Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory trackin...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 17; no. 6; p. 1341 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.06.2017
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s17061341 |
Cover
Loading…
Abstract | Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. |
---|---|
AbstractList | Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. |
Author | Yang, Tao Zhang, Qilin Zhang, Yanning Ran, Lingyan |
AuthorAffiliation | 2 Highly Automated Driving Team, HERE Technologies Automotive Division, Chicago, IL 60606, USA; samqzhang@gmail.com 1 School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lingyanran@gmail.com (L.R.); tyang@nwpu.edu.cn (T.Y.) |
AuthorAffiliation_xml | – name: 1 School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lingyanran@gmail.com (L.R.); tyang@nwpu.edu.cn (T.Y.) – name: 2 Highly Automated Driving Team, HERE Technologies Automotive Division, Chicago, IL 60606, USA; samqzhang@gmail.com |
Author_xml | – sequence: 1 givenname: Lingyan orcidid: 0000-0002-3084-9860 surname: Ran fullname: Ran, Lingyan – sequence: 2 givenname: Yanning surname: Zhang fullname: Zhang, Yanning – sequence: 3 givenname: Qilin surname: Zhang fullname: Zhang, Qilin – sequence: 4 givenname: Tao orcidid: 0000-0002-5180-2316 surname: Yang fullname: Yang, Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28604624$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktv1DAQgC1URB9w4A-gSFzoIXT8iMe5IMGqwEpVkYAVR8txnK2XbLy1k0X8e9zdtmrLaazxN59GM3NMDoYwOEJeU3jPeQ1niSJIygV9Ro6oYKJUjMHBg_chOU5pBcA45-oFOWRKgpBMHJFfszBsQz-NPgymLy7dFHdh_BPi7_KTSa4tvocmjMWl2fqlueGKRfLDslgM1vS-iWbMzI_NlYs-J4r52ixdekmed6ZP7tVtPCGLz-c_Z1_Li29f5rOPF6WteDWWTBjaKQRQkgFabAxroEGsHXDbSW7Ruk6ipJR3qnOAjokKpeo4trzmkp-Q-d7bBrPSm-jXJv7VwXi9S4S41CaO3vZOM8u71kmuAJWwlTEcwbZGSKSVUthk14e9azM1a9daN4x5GI-kj38Gf6WXYasrUTOBKgve3QpiuJ5cGvXaJ-v63gwuTEnTGhTWSKHK6Nsn6CpMMa8gaUYzBRwZZurNw47uW7nbXwbO9oCNIaXoOm39uFtSbtD3moK-uRB9fyG54vRJxZ30f_Yfshu5ZA |
CitedBy_id | crossref_primary_10_1080_14330237_2021_1927317 crossref_primary_10_3390_machines9040082 crossref_primary_10_25209_2079_3316_2018_9_4_279_291 crossref_primary_10_3390_jcm11113221 crossref_primary_10_1007_s11263_021_01486_4 crossref_primary_10_1007_s42979_022_01396_3 crossref_primary_10_1016_j_image_2021_116135 crossref_primary_10_3390_app8081280 crossref_primary_10_3390_electronics10182250 crossref_primary_10_1177_1729881420972278 crossref_primary_10_1016_j_inffus_2023_01_023 crossref_primary_10_3390_cancers17071092 crossref_primary_10_3390_math10122052 crossref_primary_10_1109_ACCESS_2019_2962133 crossref_primary_10_1007_s11042_022_14253_5 crossref_primary_10_3390_jcm11195772 crossref_primary_10_1016_j_neunet_2021_01_028 crossref_primary_10_3390_app9010161 crossref_primary_10_3390_s19020434 crossref_primary_10_1007_s12652_021_03455_8 crossref_primary_10_1051_e3sconf_202454105004 crossref_primary_10_1016_j_engappai_2021_104615 crossref_primary_10_3390_s18071979 crossref_primary_10_1088_1742_6596_1167_1_012005 crossref_primary_10_1155_2021_6221119 crossref_primary_10_1007_s11042_021_11264_6 crossref_primary_10_1007_s11554_022_01212_4 crossref_primary_10_1016_j_compeleceng_2022_108037 crossref_primary_10_1145_3152121 crossref_primary_10_3390_s17102421 crossref_primary_10_1016_j_robot_2020_103472 crossref_primary_10_3390_cancers15071969 crossref_primary_10_16984_saufenbilder_828841 crossref_primary_10_3390_rs11020149 |
Cites_doi | 10.1007/s00138-011-0404-2 10.1007/s11263-015-0816-y 10.1177/0278364908090961 10.1109/CVPR.2015.7298594 10.3390/s151129594 10.1109/ISMAR.2007.4538852 10.1109/TPAMI.2015.2437384 10.1109/TPAMI.2006.150 10.1162/neco.1991.3.1.88 10.1145/2733373.2806224 10.1109/ISMAR.2011.6092378 10.1145/1961189.1961199 10.1007/978-981-10-3476-3_6 10.1016/j.patrec.2005.10.010 10.1109/TCST.2015.2411627 10.1109/ICIP.2015.7351692 10.1109/ICPR.2004.1334598 10.1155/2015/258619 10.1145/3007669.3007707 10.1007/978-3-319-16865-4_5 10.1002/rob.20276 10.1007/978-3-7908-2604-3_16 10.1109/CVPR.2011.5995347 10.1109/ICCV.2015.123 10.1109/ICCV.2011.6126513 10.1016/S0034-4257(97)00083-7 10.2197/ipsjtcva.7.138 10.1109/TSP.2012.2231676 10.1177/0278364911421954 10.1109/TPAMI.2007.1049 10.1109/ACSSC.2011.6190383 10.1121/1.3672656 10.1109/LRA.2015.2509024 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 by the authors. 2017 |
Copyright_xml | – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s17061341 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2c3fde6380784c5aa370cda46715887b PMC5492478 28604624 10_3390_s17061341 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R01 AA016402 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-24a1f870086207c7ba2b0b779e03cf63c7cef676113f8fe07e245768f37d39363 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:22:19 EDT 2025 Thu Aug 21 18:07:42 EDT 2025 Thu Jul 10 18:39:20 EDT 2025 Fri Jul 25 20:44:58 EDT 2025 Mon Jul 21 05:48:43 EDT 2025 Tue Jul 01 01:36:36 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | navigation via learning vision-based robot navigation convolutional neural networks spherical camera |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-24a1f870086207c7ba2b0b779e03cf63c7cef676113f8fe07e245768f37d39363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This paper is an extended version of our paper published in Ran, L.; Zhang, Y.; Yang, T.; Zhang, P. Autonomous Wheeled Robot Navigation with Uncalibrated Spherical Images. In Chinese Conference on Intelligent Visual Surveillance; Springer: Singapore, 2016; pp. 47–55. |
ORCID | 0000-0002-3084-9860 0000-0002-5180-2316 |
OpenAccessLink | https://www.proquest.com/docview/2108703727?pq-origsite=%requestingapplication% |
PMID | 28604624 |
PQID | 2108703727 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c3fde6380784c5aa370cda46715887b pubmedcentral_primary_oai_pubmedcentral_nih_gov_5492478 proquest_miscellaneous_1908797105 proquest_journals_2108703727 pubmed_primary_28604624 crossref_citationtrail_10_3390_s17061341 crossref_primary_10_3390_s17061341 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-12 |
PublicationDateYYYYMMDD | 2017-06-12 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_17) 2014; Volume 9003 ref_14 Giusti (ref_13) 2016; 1 ref_10 Hadsell (ref_12) 2009; 26 ref_15 Pomerleau (ref_11) 1991; 3 ref_25 ref_24 Cummins (ref_3) 2008; 27 ref_23 Stehman (ref_48) 1997; 62 ref_21 ref_20 Russakovsky (ref_30) 2015; 115 ref_29 ref_28 ref_27 ref_26 Chang (ref_47) 2011; 2 Zhang (ref_16) 2015; 7 ref_34 ref_33 Abeida (ref_18) 2013; 61 ref_32 Fawcett (ref_49) 2006; 27 Hillel (ref_7) 2014; 25 ref_39 ref_38 ref_37 Bazin (ref_36) 2012; 31 Davison (ref_1) 2007; 29 Makadia (ref_35) 2006; 28 Duchi (ref_42) 2011; 12 ref_46 ref_45 ref_44 ref_43 ref_41 Liang (ref_8) 2015; 23 ref_40 ref_2 Srivastava (ref_31) 2014; 15 Girshick (ref_22) 2016; 38 Lu (ref_9) 2015; 15 ref_5 ref_4 Zhang (ref_19) 2012; 131 ref_6 |
References_xml | – volume: 25 start-page: 727 year: 2014 ident: ref_7 article-title: Recent progress in road and lane detection: A survey publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-011-0404-2 – ident: ref_32 – ident: ref_26 – volume: 115 start-page: 211 year: 2015 ident: ref_30 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 27 start-page: 647 year: 2008 ident: ref_3 article-title: FAB-MAP: Probabilistic localization and mapping in the space of appearance publication-title: Int. J. Robot. Res. doi: 10.1177/0278364908090961 – ident: ref_37 doi: 10.1109/CVPR.2015.7298594 – volume: 15 start-page: 29594 year: 2015 ident: ref_9 article-title: Vision sensor-based road detection for field robot navigation publication-title: Sensors doi: 10.3390/s151129594 – ident: ref_39 – ident: ref_2 doi: 10.1109/ISMAR.2007.4538852 – volume: 38 start-page: 142 year: 2016 ident: ref_22 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2437384 – volume: 28 start-page: 1170 year: 2006 ident: ref_35 article-title: Rotation recovery from spherical images without correspondences publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.150 – ident: ref_23 – volume: 12 start-page: 2121 year: 2011 ident: ref_42 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 88 year: 1991 ident: ref_11 article-title: Efficient training of artificial neural networks for autonomous navigation publication-title: Neural Comput. doi: 10.1162/neco.1991.3.1.88 – ident: ref_15 doi: 10.1145/2733373.2806224 – ident: ref_5 doi: 10.1109/ISMAR.2011.6092378 – volume: 2 start-page: 27 year: 2011 ident: ref_47 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – ident: ref_14 doi: 10.1007/978-981-10-3476-3_6 – ident: ref_10 – volume: 27 start-page: 861 year: 2006 ident: ref_49 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – ident: ref_41 – volume: 23 start-page: 2266 year: 2015 ident: ref_8 article-title: Adaptive Image-Based Trajectory Tracking Control of Wheeled Mobile Robots With an Uncalibrated Fixed Camera publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2411627 – ident: ref_25 doi: 10.1109/ICIP.2015.7351692 – ident: ref_38 – ident: ref_34 doi: 10.1109/ICPR.2004.1334598 – ident: ref_27 doi: 10.1155/2015/258619 – ident: ref_24 – ident: ref_28 doi: 10.1145/3007669.3007707 – volume: Volume 9003 start-page: 65 year: 2014 ident: ref_17 article-title: Can Visual Recognition Benefit from Auxiliary Information in Training? publication-title: Computer Vision—ACCV 2014 doi: 10.1007/978-3-319-16865-4_5 – volume: 26 start-page: 120 year: 2009 ident: ref_12 article-title: Learning long-range vision for autonomous off-road driving publication-title: J. Field Robot. doi: 10.1002/rob.20276 – ident: ref_43 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref_44 – ident: ref_45 doi: 10.1109/CVPR.2011.5995347 – ident: ref_21 – ident: ref_40 doi: 10.1109/ICCV.2015.123 – ident: ref_4 doi: 10.1109/ICCV.2011.6126513 – volume: 62 start-page: 77 year: 1997 ident: ref_48 article-title: Selecting and interpreting measures of thematic classification accuracy publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00083-7 – ident: ref_6 – ident: ref_29 – volume: 15 start-page: 1929 year: 2014 ident: ref_31 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_33 – ident: ref_46 – volume: 7 start-page: 138 year: 2015 ident: ref_16 article-title: Auxiliary Training Information Assisted Visual Recognition publication-title: IPSJ Trans. Comput. Vis. Appl. doi: 10.2197/ipsjtcva.7.138 – volume: 61 start-page: 933 year: 2013 ident: ref_18 article-title: Iterative sparse asymptotic minimum variance based approaches for array processing publication-title: Signal Proc. IEEE Trans. doi: 10.1109/TSP.2012.2231676 – volume: 31 start-page: 63 year: 2012 ident: ref_36 article-title: Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911421954 – volume: 29 start-page: 1052 year: 2007 ident: ref_1 article-title: MonoSLAM: Real-time single camera SLAM publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1049 – ident: ref_20 doi: 10.1109/ACSSC.2011.6190383 – volume: 131 start-page: 1249 year: 2012 ident: ref_19 article-title: Fast implementation of sparse iterative covariance-based estimation for source localization publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3672656 – volume: 1 start-page: 661 year: 2016 ident: ref_13 article-title: A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2015.2509024 |
SSID | ssj0023338 |
Score | 2.4917097 |
Snippet | Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1341 |
SubjectTerms | convolutional neural networks navigation via learning Neural networks Robots spherical camera vision-based robot navigation |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TuwwEB0hKigQb8JLAd2CJiKxHTspAYGAggLuCrrIdmyBBMnV3YXvZ8bJRrsIiYYqUjKFMw_POcrkGOBPKXSdYWNOjGY8EZxlCXZFnRS2LrXyMq9dmPK9k9cjcfuUP80c9UUzYZ08cOe4U2a5r50MuujC5lpzldpaY31nORaIod0Xe96UTPVUiyPz6nSEOJL60zGJxJB02Vz3CSL93yHLrwOSMx3nahVWeqgYn3VLXIMF16zD8oyA4AY8XrTNR588aEpKG-ESRruTc-xQdXzfmnYS3-mPIKbRNnGYEohHDUaHuDJCzviBxAUoXPHNG24w400YXV3-vbhO-qMSEpvzfJIwoTOPpUcEJVVWoedNapQqXcqtl9wq67xUMsu4L7xLlWOCmIbnquYll3wLFpu2cTsQG5_zUmqEjSoTXiljMkMSLgxzjmlRRnAydWFlex1xOs7itUI-Qd6uBm9HcDyY_uvEM74zOqc4DAakdx1uYBZUfRZUP2VBBPvTKFZ9EY4rZLPoEo4ILYKj4TGWD30T0Y1r38cV4qFClQiz8gi2u6APK2GFpF93RQRqLh3mljr_pHl5DhLdpHsnVLH7G--2B0uMsEQ4MGkfFif_390BIqGJOQxJ_wmx6gaL priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgXOCA-KYwUEEcuERrPpq0p2mbeAwOOwBP7FYlaQJI0I71bX8_dl5e2UMTp0qtD5Ht2P4l7s8Ab1ple46JmTkrJFNScIZZ0bLG9601Udd9SF2-J_p4qT6e1qf5wG3KbZWbmJgCdT96OiPfQ2iCriUx3e6f_WY0NYpuV_MIjZtwi2OmIQ9vFu9nwCURf63ZhCRC-72JqGKIwGwrByWq_uvqy3_bJK_kncU9uJsLxvJgbeH7cCMMD-DOFRrBh_D1aBwuswuhKPFtpEdq8GaHmKf68tPoxlV5Yi8TpcY4lKlXoFwOaCNCzFh4lp-JYoCMVn74hWFmegTLxbsvR8csD0xgvpb1iglleUQtEUypjDeof1c5Y9pQSR-19MaHqI3mXMYmhsoEoQhvRGl62UotH8POMA7hKZQu1rLVFotHw1U0xjnuiMhFoOcJq9oC3m5U2PnMJk5DLX52iCpI292s7QJez6JnawqN64QOyQ6zALFepxfj-bcub6JOeBn7oBNHvvK1tdJUvrcY63mNwdIVsLuxYpe34tT9dZwCXs2fcRPRzYgdwngxdVgVNabFYqsu4Mna6PNKRKPpB15VgNlyh62lbn8ZfnxPRN3EfqdM8-z_y3oOtwXVCmkg0i7srM4vwgusdFbuZXLnPwgO_i4 priority: 102 providerName: ProQuest |
Title | Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28604624 https://www.proquest.com/docview/2108703727 https://www.proquest.com/docview/1908797105 https://pubmed.ncbi.nlm.nih.gov/PMC5492478 https://doaj.org/article/2c3fde6380784c5aa370cda46715887b |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxJvAUgXEgUsgsZ1MckCIrrYsSFRooaK3yHZsQFoSaLsr-PfMuGm0RT1wSaTYkaJ5eL6Jx98APKuUbjIKzInRQiZKiiyhqKiT0jaVRl_kjQtVvtPidKbez_P5Hmx6bPYCXO5M7bif1Gxx_uL3rz-vyeFfccZJKfvLJVPAMDHZPhxSQELu4PBBDZsJQsrQ0JrPdCUUD9M1wdD2q1thKbD374Kc_1ZOXglFk5two8eQ8Zu10m_Bnmtvw_UrzIJ34Mtx1172VkVTmYIj3ELNdzKm0NXEZ53pVvFUXwaWja6NQ_lAPGtJbZxEExaNPzHrAOsxfveDVp7lXZhNTj4fnyZ9D4XE5jJfJULpzJNPcuaSokVSiUkNYuVSaX0hLVrnCyyyTPrSuxSdUJyCeImNrGQh78FB27XuAcTG57IqNOFJzJRHNCYzzO0iyBiFVlUEzzcirG1PMM59Ls5rSjRY2vUg7QieDlN_rlk1dk0asx6GCUyEHR50i69171e1sNI3rgi0-crmWktMbaNp-c9yWj9NBEcbLdYb46opzSWRSIJuETwZhsmveLNEt667WNYElEqsCH_lEdxfK334ElEWfKZXRYBb5rD1qdsj7fdvgbubCfEUlg__RwCP4JpgEBE6JR3BwWpx4R4TBFqZEezjHOlaTt6O4HB8Mv14Ngq_E0bB9P8C8bEHSA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiG8CBQICiUvUxHbi5IAQLVS7tOwBumJvqe3YgARJabZF_Cl-IzPOR7uo4tZTpMSyLM-z5008fgPwvBCqStAxR1oxHgnOkgi9oopyUxVKuiytrM_ynWWTuXi_SBdr8Ge4C0NplcOe6DfqqjH0j3wTQxOEFkd3-_rwZ0RVo-h0dSih0cFi1_7-hSFb-2r6Fu37grGdd_vbk6ivKhCZlKfLiAmVOOyKuHwsjcRB6lhLWdiYG5dxI411GUb3CXe5s7G0TBApd1xWvOAZx34vwWV0vDGlEMrFaYDHMd7r1Is4L-LNlqRpSDBtxef50gDn8dl_0zLP-LmdG3C9J6jhmw5RN2HN1rfg2hnZwtvwebupT3rIYlPS9_APn1AebaFfrMKPjW6W4UydeAmPpg59bkI4rxETFKEj0Q0_kaQBgSSc_sBtrb0D8wuZyruwXje1vQ-hdikvMoVkVSbCSal1okk4hiHSmRJFAC-HKSxNr15ORTS-lxjF0GyX42wH8GxsethJdpzXaIvsMDYglW3_ojn6UvaLtmSGu8pmXpNfmFQpLmNTKfQtSYqbsw5gY7Bi2S_9tjwFagBPx8-4aOkkRtW2OW5LZGG5LJDcpQHc64w-joTlGV0YFgHIFTisDHX1S_3tqxcGJ7U9IfMH_x_WE7gy2f-wV-5NZ7sP4SojnuKLMW3A-vLo2D5ClrXUjz20Qzi46LX0FxOLOYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4IL4JFAgIJC7RJrYTJweEaMuqS9EKASv2FmzHBiRISrMt4q_x65hxPtpFFbeeIiVWZNlvZt7EkzcATwuhqgQDc6QV45HgLIkwKqooN1WhpMvSyvoq33m2txBvlulyA_4M_8JQWeXgE72jrhpD38gnmJogtDiG24nryyLe7U5fHvyMqIMUnbQO7TQ6iOzb378wfWtfzHZxr58xNn39cWcv6jsMRCbl6SpiQiUOX0u8PpZG4oR1rKUsbMyNy7iRxroMM_2Eu9zZWFomiKA7Lite8Izjey_ARckxbKItyeVJsscx9-uUjDgv4klLMjUknrYW_3ybgLO47b8lmqdi3vQaXO3JaviqQ9d12LD1DbhySsLwJnzaaerjHr44lLQ-_MUXl0fbGCOr8H2jm1U4V8dezqOpQ1-nEC5qxAdl60h6ww8kb0CACWc_0MW1t2BxLkt5GzbrprZ3IdQu5UWmkLjKRDgptU40icgwRD1Togjg-bCEpemVzKmhxvcSMxpa7XJc7QCejEMPOvmOswZt0z6MA0hx299oDr-UvQGXzHBX2czr8wuTKsVlbCqFcSZJ0VHrALaGXSx7N9CWJ6AN4PH4GA2YTmVUbZujtkRGlssCiV4awJ1u08eZsDyjn4dFAHINDmtTXX9Sf_vqRcJJeU_I_N7_p_UILqEVlW9n8_37cJkRZfF9mbZgc3V4ZB8g4Vrphx7ZIXw-b1P6C5fLPbo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Network-Based+Robot+Navigation+Using+Uncalibrated+Spherical+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ran%2C+Lingyan&rft.au=Zhang%2C+Yanning&rft.au=Zhang%2C+Qilin&rft.au=Yang%2C+Tao&rft.date=2017-06-12&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=6&rft.spage=1341&rft_id=info:doi/10.3390%2Fs17061341&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s17061341 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |