOXOZ1miiuBKps7bwpfLau1CUpDR55iqUWG0cY8bz0qqiFhYjPuU5U3VlWPaE7DRt454S4L4qjRPOMKPygunKqlJXRgidMi20SAgbeSDNAEge6mJ8kzEwqYTs-SaRbzLyTfKEvNq2uezhOP5JfRhYu6UMUNrxQrv6LAfJlA47xIwVPPUYLZlMs9TmCk228mVw9hKyPw4MOch3J1HRYegcor2EvNjeRskM0y2qce0GaUQmRB3w7xNyMA6oX4_4e7ef_R_5HrnL49CuKa_3yc56tXHP0VNa6wm5nadvJ2R3Ol2cLvB4OD_58HESxSXsxWwS_0H8BH74FIk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKdYKDBIcKJRYydxEiSEaNlql7YrBK3Um_ETKrHJsg9Q-5M48BsZO8lWRaK3HqJEieNYmvF4vtj-PkJexFxZqeIski4xUSq5F3JnSaSNkbErYymdn9E9GPPhUfrhODteI3-6vTB-WWUXE0OgNrX2_8i30LUQrPj8-u30R-RVo_zsaieh0bjFnj39hZBt_mb0Hu37krHdweHOMGpVBSKdJdkiSqlNlMIgzCSPrTGZy6VTznrZjVyniS3QJ5W2lGrHciOzkhvENNIxKstC0wTrvUbW0wShTI-sbw_GHz-t_uogWELIkXe7cwq-NacJIqbIr4TwumksYhdGwCAUcCG7_WdCNoxzu7fJrTZBhXeNR90ha7a6S64PArn16T3ye9TyS-DLMKnRSl30hLlfnI3naaDsrEC2fCd4YQDzTPA0JhMsoJeTIBr20wKCfZ_AoudB0OSBRQ01RrHJyZmF5UzJCqxefaFq1qzPX4MEjcMvBHJcOKng8zdbneEBO4gqNiGogt8nR1dimQekV9WVfUiAuSLXlltNtUwzqgojc1VozlVMFVe8T2hnA6FbMnSvyfFdBFBUcNHYTaDdRLCbYH3yavXOtKECubT0tjftqqSn8Q436tlX0UYFYbFBVBvOYodITSeKxiaVmC5Il_tEs082OscQbWyZi_Oe0CfPV48xKvipHlnZeolleMJ56bn3-2Szc6jzKv7f7EeXf_EZuTE8PNgX-6Px3mNykwW3LiNWbpDeYra0TzBDW6inbbcA8uWqe-JffOhRcA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYov4hW3Vh1Bn2zYzCSZJIKIbXfpWl2KWujbdK5a6CbrXpT2J_kT_HWemU22VLBvfQgJyWQSOGfOnC9z8n0AL2OurFRxFkmXmCiV3Au5syTSxsjYlbGUzq_ofhrxvcP0w1F2tAZ_2n9hfFllGxNDoDa19t_Ie-haCFZ8ft1zTVnEwe7g3eRH5BWk_EprK6exdJF9e_YL4dvs7XAXbf2KsUH_685e1CgMRDpLsnmUUpsohQGZSR5bYzKXS6ec9RIcuU4TW6B_Km0p1Y7lRmYlN4hvpGNUloWmCfZ7A9ZzREVxB9a3-6ODz6svPAicEH7k7Z86Be_NaILoKfJVEV5DjUXs0mwYRAMuZbr_LM6GOW9wF-40ySp5v_Sue7Bmq_twsx-Irs8ewO9hwzWBN5NxjRZrIymZ-UJt3E8CfWdFZMN9ggeGYM5JPKXJGBvoxTgIiP20BIG_T2bRC0nQ5yHzmtQY0cYn55YspkpWxOrVE6pl_frsDZFE41RMAlEuOanIl--2OseN7CDC2CJBIfwhHF6LZR5Bp6or-xgIc0WuLbeaaplmVBVG5qrQnKuYKq54F2hrA6EbYnSvz3EqAkAquFjaTaDdRLCbYF14vbpnsqQFubL1tjftqqWn9A4n6uk30UQIYfGFqDacxQ5Rm04UjU0qMXWQLvdJZxc2W8cQTZyZiYtR0YUXq8sYIfyyj6xsvcA2POG89Dz8XdhqHeqii_-_9sbVT3wOt3AEio_D0f4TuM2CV5cRKzehM58u7FNM1ubqWTMqCBxf90D8CwzoVaU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+morphological+spatial+pattern+analysis+and+the+minimal+cumulative+resistance+model+to+optimize+urban+ecological+networks%3A+a+case+study+in+Shenzhen+City%2C+China&rft.jtitle=Ecological+processes&rft.au=Li%2C+Yang-Yang&rft.au=Zhang%2C+Yu-Zhe&rft.au=Jiang%2C+Zhi-Yun&rft.au=Guo%2C+Cheng-Xuan&rft.date=2021-09-29&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-1709&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-021-00332-2&rft.externalDocID=10_1186_s13717_021_00332_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon |