Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex

Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 76; no. 5; pp. 1030 - 1041
Main Authors Li, Qian, Ke, Ya, Chan, Danny C.W., Qian, Zhong-Ming, Yung, Ken K.L., Ko, Ho, Arbuthnott, Gordon W., Yung, Wing-Ho
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.12.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. ► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.
AbstractList Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. ► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.
Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
Author Li, Qian
Chan, Danny C.W.
Yung, Wing-Ho
Ko, Ho
Ke, Ya
Qian, Zhong-Ming
Arbuthnott, Gordon W.
Yung, Ken K.L.
Author_xml – sequence: 1
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
– sequence: 2
  givenname: Ya
  surname: Ke
  fullname: Ke, Ya
  email: yake@cuhk.edu.hk
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
– sequence: 3
  givenname: Danny C.W.
  surname: Chan
  fullname: Chan, Danny C.W.
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
– sequence: 4
  givenname: Zhong-Ming
  surname: Qian
  fullname: Qian, Zhong-Ming
  organization: School of Pharmacy, Fudan University, Shanghai 201203, China
– sequence: 5
  givenname: Ken K.L.
  surname: Yung
  fullname: Yung, Ken K.L.
  organization: Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
– sequence: 6
  givenname: Ho
  surname: Ko
  fullname: Ko, Ho
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
– sequence: 7
  givenname: Gordon W.
  surname: Arbuthnott
  fullname: Arbuthnott, Gordon W.
  organization: Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
– sequence: 8
  givenname: Wing-Ho
  surname: Yung
  fullname: Yung, Wing-Ho
  email: whyung@cuhk.edu.hk
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23217750$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFf4BQJC5cEsZfScwBCbZ8VCoCQZG4WY4zEV6y9mI7iP57vN3CoQfgNLLmeUfy-5yQIx88EvKQQkOBtk83jcclBt8woKwB1QBnd8iKgupqQZU6IivoVVu3rOPH5CSlDQAVUtF75JhxRrtOwop8ufyK0exwyc5WZ4i76mU0zlefstsus8ku-Ko8P5j4zfkUvDO--mhyqs5cRJvnq-rcT_OC3mKq3oUcYrUOMePP--TuZOaED27mKfn8-tXl-m198f7N-frFRW0ll7nmPWN9NxgUA6Ic2h75AEJZkJMdlehN2UoxTgoVCGAwtcqwcVRcdooO3chPyZPD3V0M3xdMWW9dsjjPxmNYkqasKwUoBf1_oLx0ojoOBX18C92EJfryEU0l8F70rOWFenRDLcMWR72Lbmvilf5dbwHEAbAxpBRx-oNQ0HuLeqMPFvXeogali8USe3YrZl2-dpGLnPlf4eeHMJbWfziMOlm39zNeG9NjcH8_8Au_qLli
CitedBy_id crossref_primary_10_1038_s41419_020_03105_5
crossref_primary_10_1016_j_nbd_2013_09_006
crossref_primary_10_1371_journal_pone_0099663
crossref_primary_10_1186_s40035_023_00390_w
crossref_primary_10_1016_j_biomaterials_2017_01_013
crossref_primary_10_4103_1673_5374_213532
crossref_primary_10_4103_1673_5374_392884
crossref_primary_10_1016_j_lfs_2022_120869
crossref_primary_10_1088_1741_2560_13_1_016013
crossref_primary_10_1016_j_neuroscience_2014_04_016
crossref_primary_10_1002_mrm_25239
crossref_primary_10_1016_j_brs_2016_10_005
crossref_primary_10_1186_s12929_021_00781_z
crossref_primary_10_1016_j_clinph_2019_11_015
crossref_primary_10_1038_nature12982
crossref_primary_10_1093_brain_aww020
crossref_primary_10_1111_ner_13165
crossref_primary_10_1007_s11682_016_9514_9
crossref_primary_10_1038_s41597_024_03356_3
crossref_primary_10_3389_fneur_2014_00213
crossref_primary_10_1093_brain_awy206
crossref_primary_10_1093_brain_awaa297
crossref_primary_10_1093_brain_awt304
crossref_primary_10_1038_s42003_021_01915_7
crossref_primary_10_1152_jn_00198_2020
crossref_primary_10_1016_j_cmpb_2015_05_011
crossref_primary_10_1523_JNEUROSCI_4676_12_2013
crossref_primary_10_3389_fneur_2018_00711
crossref_primary_10_1007_s00221_015_4532_1
crossref_primary_10_1093_brain_awu191
crossref_primary_10_1172_JCI122390
crossref_primary_10_1523_JNEUROSCI_0431_18_2018
crossref_primary_10_1162_nol_a_00086
crossref_primary_10_1038_ncomms11947
crossref_primary_10_3389_fnagi_2024_1413074
crossref_primary_10_1523_JNEUROSCI_2480_19_2020
crossref_primary_10_1016_j_brs_2020_03_005
crossref_primary_10_1109_TMBMC_2020_3036756
crossref_primary_10_1016_j_neurom_2021_11_002
crossref_primary_10_1371_journal_pone_0176132
crossref_primary_10_1016_j_neuropharm_2021_108881
crossref_primary_10_1038_s41598_025_89330_4
crossref_primary_10_3171_2020_10_JNS202277
crossref_primary_10_1088_1741_2552_abee50
crossref_primary_10_1093_brain_aww048
crossref_primary_10_1016_j_expneurol_2021_113926
crossref_primary_10_1111_ejn_13806
crossref_primary_10_3389_fnins_2015_00028
crossref_primary_10_1016_j_brs_2018_05_008
crossref_primary_10_1097_WNP_0000000000000137
crossref_primary_10_1016_j_nicl_2018_05_006
crossref_primary_10_1152_jn_00701_2014
crossref_primary_10_1523_JNEUROSCI_1753_21_2021
crossref_primary_10_1152_jn_00862_2017
crossref_primary_10_1038_s41467_020_16046_6
crossref_primary_10_1111_joa_12132
crossref_primary_10_1016_j_nbd_2016_07_021
crossref_primary_10_1016_j_nbd_2020_104807
crossref_primary_10_1016_j_expneurol_2022_114089
crossref_primary_10_1007_s10827_016_0593_9
crossref_primary_10_1002_ana_25776
crossref_primary_10_1177_1744806919845739
crossref_primary_10_1212_WNL_0000000000000315
crossref_primary_10_3389_fnins_2021_645849
crossref_primary_10_1093_cercor_bhy346
crossref_primary_10_1002_ctm2_70117
crossref_primary_10_1016_j_nbd_2022_105674
crossref_primary_10_1016_j_expneurol_2022_114210
crossref_primary_10_1109_TNSRE_2016_2608925
crossref_primary_10_3389_fnagi_2021_695108
crossref_primary_10_1093_braincomms_fcab273
crossref_primary_10_1038_s41583_020_0315_1
crossref_primary_10_1016_j_pharmthera_2023_108498
crossref_primary_10_1007_s40120_021_00318_4
crossref_primary_10_1038_nn_4082
crossref_primary_10_1038_s41531_023_00474_4
crossref_primary_10_1523_JNEUROSCI_0785_18_2018
crossref_primary_10_3389_fnins_2016_00110
crossref_primary_10_1371_journal_pone_0102576
crossref_primary_10_1109_TNNLS_2020_3009293
crossref_primary_10_3390_ijms232415862
crossref_primary_10_1093_brain_awz164
crossref_primary_10_1152_jn_00223_2015
crossref_primary_10_3389_fneur_2023_1216916
crossref_primary_10_1016_j_neuroimage_2016_10_049
crossref_primary_10_1093_brain_awad239
crossref_primary_10_1038_s41467_020_15352_3
crossref_primary_10_1038_nrdp_2017_13
crossref_primary_10_1016_j_clinph_2019_09_020
crossref_primary_10_1016_j_cobeha_2015_02_004
crossref_primary_10_3389_fncom_2014_00032
crossref_primary_10_3389_fnint_2016_00038
crossref_primary_10_3390_cells10030513
crossref_primary_10_1073_pnas_1214546110
crossref_primary_10_3389_fneur_2019_00419
crossref_primary_10_3389_fnhum_2019_00223
crossref_primary_10_1016_j_neuroimage_2013_08_026
crossref_primary_10_1007_s00702_017_1697_8
crossref_primary_10_1523_JNEUROSCI_3071_19_2020
crossref_primary_10_1111_cns_14638
crossref_primary_10_1038_nchina_2012_95
crossref_primary_10_1038_s41531_024_00829_5
crossref_primary_10_3389_fnhum_2022_1009223
crossref_primary_10_1038_s41531_022_00343_6
crossref_primary_10_1080_02688697_2019_1701630
crossref_primary_10_1016_j_neunet_2022_05_027
crossref_primary_10_1016_j_jocn_2018_05_004
crossref_primary_10_1002_mds_26938
crossref_primary_10_1016_j_brs_2017_10_004
crossref_primary_10_1088_1741_2552_aad978
crossref_primary_10_1016_j_expneurol_2022_114011
crossref_primary_10_1016_j_brs_2014_04_007
crossref_primary_10_1007_s12035_022_02872_w
crossref_primary_10_1016_j_neuroscience_2021_02_019
crossref_primary_10_1172_JCI99986
crossref_primary_10_3171_2015_1_JNS141604
crossref_primary_10_7554_eLife_75253
crossref_primary_10_1016_j_neuron_2019_03_004
crossref_primary_10_1016_j_cbpb_2023_110852
crossref_primary_10_1038_nn_3997
crossref_primary_10_1089_brain_2013_0193
crossref_primary_10_1016_j_brainres_2018_01_034
crossref_primary_10_1111_ner_12901
crossref_primary_10_1038_s41598_020_79138_9
crossref_primary_10_1523_ENEURO_0010_24_2024
crossref_primary_10_1097_WNP_0000000000000881
crossref_primary_10_1523_ENEURO_0019_16_2016
crossref_primary_10_1152_jn_00997_2014
crossref_primary_10_1016_j_brs_2021_03_009
crossref_primary_10_1002_hipo_22960
crossref_primary_10_1111_ejn_13196
crossref_primary_10_1016_j_mayocp_2015_03_022
crossref_primary_10_1016_j_neuroimage_2020_116750
crossref_primary_10_1093_brain_awu380
crossref_primary_10_3389_fnhum_2022_958521
crossref_primary_10_1523_JNEUROSCI_2277_18_2019
crossref_primary_10_1016_j_clinph_2022_04_022
crossref_primary_10_1093_brain_awu027
crossref_primary_10_1038_538S10a
crossref_primary_10_1523_JNEUROSCI_2694_20_2021
crossref_primary_10_1016_j_jneumeth_2017_08_017
crossref_primary_10_3389_fncel_2018_00417
crossref_primary_10_3389_fncir_2017_00086
crossref_primary_10_1002_syn_21722
crossref_primary_10_1038_nrn3433
crossref_primary_10_3109_02688697_2014_997669
crossref_primary_10_1212_WNL_0000000000001806
crossref_primary_10_1002_mds_26703
crossref_primary_10_1126_scitranslmed_aah3532
crossref_primary_10_1016_j_celrep_2022_110439
crossref_primary_10_3389_fneur_2019_01016
crossref_primary_10_3390_brainsci13020349
crossref_primary_10_1038_srep43571
crossref_primary_10_1016_j_neuron_2017_08_038
crossref_primary_10_1016_j_neuropsychologia_2013_03_008
crossref_primary_10_1172_JCI88170
crossref_primary_10_3389_fncom_2019_00077
crossref_primary_10_1016_j_neuropharm_2024_110003
crossref_primary_10_3389_fnins_2020_00639
crossref_primary_10_1088_1674_1056_ac8cd8
crossref_primary_10_1016_j_brainres_2017_07_027
crossref_primary_10_1016_j_clinph_2024_05_007
crossref_primary_10_1016_j_csbj_2016_10_006
crossref_primary_10_1080_02688697_2024_2311128
crossref_primary_10_1016_j_neulet_2015_04_011
crossref_primary_10_1038_srep16376
crossref_primary_10_1371_journal_pone_0082191
crossref_primary_10_1515_tnsci_2020_0104
crossref_primary_10_1002_acn3_168
crossref_primary_10_1038_s41598_017_01067_x
crossref_primary_10_1038_s41467_020_15570_9
crossref_primary_10_1152_jn_00690_2014
crossref_primary_10_1371_journal_pone_0085109
crossref_primary_10_1073_pnas_1406549111
crossref_primary_10_1109_TBME_2019_2906114
crossref_primary_10_1007_s00701_016_2942_x
crossref_primary_10_3389_fncel_2021_784045
crossref_primary_10_1016_j_neuroimage_2015_11_017
crossref_primary_10_1016_j_brs_2025_01_011
crossref_primary_10_3389_fnsys_2014_00095
crossref_primary_10_2139_ssrn_3385138
crossref_primary_10_1007_s11655_017_2975_x
crossref_primary_10_1073_pnas_2024121118
crossref_primary_10_1109_TNSRE_2017_2707100
crossref_primary_10_3389_fnsys_2020_00038
crossref_primary_10_1093_braincomms_fcaf006
crossref_primary_10_1007_s12264_018_0213_y
crossref_primary_10_3390_cells8091005
crossref_primary_10_1016_j_mex_2019_10_012
crossref_primary_10_1109_TNSRE_2020_2978865
crossref_primary_10_1016_j_neulet_2018_06_041
crossref_primary_10_1007_s11571_024_10182_1
crossref_primary_10_52662_jksfn_2021_00073
crossref_primary_10_1093_cercor_bhae294
crossref_primary_10_1093_cercor_bhz172
crossref_primary_10_1016_j_nbd_2018_05_013
crossref_primary_10_1016_j_neuron_2015_03_034
crossref_primary_10_1038_s41598_018_27195_6
crossref_primary_10_1016_j_expneurol_2022_114031
crossref_primary_10_1038_ncomms15834
crossref_primary_10_3390_bios10100136
crossref_primary_10_1038_519299a
crossref_primary_10_1523_JNEUROSCI_1798_22_2023
crossref_primary_10_1523_JNEUROSCI_1327_18_2018
crossref_primary_10_1016_j_neubiorev_2013_09_008
crossref_primary_10_1007_s10548_017_0597_4
crossref_primary_10_1038_nrn3469
crossref_primary_10_1177_1073858415581986
crossref_primary_10_1088_1741_2552_aacbff
crossref_primary_10_1152_jn_00353_2021
crossref_primary_10_1093_cercor_bhz281
crossref_primary_10_1016_j_nbd_2024_106755
crossref_primary_10_1038_s41467_021_25366_0
crossref_primary_10_1152_jn_00104_2016
crossref_primary_10_1007_s12035_023_03668_2
crossref_primary_10_1016_j_bbr_2018_02_014
crossref_primary_10_1016_j_cobme_2018_08_008
crossref_primary_10_1152_jn_00929_2017
crossref_primary_10_1002_mds_27952
crossref_primary_10_1016_j_expneurol_2017_11_006
crossref_primary_10_1172_JCI75587
Cites_doi 10.1212/WNL.59.5.700
10.1002/cne.902360103
10.1111/j.1460-9568.2006.04638.x
10.1111/j.1460-9568.2005.03973.x
10.1523/JNEUROSCI.22-11-04639.2002
10.1152/physrev.00048.2009
10.1007/BF02345014
10.1016/j.neubiorev.2007.06.003
10.1212/WNL.0b013e31825dcdc1
10.1212/WNL.0b013e31820ce6bb
10.1016/j.neubiorev.2007.09.002
10.1016/j.tins.2007.05.004
10.1016/j.clinph.2008.07.217
10.1523/JNEUROSCI.23-25-08743.2003
10.1212/WNL.58.11.1665
10.1111/j.1460-9568.2010.07413.x
10.1152/jn.2001.85.4.1351
10.1016/j.conb.2010.02.015
10.1111/j.1460-9568.1993.tb00505.x
10.3389/fnsys.2011.00050
10.1113/jphysiol.1964.sp007336
10.1152/jn.00305.2006
10.1002/ana.410420303
10.1002/mds.21796
10.1111/j.1460-9568.2008.06229.x
10.1523/JNEUROSCI.4848-03.2004
10.1093/cercor/bhq217
10.1016/j.neuropsychologia.2010.12.030
10.1016/j.neuroscience.2011.06.048
10.1016/S1388-2457(00)00532-0
10.1016/j.pneurobio.2009.06.003
10.1016/j.nbd.2009.09.022
10.1523/JNEUROSCI.6135-10.2011
10.1001/archneur.58.7.1165
10.1523/JNEUROSCI.23-05-01916.2003
10.1523/JNEUROSCI.23-30-09929.2003
10.1523/JNEUROSCI.4331-11.2012
10.1016/j.neuron.2004.11.023
10.1159/000098600
10.1002/mds.21089
10.1152/jn.90844.2008
10.1126/science.1167093
10.1152/jn.1964.27.5.828
10.1152/jn.00808.2007
10.1016/S0306-4522(02)00538-9
10.1016/0006-8993(94)90397-2
10.1016/j.neuron.2011.08.023
10.1113/jphysiol.2006.124057
10.1159/000082778
10.1007/BF03324671
10.1016/j.clinph.2005.05.009
10.1002/mds.22120
10.1093/cercor/bhp269
10.1523/JNEUROSCI.5717-11.2012
10.1056/NEJMoa060281
10.1111/j.1460-9568.2005.03952.x
10.1002/mds.21691
10.1093/cercor/bhn149
10.1136/jnnp.2010.217489
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Dec 6, 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Dec 6, 2012
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1016/j.neuron.2012.09.032
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts

MEDLINE
MEDLINE - Academic
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 1041
ExternalDocumentID 3235646451
23217750
10_1016_j_neuron_2012_09_032
S0896627312008860
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
AAFWJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c535t-382287bae4bee5b68e3b049c05fcd948a28754df9e904020f69a2dd935791b7d3
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Mon Jul 21 11:41:23 EDT 2025
Thu Jul 10 22:09:55 EDT 2025
Fri Jul 25 11:17:09 EDT 2025
Thu Jan 02 22:14:52 EST 2025
Tue Jul 01 01:16:05 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Fri Feb 23 02:11:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-382287bae4bee5b68e3b049c05fcd948a28754df9e904020f69a2dd935791b7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627312008860
PMID 23217750
PQID 1503848263
PQPubID 2031076
PageCount 12
ParticipantIDs proquest_miscellaneous_1272739908
proquest_miscellaneous_1237509730
proquest_journals_1503848263
pubmed_primary_23217750
crossref_primary_10_1016_j_neuron_2012_09_032
crossref_citationtrail_10_1016_j_neuron_2012_09_032
elsevier_sciencedirect_doi_10_1016_j_neuron_2012_09_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-06
PublicationDateYYYYMMDD 2012-12-06
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Rosin, Slovik, Mitelman, Rivlin-Etzion, Haber, Israel, Vaadia, Bergman (bib55) 2011; 72
Brown, Williams (bib8) 2005; 116
Kuriakose, Saha, Castillo, Udupa, Ni, Gunraj, Mazzella, Hamani, Lang, Moro (bib35) 2010; 20
Maurice, Thierry, Glowinski, Deniau (bib43) 2003; 23
Lemon (bib38) 1984
Limousin, Greene, Pollak, Rothwell, Benabid, Frackowiak (bib40) 1997; 42
Gubellini, Salin, Kerkerian-Le Goff, Baunez (bib29) 2009; 89
Li, Arbuthnott, Jutras, Goldberg, Jaeger (bib39) 2007; 98
Kita, Kita (bib34) 2012; 32
Benvenuti, Cecchi, Colombini, Gori (bib6) 2006; 18
Brown, Eusebio (bib9) 2008; 23
Degos, Deniau, Le Cam, Mailly, Maurice (bib15) 2008; 27
Afsharpour (bib1) 1985; 236
Naito, Kita (bib48) 1994; 653
Pasquereau, Turner (bib50) 2011; 21
Wilson, Beverlin, Netoff (bib62) 2011; 5
Mure, Tang, Argyelan, Ghilardi, Kaplitt, Dhawan, Eidelberg (bib47) 2012; 32
MacKinnon, Webb, Silberstein, Tisch, Asselman, Limousin, Rothwell (bib41) 2005; 21
Deniau, Degos, Bosch, Maurice (bib17) 2010; 32
Swann, Poizner, Houser, Gould, Greenhouse, Cai, Strunk, George, Aron (bib59) 2011; 31
Weaver, Follett, Stern, Luo, Harris, Hur, Marks, Rothlind, Sagher, Moy (bib60) 2012; 79
Goldberg, Boraud, Maraton, Haber, Vaadia, Bergman (bib25) 2002; 22
Eusebio, Thevathasan, Doyle Gaynor, Pogosyan, Bye, Foltynie, Zrinzo, Ashkan, Aziz, Brown (bib22) 2011; 82
Ashby, Paradiso, Saint-Cyr, Chen, Lang, Lozano (bib2) 2001; 112
Cunic, Roshan, Khan, Lozano, Lang, Chen (bib12) 2002; 58
Debanne, Campanac, Bialowas, Carlier, Alcaraz (bib14) 2011; 91
Lee, Blaha, Harris, Cooper, Hitti, Leiter, Roberts, Kim (bib36) 2006; 23
Deuschl, Schade-Brittinger, Krack, Volkmann, Schäfer, Bötzel, Daniels, Deutschländer, Dillmann, Eisner (bib18) 2006; 355
Engel, Fries (bib21) 2010; 20
Lehmkuhle, Bhangoo, Kipke (bib37) 2009; 102
Dejean, Hyland, Arbuthnott (bib16) 2009; 19
Strafella, Lozano, Lang, Ko, Poon, Moro (bib58) 2007; 22
Beurrier, Bioulac, Audin, Hammond (bib7) 2001; 85
Obeso, Rodriguez, Guridi, Alvarez, Alvarez, Macias, Juncos, DeLong (bib49) 2001; 58
Magariños-Ascone, Pazo, Macadar, Buño (bib42) 2002; 115
Montgomery, Gale (bib46) 2008; 32
Goldberg, Rokni, Boraud, Vaadia, Bergman (bib26) 2004; 24
Miocinovic, Parent, Butson, Hahn, Russo, Vitek, McIntyre (bib45) 2006; 96
Eggers, Fink, Nowak (bib20) 2010; 257
Phillips (bib51) 1959; 44
Romanelli, Bronte-Stewart, Heit, Schaal, Esposito (bib54) 2004; 82
Chang, Shi, Luo, Zhang, Woodward (bib10) 2008; 32
Greenhouse, Gould, Houser, Hicks, Gross, Aron (bib28) 2011; 49
Hammond, Bergman, Brown (bib30) 2007; 30
Hashimoto, Elder, Okun, Patrick, Vitek (bib32) 2003; 23
Benazzouz, Gross, Féger, Boraud, Bioulac (bib4) 1993; 5
Chomiak, Hu (bib11) 2007; 579
Hammond, Ammari, Bioulac, Garcia (bib31) 2008; 23
Sharott, Magill, Harnack, Kupsch, Meissner, Brown (bib56) 2005; 21
Porter, Sanderson (bib52) 1964; 170
Däuper, Peschel, Schrader, Kohlmetz, Joppich, Nager, Dengler, Rollnik (bib13) 2002; 59
Richardson, McIntyre, Grill (bib53) 2000; 38
Stefanis, Jasper (bib57) 1964; 27
Wichmann, Dostrovsky (bib61) 2011; 198
Benninger, Berman, Houdayer, Pal, Luckenbaugh, Schneider, Miranda, Hallett (bib5) 2011; 76
Drouot, Oshino, Jarraya, Besret, Kishima, Remy, Dauguet, Lefaucheur, Dollé, Condé (bib19) 2004; 44
Gradinaru, Mogri, Thompson, Henderson, Deisseroth (bib27) 2009; 324
Khedr, Rothwell, Shawky, Ahmed, Hamdy (bib33) 2006; 21
Benabid, Pollak, Gross, Hoffmann, Benazzouz, Gao, Laurent, Gentil, Perret (bib3) 1994; 62
Garcia, Audin, D’Alessandro, Bioulac, Hammond (bib24) 2003; 23
McIntyre, Hahn (bib44) 2010; 38
Fraix, Pollak, Vercueil, Benabid, Mauguière (bib23) 2008; 119
Benabid (10.1016/j.neuron.2012.09.032_bib3) 1994; 62
Deniau (10.1016/j.neuron.2012.09.032_bib17) 2010; 32
Gradinaru (10.1016/j.neuron.2012.09.032_bib27) 2009; 324
Brown (10.1016/j.neuron.2012.09.032_bib8) 2005; 116
Richardson (10.1016/j.neuron.2012.09.032_bib53) 2000; 38
Däuper (10.1016/j.neuron.2012.09.032_bib13) 2002; 59
Gubellini (10.1016/j.neuron.2012.09.032_bib29) 2009; 89
Rosin (10.1016/j.neuron.2012.09.032_bib55) 2011; 72
Deuschl (10.1016/j.neuron.2012.09.032_bib18) 2006; 355
Wilson (10.1016/j.neuron.2012.09.032_bib62) 2011; 5
Kita (10.1016/j.neuron.2012.09.032_bib34) 2012; 32
Magariños-Ascone (10.1016/j.neuron.2012.09.032_bib42) 2002; 115
Benninger (10.1016/j.neuron.2012.09.032_bib5) 2011; 76
Eggers (10.1016/j.neuron.2012.09.032_bib20) 2010; 257
Brown (10.1016/j.neuron.2012.09.032_bib9) 2008; 23
Stefanis (10.1016/j.neuron.2012.09.032_bib57) 1964; 27
Chomiak (10.1016/j.neuron.2012.09.032_bib11) 2007; 579
Lee (10.1016/j.neuron.2012.09.032_bib36) 2006; 23
Drouot (10.1016/j.neuron.2012.09.032_bib19) 2004; 44
McIntyre (10.1016/j.neuron.2012.09.032_bib44) 2010; 38
Obeso (10.1016/j.neuron.2012.09.032_bib49) 2001; 58
Pasquereau (10.1016/j.neuron.2012.09.032_bib50) 2011; 21
Phillips (10.1016/j.neuron.2012.09.032_bib51) 1959; 44
Goldberg (10.1016/j.neuron.2012.09.032_bib26) 2004; 24
Maurice (10.1016/j.neuron.2012.09.032_bib43) 2003; 23
Benvenuti (10.1016/j.neuron.2012.09.032_bib6) 2006; 18
Chang (10.1016/j.neuron.2012.09.032_bib10) 2008; 32
Hashimoto (10.1016/j.neuron.2012.09.032_bib32) 2003; 23
Sharott (10.1016/j.neuron.2012.09.032_bib56) 2005; 21
Kuriakose (10.1016/j.neuron.2012.09.032_bib35) 2010; 20
Garcia (10.1016/j.neuron.2012.09.032_bib24) 2003; 23
Lehmkuhle (10.1016/j.neuron.2012.09.032_bib37) 2009; 102
MacKinnon (10.1016/j.neuron.2012.09.032_bib41) 2005; 21
Cunic (10.1016/j.neuron.2012.09.032_bib12) 2002; 58
Porter (10.1016/j.neuron.2012.09.032_bib52) 1964; 170
Fraix (10.1016/j.neuron.2012.09.032_bib23) 2008; 119
Miocinovic (10.1016/j.neuron.2012.09.032_bib45) 2006; 96
Li (10.1016/j.neuron.2012.09.032_bib39) 2007; 98
Beurrier (10.1016/j.neuron.2012.09.032_bib7) 2001; 85
Naito (10.1016/j.neuron.2012.09.032_bib48) 1994; 653
Engel (10.1016/j.neuron.2012.09.032_bib21) 2010; 20
Romanelli (10.1016/j.neuron.2012.09.032_bib54) 2004; 82
Mure (10.1016/j.neuron.2012.09.032_bib47) 2012; 32
Greenhouse (10.1016/j.neuron.2012.09.032_bib28) 2011; 49
Strafella (10.1016/j.neuron.2012.09.032_bib58) 2007; 22
Swann (10.1016/j.neuron.2012.09.032_bib59) 2011; 31
Wichmann (10.1016/j.neuron.2012.09.032_bib61) 2011; 198
Hammond (10.1016/j.neuron.2012.09.032_bib30) 2007; 30
Eusebio (10.1016/j.neuron.2012.09.032_bib22) 2011; 82
Afsharpour (10.1016/j.neuron.2012.09.032_bib1) 1985; 236
Limousin (10.1016/j.neuron.2012.09.032_bib40) 1997; 42
Benazzouz (10.1016/j.neuron.2012.09.032_bib4) 1993; 5
Goldberg (10.1016/j.neuron.2012.09.032_bib25) 2002; 22
Dejean (10.1016/j.neuron.2012.09.032_bib16) 2009; 19
Debanne (10.1016/j.neuron.2012.09.032_bib14) 2011; 91
Degos (10.1016/j.neuron.2012.09.032_bib15) 2008; 27
Lemon (10.1016/j.neuron.2012.09.032_bib38) 1984
Weaver (10.1016/j.neuron.2012.09.032_bib60) 2012; 79
Hammond (10.1016/j.neuron.2012.09.032_bib31) 2008; 23
Montgomery (10.1016/j.neuron.2012.09.032_bib46) 2008; 32
Ashby (10.1016/j.neuron.2012.09.032_bib2) 2001; 112
Khedr (10.1016/j.neuron.2012.09.032_bib33) 2006; 21
References_xml – volume: 355
  start-page: 896
  year: 2006
  end-page: 908
  ident: bib18
  article-title: A randomized trial of deep-brain stimulation for Parkinson’s disease
  publication-title: N. Engl. J. Med.
– volume: 44
  start-page: 1
  year: 1959
  end-page: 25
  ident: bib51
  article-title: Actions of antidromic pyramidal volleys on single Betz cells in the cat
  publication-title: Q. J. Exp. Physiol. Cogn. Med. Sci.
– volume: 5
  start-page: 382
  year: 1993
  end-page: 389
  ident: bib4
  article-title: Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys
  publication-title: Eur. J. Neurosci.
– volume: 20
  start-page: 156
  year: 2010
  end-page: 165
  ident: bib21
  article-title: Beta-band oscillations—signalling the status quo?
  publication-title: Curr. Opin. Neurobiol.
– volume: 21
  start-page: 1413
  year: 2005
  end-page: 1422
  ident: bib56
  article-title: Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat
  publication-title: Eur. J. Neurosci.
– volume: 21
  start-page: 1362
  year: 2011
  end-page: 1378
  ident: bib50
  article-title: Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons
  publication-title: Cereb. Cortex
– volume: 116
  start-page: 2510
  year: 2005
  end-page: 2519
  ident: bib8
  article-title: Basal ganglia local field potential activity: character and functional significance in the human
  publication-title: Clin. Neurophysiol.
– volume: 96
  start-page: 1569
  year: 2006
  end-page: 1580
  ident: bib45
  article-title: Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation
  publication-title: J. Neurophysiol.
– volume: 85
  start-page: 1351
  year: 2001
  end-page: 1356
  ident: bib7
  article-title: High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons
  publication-title: J. Neurophysiol.
– volume: 32
  start-page: 1080
  year: 2010
  end-page: 1091
  ident: bib17
  article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition
  publication-title: Eur. J. Neurosci.
– volume: 44
  start-page: 769
  year: 2004
  end-page: 778
  ident: bib19
  article-title: Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation
  publication-title: Neuron
– volume: 32
  start-page: 2804
  year: 2012
  end-page: 2813
  ident: bib47
  article-title: Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation
  publication-title: J. Neurosci.
– volume: 22
  start-page: 2113
  year: 2007
  end-page: 2116
  ident: bib58
  article-title: Subdural motor cortex stimulation in Parkinson’s disease does not modify movement-related rCBF pattern
  publication-title: Mov. Disord.
– volume: 24
  start-page: 6003
  year: 2004
  end-page: 6010
  ident: bib26
  article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials
  publication-title: J. Neurosci.
– volume: 23
  start-page: 12
  year: 2008
  end-page: 20
  ident: bib9
  article-title: Paradoxes of functional neurosurgery: clues from basal ganglia recordings
  publication-title: Mov. Disord.
– volume: 91
  start-page: 555
  year: 2011
  end-page: 602
  ident: bib14
  article-title: Axon physiology
  publication-title: Physiol. Rev.
– volume: 38
  start-page: 329
  year: 2010
  end-page: 337
  ident: bib44
  article-title: Network perspectives on the mechanisms of deep brain stimulation
  publication-title: Neurobiol. Dis.
– volume: 236
  start-page: 14
  year: 1985
  end-page: 28
  ident: bib1
  article-title: Topographical projections of the cerebral cortex to the subthalamic nucleus
  publication-title: J. Comp. Neurol.
– volume: 32
  start-page: 5990
  year: 2012
  end-page: 5999
  ident: bib34
  article-title: The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat
  publication-title: J. Neurosci.
– volume: 23
  start-page: 8743
  year: 2003
  end-page: 8751
  ident: bib24
  article-title: Dual effect of high-frequency stimulation on subthalamic neuron activity
  publication-title: J. Neurosci.
– volume: 59
  start-page: 700
  year: 2002
  end-page: 706
  ident: bib13
  article-title: Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability
  publication-title: Neurology
– volume: 19
  start-page: 1055
  year: 2009
  end-page: 1063
  ident: bib16
  article-title: Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia
  publication-title: Cereb. Cortex
– volume: 82
  start-page: 222
  year: 2004
  end-page: 229
  ident: bib54
  article-title: The functional organization of the sensorimotor region of the subthalamic nucleus
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 22
  start-page: 4639
  year: 2002
  end-page: 4653
  ident: bib25
  article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease
  publication-title: J. Neurosci.
– volume: 89
  start-page: 79
  year: 2009
  end-page: 123
  ident: bib29
  article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior
  publication-title: Prog. Neurobiol.
– volume: 324
  start-page: 354
  year: 2009
  end-page: 359
  ident: bib27
  article-title: Optical deconstruction of parkinsonian neural circuitry
  publication-title: Science
– volume: 112
  start-page: 431
  year: 2001
  end-page: 437
  ident: bib2
  article-title: Potentials recorded at the scalp by stimulation near the human subthalamic nucleus
  publication-title: Clin. Neurophysiol.
– volume: 102
  start-page: 1811
  year: 2009
  end-page: 1820
  ident: bib37
  article-title: The electrocorticogram signal can be modulated with deep brain stimulation of the subthalamic nucleus in the hemiparkinsonian rat
  publication-title: J. Neurophysiol.
– volume: 76
  start-page: 601
  year: 2011
  end-page: 609
  ident: bib5
  article-title: Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease
  publication-title: Neurology
– volume: 79
  start-page: 55
  year: 2012
  end-page: 65
  ident: bib60
  article-title: Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes
  publication-title: Neurology
– volume: 32
  start-page: 352
  year: 2008
  end-page: 366
  ident: bib10
  article-title: Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson’s disease
  publication-title: Neurosci. Biobehav. Rev.
– volume: 23
  start-page: 1916
  year: 2003
  end-page: 1923
  ident: bib32
  article-title: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons
  publication-title: J. Neurosci.
– volume: 579
  start-page: 403
  year: 2007
  end-page: 412
  ident: bib11
  article-title: Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain
  publication-title: J. Physiol.
– volume: 49
  start-page: 528
  year: 2011
  end-page: 534
  ident: bib28
  article-title: Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinson’s disease
  publication-title: Neuropsychologia
– volume: 27
  start-page: 2599
  year: 2008
  end-page: 2610
  ident: bib15
  article-title: Evidence for a direct subthalamo-cortical loop circuit in the rat
  publication-title: Eur. J. Neurosci.
– volume: 27
  start-page: 828
  year: 1964
  end-page: 854
  ident: bib57
  article-title: Intracellular Microelectrode Studies of Antidromic Responses in Cortical Pyramidal Tract Neurons
  publication-title: J. Neurophysiol.
– volume: 98
  start-page: 3525
  year: 2007
  end-page: 3537
  ident: bib39
  article-title: Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation
  publication-title: J. Neurophysiol.
– volume: 119
  start-page: 2513
  year: 2008
  end-page: 2518
  ident: bib23
  article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease
  publication-title: Clin. Neurophysiol.
– volume: 5
  start-page: 50
  year: 2011
  ident: bib62
  article-title: Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation
  publication-title: Front. Syst. Neurosci.
– volume: 32
  start-page: 388
  year: 2008
  end-page: 407
  ident: bib46
  article-title: Mechanisms of action of deep brain stimulation(DBS)
  publication-title: Neurosci. Biobehav. Rev.
– volume: 20
  start-page: 1926
  year: 2010
  end-page: 1936
  ident: bib35
  article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease
  publication-title: Cereb. Cortex
– volume: 18
  start-page: 347
  year: 2006
  end-page: 348
  ident: bib6
  article-title: Extradural motor cortex stimulation as a method to treat advanced Parkinson’s disease: new perspectives in geriatric medicine
  publication-title: Aging Clin. Exp. Res.
– volume: 82
  start-page: 569
  year: 2011
  end-page: 573
  ident: bib22
  article-title: Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 42
  start-page: 283
  year: 1997
  end-page: 291
  ident: bib40
  article-title: Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease
  publication-title: Ann. Neurol.
– volume: 58
  start-page: 1665
  year: 2002
  end-page: 1672
  ident: bib12
  article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease
  publication-title: Neurology
– volume: 653
  start-page: 251
  year: 1994
  end-page: 257
  ident: bib48
  article-title: The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine
  publication-title: Brain Res.
– volume: 115
  start-page: 1109
  year: 2002
  end-page: 1117
  ident: bib42
  article-title: High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson’s disease
  publication-title: Neuroscience
– year: 1984
  ident: bib38
  article-title: Methods for Neuronal Recording in Conscious Animals
– volume: 72
  start-page: 370
  year: 2011
  end-page: 384
  ident: bib55
  article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism
  publication-title: Neuron
– volume: 170
  start-page: 355
  year: 1964
  end-page: 370
  ident: bib52
  article-title: Antidromic Cortical Response to Pyramidal-Tract Stimulation in the Rat
  publication-title: J. Physiol.
– volume: 198
  start-page: 232
  year: 2011
  end-page: 244
  ident: bib61
  article-title: Pathological basal ganglia activity in movement disorders
  publication-title: Neuroscience
– volume: 23
  start-page: 2111
  year: 2008
  end-page: 2121
  ident: bib31
  article-title: Latest view on the mechanism of action of deep brain stimulation
  publication-title: Mov. Disord.
– volume: 38
  start-page: 438
  year: 2000
  end-page: 446
  ident: bib53
  article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath
  publication-title: Med. Biol. Eng. Comput.
– volume: 21
  start-page: 1394
  year: 2005
  end-page: 1402
  ident: bib41
  article-title: Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson’s disease
  publication-title: Eur. J. Neurosci.
– volume: 23
  start-page: 1005
  year: 2006
  end-page: 1014
  ident: bib36
  article-title: Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease
  publication-title: Eur. J. Neurosci.
– volume: 62
  start-page: 76
  year: 1994
  end-page: 84
  ident: bib3
  article-title: Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease
  publication-title: Stereotact. Funct. Neurosurg.
– volume: 21
  start-page: 2201
  year: 2006
  end-page: 2205
  ident: bib33
  article-title: Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease
  publication-title: Mov. Disord.
– volume: 257
  start-page: 1669
  year: 2010
  end-page: 1674
  ident: bib20
  article-title: Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson’s disease
  publication-title: J. Neurol.
– volume: 58
  start-page: 1165
  year: 2001
  end-page: 1166
  ident: bib49
  article-title: Lesion of the basal ganglia and surgery for Parkinson disease
  publication-title: Arch. Neurol.
– volume: 31
  start-page: 5721
  year: 2011
  end-page: 5729
  ident: bib59
  article-title: Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease
  publication-title: J. Neurosci.
– volume: 23
  start-page: 9929
  year: 2003
  end-page: 9936
  ident: bib43
  article-title: Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus
  publication-title: J. Neurosci.
– volume: 30
  start-page: 357
  year: 2007
  end-page: 364
  ident: bib30
  article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments
  publication-title: Trends Neurosci.
– volume: 59
  start-page: 700
  year: 2002
  ident: 10.1016/j.neuron.2012.09.032_bib13
  article-title: Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability
  publication-title: Neurology
  doi: 10.1212/WNL.59.5.700
– volume: 236
  start-page: 14
  year: 1985
  ident: 10.1016/j.neuron.2012.09.032_bib1
  article-title: Topographical projections of the cerebral cortex to the subthalamic nucleus
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902360103
– volume: 23
  start-page: 1005
  year: 2006
  ident: 10.1016/j.neuron.2012.09.032_bib36
  article-title: Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2006.04638.x
– volume: 21
  start-page: 1413
  year: 2005
  ident: 10.1016/j.neuron.2012.09.032_bib56
  article-title: Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.03973.x
– volume: 22
  start-page: 4639
  year: 2002
  ident: 10.1016/j.neuron.2012.09.032_bib25
  article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-11-04639.2002
– volume: 44
  start-page: 1
  year: 1959
  ident: 10.1016/j.neuron.2012.09.032_bib51
  article-title: Actions of antidromic pyramidal volleys on single Betz cells in the cat
  publication-title: Q. J. Exp. Physiol. Cogn. Med. Sci.
– volume: 91
  start-page: 555
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib14
  article-title: Axon physiology
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00048.2009
– volume: 38
  start-page: 438
  year: 2000
  ident: 10.1016/j.neuron.2012.09.032_bib53
  article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345014
– volume: 32
  start-page: 388
  year: 2008
  ident: 10.1016/j.neuron.2012.09.032_bib46
  article-title: Mechanisms of action of deep brain stimulation(DBS)
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2007.06.003
– volume: 79
  start-page: 55
  year: 2012
  ident: 10.1016/j.neuron.2012.09.032_bib60
  article-title: Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31825dcdc1
– volume: 76
  start-page: 601
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib5
  article-title: Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31820ce6bb
– year: 1984
  ident: 10.1016/j.neuron.2012.09.032_bib38
– volume: 32
  start-page: 352
  year: 2008
  ident: 10.1016/j.neuron.2012.09.032_bib10
  article-title: Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson’s disease
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2007.09.002
– volume: 30
  start-page: 357
  year: 2007
  ident: 10.1016/j.neuron.2012.09.032_bib30
  article-title: Pathological synchronization in Parkinson’s disease: networks, models and treatments
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.05.004
– volume: 119
  start-page: 2513
  year: 2008
  ident: 10.1016/j.neuron.2012.09.032_bib23
  article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.07.217
– volume: 23
  start-page: 8743
  year: 2003
  ident: 10.1016/j.neuron.2012.09.032_bib24
  article-title: Dual effect of high-frequency stimulation on subthalamic neuron activity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-25-08743.2003
– volume: 257
  start-page: 1669
  year: 2010
  ident: 10.1016/j.neuron.2012.09.032_bib20
  article-title: Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson’s disease
  publication-title: J. Neurol.
– volume: 58
  start-page: 1665
  year: 2002
  ident: 10.1016/j.neuron.2012.09.032_bib12
  article-title: Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.58.11.1665
– volume: 32
  start-page: 1080
  year: 2010
  ident: 10.1016/j.neuron.2012.09.032_bib17
  article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2010.07413.x
– volume: 85
  start-page: 1351
  year: 2001
  ident: 10.1016/j.neuron.2012.09.032_bib7
  article-title: High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.85.4.1351
– volume: 20
  start-page: 156
  year: 2010
  ident: 10.1016/j.neuron.2012.09.032_bib21
  article-title: Beta-band oscillations—signalling the status quo?
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.02.015
– volume: 5
  start-page: 382
  year: 1993
  ident: 10.1016/j.neuron.2012.09.032_bib4
  article-title: Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.1993.tb00505.x
– volume: 5
  start-page: 50
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib62
  article-title: Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2011.00050
– volume: 170
  start-page: 355
  year: 1964
  ident: 10.1016/j.neuron.2012.09.032_bib52
  article-title: Antidromic Cortical Response to Pyramidal-Tract Stimulation in the Rat
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1964.sp007336
– volume: 96
  start-page: 1569
  year: 2006
  ident: 10.1016/j.neuron.2012.09.032_bib45
  article-title: Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00305.2006
– volume: 42
  start-page: 283
  year: 1997
  ident: 10.1016/j.neuron.2012.09.032_bib40
  article-title: Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410420303
– volume: 23
  start-page: 12
  year: 2008
  ident: 10.1016/j.neuron.2012.09.032_bib9
  article-title: Paradoxes of functional neurosurgery: clues from basal ganglia recordings
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21796
– volume: 27
  start-page: 2599
  year: 2008
  ident: 10.1016/j.neuron.2012.09.032_bib15
  article-title: Evidence for a direct subthalamo-cortical loop circuit in the rat
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06229.x
– volume: 24
  start-page: 6003
  year: 2004
  ident: 10.1016/j.neuron.2012.09.032_bib26
  article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4848-03.2004
– volume: 21
  start-page: 1362
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib50
  article-title: Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq217
– volume: 49
  start-page: 528
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib28
  article-title: Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinson’s disease
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2010.12.030
– volume: 198
  start-page: 232
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib61
  article-title: Pathological basal ganglia activity in movement disorders
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.06.048
– volume: 112
  start-page: 431
  year: 2001
  ident: 10.1016/j.neuron.2012.09.032_bib2
  article-title: Potentials recorded at the scalp by stimulation near the human subthalamic nucleus
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00532-0
– volume: 89
  start-page: 79
  year: 2009
  ident: 10.1016/j.neuron.2012.09.032_bib29
  article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2009.06.003
– volume: 38
  start-page: 329
  year: 2010
  ident: 10.1016/j.neuron.2012.09.032_bib44
  article-title: Network perspectives on the mechanisms of deep brain stimulation
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2009.09.022
– volume: 31
  start-page: 5721
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib59
  article-title: Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6135-10.2011
– volume: 58
  start-page: 1165
  year: 2001
  ident: 10.1016/j.neuron.2012.09.032_bib49
  article-title: Lesion of the basal ganglia and surgery for Parkinson disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.58.7.1165
– volume: 23
  start-page: 1916
  year: 2003
  ident: 10.1016/j.neuron.2012.09.032_bib32
  article-title: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-05-01916.2003
– volume: 23
  start-page: 9929
  year: 2003
  ident: 10.1016/j.neuron.2012.09.032_bib43
  article-title: Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-30-09929.2003
– volume: 32
  start-page: 2804
  year: 2012
  ident: 10.1016/j.neuron.2012.09.032_bib47
  article-title: Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4331-11.2012
– volume: 44
  start-page: 769
  year: 2004
  ident: 10.1016/j.neuron.2012.09.032_bib19
  article-title: Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.11.023
– volume: 62
  start-page: 76
  year: 1994
  ident: 10.1016/j.neuron.2012.09.032_bib3
  article-title: Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000098600
– volume: 21
  start-page: 2201
  year: 2006
  ident: 10.1016/j.neuron.2012.09.032_bib33
  article-title: Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21089
– volume: 102
  start-page: 1811
  year: 2009
  ident: 10.1016/j.neuron.2012.09.032_bib37
  article-title: The electrocorticogram signal can be modulated with deep brain stimulation of the subthalamic nucleus in the hemiparkinsonian rat
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90844.2008
– volume: 324
  start-page: 354
  year: 2009
  ident: 10.1016/j.neuron.2012.09.032_bib27
  article-title: Optical deconstruction of parkinsonian neural circuitry
  publication-title: Science
  doi: 10.1126/science.1167093
– volume: 27
  start-page: 828
  year: 1964
  ident: 10.1016/j.neuron.2012.09.032_bib57
  article-title: Intracellular Microelectrode Studies of Antidromic Responses in Cortical Pyramidal Tract Neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1964.27.5.828
– volume: 98
  start-page: 3525
  year: 2007
  ident: 10.1016/j.neuron.2012.09.032_bib39
  article-title: Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00808.2007
– volume: 115
  start-page: 1109
  year: 2002
  ident: 10.1016/j.neuron.2012.09.032_bib42
  article-title: High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson’s disease
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00538-9
– volume: 653
  start-page: 251
  year: 1994
  ident: 10.1016/j.neuron.2012.09.032_bib48
  article-title: The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(94)90397-2
– volume: 72
  start-page: 370
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib55
  article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.023
– volume: 579
  start-page: 403
  year: 2007
  ident: 10.1016/j.neuron.2012.09.032_bib11
  article-title: Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.124057
– volume: 82
  start-page: 222
  year: 2004
  ident: 10.1016/j.neuron.2012.09.032_bib54
  article-title: The functional organization of the sensorimotor region of the subthalamic nucleus
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000082778
– volume: 18
  start-page: 347
  year: 2006
  ident: 10.1016/j.neuron.2012.09.032_bib6
  article-title: Extradural motor cortex stimulation as a method to treat advanced Parkinson’s disease: new perspectives in geriatric medicine
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/BF03324671
– volume: 116
  start-page: 2510
  year: 2005
  ident: 10.1016/j.neuron.2012.09.032_bib8
  article-title: Basal ganglia local field potential activity: character and functional significance in the human
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.05.009
– volume: 23
  start-page: 2111
  year: 2008
  ident: 10.1016/j.neuron.2012.09.032_bib31
  article-title: Latest view on the mechanism of action of deep brain stimulation
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22120
– volume: 20
  start-page: 1926
  year: 2010
  ident: 10.1016/j.neuron.2012.09.032_bib35
  article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp269
– volume: 32
  start-page: 5990
  year: 2012
  ident: 10.1016/j.neuron.2012.09.032_bib34
  article-title: The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5717-11.2012
– volume: 355
  start-page: 896
  year: 2006
  ident: 10.1016/j.neuron.2012.09.032_bib18
  article-title: A randomized trial of deep-brain stimulation for Parkinson’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa060281
– volume: 21
  start-page: 1394
  year: 2005
  ident: 10.1016/j.neuron.2012.09.032_bib41
  article-title: Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson’s disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.03952.x
– volume: 22
  start-page: 2113
  year: 2007
  ident: 10.1016/j.neuron.2012.09.032_bib58
  article-title: Subdural motor cortex stimulation in Parkinson’s disease does not modify movement-related rCBF pattern
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21691
– volume: 19
  start-page: 1055
  year: 2009
  ident: 10.1016/j.neuron.2012.09.032_bib16
  article-title: Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn149
– volume: 82
  start-page: 569
  year: 2011
  ident: 10.1016/j.neuron.2012.09.032_bib22
  article-title: Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2010.217489
RelatedPersons Eusebio
RelatedPersons_xml – fullname: Eusebio
SSID ssj0014591
Score 2.537827
Snippet Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1030
SubjectTerms Action Potentials - physiology
Adrenergic Agents - toxicity
Afferent Pathways - physiology
Animals
Antiparkinson Agents - therapeutic use
Apomorphine - therapeutic use
Basal ganglia
Biophysics
Brain Mapping
Brain research
Central nervous system diseases
Cortex (motor)
Deep brain stimulation
Deep Brain Stimulation - methods
Disease Models, Animal
Dominance
Dopamine
EEG
Electrical stimuli
Electrodes
Electrodes, Implanted
Electroencephalography
Electrophysiological recording
Eusebio
Evoked Potentials, Motor - physiology
Experiments
Firing pattern
Fourier transforms
Functional Laterality
Globus pallidus
Locomotion - physiology
Male
Medial Forebrain Bundle - drug effects
Medial Forebrain Bundle - physiopathology
Motor Cortex - pathology
Motor Cortex - physiopathology
Motor task performance
Movement disorders
Neurons
Neurons - drug effects
Neurons - physiology
Oscillations
Oxidopamine - toxicity
Parkinson's disease
Parkinsonian Disorders - chemically induced
Parkinsonian Disorders - physiopathology
Parkinsonian Disorders - therapy
Rats
Rats, Sprague-Dawley
Rhythms
Rodents
Solitary tract nucleus
Statistics as Topic
Stochasticity
Studies
subthalamic nucleus
Subthalamic Nucleus - physiology
Title Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex
URI https://dx.doi.org/10.1016/j.neuron.2012.09.032
https://www.ncbi.nlm.nih.gov/pubmed/23217750
https://www.proquest.com/docview/1503848263
https://www.proquest.com/docview/1237509730
https://www.proquest.com/docview/1272739908
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Kx6Avo2u7Lv0IKoy-mdiRLEuPSbbSD7qHfrC8CduSIKN1wuJC89_vTrYz-tAV-mjrZGSddPc76T4Avinhs7SQEpGbdmigaB8pTYar9N4mnpQOnUNe_5Tn9-Jymk43YNLFwpBbZSv7G5kepHX7ZtDO5mAxmw1uY6UpezlP6ApfSbLbuVAhiG86Xt8kiLSpmofEEVF34XPBxyvkjKQsqHQiSNlOh6-pp9fgZ1BDZ9vwqcWPbNQM8TNsuGoHdkcV2s6PK3bKgkdnOCrfgY9NocnVLkzv_oVZse_OLdiYSkOw23r22NbvYvhIIdAhGgzXDLvJ6yVrJOLDil10xUyW7HqOdjqbkJfu8x7cn_24m5xHbU2FqEx5WkccAYHKityJwjlkknK8QCOhjFNfWi1Ujq2psF47HZNp6aXOh9ZqnmY6KTLLv8BmNa_cV2DSSi-4pTIRUthcFza2QoqCl0lJidx6wLupNGWbcJzqXjyYzrPst2kYYIgBJtYGGdCDaN1r0STceIM-67hkXiwcgzrhjZ5HHVNNu3GXJqH0OAJtLt6Dk3Uzbjm6R8krN39CmiEnnIWy8X80BAxR1ase7DcLZv07CGKTDL9w8O6hH8IWPQW3GnkEm_WfJ3eM4Kgu-vBhdHXz66ofdsFfkf4NOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hpom9oA3GKANmpGlvUZPaceJHKEMtUB5GkfpmJbEtFZW0okGi__3unKRoDwyJx8TnyPHZd7-z7wPgZypcEudSInJTFg0U5YJUkeEqnTORI6VD55CjGzm4E5eTeLIB_TYWhtwqG9lfy3QvrZs33WY2u4vptHsbpoqyl_OIrvBTiXb7B0QDCe3O4eRsfZUg4rpsHlIHRN7Gz3knL580ktKg0pEgpTvtvaafXsOfXg9dfIbtBkCy03qMX2DDljuwe1qi8fywYr-Yd-n0Z-U78LGuNLnahcn4Jc6KnVu7YGdUG4LdVtOHpoAXw0eKgfbhYLho2J-sWrJaJM5WbNhWM1my0RwNddYnN93nr3B38XvcHwRNUYWgiHlcBRwRQZrkmRW5tcil1PIcrYQijF1hlEgzbI2FccqqkGxLJ1XWM0bxOFFRnhi-B5vlvLT7wKSRTnBDdSKkMJnKTWiEFDkvooIyuXWAt1OpiybjOBW-mOnWtexe1wzQxAAdKo0M6ECw7rWoM268QZ-0XNL_rByNSuGNnoctU3Wzc5c6ovw4Ao0u3oGTdTPuObpIyUo7f0KaHieghcLxfzSEDFHXpx34Vi-Y9e8gio0S_MLBu4f-A7YG49G1vh7eXH2HT9TifWzkIWxWj0_2CJFSlR_7nfAXouYOuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+Deep+Brain+Stimulation+in+Parkinsonian+Rats+Directly+Influences+Motor+Cortex&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Li%2C+Qian&rft.au=Ke%2C+Ya&rft.au=Chan%2C+DannyCW&rft.au=Qian%2C+Zhong-Ming&rft.date=2012-12-06&rft.issn=0896-6273&rft.volume=76&rft.issue=5&rft.spage=1030&rft.epage=1041&rft_id=info:doi/10.1016%2Fj.neuron.2012.09.032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon