Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network

In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 14; p. 3170
Main Authors Zhang, Zhen, Yang, Kuo, Qian, Jinwu, Zhang, Lunwei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.07.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed.
AbstractList In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed.
In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed.In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window approach to segment the data in extracting features. A feedforward artificial neural network (ANN) is founded and trained by the training dataset. A test method is used in which the gesture will be recognized when recognized label times reach the threshold of activation times by the ANN classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the pattern recognition system might be able to recognize a gesture before the gesture is completed.
Author Yang, Kuo
Qian, Jinwu
Zhang, Lunwei
Zhang, Zhen
AuthorAffiliation 2 School of Aerospace Engineering and Mechanics, Tongji University, Shanghai 200092, China
1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
AuthorAffiliation_xml – name: 2 School of Aerospace Engineering and Mechanics, Tongji University, Shanghai 200092, China
– name: 1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0001-6966-0208
  surname: Zhang
  fullname: Zhang, Zhen
– sequence: 2
  givenname: Kuo
  surname: Yang
  fullname: Yang, Kuo
– sequence: 3
  givenname: Jinwu
  surname: Qian
  fullname: Qian, Jinwu
– sequence: 4
  givenname: Lunwei
  surname: Zhang
  fullname: Zhang, Lunwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31323888$$D View this record in MEDLINE/PubMed
BookMark eNptksluFDEQhi0URBY48ALIEhc4DPHWXi5IIQqTSGFRCGfL7a4ePPTYid1NlLfHkwmjJOJUJdfnX38t-2gnpggIvabkA-eGHBZqqOBUkWdojwomZpoxsvMg30X7pSwJYZxz_QLtcsoZ11rvIXcBbphdhhXgH1PunQd88mWOv7txhBzxBfi0iGEMKeI-ZXzqYofnUMYpQ8GfXIEO15KL-CiPoQ8-uAF_hSnfhfEm5d8v0fPeDQVe3ccD9PPzyeXx6ez82_zs-Oh85hvejDMOLXivCYAyXWN444QhjfSu8R2DnihmhGNMctW1XHEppKCKaWFaagRXkh-gs41ul9zSXuWwcvnWJhfs3UPKC-uqRz-AbY1UorZax9AJzYlptOGtpA6018aYqvVxo3U1tSvoPMSxdvRI9HElhl92kf5YKZXhRFSBd_cCOV1PdV52FYqHYXAR0lRsXQRlkjHRVPTtE3SZphzrqCpFqFINoWtHbx462lr5t8kKvN8APqdSMvRbhBK7vhK7vZLKHj5hfRjdesm1mTD858dfc9u7FQ
CitedBy_id crossref_primary_10_48084_etasr_7146
crossref_primary_10_3390_mi13101681
crossref_primary_10_1016_j_irbm_2024_100866
crossref_primary_10_3390_s22207984
crossref_primary_10_1109_TNSRE_2023_3250641
crossref_primary_10_1088_1741_2552_ad184f
crossref_primary_10_32604_cmc_2023_043383
crossref_primary_10_1177_09544119221074770
crossref_primary_10_1109_TMRB_2022_3216957
crossref_primary_10_1186_s12984_022_00982_z
crossref_primary_10_1589_jpts_36_123
crossref_primary_10_1109_TNSRE_2022_3199809
crossref_primary_10_1007_s10846_022_01666_5
crossref_primary_10_3389_fnbot_2022_853773
crossref_primary_10_1109_JSEN_2023_3344700
crossref_primary_10_1109_THMS_2022_3227309
crossref_primary_10_21467_exr_3_1_8382
crossref_primary_10_1002_adma_202107902
crossref_primary_10_14801_jkiit_2021_19_1_107
crossref_primary_10_1007_s13369_020_04628_x
crossref_primary_10_1109_ACCESS_2024_3380469
crossref_primary_10_32604_cmc_2022_021667
crossref_primary_10_3390_s22165931
crossref_primary_10_1061__ASCE_CO_1943_7862_0001941
crossref_primary_10_1155_2021_3902030
crossref_primary_10_35366_113828
crossref_primary_10_1007_s11042_024_19468_2
crossref_primary_10_1016_j_bspc_2024_107438
crossref_primary_10_1145_3586207
crossref_primary_10_3390_s20143994
crossref_primary_10_1016_j_bspc_2021_103098
crossref_primary_10_1038_s41598_024_51791_4
crossref_primary_10_1016_j_bspc_2021_103134
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_3390_s21072540
crossref_primary_10_3390_s21248175
crossref_primary_10_3390_s22010225
crossref_primary_10_1038_s41378_022_00477_w
crossref_primary_10_3389_frobt_2020_567491
crossref_primary_10_1016_j_bbe_2021_03_006
crossref_primary_10_3390_s22051694
crossref_primary_10_3233_THC_213320
crossref_primary_10_32604_cmc_2022_025213
crossref_primary_10_1088_1742_6596_2327_1_012075
crossref_primary_10_3390_electronics12071541
crossref_primary_10_3390_s21124204
crossref_primary_10_3390_app10238604
crossref_primary_10_3390_e22080852
crossref_primary_10_1109_JSEN_2022_3194678
crossref_primary_10_3390_electronics12061398
crossref_primary_10_1109_TNSRE_2023_3311819
crossref_primary_10_1515_bmt_2024_0282
crossref_primary_10_1016_j_bbe_2022_04_001
crossref_primary_10_1016_j_bspc_2024_106828
crossref_primary_10_1016_j_neucom_2021_12_081
crossref_primary_10_1089_soro_2022_0065
crossref_primary_10_3389_fnhum_2022_911204
crossref_primary_10_3390_s20092467
crossref_primary_10_1109_ACCESS_2020_3021072
crossref_primary_10_1016_j_bspc_2023_105935
crossref_primary_10_3390_s21227681
crossref_primary_10_3390_s20216327
crossref_primary_10_35429_JTEN_2022_17_6_27_34
crossref_primary_10_3389_fnbot_2023_1264802
crossref_primary_10_32604_cmc_2023_028712
crossref_primary_10_1016_j_eswa_2023_121055
crossref_primary_10_1109_JSEN_2020_3012887
crossref_primary_10_3390_s20113144
crossref_primary_10_3390_s20041113
crossref_primary_10_3389_fbioe_2021_779353
crossref_primary_10_1109_JSEN_2024_3487992
crossref_primary_10_3390_s19235129
crossref_primary_10_3934_mmc_2025003
crossref_primary_10_3389_fcomp_2022_915280
crossref_primary_10_1038_s41598_023_36490_w
crossref_primary_10_1016_j_engappai_2024_108952
crossref_primary_10_1080_21681163_2023_2227735
crossref_primary_10_3390_s23052715
crossref_primary_10_3390_s24144613
crossref_primary_10_3390_s23177441
crossref_primary_10_3390_s22218273
crossref_primary_10_1016_j_engappai_2023_107251
crossref_primary_10_3390_app13095744
crossref_primary_10_2339_politeknik_1117947
crossref_primary_10_32604_cmc_2022_025953
crossref_primary_10_1109_TCYB_2021_3129119
crossref_primary_10_1142_S0218001421510125
Cites_doi 10.1109/TNSRE.2019.2896269
10.1186/1743-0003-5-10
10.1016/j.bspc.2018.07.010
10.1145/2816795.2818072
10.1145/2984511.2984565
10.1109/EMBC.2018.8512820
10.1007/s11554-013-0333-6
10.1016/j.bspc.2016.01.011
10.1142/S0129065717500095
10.1109/TMM.2018.2808769
10.3390/s17040869
10.23919/EUSIPCO.2018.8553126
10.1177/1729881419862164
10.1145/1897816.1897838
10.1016/j.eswa.2012.01.102
10.1109/ICOM.2011.5937135
10.1016/S0031-3203(04)00165-7
10.1007/978-3-030-01418-6_35
10.1039/C8TA08276F
10.1109/THMS.2016.2537747
10.1109/ETCM.2017.8247458
10.1109/JBHI.2016.2560907
10.1109/TIM.2011.2161140
10.1109/TSMCA.2011.2116004
10.1145/2897824.2925965
10.1109/CVPRW.2015.7301342
10.1016/j.imavis.2016.06.001
10.3390/s19020371
10.1109/ICICIP.2013.6568070
10.1166/sl.2018.3926
10.2478/v10048-011-0009-y
10.1109/TMM.2013.2246148
10.1016/j.jocs.2018.04.019
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19143170
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b9674ace313d483095893b61ae8c8999
PMC6679304
31323888
10_3390_s19143170
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61573236
– fundername: Shanghai science and technology commission
  grantid: 18JC1410402
– fundername: National Natural Science Foundation of China
  grantid: 61875115
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c535t-3ebecc80ee79d5935a49056ca5cd2ef07294a22637db3736464172849b1943763
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:21 EDT 2025
Thu Aug 21 18:18:40 EDT 2025
Thu Jul 10 18:42:37 EDT 2025
Fri Jul 25 20:26:00 EDT 2025
Wed Feb 19 02:31:43 EST 2025
Tue Jul 01 00:42:01 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords artificial neural network
gesture recognition
real-time
surface electromyography
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-3ebecc80ee79d5935a49056ca5cd2ef07294a22637db3736464172849b1943763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6966-0208
OpenAccessLink https://doaj.org/article/b9674ace313d483095893b61ae8c8999
PMID 31323888
PQID 2301775019
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b9674ace313d483095893b61ae8c8999
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679304
proquest_miscellaneous_2331262245
proquest_journals_2301775019
pubmed_primary_31323888
crossref_primary_10_3390_s19143170
crossref_citationtrail_10_3390_s19143170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190718
PublicationDateYYYYMMDD 2019-07-18
PublicationDate_xml – month: 7
  year: 2019
  text: 20190718
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lu (ref_34) 2017; 27
Yang (ref_3) 2016; 21
Coteallard (ref_38) 2019; 27
Taylor (ref_7) 2016; 35
Ren (ref_15) 2013; 15
Tavakoli (ref_36) 2018; 46
Bastani (ref_31) 2016; 46
Phinyomark (ref_30) 2011; 11
ref_13
ref_12
ref_11
ref_33
Liu (ref_5) 2016; 11
ref_18
Phinyomark (ref_29) 2012; 39
ref_39
ref_16
He (ref_1) 2019; 16
Kundu (ref_14) 2017; 3
Wahid (ref_37) 2018; 27
Wachs (ref_8) 2011; 54
Alangari (ref_28) 2016; 27
Wu (ref_10) 2018; 6
Gao (ref_9) 2004; 37
Zhang (ref_2) 2011; 41
Dardas (ref_17) 2011; 60
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Zhang (ref_6) 2018; 20
ref_27
ref_26
Too (ref_32) 2018; 16
Ferreira (ref_4) 2008; 5
Joshi (ref_19) 2017; 58
Hinton (ref_35) 2008; 9
References_xml – volume: 27
  start-page: 760
  year: 2019
  ident: ref_38
  article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896269
– volume: 5
  start-page: 10
  year: 2008
  ident: ref_4
  article-title: Human-machine interfaces based on emg and eeg applied to robotic systems
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-5-10
– ident: ref_26
– volume: 46
  start-page: 121
  year: 2018
  ident: ref_36
  article-title: Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2018.07.010
– ident: ref_13
  doi: 10.1145/2816795.2818072
– ident: ref_16
  doi: 10.1145/2984511.2984565
– ident: ref_22
  doi: 10.1109/EMBC.2018.8512820
– volume: 11
  start-page: 201
  year: 2016
  ident: ref_5
  article-title: Real-time robust vision-based hand gesture recognition using stereo images
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-013-0333-6
– volume: 27
  start-page: 24
  year: 2016
  ident: ref_28
  article-title: Distance and mutual information methods for EMG feature and channel subset selection for classification of hand movements
  publication-title: Biomed. Signal Proces.
  doi: 10.1016/j.bspc.2016.01.011
– volume: 27
  start-page: 1750009
  year: 2017
  ident: ref_34
  article-title: Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500095
– volume: 20
  start-page: 1038
  year: 2018
  ident: ref_6
  article-title: Egogesture: a new dataset and benchmark for egocentric hand gesture recognition
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2018.2808769
– ident: ref_18
  doi: 10.3390/s17040869
– ident: ref_39
  doi: 10.23919/EUSIPCO.2018.8553126
– volume: 16
  start-page: 1
  year: 2019
  ident: ref_1
  article-title: Underactuated robotics: A review
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881419862164
– volume: 54
  start-page: 60
  year: 2011
  ident: ref_8
  article-title: Vision-based hand-gesture applications
  publication-title: Commun. ACM
  doi: 10.1145/1897816.1897838
– volume: 39
  start-page: 7420
  year: 2012
  ident: ref_29
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.102
– ident: ref_23
  doi: 10.1109/ICOM.2011.5937135
– volume: 37
  start-page: 2389
  year: 2004
  ident: ref_9
  article-title: A Chinese sign language recognition system based on SOFM/SRN/HMM
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(04)00165-7
– ident: ref_24
  doi: 10.1007/978-3-030-01418-6_35
– volume: 6
  start-page: 20277
  year: 2018
  ident: ref_10
  article-title: Fabric-based self-powered noncontact smart gloves for gesture recognition
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA08276F
– volume: 3
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors
  publication-title: J. Intell. Robot. Syst.
– volume: 46
  start-page: 485
  year: 2016
  ident: ref_31
  article-title: Online Classification and Sensor Selection Optimization with Applications to Human Material Handling Tasks Using Wearable Sensing Technologies
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2016.2537747
– ident: ref_11
  doi: 10.1109/ETCM.2017.8247458
– volume: 21
  start-page: 994
  year: 2016
  ident: ref_3
  article-title: Chinese sign language recognition based on an optimized tree-structure framework
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2560907
– volume: 60
  start-page: 3592
  year: 2011
  ident: ref_17
  article-title: Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2011.2161140
– ident: ref_33
– ident: ref_12
– volume: 41
  start-page: 1064
  year: 2011
  ident: ref_2
  article-title: A framework for hand gesture recognition based on accelerometer and emg sensors
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Part A Syst. Hum.
  doi: 10.1109/TSMCA.2011.2116004
– volume: 35
  start-page: 1
  year: 2016
  ident: ref_7
  article-title: Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2897824.2925965
– ident: ref_25
  doi: 10.1109/CVPRW.2015.7301342
– volume: 58
  start-page: 86
  year: 2017
  ident: ref_19
  article-title: Comparing random forest approaches to segmenting and classifying gestures
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2016.06.001
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_35
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_27
  doi: 10.3390/s19020371
– ident: ref_21
  doi: 10.1109/ICICIP.2013.6568070
– volume: 16
  start-page: 92
  year: 2018
  ident: ref_32
  article-title: Deep Convolutional Neural Network for Featureless Electromyogram Pattern Recognition Using Time-Frequency Distribution
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2018.3926
– volume: 11
  start-page: 45
  year: 2011
  ident: ref_30
  article-title: Application of wavelet analysis in EMG feature extraction for pattern classification
  publication-title: Meas. Sci. Rev.
  doi: 10.2478/v10048-011-0009-y
– volume: 15
  start-page: 1110
  year: 2013
  ident: ref_15
  article-title: Robust Part-Based Hand Gesture Recognition Using Kinect Sensor
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2013.2246148
– ident: ref_20
– volume: 27
  start-page: 69
  year: 2018
  ident: ref_37
  article-title: Subject-independent hand gesture recognition using normalization and machine learning algorithms
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.04.019
SSID ssj0023338
Score 2.6033025
Snippet In recent years, surface electromyography (sEMG) signals have been increasingly used in pattern recognition and rehabilitation. In this paper, a real-time hand...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3170
SubjectTerms Accuracy
Adult
Algorithms
Artificial intelligence
artificial neural network
Biosensing Techniques
Classification
Electromyography
Engineering
Female
gesture recognition
Gestures
Hand - physiology
Humans
International conferences
Machine learning
Male
Neural networks
Neural Networks, Computer
Pattern recognition
Pattern Recognition, Automated
real-time
Researchers
Sensors
Signal processing
Signal Processing, Computer-Assisted
surface electromyography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7Et6tVonjwsrRpstnkaMVaBEV8gLclyaYoSCp9_H9nstulFcGLl13YGUgyM8l8wyZfCLlQzCkNOCN1lrtUWJxzgil4eAP5vYTCBU8j3z_I4au4e8velq76wj1hFT1wZbiO1TIXxnnOeCkUB0QAGdZKZryCVnQ8ugc5b1FM1aUWh8qr4hHiUNR3pshiBpmyu5J9Ikn_b8jy5wbJpYwz2CKbNVSkV1UXt8maDztkY4lAcJeYJ8B5KR7joM_zyQgGQG_ub-ljJM0M9GmxO2gcKIBTOjShpLfQhzkU2bQPCaykIDIhNlJxSVCk64ivuD98j7wObl6uh2l9aULqMp7NUh69orre57rMNM-M0ABynMlc2fMjJAoXBjAXz0vLcy6FFHhFldCWaYGrzT5phXHwh4RqBeBr5JV0YD1pe1ZnIydElztlnOYmIZcLYxauZhTHiy0-C6gs0O5FY_eEnDeqXxWNxm9KffRIo4DM1_EDxENRx0PxVzwkpL3wZ1FPx2kBdRbLARsxEJ81YphI-HfEBD-eow5nPQmIJkvIQeX-pifIb8mVUgnJVwJjpaurkvDxHsm6pYQVsCuO_mNsx2Qd8BoeOkuZapPWbDL3J4CJZvY0hv83EyMHTw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB619NIeEH2HbpGLOPQSsV47jn1CLAJWlagQBWlvke14WyTk0H38_8442cBWiEsixZZizYw939jjbwAONPfaIM7IvRM-l47mnOQaH8Gif68xcKHbyBc_1eRG_pgW027DbdGlVa7XxLRQ142nPfJDhMq8RPfGzdH935yqRtHpaldC4yW8IuoySukqpw8Bl8D4q2UTEhjaHy6Iywz95XDDByWq_qfw5f9pko_8ztkObHeAkR23Gn4LL0J8B28e0Qi-B3uFaC-nyxzs12o-sz6w04tzdpmoMyO7WucINZEhRGUTG2t2jmNYYajNxujGaoZNNqaftIwSjEg70itliX-Am7PT65NJ3pVOyH0himUukm70MITS1IURhZUGoY63ha9HYUZ04dIi8hJl7UQplFSSClVJ47iRtOZ8hK3YxPAZmNEIwWZBK4_SU27kTDHzUg6F19YbYTP4vhZm5TtecSpvcVdhfEFyr3q5Z7Dfd71vyTSe6jQmjfQdiP86fWjmv6tuOlXOqFKiOAUXtdQCcSLiLqe4DRptz5gMBmt9Vt2kXFQPJpTBt74ZpxOdkdgYmhX1EXykENcUGXxq1d-PhFguhdY6g3LDMDaGutkSb_8kym6lcB0cyt3nh_UFXiMeo0tlOdcD2FrOV-ErYp6l20uG_Q9d9v-F
  priority: 102
  providerName: ProQuest
Title Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/31323888
https://www.proquest.com/docview/2301775019
https://www.proquest.com/docview/2331262245
https://pubmed.ncbi.nlm.nih.gov/PMC6679304
https://doaj.org/article/b9674ace313d483095893b61ae8c8999
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dixMxEB_OO5DzQfx29SxRfPBltdtks8mDiJV-IPQ4qoW-LUk2PYUj1V4L-t87k_3wKvVlC83QhszMzu-3m_wG4LXKnNKIM1JnuUuFpZwTmcKLN1jfKyQudBp5di6nC_F5mS-PoO2x2Szg9UFqR_2kFpurt79-_v6ACf-eGCdS9nfXpFGGdRCZ-wkWpILycya6lwkDjjSsFhXaNz-F2yRcyFVsu_K3KkXx_kOI89-Nkzcq0fge3G0gJPtY-_w-HPnwAO7cEBZ8CGaO-C-l4x3sy26zMs6z0WzCLqKYZmDzdtfQOjAErWxqQsUmOIcdkm82xMJWMRwyIf5JrTHBSMYjfsR9449gMR59_TRNm2YKqct5vk159Jbqe1_oKtc8N0Ij-HEmd9XAr0hAXBjEYryoLC-4FFJQ6yqhbaYF3YUew3FYB_8UmFYIylZeSYcLKe3A6nzlhOhzp4zT3CTwpl3M0jVK49Tw4qpExkEuKDsXJPCqM_1Ry2scMhqSRzoDUsSOX6w3l2WTYKXVshC4nOjRSiiOyBGRmJWZ8QqjUesEzlp_lm2Ulci_sgIxU4bDL7thTDB6a2KCX-_IhmcDiUgnT-BJ7f5uJm34JFDsBcbeVPdHwvdvUcRbSrwz9sWz__7mczhFcEYnzNJMncHxdrPzLxAAbW0PbhXLAq9qPOnByXB0fjHvxYcJvRj4fwB4SAU8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEjuOfUCIQtst7VaotNLeguN4AQk5ZR9C_Cl-IzPOo11UceslkWIrGY1nPN_E9jcAL1VqlUacEduK21hU5HMiVXhxBuN7jYkLnUYeH8rRifg4ySdr8Kc_C0PbKvs5MUzUdWPpH_kmQuW0wPCW6renP2OqGkWrq30JjdYs9t3vX5iyzd_sfcDxfZVlO9vH70dxV1UgtjnPFzEPYqvEuULXuea5ERpRgDW5rTM3JSZtYRCU8KKueMGlkIJqOAldYb5P7ojvvQJXMfAm5FHF5CzB45jvtexFnOtkc07caRifk5WYF0oDXIRn_92WeS7O7dyCmx1AZe9ai7oNa87fgRvnaAvvgjlCdBnT4RH2eTmbGuvY9niXfQpUnZ4d9XuSGs8QErOR8TXbRRmWmNqzLQybNcMm48NHWgYLRiQh4RZ2pd-Dk0tR6n1Y9413D4FphZBv6pS0qD1ZZZXOp1aIhFtlrOYmgte9Mkvb8ZhTOY0fJeYzpPdy0HsEL4aupy15x0WdtmhEhg7Etx0eNLOvZee-ZaVlIVCdPOW1UBxxKeK8SqbGKbR1rSPY6Mez7CaBeXlmshE8H5rRfWlNxnjXLKkPTzOJOCqP4EE7_IMkxKrJlVIRFCuGsSLqaov__i1QhEuJ824iHv1frGdwbXQ8PigP9g73H8N1xIJ0oC1O1QasL2ZL9wTx1qJ6GoycwZfL9qq_opI6ew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEEpdok9hx7ANClHa7pbSqCpX2FhzHaZFQUvYhxF_j1zHjPNpFFbdeEim2Emc84_kmGX8D8FrFVmnEGaEtuA1FQTYnYoUHZ9C_lxi40G7k_QM5ORafpul0Df70e2EorbJfE_1CXTaWvpGPECrHGbq3WI-qLi3icGv8_uxnSBWk6E9rX06jVZE99_sXhm_zd7tbONdvkmS8_fXjJOwqDIQ25eki5P4VVORcpstU89QIjYjAmtSWiauIVVsYBCg8KwuecSmkoHpOQhcY-5Np4n2vwfWMpzHZWDY9D_Y4xn4tkxHnOhrNiUcNfXW04v98mYDLsO2_KZoXfN74DtzuwCr70GrXXVhz9T24dYHC8D6YI0SaIW0kYV-Ws8pYx7b3d9ihp-2s2VGfn9TUDOExm5i6ZDs4hiWG-WwTXWjJsMnU_iEtmwUjwhB_8hnqD-D4SoT6ENbrpnaPgWmF8K9ySlqUniySQqeVFSLiVhmruQngbS_M3Hac5lRa40eOsQ3JPR_kHsCroetZS-RxWadNmpGhA3Fv-wvN7CTvTDkvtMwEipPHvBSKI0ZFzFfI2DiFeq91ABv9fObdgjDPz9U3gJdDM5oy_Z8xtWuW1IfHiURMlQbwqJ3-YSTEsMmVUgFkK4qxMtTVlvr7qacLlxLX4Eg8-f-wXsANtKf88-7B3lO4ibCQ9raFsdqA9cVs6Z4h9FoUz72OM_h21Ub1F07hPrE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Surface+EMG+Pattern+Recognition+for+Hand+Gestures+Based+on+an+Artificial+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Zhen&rft.au=Yang%2C+Kuo&rft.au=Qian%2C+Jinwu&rft.au=Zhang%2C+Lunwei&rft.date=2019-07-18&rft.eissn=1424-8220&rft.volume=19&rft.issue=14&rft_id=info:doi/10.3390%2Fs19143170&rft_id=info%3Apmid%2F31323888&rft.externalDocID=31323888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon