Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network
In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment t...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 14; p. 3170 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.07.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed. |
---|---|
AbstractList | In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed. In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed.In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed. |
Author | Yang, Kuo Qian, Jinwu Zhang, Lunwei Zhang, Zhen |
AuthorAffiliation | 2 School of Aerospace Engineering and Mechanics, Tongji University, Shanghai 200092, China 1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China |
AuthorAffiliation_xml | – name: 2 School of Aerospace Engineering and Mechanics, Tongji University, Shanghai 200092, China – name: 1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0001-6966-0208 surname: Zhang fullname: Zhang, Zhen – sequence: 2 givenname: Kuo surname: Yang fullname: Yang, Kuo – sequence: 3 givenname: Jinwu surname: Qian fullname: Qian, Jinwu – sequence: 4 givenname: Lunwei surname: Zhang fullname: Zhang, Lunwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31323888$$D View this record in MEDLINE/PubMed |
BookMark | eNptksluFDEQhi0URBY48ALIEhc4DPHWXi5IIQqTSGFRCGfL7a4ePPTYid1NlLfHkwmjJOJUJdfnX38t-2gnpggIvabkA-eGHBZqqOBUkWdojwomZpoxsvMg30X7pSwJYZxz_QLtcsoZ11rvIXcBbphdhhXgH1PunQd88mWOv7txhBzxBfi0iGEMKeI-ZXzqYofnUMYpQ8GfXIEO15KL-CiPoQ8-uAF_hSnfhfEm5d8v0fPeDQVe3ccD9PPzyeXx6ez82_zs-Oh85hvejDMOLXivCYAyXWN444QhjfSu8R2DnihmhGNMctW1XHEppKCKaWFaagRXkh-gs41ul9zSXuWwcvnWJhfs3UPKC-uqRz-AbY1UorZax9AJzYlptOGtpA6018aYqvVxo3U1tSvoPMSxdvRI9HElhl92kf5YKZXhRFSBd_cCOV1PdV52FYqHYXAR0lRsXQRlkjHRVPTtE3SZphzrqCpFqFINoWtHbx462lr5t8kKvN8APqdSMvRbhBK7vhK7vZLKHj5hfRjdesm1mTD858dfc9u7FQ |
CitedBy_id | crossref_primary_10_48084_etasr_7146 crossref_primary_10_3390_mi13101681 crossref_primary_10_1016_j_irbm_2024_100866 crossref_primary_10_3390_s22207984 crossref_primary_10_1109_TNSRE_2023_3250641 crossref_primary_10_1088_1741_2552_ad184f crossref_primary_10_32604_cmc_2023_043383 crossref_primary_10_1177_09544119221074770 crossref_primary_10_1109_TMRB_2022_3216957 crossref_primary_10_1186_s12984_022_00982_z crossref_primary_10_1589_jpts_36_123 crossref_primary_10_1109_TNSRE_2022_3199809 crossref_primary_10_1007_s10846_022_01666_5 crossref_primary_10_3389_fnbot_2022_853773 crossref_primary_10_1109_JSEN_2023_3344700 crossref_primary_10_1109_THMS_2022_3227309 crossref_primary_10_21467_exr_3_1_8382 crossref_primary_10_1002_adma_202107902 crossref_primary_10_14801_jkiit_2021_19_1_107 crossref_primary_10_1007_s13369_020_04628_x crossref_primary_10_1109_ACCESS_2024_3380469 crossref_primary_10_32604_cmc_2022_021667 crossref_primary_10_3390_s22165931 crossref_primary_10_1061__ASCE_CO_1943_7862_0001941 crossref_primary_10_1155_2021_3902030 crossref_primary_10_35366_113828 crossref_primary_10_1007_s11042_024_19468_2 crossref_primary_10_1016_j_bspc_2024_107438 crossref_primary_10_1145_3586207 crossref_primary_10_3390_s20143994 crossref_primary_10_1016_j_bspc_2021_103098 crossref_primary_10_1038_s41598_024_51791_4 crossref_primary_10_1016_j_bspc_2021_103134 crossref_primary_10_3389_fnins_2021_621885 crossref_primary_10_3390_s21072540 crossref_primary_10_3390_s21248175 crossref_primary_10_3390_s22010225 crossref_primary_10_1038_s41378_022_00477_w crossref_primary_10_3389_frobt_2020_567491 crossref_primary_10_1016_j_bbe_2021_03_006 crossref_primary_10_3390_s22051694 crossref_primary_10_3233_THC_213320 crossref_primary_10_32604_cmc_2022_025213 crossref_primary_10_1088_1742_6596_2327_1_012075 crossref_primary_10_3390_electronics12071541 crossref_primary_10_3390_s21124204 crossref_primary_10_3390_app10238604 crossref_primary_10_3390_e22080852 crossref_primary_10_1109_JSEN_2022_3194678 crossref_primary_10_3390_electronics12061398 crossref_primary_10_1109_TNSRE_2023_3311819 crossref_primary_10_1515_bmt_2024_0282 crossref_primary_10_1016_j_bbe_2022_04_001 crossref_primary_10_1016_j_bspc_2024_106828 crossref_primary_10_1016_j_neucom_2021_12_081 crossref_primary_10_1089_soro_2022_0065 crossref_primary_10_3389_fnhum_2022_911204 crossref_primary_10_3390_s20092467 crossref_primary_10_1109_ACCESS_2020_3021072 crossref_primary_10_1016_j_bspc_2023_105935 crossref_primary_10_3390_s21227681 crossref_primary_10_3390_s20216327 crossref_primary_10_35429_JTEN_2022_17_6_27_34 crossref_primary_10_3389_fnbot_2023_1264802 crossref_primary_10_32604_cmc_2023_028712 crossref_primary_10_1016_j_eswa_2023_121055 crossref_primary_10_1109_JSEN_2020_3012887 crossref_primary_10_3390_s20113144 crossref_primary_10_3390_s20041113 crossref_primary_10_3389_fbioe_2021_779353 crossref_primary_10_1109_JSEN_2024_3487992 crossref_primary_10_3390_s19235129 crossref_primary_10_3934_mmc_2025003 crossref_primary_10_3389_fcomp_2022_915280 crossref_primary_10_1038_s41598_023_36490_w crossref_primary_10_1016_j_engappai_2024_108952 crossref_primary_10_1080_21681163_2023_2227735 crossref_primary_10_3390_s23052715 crossref_primary_10_3390_s24144613 crossref_primary_10_3390_s23177441 crossref_primary_10_3390_s22218273 crossref_primary_10_1016_j_engappai_2023_107251 crossref_primary_10_3390_app13095744 crossref_primary_10_2339_politeknik_1117947 crossref_primary_10_32604_cmc_2022_025953 crossref_primary_10_1109_TCYB_2021_3129119 crossref_primary_10_1142_S0218001421510125 |
Cites_doi | 10.1109/TNSRE.2019.2896269 10.1186/1743-0003-5-10 10.1016/j.bspc.2018.07.010 10.1145/2816795.2818072 10.1145/2984511.2984565 10.1109/EMBC.2018.8512820 10.1007/s11554-013-0333-6 10.1016/j.bspc.2016.01.011 10.1142/S0129065717500095 10.1109/TMM.2018.2808769 10.3390/s17040869 10.23919/EUSIPCO.2018.8553126 10.1177/1729881419862164 10.1145/1897816.1897838 10.1016/j.eswa.2012.01.102 10.1109/ICOM.2011.5937135 10.1016/S0031-3203(04)00165-7 10.1007/978-3-030-01418-6_35 10.1039/C8TA08276F 10.1109/THMS.2016.2537747 10.1109/ETCM.2017.8247458 10.1109/JBHI.2016.2560907 10.1109/TIM.2011.2161140 10.1109/TSMCA.2011.2116004 10.1145/2897824.2925965 10.1109/CVPRW.2015.7301342 10.1016/j.imavis.2016.06.001 10.3390/s19020371 10.1109/ICICIP.2013.6568070 10.1166/sl.2018.3926 10.2478/v10048-011-0009-y 10.1109/TMM.2013.2246148 10.1016/j.jocs.2018.04.019 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s19143170 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_b9674ace313d483095893b61ae8c8999 PMC6679304 31323888 10_3390_s19143170 |
Genre | Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61573236 – fundername: Shanghai science and technology commission grantid: 18JC1410402 – fundername: National Natural Science Foundation of China grantid: 61875115 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-3ebecc80ee79d5935a49056ca5cd2ef07294a22637db3736464172849b1943763 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:21 EDT 2025 Thu Aug 21 18:18:40 EDT 2025 Thu Jul 10 18:42:37 EDT 2025 Fri Jul 25 20:26:00 EDT 2025 Wed Feb 19 02:31:43 EST 2025 Tue Jul 01 00:42:01 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | artificial neural network gesture recognition real-time surface electromyography |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-3ebecc80ee79d5935a49056ca5cd2ef07294a22637db3736464172849b1943763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6966-0208 |
OpenAccessLink | https://doaj.org/article/b9674ace313d483095893b61ae8c8999 |
PMID | 31323888 |
PQID | 2301775019 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9674ace313d483095893b61ae8c8999 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679304 proquest_miscellaneous_2331262245 proquest_journals_2301775019 pubmed_primary_31323888 crossref_primary_10_3390_s19143170 crossref_citationtrail_10_3390_s19143170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190718 |
PublicationDateYYYYMMDD | 2019-07-18 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190718 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lu (ref_34) 2017; 27 Yang (ref_3) 2016; 21 Coteallard (ref_38) 2019; 27 Taylor (ref_7) 2016; 35 Ren (ref_15) 2013; 15 Tavakoli (ref_36) 2018; 46 Bastani (ref_31) 2016; 46 Phinyomark (ref_30) 2011; 11 ref_13 ref_12 ref_11 ref_33 Liu (ref_5) 2016; 11 ref_18 Phinyomark (ref_29) 2012; 39 ref_39 ref_16 He (ref_1) 2019; 16 Kundu (ref_14) 2017; 3 Wahid (ref_37) 2018; 27 Wachs (ref_8) 2011; 54 Alangari (ref_28) 2016; 27 Wu (ref_10) 2018; 6 Gao (ref_9) 2004; 37 Zhang (ref_2) 2011; 41 Dardas (ref_17) 2011; 60 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 Zhang (ref_6) 2018; 20 ref_27 ref_26 Too (ref_32) 2018; 16 Ferreira (ref_4) 2008; 5 Joshi (ref_19) 2017; 58 Hinton (ref_35) 2008; 9 |
References_xml | – volume: 27 start-page: 760 year: 2019 ident: ref_38 article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2896269 – volume: 5 start-page: 10 year: 2008 ident: ref_4 article-title: Human-machine interfaces based on emg and eeg applied to robotic systems publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-5-10 – ident: ref_26 – volume: 46 start-page: 121 year: 2018 ident: ref_36 article-title: Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2018.07.010 – ident: ref_13 doi: 10.1145/2816795.2818072 – ident: ref_16 doi: 10.1145/2984511.2984565 – ident: ref_22 doi: 10.1109/EMBC.2018.8512820 – volume: 11 start-page: 201 year: 2016 ident: ref_5 article-title: Real-time robust vision-based hand gesture recognition using stereo images publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-013-0333-6 – volume: 27 start-page: 24 year: 2016 ident: ref_28 article-title: Distance and mutual information methods for EMG feature and channel subset selection for classification of hand movements publication-title: Biomed. Signal Proces. doi: 10.1016/j.bspc.2016.01.011 – volume: 27 start-page: 1750009 year: 2017 ident: ref_34 article-title: Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500095 – volume: 20 start-page: 1038 year: 2018 ident: ref_6 article-title: Egogesture: a new dataset and benchmark for egocentric hand gesture recognition publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2018.2808769 – ident: ref_18 doi: 10.3390/s17040869 – ident: ref_39 doi: 10.23919/EUSIPCO.2018.8553126 – volume: 16 start-page: 1 year: 2019 ident: ref_1 article-title: Underactuated robotics: A review publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881419862164 – volume: 54 start-page: 60 year: 2011 ident: ref_8 article-title: Vision-based hand-gesture applications publication-title: Commun. ACM doi: 10.1145/1897816.1897838 – volume: 39 start-page: 7420 year: 2012 ident: ref_29 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.102 – ident: ref_23 doi: 10.1109/ICOM.2011.5937135 – volume: 37 start-page: 2389 year: 2004 ident: ref_9 article-title: A Chinese sign language recognition system based on SOFM/SRN/HMM publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(04)00165-7 – ident: ref_24 doi: 10.1007/978-3-030-01418-6_35 – volume: 6 start-page: 20277 year: 2018 ident: ref_10 article-title: Fabric-based self-powered noncontact smart gloves for gesture recognition publication-title: J. Mater. Chem. doi: 10.1039/C8TA08276F – volume: 3 start-page: 1 year: 2017 ident: ref_14 article-title: Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors publication-title: J. Intell. Robot. Syst. – volume: 46 start-page: 485 year: 2016 ident: ref_31 article-title: Online Classification and Sensor Selection Optimization with Applications to Human Material Handling Tasks Using Wearable Sensing Technologies publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2016.2537747 – ident: ref_11 doi: 10.1109/ETCM.2017.8247458 – volume: 21 start-page: 994 year: 2016 ident: ref_3 article-title: Chinese sign language recognition based on an optimized tree-structure framework publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2560907 – volume: 60 start-page: 3592 year: 2011 ident: ref_17 article-title: Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2011.2161140 – ident: ref_33 – ident: ref_12 – volume: 41 start-page: 1064 year: 2011 ident: ref_2 article-title: A framework for hand gesture recognition based on accelerometer and emg sensors publication-title: IEEE Trans. Syst. Man Cybern. Syst. Part A Syst. Hum. doi: 10.1109/TSMCA.2011.2116004 – volume: 35 start-page: 1 year: 2016 ident: ref_7 article-title: Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences publication-title: ACM Trans. Graph. doi: 10.1145/2897824.2925965 – ident: ref_25 doi: 10.1109/CVPRW.2015.7301342 – volume: 58 start-page: 86 year: 2017 ident: ref_19 article-title: Comparing random forest approaches to segmenting and classifying gestures publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2016.06.001 – volume: 9 start-page: 2579 year: 2008 ident: ref_35 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref_27 doi: 10.3390/s19020371 – ident: ref_21 doi: 10.1109/ICICIP.2013.6568070 – volume: 16 start-page: 92 year: 2018 ident: ref_32 article-title: Deep Convolutional Neural Network for Featureless Electromyogram Pattern Recognition Using Time-Frequency Distribution publication-title: Sens. Lett. doi: 10.1166/sl.2018.3926 – volume: 11 start-page: 45 year: 2011 ident: ref_30 article-title: Application of wavelet analysis in EMG feature extraction for pattern classification publication-title: Meas. Sci. Rev. doi: 10.2478/v10048-011-0009-y – volume: 15 start-page: 1110 year: 2013 ident: ref_15 article-title: Robust Part-Based Hand Gesture Recognition Using Kinect Sensor publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2013.2246148 – ident: ref_20 – volume: 27 start-page: 69 year: 2018 ident: ref_37 article-title: Subject-independent hand gesture recognition using normalization and machine learning algorithms publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.04.019 |
SSID | ssj0023338 |
Score | 2.6033025 |
Snippet | In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3170 |
SubjectTerms | Accuracy Adult Algorithms Artificial intelligence artificial neural network Biosensing Techniques Classification Electromyography Engineering Female gesture recognition Gestures Hand - physiology Humans International conferences Machine learning Male Neural networks Neural Networks, Computer Pattern recognition Pattern Recognition, Automated real-time Researchers Sensors Signal processing Signal Processing, Computer-Assisted surface electromyography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7Et6tVonjwsrRpstnkaMVaBEV8gLclyaYoSCp9_H9nstulFcGLl13YGUgyM8l8wyZfCLlQzCkNOCN1lrtUWJxzgil4eAP5vYTCBU8j3z_I4au4e8velq76wj1hFT1wZbiO1TIXxnnOeCkUB0QAGdZKZryCVnQ8ugc5b1FM1aUWh8qr4hHiUNR3pshiBpmyu5J9Ikn_b8jy5wbJpYwz2CKbNVSkV1UXt8maDztkY4lAcJeYJ8B5KR7joM_zyQgGQG_ub-ljJM0M9GmxO2gcKIBTOjShpLfQhzkU2bQPCaykIDIhNlJxSVCk64ivuD98j7wObl6uh2l9aULqMp7NUh69orre57rMNM-M0ABynMlc2fMjJAoXBjAXz0vLcy6FFHhFldCWaYGrzT5phXHwh4RqBeBr5JV0YD1pe1ZnIydElztlnOYmIZcLYxauZhTHiy0-C6gs0O5FY_eEnDeqXxWNxm9KffRIo4DM1_EDxENRx0PxVzwkpL3wZ1FPx2kBdRbLARsxEJ81YphI-HfEBD-eow5nPQmIJkvIQeX-pifIb8mVUgnJVwJjpaurkvDxHsm6pYQVsCuO_mNsx2Qd8BoeOkuZapPWbDL3J4CJZvY0hv83EyMHTw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB619NIeEH2HbpGLOPQSsV47jn1CLAJWlagQBWlvke14WyTk0H38_8442cBWiEsixZZizYw939jjbwAONPfaIM7IvRM-l47mnOQaH8Gif68xcKHbyBc_1eRG_pgW027DbdGlVa7XxLRQ142nPfJDhMq8RPfGzdH935yqRtHpaldC4yW8IuoySukqpw8Bl8D4q2UTEhjaHy6Iywz95XDDByWq_qfw5f9pko_8ztkObHeAkR23Gn4LL0J8B28e0Qi-B3uFaC-nyxzs12o-sz6w04tzdpmoMyO7WucINZEhRGUTG2t2jmNYYajNxujGaoZNNqaftIwSjEg70itliX-Am7PT65NJ3pVOyH0himUukm70MITS1IURhZUGoY63ha9HYUZ04dIi8hJl7UQplFSSClVJ47iRtOZ8hK3YxPAZmNEIwWZBK4_SU27kTDHzUg6F19YbYTP4vhZm5TtecSpvcVdhfEFyr3q5Z7Dfd71vyTSe6jQmjfQdiP86fWjmv6tuOlXOqFKiOAUXtdQCcSLiLqe4DRptz5gMBmt9Vt2kXFQPJpTBt74ZpxOdkdgYmhX1EXykENcUGXxq1d-PhFguhdY6g3LDMDaGutkSb_8kym6lcB0cyt3nh_UFXiMeo0tlOdcD2FrOV-ErYp6l20uG_Q9d9v-F priority: 102 providerName: ProQuest |
Title | Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31323888 https://www.proquest.com/docview/2301775019 https://www.proquest.com/docview/2331262245 https://pubmed.ncbi.nlm.nih.gov/PMC6679304 https://doaj.org/article/b9674ace313d483095893b61ae8c8999 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dixMxEB_OO5DzQfx29SxRfPBltdtks8mDiJV-IPQ4qoW-LUk2PYUj1V4L-t87k_3wKvVlC83QhszMzu-3m_wG4LXKnNKIM1JnuUuFpZwTmcKLN1jfKyQudBp5di6nC_F5mS-PoO2x2Szg9UFqR_2kFpurt79-_v6ACf-eGCdS9nfXpFGGdRCZ-wkWpILycya6lwkDjjSsFhXaNz-F2yRcyFVsu_K3KkXx_kOI89-Nkzcq0fge3G0gJPtY-_w-HPnwAO7cEBZ8CGaO-C-l4x3sy26zMs6z0WzCLqKYZmDzdtfQOjAErWxqQsUmOIcdkm82xMJWMRwyIf5JrTHBSMYjfsR9449gMR59_TRNm2YKqct5vk159Jbqe1_oKtc8N0Ij-HEmd9XAr0hAXBjEYryoLC-4FFJQ6yqhbaYF3YUew3FYB_8UmFYIylZeSYcLKe3A6nzlhOhzp4zT3CTwpl3M0jVK49Tw4qpExkEuKDsXJPCqM_1Ry2scMhqSRzoDUsSOX6w3l2WTYKXVshC4nOjRSiiOyBGRmJWZ8QqjUesEzlp_lm2Ulci_sgIxU4bDL7thTDB6a2KCX-_IhmcDiUgnT-BJ7f5uJm34JFDsBcbeVPdHwvdvUcRbSrwz9sWz__7mczhFcEYnzNJMncHxdrPzLxAAbW0PbhXLAq9qPOnByXB0fjHvxYcJvRj4fwB4SAU8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEjuOfUCIQtst7VaotNLeguN4AQk5ZR9C_Cl-IzPOo11UceslkWIrGY1nPN_E9jcAL1VqlUacEduK21hU5HMiVXhxBuN7jYkLnUYeH8rRifg4ySdr8Kc_C0PbKvs5MUzUdWPpH_kmQuW0wPCW6renP2OqGkWrq30JjdYs9t3vX5iyzd_sfcDxfZVlO9vH70dxV1UgtjnPFzEPYqvEuULXuea5ERpRgDW5rTM3JSZtYRCU8KKueMGlkIJqOAldYb5P7ojvvQJXMfAm5FHF5CzB45jvtexFnOtkc07caRifk5WYF0oDXIRn_92WeS7O7dyCmx1AZe9ai7oNa87fgRvnaAvvgjlCdBnT4RH2eTmbGuvY9niXfQpUnZ4d9XuSGs8QErOR8TXbRRmWmNqzLQybNcMm48NHWgYLRiQh4RZ2pd-Dk0tR6n1Y9413D4FphZBv6pS0qD1ZZZXOp1aIhFtlrOYmgte9Mkvb8ZhTOY0fJeYzpPdy0HsEL4aupy15x0WdtmhEhg7Etx0eNLOvZee-ZaVlIVCdPOW1UBxxKeK8SqbGKbR1rSPY6Mez7CaBeXlmshE8H5rRfWlNxnjXLKkPTzOJOCqP4EE7_IMkxKrJlVIRFCuGsSLqaov__i1QhEuJ824iHv1frGdwbXQ8PigP9g73H8N1xIJ0oC1O1QasL2ZL9wTx1qJ6GoycwZfL9qq_opI6ew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEEpdok9hx7ANClHa7pbSqCpX2FhzHaZFQUvYhxF_j1zHjPNpFFbdeEim2Emc84_kmGX8D8FrFVmnEGaEtuA1FQTYnYoUHZ9C_lxi40G7k_QM5ORafpul0Df70e2EorbJfE_1CXTaWvpGPECrHGbq3WI-qLi3icGv8_uxnSBWk6E9rX06jVZE99_sXhm_zd7tbONdvkmS8_fXjJOwqDIQ25eki5P4VVORcpstU89QIjYjAmtSWiauIVVsYBCg8KwuecSmkoHpOQhcY-5Np4n2vwfWMpzHZWDY9D_Y4xn4tkxHnOhrNiUcNfXW04v98mYDLsO2_KZoXfN74DtzuwCr70GrXXVhz9T24dYHC8D6YI0SaIW0kYV-Ws8pYx7b3d9ihp-2s2VGfn9TUDOExm5i6ZDs4hiWG-WwTXWjJsMnU_iEtmwUjwhB_8hnqD-D4SoT6ENbrpnaPgWmF8K9ySlqUniySQqeVFSLiVhmruQngbS_M3Hac5lRa40eOsQ3JPR_kHsCroetZS-RxWadNmpGhA3Fv-wvN7CTvTDkvtMwEipPHvBSKI0ZFzFfI2DiFeq91ABv9fObdgjDPz9U3gJdDM5oy_Z8xtWuW1IfHiURMlQbwqJ3-YSTEsMmVUgFkK4qxMtTVlvr7qacLlxLX4Eg8-f-wXsANtKf88-7B3lO4ibCQ9raFsdqA9cVs6Z4h9FoUz72OM_h21Ub1F07hPrE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Surface+EMG+Pattern+Recognition+for+Hand+Gestures+Based+on+an+Artificial+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Zhen&rft.au=Yang%2C+Kuo&rft.au=Qian%2C+Jinwu&rft.au=Zhang%2C+Lunwei&rft.date=2019-07-18&rft.eissn=1424-8220&rft.volume=19&rft.issue=14&rft_id=info:doi/10.3390%2Fs19143170&rft_id=info%3Apmid%2F31323888&rft.externalDocID=31323888 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |