Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex
Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 76; no. 5; pp. 1030 - 1041 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.12.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation
Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease. |
---|---|
AbstractList | Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. ► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease. Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. |
Author | Li, Qian Chan, Danny C.W. Yung, Wing-Ho Ko, Ho Ke, Ya Qian, Zhong-Ming Arbuthnott, Gordon W. Yung, Ken K.L. |
Author_xml | – sequence: 1 givenname: Qian surname: Li fullname: Li, Qian organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China – sequence: 2 givenname: Ya surname: Ke fullname: Ke, Ya email: yake@cuhk.edu.hk organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China – sequence: 3 givenname: Danny C.W. surname: Chan fullname: Chan, Danny C.W. organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China – sequence: 4 givenname: Zhong-Ming surname: Qian fullname: Qian, Zhong-Ming organization: School of Pharmacy, Fudan University, Shanghai 201203, China – sequence: 5 givenname: Ken K.L. surname: Yung fullname: Yung, Ken K.L. organization: Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China – sequence: 6 givenname: Ho surname: Ko fullname: Ko, Ho organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China – sequence: 7 givenname: Gordon W. surname: Arbuthnott fullname: Arbuthnott, Gordon W. organization: Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan – sequence: 8 givenname: Wing-Ho surname: Yung fullname: Yung, Wing-Ho email: whyung@cuhk.edu.hk organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23217750$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFf4BQJC5cEsZfScwBCbZ8VCoCQZG4WY4zEV6y9mI7iP57vN3CoQfgNLLmeUfy-5yQIx88EvKQQkOBtk83jcclBt8woKwB1QBnd8iKgupqQZU6IivoVVu3rOPH5CSlDQAVUtF75JhxRrtOwop8ufyK0exwyc5WZ4i76mU0zlefstsus8ku-Ko8P5j4zfkUvDO--mhyqs5cRJvnq-rcT_OC3mKq3oUcYrUOMePP--TuZOaED27mKfn8-tXl-m198f7N-frFRW0ll7nmPWN9NxgUA6Ic2h75AEJZkJMdlehN2UoxTgoVCGAwtcqwcVRcdooO3chPyZPD3V0M3xdMWW9dsjjPxmNYkqasKwUoBf1_oLx0ojoOBX18C92EJfryEU0l8F70rOWFenRDLcMWR72Lbmvilf5dbwHEAbAxpBRx-oNQ0HuLeqMPFvXeogali8USe3YrZl2-dpGLnPlf4eeHMJbWfziMOlm39zNeG9NjcH8_8Au_qLli |
CitedBy_id | crossref_primary_10_1038_s41419_020_03105_5 crossref_primary_10_1016_j_nbd_2013_09_006 crossref_primary_10_1371_journal_pone_0099663 crossref_primary_10_1186_s40035_023_00390_w crossref_primary_10_1016_j_biomaterials_2017_01_013 crossref_primary_10_4103_1673_5374_213532 crossref_primary_10_4103_1673_5374_392884 crossref_primary_10_1016_j_lfs_2022_120869 crossref_primary_10_1088_1741_2560_13_1_016013 crossref_primary_10_1016_j_neuroscience_2014_04_016 crossref_primary_10_1002_mrm_25239 crossref_primary_10_1016_j_brs_2016_10_005 crossref_primary_10_1186_s12929_021_00781_z crossref_primary_10_1016_j_clinph_2019_11_015 crossref_primary_10_1038_nature12982 crossref_primary_10_1093_brain_aww020 crossref_primary_10_1111_ner_13165 crossref_primary_10_1007_s11682_016_9514_9 crossref_primary_10_1038_s41597_024_03356_3 crossref_primary_10_3389_fneur_2014_00213 crossref_primary_10_1093_brain_awy206 crossref_primary_10_1093_brain_awaa297 crossref_primary_10_1093_brain_awt304 crossref_primary_10_1038_s42003_021_01915_7 crossref_primary_10_1152_jn_00198_2020 crossref_primary_10_1016_j_cmpb_2015_05_011 crossref_primary_10_1523_JNEUROSCI_4676_12_2013 crossref_primary_10_3389_fneur_2018_00711 crossref_primary_10_1007_s00221_015_4532_1 crossref_primary_10_1093_brain_awu191 crossref_primary_10_1172_JCI122390 crossref_primary_10_1523_JNEUROSCI_0431_18_2018 crossref_primary_10_1162_nol_a_00086 crossref_primary_10_1038_ncomms11947 crossref_primary_10_3389_fnagi_2024_1413074 crossref_primary_10_1523_JNEUROSCI_2480_19_2020 crossref_primary_10_1016_j_brs_2020_03_005 crossref_primary_10_1109_TMBMC_2020_3036756 crossref_primary_10_1016_j_neurom_2021_11_002 crossref_primary_10_1371_journal_pone_0176132 crossref_primary_10_1016_j_neuropharm_2021_108881 crossref_primary_10_1038_s41598_025_89330_4 crossref_primary_10_3171_2020_10_JNS202277 crossref_primary_10_1088_1741_2552_abee50 crossref_primary_10_1093_brain_aww048 crossref_primary_10_1016_j_expneurol_2021_113926 crossref_primary_10_1111_ejn_13806 crossref_primary_10_3389_fnins_2015_00028 crossref_primary_10_1016_j_brs_2018_05_008 crossref_primary_10_1097_WNP_0000000000000137 crossref_primary_10_1016_j_nicl_2018_05_006 crossref_primary_10_1152_jn_00701_2014 crossref_primary_10_1523_JNEUROSCI_1753_21_2021 crossref_primary_10_1152_jn_00862_2017 crossref_primary_10_1038_s41467_020_16046_6 crossref_primary_10_1111_joa_12132 crossref_primary_10_1016_j_nbd_2016_07_021 crossref_primary_10_1016_j_nbd_2020_104807 crossref_primary_10_1016_j_expneurol_2022_114089 crossref_primary_10_1007_s10827_016_0593_9 crossref_primary_10_1002_ana_25776 crossref_primary_10_1177_1744806919845739 crossref_primary_10_1212_WNL_0000000000000315 crossref_primary_10_3389_fnins_2021_645849 crossref_primary_10_1093_cercor_bhy346 crossref_primary_10_1002_ctm2_70117 crossref_primary_10_1016_j_nbd_2022_105674 crossref_primary_10_1016_j_expneurol_2022_114210 crossref_primary_10_1109_TNSRE_2016_2608925 crossref_primary_10_3389_fnagi_2021_695108 crossref_primary_10_1093_braincomms_fcab273 crossref_primary_10_1038_s41583_020_0315_1 crossref_primary_10_1016_j_pharmthera_2023_108498 crossref_primary_10_1007_s40120_021_00318_4 crossref_primary_10_1038_nn_4082 crossref_primary_10_1038_s41531_023_00474_4 crossref_primary_10_1523_JNEUROSCI_0785_18_2018 crossref_primary_10_3389_fnins_2016_00110 crossref_primary_10_1371_journal_pone_0102576 crossref_primary_10_1109_TNNLS_2020_3009293 crossref_primary_10_3390_ijms232415862 crossref_primary_10_1093_brain_awz164 crossref_primary_10_1152_jn_00223_2015 crossref_primary_10_3389_fneur_2023_1216916 crossref_primary_10_1016_j_neuroimage_2016_10_049 crossref_primary_10_1093_brain_awad239 crossref_primary_10_1038_s41467_020_15352_3 crossref_primary_10_1038_nrdp_2017_13 crossref_primary_10_1016_j_clinph_2019_09_020 crossref_primary_10_1016_j_cobeha_2015_02_004 crossref_primary_10_3389_fncom_2014_00032 crossref_primary_10_3389_fnint_2016_00038 crossref_primary_10_3390_cells10030513 crossref_primary_10_1073_pnas_1214546110 crossref_primary_10_3389_fneur_2019_00419 crossref_primary_10_3389_fnhum_2019_00223 crossref_primary_10_1016_j_neuroimage_2013_08_026 crossref_primary_10_1007_s00702_017_1697_8 crossref_primary_10_1523_JNEUROSCI_3071_19_2020 crossref_primary_10_1111_cns_14638 crossref_primary_10_1038_nchina_2012_95 crossref_primary_10_1038_s41531_024_00829_5 crossref_primary_10_3389_fnhum_2022_1009223 crossref_primary_10_1038_s41531_022_00343_6 crossref_primary_10_1080_02688697_2019_1701630 crossref_primary_10_1016_j_neunet_2022_05_027 crossref_primary_10_1016_j_jocn_2018_05_004 crossref_primary_10_1002_mds_26938 crossref_primary_10_1016_j_brs_2017_10_004 crossref_primary_10_1088_1741_2552_aad978 crossref_primary_10_1016_j_expneurol_2022_114011 crossref_primary_10_1016_j_brs_2014_04_007 crossref_primary_10_1007_s12035_022_02872_w crossref_primary_10_1016_j_neuroscience_2021_02_019 crossref_primary_10_1172_JCI99986 crossref_primary_10_3171_2015_1_JNS141604 crossref_primary_10_7554_eLife_75253 crossref_primary_10_1016_j_neuron_2019_03_004 crossref_primary_10_1016_j_cbpb_2023_110852 crossref_primary_10_1038_nn_3997 crossref_primary_10_1089_brain_2013_0193 crossref_primary_10_1016_j_brainres_2018_01_034 crossref_primary_10_1111_ner_12901 crossref_primary_10_1038_s41598_020_79138_9 crossref_primary_10_1523_ENEURO_0010_24_2024 crossref_primary_10_1097_WNP_0000000000000881 crossref_primary_10_1523_ENEURO_0019_16_2016 crossref_primary_10_1152_jn_00997_2014 crossref_primary_10_1016_j_brs_2021_03_009 crossref_primary_10_1002_hipo_22960 crossref_primary_10_1111_ejn_13196 crossref_primary_10_1016_j_mayocp_2015_03_022 crossref_primary_10_1016_j_neuroimage_2020_116750 crossref_primary_10_1093_brain_awu380 crossref_primary_10_3389_fnhum_2022_958521 crossref_primary_10_1523_JNEUROSCI_2277_18_2019 crossref_primary_10_1016_j_clinph_2022_04_022 crossref_primary_10_1093_brain_awu027 crossref_primary_10_1038_538S10a crossref_primary_10_1523_JNEUROSCI_2694_20_2021 crossref_primary_10_1016_j_jneumeth_2017_08_017 crossref_primary_10_3389_fncel_2018_00417 crossref_primary_10_3389_fncir_2017_00086 crossref_primary_10_1002_syn_21722 crossref_primary_10_1038_nrn3433 crossref_primary_10_3109_02688697_2014_997669 crossref_primary_10_1212_WNL_0000000000001806 crossref_primary_10_1002_mds_26703 crossref_primary_10_1126_scitranslmed_aah3532 crossref_primary_10_1016_j_celrep_2022_110439 crossref_primary_10_3389_fneur_2019_01016 crossref_primary_10_3390_brainsci13020349 crossref_primary_10_1038_srep43571 crossref_primary_10_1016_j_neuron_2017_08_038 crossref_primary_10_1016_j_neuropsychologia_2013_03_008 crossref_primary_10_1172_JCI88170 crossref_primary_10_3389_fncom_2019_00077 crossref_primary_10_1016_j_neuropharm_2024_110003 crossref_primary_10_3389_fnins_2020_00639 crossref_primary_10_1088_1674_1056_ac8cd8 crossref_primary_10_1016_j_brainres_2017_07_027 crossref_primary_10_1016_j_clinph_2024_05_007 crossref_primary_10_1016_j_csbj_2016_10_006 crossref_primary_10_1080_02688697_2024_2311128 crossref_primary_10_1016_j_neulet_2015_04_011 crossref_primary_10_1038_srep16376 crossref_primary_10_1371_journal_pone_0082191 crossref_primary_10_1515_tnsci_2020_0104 crossref_primary_10_1002_acn3_168 crossref_primary_10_1038_s41598_017_01067_x crossref_primary_10_1038_s41467_020_15570_9 crossref_primary_10_1152_jn_00690_2014 crossref_primary_10_1371_journal_pone_0085109 crossref_primary_10_1073_pnas_1406549111 crossref_primary_10_1109_TBME_2019_2906114 crossref_primary_10_1007_s00701_016_2942_x crossref_primary_10_3389_fncel_2021_784045 crossref_primary_10_1016_j_neuroimage_2015_11_017 crossref_primary_10_1016_j_brs_2025_01_011 crossref_primary_10_3389_fnsys_2014_00095 crossref_primary_10_2139_ssrn_3385138 crossref_primary_10_1007_s11655_017_2975_x crossref_primary_10_1073_pnas_2024121118 crossref_primary_10_1109_TNSRE_2017_2707100 crossref_primary_10_3389_fnsys_2020_00038 crossref_primary_10_1093_braincomms_fcaf006 crossref_primary_10_1007_s12264_018_0213_y crossref_primary_10_3390_cells8091005 crossref_primary_10_1016_j_mex_2019_10_012 crossref_primary_10_1109_TNSRE_2020_2978865 crossref_primary_10_1016_j_neulet_2018_06_041 crossref_primary_10_1007_s11571_024_10182_1 crossref_primary_10_52662_jksfn_2021_00073 crossref_primary_10_1093_cercor_bhae294 crossref_primary_10_1093_cercor_bhz172 crossref_primary_10_1016_j_nbd_2018_05_013 crossref_primary_10_1016_j_neuron_2015_03_034 crossref_primary_10_1038_s41598_018_27195_6 crossref_primary_10_1016_j_expneurol_2022_114031 crossref_primary_10_1038_ncomms15834 crossref_primary_10_3390_bios10100136 crossref_primary_10_1038_519299a crossref_primary_10_1523_JNEUROSCI_1798_22_2023 crossref_primary_10_1523_JNEUROSCI_1327_18_2018 crossref_primary_10_1016_j_neubiorev_2013_09_008 crossref_primary_10_1007_s10548_017_0597_4 crossref_primary_10_1038_nrn3469 crossref_primary_10_1177_1073858415581986 crossref_primary_10_1088_1741_2552_aacbff crossref_primary_10_1152_jn_00353_2021 crossref_primary_10_1093_cercor_bhz281 crossref_primary_10_1016_j_nbd_2024_106755 crossref_primary_10_1038_s41467_021_25366_0 crossref_primary_10_1152_jn_00104_2016 crossref_primary_10_1007_s12035_023_03668_2 crossref_primary_10_1016_j_bbr_2018_02_014 crossref_primary_10_1016_j_cobme_2018_08_008 crossref_primary_10_1152_jn_00929_2017 crossref_primary_10_1002_mds_27952 crossref_primary_10_1016_j_expneurol_2017_11_006 crossref_primary_10_1172_JCI75587 |
Cites_doi | 10.1212/WNL.59.5.700 10.1002/cne.902360103 10.1111/j.1460-9568.2006.04638.x 10.1111/j.1460-9568.2005.03973.x 10.1523/JNEUROSCI.22-11-04639.2002 10.1152/physrev.00048.2009 10.1007/BF02345014 10.1016/j.neubiorev.2007.06.003 10.1212/WNL.0b013e31825dcdc1 10.1212/WNL.0b013e31820ce6bb 10.1016/j.neubiorev.2007.09.002 10.1016/j.tins.2007.05.004 10.1016/j.clinph.2008.07.217 10.1523/JNEUROSCI.23-25-08743.2003 10.1212/WNL.58.11.1665 10.1111/j.1460-9568.2010.07413.x 10.1152/jn.2001.85.4.1351 10.1016/j.conb.2010.02.015 10.1111/j.1460-9568.1993.tb00505.x 10.3389/fnsys.2011.00050 10.1113/jphysiol.1964.sp007336 10.1152/jn.00305.2006 10.1002/ana.410420303 10.1002/mds.21796 10.1111/j.1460-9568.2008.06229.x 10.1523/JNEUROSCI.4848-03.2004 10.1093/cercor/bhq217 10.1016/j.neuropsychologia.2010.12.030 10.1016/j.neuroscience.2011.06.048 10.1016/S1388-2457(00)00532-0 10.1016/j.pneurobio.2009.06.003 10.1016/j.nbd.2009.09.022 10.1523/JNEUROSCI.6135-10.2011 10.1001/archneur.58.7.1165 10.1523/JNEUROSCI.23-05-01916.2003 10.1523/JNEUROSCI.23-30-09929.2003 10.1523/JNEUROSCI.4331-11.2012 10.1016/j.neuron.2004.11.023 10.1159/000098600 10.1002/mds.21089 10.1152/jn.90844.2008 10.1126/science.1167093 10.1152/jn.1964.27.5.828 10.1152/jn.00808.2007 10.1016/S0306-4522(02)00538-9 10.1016/0006-8993(94)90397-2 10.1016/j.neuron.2011.08.023 10.1113/jphysiol.2006.124057 10.1159/000082778 10.1007/BF03324671 10.1016/j.clinph.2005.05.009 10.1002/mds.22120 10.1093/cercor/bhp269 10.1523/JNEUROSCI.5717-11.2012 10.1056/NEJMoa060281 10.1111/j.1460-9568.2005.03952.x 10.1002/mds.21691 10.1093/cercor/bhn149 10.1136/jnnp.2010.217489 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Dec 6, 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Dec 6, 2012 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1016/j.neuron.2012.09.032 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 1041 |
ExternalDocumentID | 3235646451 23217750 10_1016_j_neuron_2012_09_032 S0896627312008860 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- AAFWJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 ITC MVM OZT R2- X7M ZGI ZKB 0SF CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c535t-382287bae4bee5b68e3b049c05fcd948a28754df9e904020f69a2dd935791b7d3 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Mon Jul 21 11:41:23 EDT 2025 Thu Jul 10 22:09:55 EDT 2025 Fri Jul 25 11:17:09 EDT 2025 Thu Jan 02 22:14:52 EST 2025 Tue Jul 01 01:16:05 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Fri Feb 23 02:11:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-382287bae4bee5b68e3b049c05fcd948a28754df9e904020f69a2dd935791b7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627312008860 |
PMID | 23217750 |
PQID | 1503848263 |
PQPubID | 2031076 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1272739908 proquest_miscellaneous_1237509730 proquest_journals_1503848263 pubmed_primary_23217750 crossref_primary_10_1016_j_neuron_2012_09_032 crossref_citationtrail_10_1016_j_neuron_2012_09_032 elsevier_sciencedirect_doi_10_1016_j_neuron_2012_09_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-06 |
PublicationDateYYYYMMDD | 2012-12-06 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Rosin, Slovik, Mitelman, Rivlin-Etzion, Haber, Israel, Vaadia, Bergman (bib55) 2011; 72 Brown, Williams (bib8) 2005; 116 Kuriakose, Saha, Castillo, Udupa, Ni, Gunraj, Mazzella, Hamani, Lang, Moro (bib35) 2010; 20 Maurice, Thierry, Glowinski, Deniau (bib43) 2003; 23 Lemon (bib38) 1984 Limousin, Greene, Pollak, Rothwell, Benabid, Frackowiak (bib40) 1997; 42 Gubellini, Salin, Kerkerian-Le Goff, Baunez (bib29) 2009; 89 Li, Arbuthnott, Jutras, Goldberg, Jaeger (bib39) 2007; 98 Kita, Kita (bib34) 2012; 32 Benvenuti, Cecchi, Colombini, Gori (bib6) 2006; 18 Brown, Eusebio (bib9) 2008; 23 Degos, Deniau, Le Cam, Mailly, Maurice (bib15) 2008; 27 Afsharpour (bib1) 1985; 236 Naito, Kita (bib48) 1994; 653 Pasquereau, Turner (bib50) 2011; 21 Wilson, Beverlin, Netoff (bib62) 2011; 5 Mure, Tang, Argyelan, Ghilardi, Kaplitt, Dhawan, Eidelberg (bib47) 2012; 32 MacKinnon, Webb, Silberstein, Tisch, Asselman, Limousin, Rothwell (bib41) 2005; 21 Deniau, Degos, Bosch, Maurice (bib17) 2010; 32 Swann, Poizner, Houser, Gould, Greenhouse, Cai, Strunk, George, Aron (bib59) 2011; 31 Weaver, Follett, Stern, Luo, Harris, Hur, Marks, Rothlind, Sagher, Moy (bib60) 2012; 79 Goldberg, Boraud, Maraton, Haber, Vaadia, Bergman (bib25) 2002; 22 Eusebio, Thevathasan, Doyle Gaynor, Pogosyan, Bye, Foltynie, Zrinzo, Ashkan, Aziz, Brown (bib22) 2011; 82 Ashby, Paradiso, Saint-Cyr, Chen, Lang, Lozano (bib2) 2001; 112 Cunic, Roshan, Khan, Lozano, Lang, Chen (bib12) 2002; 58 Debanne, Campanac, Bialowas, Carlier, Alcaraz (bib14) 2011; 91 Lee, Blaha, Harris, Cooper, Hitti, Leiter, Roberts, Kim (bib36) 2006; 23 Deuschl, Schade-Brittinger, Krack, Volkmann, Schäfer, Bötzel, Daniels, Deutschländer, Dillmann, Eisner (bib18) 2006; 355 Engel, Fries (bib21) 2010; 20 Lehmkuhle, Bhangoo, Kipke (bib37) 2009; 102 Dejean, Hyland, Arbuthnott (bib16) 2009; 19 Strafella, Lozano, Lang, Ko, Poon, Moro (bib58) 2007; 22 Beurrier, Bioulac, Audin, Hammond (bib7) 2001; 85 Obeso, Rodriguez, Guridi, Alvarez, Alvarez, Macias, Juncos, DeLong (bib49) 2001; 58 Magariños-Ascone, Pazo, Macadar, Buño (bib42) 2002; 115 Montgomery, Gale (bib46) 2008; 32 Goldberg, Rokni, Boraud, Vaadia, Bergman (bib26) 2004; 24 Miocinovic, Parent, Butson, Hahn, Russo, Vitek, McIntyre (bib45) 2006; 96 Eggers, Fink, Nowak (bib20) 2010; 257 Phillips (bib51) 1959; 44 Romanelli, Bronte-Stewart, Heit, Schaal, Esposito (bib54) 2004; 82 Chang, Shi, Luo, Zhang, Woodward (bib10) 2008; 32 Greenhouse, Gould, Houser, Hicks, Gross, Aron (bib28) 2011; 49 Hammond, Bergman, Brown (bib30) 2007; 30 Hashimoto, Elder, Okun, Patrick, Vitek (bib32) 2003; 23 Benazzouz, Gross, Féger, Boraud, Bioulac (bib4) 1993; 5 Chomiak, Hu (bib11) 2007; 579 Hammond, Ammari, Bioulac, Garcia (bib31) 2008; 23 Sharott, Magill, Harnack, Kupsch, Meissner, Brown (bib56) 2005; 21 Porter, Sanderson (bib52) 1964; 170 Däuper, Peschel, Schrader, Kohlmetz, Joppich, Nager, Dengler, Rollnik (bib13) 2002; 59 Richardson, McIntyre, Grill (bib53) 2000; 38 Stefanis, Jasper (bib57) 1964; 27 Wichmann, Dostrovsky (bib61) 2011; 198 Benninger, Berman, Houdayer, Pal, Luckenbaugh, Schneider, Miranda, Hallett (bib5) 2011; 76 Drouot, Oshino, Jarraya, Besret, Kishima, Remy, Dauguet, Lefaucheur, Dollé, Condé (bib19) 2004; 44 Gradinaru, Mogri, Thompson, Henderson, Deisseroth (bib27) 2009; 324 Khedr, Rothwell, Shawky, Ahmed, Hamdy (bib33) 2006; 21 Benabid, Pollak, Gross, Hoffmann, Benazzouz, Gao, Laurent, Gentil, Perret (bib3) 1994; 62 Garcia, Audin, D’Alessandro, Bioulac, Hammond (bib24) 2003; 23 McIntyre, Hahn (bib44) 2010; 38 Fraix, Pollak, Vercueil, Benabid, Mauguière (bib23) 2008; 119 Benabid (10.1016/j.neuron.2012.09.032_bib3) 1994; 62 Deniau (10.1016/j.neuron.2012.09.032_bib17) 2010; 32 Gradinaru (10.1016/j.neuron.2012.09.032_bib27) 2009; 324 Brown (10.1016/j.neuron.2012.09.032_bib8) 2005; 116 Richardson (10.1016/j.neuron.2012.09.032_bib53) 2000; 38 Däuper (10.1016/j.neuron.2012.09.032_bib13) 2002; 59 Gubellini (10.1016/j.neuron.2012.09.032_bib29) 2009; 89 Rosin (10.1016/j.neuron.2012.09.032_bib55) 2011; 72 Deuschl (10.1016/j.neuron.2012.09.032_bib18) 2006; 355 Wilson (10.1016/j.neuron.2012.09.032_bib62) 2011; 5 Kita (10.1016/j.neuron.2012.09.032_bib34) 2012; 32 Magariños-Ascone (10.1016/j.neuron.2012.09.032_bib42) 2002; 115 Benninger (10.1016/j.neuron.2012.09.032_bib5) 2011; 76 Eggers (10.1016/j.neuron.2012.09.032_bib20) 2010; 257 Brown (10.1016/j.neuron.2012.09.032_bib9) 2008; 23 Stefanis (10.1016/j.neuron.2012.09.032_bib57) 1964; 27 Chomiak (10.1016/j.neuron.2012.09.032_bib11) 2007; 579 Lee (10.1016/j.neuron.2012.09.032_bib36) 2006; 23 Drouot (10.1016/j.neuron.2012.09.032_bib19) 2004; 44 McIntyre (10.1016/j.neuron.2012.09.032_bib44) 2010; 38 Obeso (10.1016/j.neuron.2012.09.032_bib49) 2001; 58 Pasquereau (10.1016/j.neuron.2012.09.032_bib50) 2011; 21 Phillips (10.1016/j.neuron.2012.09.032_bib51) 1959; 44 Goldberg (10.1016/j.neuron.2012.09.032_bib26) 2004; 24 Maurice (10.1016/j.neuron.2012.09.032_bib43) 2003; 23 Benvenuti (10.1016/j.neuron.2012.09.032_bib6) 2006; 18 Chang (10.1016/j.neuron.2012.09.032_bib10) 2008; 32 Hashimoto (10.1016/j.neuron.2012.09.032_bib32) 2003; 23 Sharott (10.1016/j.neuron.2012.09.032_bib56) 2005; 21 Kuriakose (10.1016/j.neuron.2012.09.032_bib35) 2010; 20 Garcia (10.1016/j.neuron.2012.09.032_bib24) 2003; 23 Lehmkuhle (10.1016/j.neuron.2012.09.032_bib37) 2009; 102 MacKinnon (10.1016/j.neuron.2012.09.032_bib41) 2005; 21 Cunic (10.1016/j.neuron.2012.09.032_bib12) 2002; 58 Porter (10.1016/j.neuron.2012.09.032_bib52) 1964; 170 Fraix (10.1016/j.neuron.2012.09.032_bib23) 2008; 119 Miocinovic (10.1016/j.neuron.2012.09.032_bib45) 2006; 96 Li (10.1016/j.neuron.2012.09.032_bib39) 2007; 98 Beurrier (10.1016/j.neuron.2012.09.032_bib7) 2001; 85 Naito (10.1016/j.neuron.2012.09.032_bib48) 1994; 653 Engel (10.1016/j.neuron.2012.09.032_bib21) 2010; 20 Romanelli (10.1016/j.neuron.2012.09.032_bib54) 2004; 82 Mure (10.1016/j.neuron.2012.09.032_bib47) 2012; 32 Greenhouse (10.1016/j.neuron.2012.09.032_bib28) 2011; 49 Strafella (10.1016/j.neuron.2012.09.032_bib58) 2007; 22 Swann (10.1016/j.neuron.2012.09.032_bib59) 2011; 31 Wichmann (10.1016/j.neuron.2012.09.032_bib61) 2011; 198 Hammond (10.1016/j.neuron.2012.09.032_bib30) 2007; 30 Eusebio (10.1016/j.neuron.2012.09.032_bib22) 2011; 82 Afsharpour (10.1016/j.neuron.2012.09.032_bib1) 1985; 236 Limousin (10.1016/j.neuron.2012.09.032_bib40) 1997; 42 Benazzouz (10.1016/j.neuron.2012.09.032_bib4) 1993; 5 Goldberg (10.1016/j.neuron.2012.09.032_bib25) 2002; 22 Dejean (10.1016/j.neuron.2012.09.032_bib16) 2009; 19 Debanne (10.1016/j.neuron.2012.09.032_bib14) 2011; 91 Degos (10.1016/j.neuron.2012.09.032_bib15) 2008; 27 Lemon (10.1016/j.neuron.2012.09.032_bib38) 1984 Weaver (10.1016/j.neuron.2012.09.032_bib60) 2012; 79 Hammond (10.1016/j.neuron.2012.09.032_bib31) 2008; 23 Montgomery (10.1016/j.neuron.2012.09.032_bib46) 2008; 32 Ashby (10.1016/j.neuron.2012.09.032_bib2) 2001; 112 Khedr (10.1016/j.neuron.2012.09.032_bib33) 2006; 21 |
References_xml | – volume: 355 start-page: 896 year: 2006 end-page: 908 ident: bib18 article-title: A randomized trial of deep-brain stimulation for Parkinson’s disease publication-title: N. Engl. J. Med. – volume: 44 start-page: 1 year: 1959 end-page: 25 ident: bib51 article-title: Actions of antidromic pyramidal volleys on single Betz cells in the cat publication-title: Q. J. Exp. Physiol. Cogn. Med. Sci. – volume: 5 start-page: 382 year: 1993 end-page: 389 ident: bib4 article-title: Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys publication-title: Eur. J. Neurosci. – volume: 20 start-page: 156 year: 2010 end-page: 165 ident: bib21 article-title: Beta-band oscillations—signalling the status quo? publication-title: Curr. Opin. Neurobiol. – volume: 21 start-page: 1413 year: 2005 end-page: 1422 ident: bib56 article-title: Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat publication-title: Eur. J. Neurosci. – volume: 21 start-page: 1362 year: 2011 end-page: 1378 ident: bib50 article-title: Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons publication-title: Cereb. Cortex – volume: 116 start-page: 2510 year: 2005 end-page: 2519 ident: bib8 article-title: Basal ganglia local field potential activity: character and functional significance in the human publication-title: Clin. Neurophysiol. – volume: 96 start-page: 1569 year: 2006 end-page: 1580 ident: bib45 article-title: Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation publication-title: J. Neurophysiol. – volume: 85 start-page: 1351 year: 2001 end-page: 1356 ident: bib7 article-title: High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons publication-title: J. Neurophysiol. – volume: 32 start-page: 1080 year: 2010 end-page: 1091 ident: bib17 article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition publication-title: Eur. J. Neurosci. – volume: 44 start-page: 769 year: 2004 end-page: 778 ident: bib19 article-title: Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation publication-title: Neuron – volume: 32 start-page: 2804 year: 2012 end-page: 2813 ident: bib47 article-title: Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation publication-title: J. Neurosci. – volume: 22 start-page: 2113 year: 2007 end-page: 2116 ident: bib58 article-title: Subdural motor cortex stimulation in Parkinson’s disease does not modify movement-related rCBF pattern publication-title: Mov. Disord. – volume: 24 start-page: 6003 year: 2004 end-page: 6010 ident: bib26 article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials publication-title: J. Neurosci. – volume: 23 start-page: 12 year: 2008 end-page: 20 ident: bib9 article-title: Paradoxes of functional neurosurgery: clues from basal ganglia recordings publication-title: Mov. Disord. – volume: 91 start-page: 555 year: 2011 end-page: 602 ident: bib14 article-title: Axon physiology publication-title: Physiol. Rev. – volume: 38 start-page: 329 year: 2010 end-page: 337 ident: bib44 article-title: Network perspectives on the mechanisms of deep brain stimulation publication-title: Neurobiol. Dis. – volume: 236 start-page: 14 year: 1985 end-page: 28 ident: bib1 article-title: Topographical projections of the cerebral cortex to the subthalamic nucleus publication-title: J. Comp. Neurol. – volume: 32 start-page: 5990 year: 2012 end-page: 5999 ident: bib34 article-title: The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat publication-title: J. Neurosci. – volume: 23 start-page: 8743 year: 2003 end-page: 8751 ident: bib24 article-title: Dual effect of high-frequency stimulation on subthalamic neuron activity publication-title: J. Neurosci. – volume: 59 start-page: 700 year: 2002 end-page: 706 ident: bib13 article-title: Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability publication-title: Neurology – volume: 19 start-page: 1055 year: 2009 end-page: 1063 ident: bib16 article-title: Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia publication-title: Cereb. Cortex – volume: 82 start-page: 222 year: 2004 end-page: 229 ident: bib54 article-title: The functional organization of the sensorimotor region of the subthalamic nucleus publication-title: Stereotact. Funct. Neurosurg. – volume: 22 start-page: 4639 year: 2002 end-page: 4653 ident: bib25 article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease publication-title: J. Neurosci. – volume: 89 start-page: 79 year: 2009 end-page: 123 ident: bib29 article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior publication-title: Prog. Neurobiol. – volume: 324 start-page: 354 year: 2009 end-page: 359 ident: bib27 article-title: Optical deconstruction of parkinsonian neural circuitry publication-title: Science – volume: 112 start-page: 431 year: 2001 end-page: 437 ident: bib2 article-title: Potentials recorded at the scalp by stimulation near the human subthalamic nucleus publication-title: Clin. Neurophysiol. – volume: 102 start-page: 1811 year: 2009 end-page: 1820 ident: bib37 article-title: The electrocorticogram signal can be modulated with deep brain stimulation of the subthalamic nucleus in the hemiparkinsonian rat publication-title: J. Neurophysiol. – volume: 76 start-page: 601 year: 2011 end-page: 609 ident: bib5 article-title: Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease publication-title: Neurology – volume: 79 start-page: 55 year: 2012 end-page: 65 ident: bib60 article-title: Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes publication-title: Neurology – volume: 32 start-page: 352 year: 2008 end-page: 366 ident: bib10 article-title: Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson’s disease publication-title: Neurosci. Biobehav. Rev. – volume: 23 start-page: 1916 year: 2003 end-page: 1923 ident: bib32 article-title: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons publication-title: J. Neurosci. – volume: 579 start-page: 403 year: 2007 end-page: 412 ident: bib11 article-title: Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain publication-title: J. Physiol. – volume: 49 start-page: 528 year: 2011 end-page: 534 ident: bib28 article-title: Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinson’s disease publication-title: Neuropsychologia – volume: 27 start-page: 2599 year: 2008 end-page: 2610 ident: bib15 article-title: Evidence for a direct subthalamo-cortical loop circuit in the rat publication-title: Eur. J. Neurosci. – volume: 27 start-page: 828 year: 1964 end-page: 854 ident: bib57 article-title: Intracellular Microelectrode Studies of Antidromic Responses in Cortical Pyramidal Tract Neurons publication-title: J. Neurophysiol. – volume: 98 start-page: 3525 year: 2007 end-page: 3537 ident: bib39 article-title: Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation publication-title: J. Neurophysiol. – volume: 119 start-page: 2513 year: 2008 end-page: 2518 ident: bib23 article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease publication-title: Clin. Neurophysiol. – volume: 5 start-page: 50 year: 2011 ident: bib62 article-title: Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation publication-title: Front. Syst. Neurosci. – volume: 32 start-page: 388 year: 2008 end-page: 407 ident: bib46 article-title: Mechanisms of action of deep brain stimulation(DBS) publication-title: Neurosci. Biobehav. Rev. – volume: 20 start-page: 1926 year: 2010 end-page: 1936 ident: bib35 article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease publication-title: Cereb. Cortex – volume: 18 start-page: 347 year: 2006 end-page: 348 ident: bib6 article-title: Extradural motor cortex stimulation as a method to treat advanced Parkinson’s disease: new perspectives in geriatric medicine publication-title: Aging Clin. Exp. Res. – volume: 82 start-page: 569 year: 2011 end-page: 573 ident: bib22 article-title: Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 42 start-page: 283 year: 1997 end-page: 291 ident: bib40 article-title: Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease publication-title: Ann. Neurol. – volume: 58 start-page: 1665 year: 2002 end-page: 1672 ident: bib12 article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease publication-title: Neurology – volume: 653 start-page: 251 year: 1994 end-page: 257 ident: bib48 article-title: The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine publication-title: Brain Res. – volume: 115 start-page: 1109 year: 2002 end-page: 1117 ident: bib42 article-title: High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson’s disease publication-title: Neuroscience – year: 1984 ident: bib38 article-title: Methods for Neuronal Recording in Conscious Animals – volume: 72 start-page: 370 year: 2011 end-page: 384 ident: bib55 article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism publication-title: Neuron – volume: 170 start-page: 355 year: 1964 end-page: 370 ident: bib52 article-title: Antidromic Cortical Response to Pyramidal-Tract Stimulation in the Rat publication-title: J. Physiol. – volume: 198 start-page: 232 year: 2011 end-page: 244 ident: bib61 article-title: Pathological basal ganglia activity in movement disorders publication-title: Neuroscience – volume: 23 start-page: 2111 year: 2008 end-page: 2121 ident: bib31 article-title: Latest view on the mechanism of action of deep brain stimulation publication-title: Mov. Disord. – volume: 38 start-page: 438 year: 2000 end-page: 446 ident: bib53 article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath publication-title: Med. Biol. Eng. Comput. – volume: 21 start-page: 1394 year: 2005 end-page: 1402 ident: bib41 article-title: Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson’s disease publication-title: Eur. J. Neurosci. – volume: 23 start-page: 1005 year: 2006 end-page: 1014 ident: bib36 article-title: Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease publication-title: Eur. J. Neurosci. – volume: 62 start-page: 76 year: 1994 end-page: 84 ident: bib3 article-title: Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease publication-title: Stereotact. Funct. Neurosurg. – volume: 21 start-page: 2201 year: 2006 end-page: 2205 ident: bib33 article-title: Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease publication-title: Mov. Disord. – volume: 257 start-page: 1669 year: 2010 end-page: 1674 ident: bib20 article-title: Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson’s disease publication-title: J. Neurol. – volume: 58 start-page: 1165 year: 2001 end-page: 1166 ident: bib49 article-title: Lesion of the basal ganglia and surgery for Parkinson disease publication-title: Arch. Neurol. – volume: 31 start-page: 5721 year: 2011 end-page: 5729 ident: bib59 article-title: Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease publication-title: J. Neurosci. – volume: 23 start-page: 9929 year: 2003 end-page: 9936 ident: bib43 article-title: Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus publication-title: J. Neurosci. – volume: 30 start-page: 357 year: 2007 end-page: 364 ident: bib30 article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments publication-title: Trends Neurosci. – volume: 59 start-page: 700 year: 2002 ident: 10.1016/j.neuron.2012.09.032_bib13 article-title: Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability publication-title: Neurology doi: 10.1212/WNL.59.5.700 – volume: 236 start-page: 14 year: 1985 ident: 10.1016/j.neuron.2012.09.032_bib1 article-title: Topographical projections of the cerebral cortex to the subthalamic nucleus publication-title: J. Comp. Neurol. doi: 10.1002/cne.902360103 – volume: 23 start-page: 1005 year: 2006 ident: 10.1016/j.neuron.2012.09.032_bib36 article-title: Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2006.04638.x – volume: 21 start-page: 1413 year: 2005 ident: 10.1016/j.neuron.2012.09.032_bib56 article-title: Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.03973.x – volume: 22 start-page: 4639 year: 2002 ident: 10.1016/j.neuron.2012.09.032_bib25 article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-11-04639.2002 – volume: 44 start-page: 1 year: 1959 ident: 10.1016/j.neuron.2012.09.032_bib51 article-title: Actions of antidromic pyramidal volleys on single Betz cells in the cat publication-title: Q. J. Exp. Physiol. Cogn. Med. Sci. – volume: 91 start-page: 555 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib14 article-title: Axon physiology publication-title: Physiol. Rev. doi: 10.1152/physrev.00048.2009 – volume: 38 start-page: 438 year: 2000 ident: 10.1016/j.neuron.2012.09.032_bib53 article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345014 – volume: 32 start-page: 388 year: 2008 ident: 10.1016/j.neuron.2012.09.032_bib46 article-title: Mechanisms of action of deep brain stimulation(DBS) publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2007.06.003 – volume: 79 start-page: 55 year: 2012 ident: 10.1016/j.neuron.2012.09.032_bib60 article-title: Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes publication-title: Neurology doi: 10.1212/WNL.0b013e31825dcdc1 – volume: 76 start-page: 601 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib5 article-title: Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e31820ce6bb – year: 1984 ident: 10.1016/j.neuron.2012.09.032_bib38 – volume: 32 start-page: 352 year: 2008 ident: 10.1016/j.neuron.2012.09.032_bib10 article-title: Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson’s disease publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2007.09.002 – volume: 30 start-page: 357 year: 2007 ident: 10.1016/j.neuron.2012.09.032_bib30 article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.05.004 – volume: 119 start-page: 2513 year: 2008 ident: 10.1016/j.neuron.2012.09.032_bib23 article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.07.217 – volume: 23 start-page: 8743 year: 2003 ident: 10.1016/j.neuron.2012.09.032_bib24 article-title: Dual effect of high-frequency stimulation on subthalamic neuron activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-25-08743.2003 – volume: 257 start-page: 1669 year: 2010 ident: 10.1016/j.neuron.2012.09.032_bib20 article-title: Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson’s disease publication-title: J. Neurol. – volume: 58 start-page: 1665 year: 2002 ident: 10.1016/j.neuron.2012.09.032_bib12 article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease publication-title: Neurology doi: 10.1212/WNL.58.11.1665 – volume: 32 start-page: 1080 year: 2010 ident: 10.1016/j.neuron.2012.09.032_bib17 article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2010.07413.x – volume: 85 start-page: 1351 year: 2001 ident: 10.1016/j.neuron.2012.09.032_bib7 article-title: High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.85.4.1351 – volume: 20 start-page: 156 year: 2010 ident: 10.1016/j.neuron.2012.09.032_bib21 article-title: Beta-band oscillations—signalling the status quo? publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.02.015 – volume: 5 start-page: 382 year: 1993 ident: 10.1016/j.neuron.2012.09.032_bib4 article-title: Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.1993.tb00505.x – volume: 5 start-page: 50 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib62 article-title: Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00050 – volume: 170 start-page: 355 year: 1964 ident: 10.1016/j.neuron.2012.09.032_bib52 article-title: Antidromic Cortical Response to Pyramidal-Tract Stimulation in the Rat publication-title: J. Physiol. doi: 10.1113/jphysiol.1964.sp007336 – volume: 96 start-page: 1569 year: 2006 ident: 10.1016/j.neuron.2012.09.032_bib45 article-title: Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation publication-title: J. Neurophysiol. doi: 10.1152/jn.00305.2006 – volume: 42 start-page: 283 year: 1997 ident: 10.1016/j.neuron.2012.09.032_bib40 article-title: Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease publication-title: Ann. Neurol. doi: 10.1002/ana.410420303 – volume: 23 start-page: 12 year: 2008 ident: 10.1016/j.neuron.2012.09.032_bib9 article-title: Paradoxes of functional neurosurgery: clues from basal ganglia recordings publication-title: Mov. Disord. doi: 10.1002/mds.21796 – volume: 27 start-page: 2599 year: 2008 ident: 10.1016/j.neuron.2012.09.032_bib15 article-title: Evidence for a direct subthalamo-cortical loop circuit in the rat publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06229.x – volume: 24 start-page: 6003 year: 2004 ident: 10.1016/j.neuron.2012.09.032_bib26 article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4848-03.2004 – volume: 21 start-page: 1362 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib50 article-title: Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq217 – volume: 49 start-page: 528 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib28 article-title: Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinson’s disease publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2010.12.030 – volume: 198 start-page: 232 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib61 article-title: Pathological basal ganglia activity in movement disorders publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.06.048 – volume: 112 start-page: 431 year: 2001 ident: 10.1016/j.neuron.2012.09.032_bib2 article-title: Potentials recorded at the scalp by stimulation near the human subthalamic nucleus publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00532-0 – volume: 89 start-page: 79 year: 2009 ident: 10.1016/j.neuron.2012.09.032_bib29 article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2009.06.003 – volume: 38 start-page: 329 year: 2010 ident: 10.1016/j.neuron.2012.09.032_bib44 article-title: Network perspectives on the mechanisms of deep brain stimulation publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2009.09.022 – volume: 31 start-page: 5721 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib59 article-title: Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6135-10.2011 – volume: 58 start-page: 1165 year: 2001 ident: 10.1016/j.neuron.2012.09.032_bib49 article-title: Lesion of the basal ganglia and surgery for Parkinson disease publication-title: Arch. Neurol. doi: 10.1001/archneur.58.7.1165 – volume: 23 start-page: 1916 year: 2003 ident: 10.1016/j.neuron.2012.09.032_bib32 article-title: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-05-01916.2003 – volume: 23 start-page: 9929 year: 2003 ident: 10.1016/j.neuron.2012.09.032_bib43 article-title: Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-30-09929.2003 – volume: 32 start-page: 2804 year: 2012 ident: 10.1016/j.neuron.2012.09.032_bib47 article-title: Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4331-11.2012 – volume: 44 start-page: 769 year: 2004 ident: 10.1016/j.neuron.2012.09.032_bib19 article-title: Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation publication-title: Neuron doi: 10.1016/j.neuron.2004.11.023 – volume: 62 start-page: 76 year: 1994 ident: 10.1016/j.neuron.2012.09.032_bib3 article-title: Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000098600 – volume: 21 start-page: 2201 year: 2006 ident: 10.1016/j.neuron.2012.09.032_bib33 article-title: Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.21089 – volume: 102 start-page: 1811 year: 2009 ident: 10.1016/j.neuron.2012.09.032_bib37 article-title: The electrocorticogram signal can be modulated with deep brain stimulation of the subthalamic nucleus in the hemiparkinsonian rat publication-title: J. Neurophysiol. doi: 10.1152/jn.90844.2008 – volume: 324 start-page: 354 year: 2009 ident: 10.1016/j.neuron.2012.09.032_bib27 article-title: Optical deconstruction of parkinsonian neural circuitry publication-title: Science doi: 10.1126/science.1167093 – volume: 27 start-page: 828 year: 1964 ident: 10.1016/j.neuron.2012.09.032_bib57 article-title: Intracellular Microelectrode Studies of Antidromic Responses in Cortical Pyramidal Tract Neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.1964.27.5.828 – volume: 98 start-page: 3525 year: 2007 ident: 10.1016/j.neuron.2012.09.032_bib39 article-title: Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation publication-title: J. Neurophysiol. doi: 10.1152/jn.00808.2007 – volume: 115 start-page: 1109 year: 2002 ident: 10.1016/j.neuron.2012.09.032_bib42 article-title: High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson’s disease publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00538-9 – volume: 653 start-page: 251 year: 1994 ident: 10.1016/j.neuron.2012.09.032_bib48 article-title: The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine publication-title: Brain Res. doi: 10.1016/0006-8993(94)90397-2 – volume: 72 start-page: 370 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib55 article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism publication-title: Neuron doi: 10.1016/j.neuron.2011.08.023 – volume: 579 start-page: 403 year: 2007 ident: 10.1016/j.neuron.2012.09.032_bib11 article-title: Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.124057 – volume: 82 start-page: 222 year: 2004 ident: 10.1016/j.neuron.2012.09.032_bib54 article-title: The functional organization of the sensorimotor region of the subthalamic nucleus publication-title: Stereotact. Funct. Neurosurg. doi: 10.1159/000082778 – volume: 18 start-page: 347 year: 2006 ident: 10.1016/j.neuron.2012.09.032_bib6 article-title: Extradural motor cortex stimulation as a method to treat advanced Parkinson’s disease: new perspectives in geriatric medicine publication-title: Aging Clin. Exp. Res. doi: 10.1007/BF03324671 – volume: 116 start-page: 2510 year: 2005 ident: 10.1016/j.neuron.2012.09.032_bib8 article-title: Basal ganglia local field potential activity: character and functional significance in the human publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.05.009 – volume: 23 start-page: 2111 year: 2008 ident: 10.1016/j.neuron.2012.09.032_bib31 article-title: Latest view on the mechanism of action of deep brain stimulation publication-title: Mov. Disord. doi: 10.1002/mds.22120 – volume: 20 start-page: 1926 year: 2010 ident: 10.1016/j.neuron.2012.09.032_bib35 article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp269 – volume: 32 start-page: 5990 year: 2012 ident: 10.1016/j.neuron.2012.09.032_bib34 article-title: The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5717-11.2012 – volume: 355 start-page: 896 year: 2006 ident: 10.1016/j.neuron.2012.09.032_bib18 article-title: A randomized trial of deep-brain stimulation for Parkinson’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa060281 – volume: 21 start-page: 1394 year: 2005 ident: 10.1016/j.neuron.2012.09.032_bib41 article-title: Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson’s disease publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.03952.x – volume: 22 start-page: 2113 year: 2007 ident: 10.1016/j.neuron.2012.09.032_bib58 article-title: Subdural motor cortex stimulation in Parkinson’s disease does not modify movement-related rCBF pattern publication-title: Mov. Disord. doi: 10.1002/mds.21691 – volume: 19 start-page: 1055 year: 2009 ident: 10.1016/j.neuron.2012.09.032_bib16 article-title: Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn149 – volume: 82 start-page: 569 year: 2011 ident: 10.1016/j.neuron.2012.09.032_bib22 article-title: Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2010.217489 |
RelatedPersons | Eusebio |
RelatedPersons_xml | – fullname: Eusebio |
SSID | ssj0014591 |
Score | 2.537827 |
Snippet | Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1030 |
SubjectTerms | Action Potentials - physiology Adrenergic Agents - toxicity Afferent Pathways - physiology Animals Antiparkinson Agents - therapeutic use Apomorphine - therapeutic use Basal ganglia Biophysics Brain Mapping Brain research Central nervous system diseases Cortex (motor) Deep brain stimulation Deep Brain Stimulation - methods Disease Models, Animal Dominance Dopamine EEG Electrical stimuli Electrodes Electrodes, Implanted Electroencephalography Electrophysiological recording Eusebio Evoked Potentials, Motor - physiology Experiments Firing pattern Fourier transforms Functional Laterality Globus pallidus Locomotion - physiology Male Medial Forebrain Bundle - drug effects Medial Forebrain Bundle - physiopathology Motor Cortex - pathology Motor Cortex - physiopathology Motor task performance Movement disorders Neurons Neurons - drug effects Neurons - physiology Oscillations Oxidopamine - toxicity Parkinson's disease Parkinsonian Disorders - chemically induced Parkinsonian Disorders - physiopathology Parkinsonian Disorders - therapy Rats Rats, Sprague-Dawley Rhythms Rodents Solitary tract nucleus Statistics as Topic Stochasticity Studies subthalamic nucleus Subthalamic Nucleus - physiology |
Title | Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex |
URI | https://dx.doi.org/10.1016/j.neuron.2012.09.032 https://www.ncbi.nlm.nih.gov/pubmed/23217750 https://www.proquest.com/docview/1503848263 https://www.proquest.com/docview/1237509730 https://www.proquest.com/docview/1272739908 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Kx6Avo2u7Lv0IKoy-mdiRLEuPSbbSD7qHfrC8CduSIKN1wuJC89_vTrYz-tAV-mjrZGSddPc76T4Avinhs7SQEpGbdmigaB8pTYar9N4mnpQOnUNe_5Tn9-Jymk43YNLFwpBbZSv7G5kepHX7ZtDO5mAxmw1uY6UpezlP6ApfSbLbuVAhiG86Xt8kiLSpmofEEVF34XPBxyvkjKQsqHQiSNlOh6-pp9fgZ1BDZ9vwqcWPbNQM8TNsuGoHdkcV2s6PK3bKgkdnOCrfgY9NocnVLkzv_oVZse_OLdiYSkOw23r22NbvYvhIIdAhGgzXDLvJ6yVrJOLDil10xUyW7HqOdjqbkJfu8x7cn_24m5xHbU2FqEx5WkccAYHKityJwjlkknK8QCOhjFNfWi1Ujq2psF47HZNp6aXOh9ZqnmY6KTLLv8BmNa_cV2DSSi-4pTIRUthcFza2QoqCl0lJidx6wLupNGWbcJzqXjyYzrPst2kYYIgBJtYGGdCDaN1r0STceIM-67hkXiwcgzrhjZ5HHVNNu3GXJqH0OAJtLt6Dk3Uzbjm6R8krN39CmiEnnIWy8X80BAxR1ase7DcLZv07CGKTDL9w8O6hH8IWPQW3GnkEm_WfJ3eM4Kgu-vBhdHXz66ofdsFfkf4NOw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hpom9oA3GKANmpGlvUZPaceJHKEMtUB5GkfpmJbEtFZW0okGi__3unKRoDwyJx8TnyPHZd7-z7wPgZypcEudSInJTFg0U5YJUkeEqnTORI6VD55CjGzm4E5eTeLIB_TYWhtwqG9lfy3QvrZs33WY2u4vptHsbpoqyl_OIrvBTiXb7B0QDCe3O4eRsfZUg4rpsHlIHRN7Gz3knL580ktKg0pEgpTvtvaafXsOfXg9dfIbtBkCy03qMX2DDljuwe1qi8fywYr-Yd-n0Z-U78LGuNLnahcn4Jc6KnVu7YGdUG4LdVtOHpoAXw0eKgfbhYLho2J-sWrJaJM5WbNhWM1my0RwNddYnN93nr3B38XvcHwRNUYWgiHlcBRwRQZrkmRW5tcil1PIcrYQijF1hlEgzbI2FccqqkGxLJ1XWM0bxOFFRnhi-B5vlvLT7wKSRTnBDdSKkMJnKTWiEFDkvooIyuXWAt1OpiybjOBW-mOnWtexe1wzQxAAdKo0M6ECw7rWoM268QZ-0XNL_rByNSuGNnoctU3Wzc5c6ovw4Ao0u3oGTdTPuObpIyUo7f0KaHieghcLxfzSEDFHXpx34Vi-Y9e8gio0S_MLBu4f-A7YG49G1vh7eXH2HT9TifWzkIWxWj0_2CJFSlR_7nfAXouYOuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+Deep+Brain+Stimulation+in+Parkinsonian+Rats+Directly+Influences+Motor+Cortex&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Li%2C+Qian&rft.au=Ke%2C+Ya&rft.au=Chan%2C+DannyCW&rft.au=Qian%2C+Zhong-Ming&rft.date=2012-12-06&rft.issn=0896-6273&rft.volume=76&rft.issue=5&rft.spage=1030&rft.epage=1041&rft_id=info:doi/10.1016%2Fj.neuron.2012.09.032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |