Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images

Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory trackin...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 17; no. 6; p. 1341
Main Authors Ran, Lingyan, Zhang, Yanning, Zhang, Qilin, Yang, Tao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.06.2017
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s17061341

Cover

Loading…
Abstract Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
AbstractList Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
Author Yang, Tao
Zhang, Qilin
Zhang, Yanning
Ran, Lingyan
AuthorAffiliation 2 Highly Automated Driving Team, HERE Technologies Automotive Division, Chicago, IL 60606, USA; samqzhang@gmail.com
1 School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lingyanran@gmail.com (L.R.); tyang@nwpu.edu.cn (T.Y.)
AuthorAffiliation_xml – name: 1 School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lingyanran@gmail.com (L.R.); tyang@nwpu.edu.cn (T.Y.)
– name: 2 Highly Automated Driving Team, HERE Technologies Automotive Division, Chicago, IL 60606, USA; samqzhang@gmail.com
Author_xml – sequence: 1
  givenname: Lingyan
  orcidid: 0000-0002-3084-9860
  surname: Ran
  fullname: Ran, Lingyan
– sequence: 2
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
– sequence: 3
  givenname: Qilin
  surname: Zhang
  fullname: Zhang, Qilin
– sequence: 4
  givenname: Tao
  orcidid: 0000-0002-5180-2316
  surname: Yang
  fullname: Yang, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28604624$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAQgC1URB9w4A-gSFzoIXT8iMe5IMGqwEpVkYAVR8txnK2XbLy1k0X8e9zdtmrLaazxN59GM3NMDoYwOEJeU3jPeQ1niSJIygV9Ro6oYKJUjMHBg_chOU5pBcA45-oFOWRKgpBMHJFfszBsQz-NPgymLy7dFHdh_BPi7_KTSa4tvocmjMWl2fqlueGKRfLDslgM1vS-iWbMzI_NlYs-J4r52ixdekmed6ZP7tVtPCGLz-c_Z1_Li29f5rOPF6WteDWWTBjaKQRQkgFabAxroEGsHXDbSW7Ruk6ipJR3qnOAjokKpeo4trzmkp-Q-d7bBrPSm-jXJv7VwXi9S4S41CaO3vZOM8u71kmuAJWwlTEcwbZGSKSVUthk14e9azM1a9daN4x5GI-kj38Gf6WXYasrUTOBKgve3QpiuJ5cGvXaJ-v63gwuTEnTGhTWSKHK6Nsn6CpMMa8gaUYzBRwZZurNw47uW7nbXwbO9oCNIaXoOm39uFtSbtD3moK-uRB9fyG54vRJxZ30f_Yfshu5ZA
CitedBy_id crossref_primary_10_1080_14330237_2021_1927317
crossref_primary_10_3390_machines9040082
crossref_primary_10_25209_2079_3316_2018_9_4_279_291
crossref_primary_10_3390_jcm11113221
crossref_primary_10_1007_s11263_021_01486_4
crossref_primary_10_1007_s42979_022_01396_3
crossref_primary_10_1016_j_image_2021_116135
crossref_primary_10_3390_app8081280
crossref_primary_10_3390_electronics10182250
crossref_primary_10_1177_1729881420972278
crossref_primary_10_1016_j_inffus_2023_01_023
crossref_primary_10_3390_cancers17071092
crossref_primary_10_3390_math10122052
crossref_primary_10_1109_ACCESS_2019_2962133
crossref_primary_10_1007_s11042_022_14253_5
crossref_primary_10_3390_jcm11195772
crossref_primary_10_1016_j_neunet_2021_01_028
crossref_primary_10_3390_app9010161
crossref_primary_10_3390_s19020434
crossref_primary_10_1007_s12652_021_03455_8
crossref_primary_10_1051_e3sconf_202454105004
crossref_primary_10_1016_j_engappai_2021_104615
crossref_primary_10_3390_s18071979
crossref_primary_10_1088_1742_6596_1167_1_012005
crossref_primary_10_1155_2021_6221119
crossref_primary_10_1007_s11042_021_11264_6
crossref_primary_10_1007_s11554_022_01212_4
crossref_primary_10_1016_j_compeleceng_2022_108037
crossref_primary_10_1145_3152121
crossref_primary_10_3390_s17102421
crossref_primary_10_1016_j_robot_2020_103472
crossref_primary_10_3390_cancers15071969
crossref_primary_10_16984_saufenbilder_828841
crossref_primary_10_3390_rs11020149
Cites_doi 10.1007/s00138-011-0404-2
10.1007/s11263-015-0816-y
10.1177/0278364908090961
10.1109/CVPR.2015.7298594
10.3390/s151129594
10.1109/ISMAR.2007.4538852
10.1109/TPAMI.2015.2437384
10.1109/TPAMI.2006.150
10.1162/neco.1991.3.1.88
10.1145/2733373.2806224
10.1109/ISMAR.2011.6092378
10.1145/1961189.1961199
10.1007/978-981-10-3476-3_6
10.1016/j.patrec.2005.10.010
10.1109/TCST.2015.2411627
10.1109/ICIP.2015.7351692
10.1109/ICPR.2004.1334598
10.1155/2015/258619
10.1145/3007669.3007707
10.1007/978-3-319-16865-4_5
10.1002/rob.20276
10.1007/978-3-7908-2604-3_16
10.1109/CVPR.2011.5995347
10.1109/ICCV.2015.123
10.1109/ICCV.2011.6126513
10.1016/S0034-4257(97)00083-7
10.2197/ipsjtcva.7.138
10.1109/TSP.2012.2231676
10.1177/0278364911421954
10.1109/TPAMI.2007.1049
10.1109/ACSSC.2011.6190383
10.1121/1.3672656
10.1109/LRA.2015.2509024
ContentType Journal Article
Copyright 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 by the authors. 2017
Copyright_xml – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s17061341
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2c3fde6380784c5aa370cda46715887b
PMC5492478
28604624
10_3390_s17061341
Genre Journal Article
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R01 AA016402
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c535t-24a1f870086207c7ba2b0b779e03cf63c7cef676113f8fe07e245768f37d39363
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:22:19 EDT 2025
Thu Aug 21 18:07:42 EDT 2025
Thu Jul 10 18:39:20 EDT 2025
Fri Jul 25 20:44:58 EDT 2025
Mon Jul 21 05:48:43 EDT 2025
Tue Jul 01 01:36:36 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords navigation via learning
vision-based robot navigation
convolutional neural networks
spherical camera
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-24a1f870086207c7ba2b0b779e03cf63c7cef676113f8fe07e245768f37d39363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This paper is an extended version of our paper published in Ran, L.; Zhang, Y.; Yang, T.; Zhang, P. Autonomous Wheeled Robot Navigation with Uncalibrated Spherical Images. In Chinese Conference on Intelligent Visual Surveillance; Springer: Singapore, 2016; pp. 47–55.
ORCID 0000-0002-3084-9860
0000-0002-5180-2316
OpenAccessLink https://www.proquest.com/docview/2108703727?pq-origsite=%requestingapplication%
PMID 28604624
PQID 2108703727
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2c3fde6380784c5aa370cda46715887b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5492478
proquest_miscellaneous_1908797105
proquest_journals_2108703727
pubmed_primary_28604624
crossref_citationtrail_10_3390_s17061341
crossref_primary_10_3390_s17061341
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-12
PublicationDateYYYYMMDD 2017-06-12
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_17) 2014; Volume 9003
ref_14
Giusti (ref_13) 2016; 1
ref_10
Hadsell (ref_12) 2009; 26
ref_15
Pomerleau (ref_11) 1991; 3
ref_25
ref_24
Cummins (ref_3) 2008; 27
ref_23
Stehman (ref_48) 1997; 62
ref_21
ref_20
Russakovsky (ref_30) 2015; 115
ref_29
ref_28
ref_27
ref_26
Chang (ref_47) 2011; 2
Zhang (ref_16) 2015; 7
ref_34
ref_33
Abeida (ref_18) 2013; 61
ref_32
Fawcett (ref_49) 2006; 27
Hillel (ref_7) 2014; 25
ref_39
ref_38
ref_37
Bazin (ref_36) 2012; 31
Davison (ref_1) 2007; 29
Makadia (ref_35) 2006; 28
Duchi (ref_42) 2011; 12
ref_46
ref_45
ref_44
ref_43
ref_41
Liang (ref_8) 2015; 23
ref_40
ref_2
Srivastava (ref_31) 2014; 15
Girshick (ref_22) 2016; 38
Lu (ref_9) 2015; 15
ref_5
ref_4
Zhang (ref_19) 2012; 131
ref_6
References_xml – volume: 25
  start-page: 727
  year: 2014
  ident: ref_7
  article-title: Recent progress in road and lane detection: A survey
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-011-0404-2
– ident: ref_32
– ident: ref_26
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_30
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 27
  start-page: 647
  year: 2008
  ident: ref_3
  article-title: FAB-MAP: Probabilistic localization and mapping in the space of appearance
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364908090961
– ident: ref_37
  doi: 10.1109/CVPR.2015.7298594
– volume: 15
  start-page: 29594
  year: 2015
  ident: ref_9
  article-title: Vision sensor-based road detection for field robot navigation
  publication-title: Sensors
  doi: 10.3390/s151129594
– ident: ref_39
– ident: ref_2
  doi: 10.1109/ISMAR.2007.4538852
– volume: 38
  start-page: 142
  year: 2016
  ident: ref_22
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2437384
– volume: 28
  start-page: 1170
  year: 2006
  ident: ref_35
  article-title: Rotation recovery from spherical images without correspondences
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.150
– ident: ref_23
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref_42
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 88
  year: 1991
  ident: ref_11
  article-title: Efficient training of artificial neural networks for autonomous navigation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.1.88
– ident: ref_15
  doi: 10.1145/2733373.2806224
– ident: ref_5
  doi: 10.1109/ISMAR.2011.6092378
– volume: 2
  start-page: 27
  year: 2011
  ident: ref_47
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– ident: ref_14
  doi: 10.1007/978-981-10-3476-3_6
– ident: ref_10
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_49
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref_41
– volume: 23
  start-page: 2266
  year: 2015
  ident: ref_8
  article-title: Adaptive Image-Based Trajectory Tracking Control of Wheeled Mobile Robots With an Uncalibrated Fixed Camera
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2015.2411627
– ident: ref_25
  doi: 10.1109/ICIP.2015.7351692
– ident: ref_38
– ident: ref_34
  doi: 10.1109/ICPR.2004.1334598
– ident: ref_27
  doi: 10.1155/2015/258619
– ident: ref_24
– ident: ref_28
  doi: 10.1145/3007669.3007707
– volume: Volume 9003
  start-page: 65
  year: 2014
  ident: ref_17
  article-title: Can Visual Recognition Benefit from Auxiliary Information in Training?
  publication-title: Computer Vision—ACCV 2014
  doi: 10.1007/978-3-319-16865-4_5
– volume: 26
  start-page: 120
  year: 2009
  ident: ref_12
  article-title: Learning long-range vision for autonomous off-road driving
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20276
– ident: ref_43
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref_44
– ident: ref_45
  doi: 10.1109/CVPR.2011.5995347
– ident: ref_21
– ident: ref_40
  doi: 10.1109/ICCV.2015.123
– ident: ref_4
  doi: 10.1109/ICCV.2011.6126513
– volume: 62
  start-page: 77
  year: 1997
  ident: ref_48
  article-title: Selecting and interpreting measures of thematic classification accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00083-7
– ident: ref_6
– ident: ref_29
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_31
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_33
– ident: ref_46
– volume: 7
  start-page: 138
  year: 2015
  ident: ref_16
  article-title: Auxiliary Training Information Assisted Visual Recognition
  publication-title: IPSJ Trans. Comput. Vis. Appl.
  doi: 10.2197/ipsjtcva.7.138
– volume: 61
  start-page: 933
  year: 2013
  ident: ref_18
  article-title: Iterative sparse asymptotic minimum variance based approaches for array processing
  publication-title: Signal Proc. IEEE Trans.
  doi: 10.1109/TSP.2012.2231676
– volume: 31
  start-page: 63
  year: 2012
  ident: ref_36
  article-title: Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911421954
– volume: 29
  start-page: 1052
  year: 2007
  ident: ref_1
  article-title: MonoSLAM: Real-time single camera SLAM
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1049
– ident: ref_20
  doi: 10.1109/ACSSC.2011.6190383
– volume: 131
  start-page: 1249
  year: 2012
  ident: ref_19
  article-title: Fast implementation of sparse iterative covariance-based estimation for source localization
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3672656
– volume: 1
  start-page: 661
  year: 2016
  ident: ref_13
  article-title: A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2015.2509024
SSID ssj0023338
Score 2.4917097
Snippet Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1341
SubjectTerms convolutional neural networks
navigation via learning
Neural networks
Robots
spherical camera
vision-based robot navigation
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TuwwEB0hKigQb8JLAd2CJiKxHTspAYGAggLuCrrIdmyBBMnV3YXvZ8bJRrsIiYYqUjKFMw_POcrkGOBPKXSdYWNOjGY8EZxlCXZFnRS2LrXyMq9dmPK9k9cjcfuUP80c9UUzYZ08cOe4U2a5r50MuujC5lpzldpaY31nORaIod0Xe96UTPVUiyPz6nSEOJL60zGJxJB02Vz3CSL93yHLrwOSMx3nahVWeqgYn3VLXIMF16zD8oyA4AY8XrTNR588aEpKG-ESRruTc-xQdXzfmnYS3-mPIKbRNnGYEohHDUaHuDJCzviBxAUoXPHNG24w400YXV3-vbhO-qMSEpvzfJIwoTOPpUcEJVVWoedNapQqXcqtl9wq67xUMsu4L7xLlWOCmIbnquYll3wLFpu2cTsQG5_zUmqEjSoTXiljMkMSLgxzjmlRRnAydWFlex1xOs7itUI-Qd6uBm9HcDyY_uvEM74zOqc4DAakdx1uYBZUfRZUP2VBBPvTKFZ9EY4rZLPoEo4ILYKj4TGWD30T0Y1r38cV4qFClQiz8gi2u6APK2GFpF93RQRqLh3mljr_pHl5DhLdpHsnVLH7G--2B0uMsEQ4MGkfFif_390BIqGJOQxJ_wmx6gaL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgXOCA-KYwUEEcuERrPpq0p2mbeAwOOwBP7FYlaQJI0I71bX8_dl5e2UMTp0qtD5Ht2P4l7s8Ab1ple46JmTkrJFNScIZZ0bLG9601Udd9SF2-J_p4qT6e1qf5wG3KbZWbmJgCdT96OiPfQ2iCriUx3e6f_WY0NYpuV_MIjZtwi2OmIQ9vFu9nwCURf63ZhCRC-72JqGKIwGwrByWq_uvqy3_bJK_kncU9uJsLxvJgbeH7cCMMD-DOFRrBh_D1aBwuswuhKPFtpEdq8GaHmKf68tPoxlV5Yi8TpcY4lKlXoFwOaCNCzFh4lp-JYoCMVn74hWFmegTLxbsvR8csD0xgvpb1iglleUQtEUypjDeof1c5Y9pQSR-19MaHqI3mXMYmhsoEoQhvRGl62UotH8POMA7hKZQu1rLVFotHw1U0xjnuiMhFoOcJq9oC3m5U2PnMJk5DLX52iCpI292s7QJez6JnawqN64QOyQ6zALFepxfj-bcub6JOeBn7oBNHvvK1tdJUvrcY63mNwdIVsLuxYpe34tT9dZwCXs2fcRPRzYgdwngxdVgVNabFYqsu4Mna6PNKRKPpB15VgNlyh62lbn8ZfnxPRN3EfqdM8-z_y3oOtwXVCmkg0i7srM4vwgusdFbuZXLnPwgO_i4
  priority: 102
  providerName: ProQuest
Title Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images
URI https://www.ncbi.nlm.nih.gov/pubmed/28604624
https://www.proquest.com/docview/2108703727
https://www.proquest.com/docview/1908797105
https://pubmed.ncbi.nlm.nih.gov/PMC5492478
https://doaj.org/article/2c3fde6380784c5aa370cda46715887b
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxJvAUgXEgUsgsZ1MckCIrrYsSFRooaK3yHZsQFoSaLsr-PfMuGm0RT1wSaTYkaJ5eL6Jx98APKuUbjIKzInRQiZKiiyhqKiT0jaVRl_kjQtVvtPidKbez_P5Hmx6bPYCXO5M7bif1Gxx_uL3rz-vyeFfccZJKfvLJVPAMDHZPhxSQELu4PBBDZsJQsrQ0JrPdCUUD9M1wdD2q1thKbD374Kc_1ZOXglFk5two8eQ8Zu10m_Bnmtvw_UrzIJ34Mtx1172VkVTmYIj3ELNdzKm0NXEZ53pVvFUXwaWja6NQ_lAPGtJbZxEExaNPzHrAOsxfveDVp7lXZhNTj4fnyZ9D4XE5jJfJULpzJNPcuaSokVSiUkNYuVSaX0hLVrnCyyyTPrSuxSdUJyCeImNrGQh78FB27XuAcTG57IqNOFJzJRHNCYzzO0iyBiFVlUEzzcirG1PMM59Ls5rSjRY2vUg7QieDlN_rlk1dk0asx6GCUyEHR50i69171e1sNI3rgi0-crmWktMbaNp-c9yWj9NBEcbLdYb46opzSWRSIJuETwZhsmveLNEt667WNYElEqsCH_lEdxfK334ElEWfKZXRYBb5rD1qdsj7fdvgbubCfEUlg__RwCP4JpgEBE6JR3BwWpx4R4TBFqZEezjHOlaTt6O4HB8Mv14Ngq_E0bB9P8C8bEHSA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiG8CBQICiUvUxHbi5IAQLVS7tOwBumJvqe3YgARJabZF_Cl-IzPOR7uo4tZTpMSyLM-z5008fgPwvBCqStAxR1oxHgnOkgi9oopyUxVKuiytrM_ynWWTuXi_SBdr8Ge4C0NplcOe6DfqqjH0j3wTQxOEFkd3-_rwZ0RVo-h0dSih0cFi1_7-hSFb-2r6Fu37grGdd_vbk6ivKhCZlKfLiAmVOOyKuHwsjcRB6lhLWdiYG5dxI411GUb3CXe5s7G0TBApd1xWvOAZx34vwWV0vDGlEMrFaYDHMd7r1Is4L-LNlqRpSDBtxef50gDn8dl_0zLP-LmdG3C9J6jhmw5RN2HN1rfg2hnZwtvwebupT3rIYlPS9_APn1AebaFfrMKPjW6W4UydeAmPpg59bkI4rxETFKEj0Q0_kaQBgSSc_sBtrb0D8wuZyruwXje1vQ-hdikvMoVkVSbCSal1okk4hiHSmRJFAC-HKSxNr15ORTS-lxjF0GyX42wH8GxsethJdpzXaIvsMDYglW3_ojn6UvaLtmSGu8pmXpNfmFQpLmNTKfQtSYqbsw5gY7Bi2S_9tjwFagBPx8-4aOkkRtW2OW5LZGG5LJDcpQHc64w-joTlGV0YFgHIFTisDHX1S_3tqxcGJ7U9IfMH_x_WE7gy2f-wV-5NZ7sP4SojnuKLMW3A-vLo2D5ClrXUjz20Qzi46LX0FxOLOYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4IL4JFAgIJC7RJrYTJweEaMuqS9EKASv2FmzHBiRISrMt4q_x65hxPtpFFbeeIiVWZNlvZt7EkzcATwuhqgQDc6QV45HgLIkwKqooN1WhpMvSyvoq33m2txBvlulyA_4M_8JQWeXgE72jrhpD38gnmJogtDiG24nryyLe7U5fHvyMqIMUnbQO7TQ6iOzb378wfWtfzHZxr58xNn39cWcv6jsMRCbl6SpiQiUOX0u8PpZG4oR1rKUsbMyNy7iRxroMM_2Eu9zZWFomiKA7Lite8Izjey_ARckxbKItyeVJsscx9-uUjDgv4klLMjUknrYW_3ybgLO47b8lmqdi3vQaXO3JaviqQ9d12LD1DbhySsLwJnzaaerjHr44lLQ-_MUXl0fbGCOr8H2jm1U4V8dezqOpQ1-nEC5qxAdl60h6ww8kb0CACWc_0MW1t2BxLkt5GzbrprZ3IdQu5UWmkLjKRDgptU40icgwRD1Togjg-bCEpemVzKmhxvcSMxpa7XJc7QCejEMPOvmOswZt0z6MA0hx299oDr-UvQGXzHBX2czr8wuTKsVlbCqFcSZJ0VHrALaGXSx7N9CWJ6AN4PH4GA2YTmVUbZujtkRGlssCiV4awJ1u08eZsDyjn4dFAHINDmtTXX9Sf_vqRcJJeU_I_N7_p_UILqEVlW9n8_37cJkRZfF9mbZgc3V4ZB8g4Vrphx7ZIXw-b1P6C5fLPbo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Network-Based+Robot+Navigation+Using+Uncalibrated+Spherical+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ran%2C+Lingyan&rft.au=Zhang%2C+Yanning&rft.au=Zhang%2C+Qilin&rft.au=Yang%2C+Tao&rft.date=2017-06-12&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=6&rft.spage=1341&rft_id=info:doi/10.3390%2Fs17061341&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s17061341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon