Using Co-Culture to Functionalize Clostridium Fermentation

Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to...

Full description

Saved in:
Bibliographic Details
Published inTrends in biotechnology (Regular ed.) Vol. 39; no. 9; pp. 914 - 926
Main Authors Cui, Yonghao, Yang, Kun-Lin, Zhou, Kang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2021
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains’ functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures. Clostridium co-culture has emerged as a solution to some problems faced by Clostridium monoculture.Co-culturing Clostridium with cellulolytic strains or acetogens enables the production of butanol from cheaper substrates such as lignocellulosic biomass and syngas.Aerotolerance is possible in anaerobic Clostridium fermentation in co-cultures with oxygen-consuming microbes.Co-culturing solventogenic Clostridium with acetogens can improve the production of butanol and its derivatives by increasing carbon recovery and relieving solvent toxicity.Other products, such as H2 or fatty acids, can be efficiently produced by the co-culture of Clostridium and other H2-producing strains (such as PNS bacteria), or chain-elongating strains respectively.
AbstractList Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains' functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures.
Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains’ functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures. Clostridium co-culture has emerged as a solution to some problems faced by Clostridium monoculture.Co-culturing Clostridium with cellulolytic strains or acetogens enables the production of butanol from cheaper substrates such as lignocellulosic biomass and syngas.Aerotolerance is possible in anaerobic Clostridium fermentation in co-cultures with oxygen-consuming microbes.Co-culturing solventogenic Clostridium with acetogens can improve the production of butanol and its derivatives by increasing carbon recovery and relieving solvent toxicity.Other products, such as H2 or fatty acids, can be efficiently produced by the co-culture of Clostridium and other H2-producing strains (such as PNS bacteria), or chain-elongating strains respectively.
Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains' functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures.Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains' functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures.
Author Zhou, Kang
Yang, Kun-Lin
Cui, Yonghao
Author_xml – sequence: 1
  givenname: Yonghao
  orcidid: 0000-0002-2039-5674
  surname: Cui
  fullname: Cui, Yonghao
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
– sequence: 2
  givenname: Kun-Lin
  orcidid: 0000-0002-7958-9334
  surname: Yang
  fullname: Yang, Kun-Lin
  email: cheyk@nus.edu.sg
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
– sequence: 3
  givenname: Kang
  orcidid: 0000-0003-0606-7030
  surname: Zhou
  fullname: Zhou, Kang
  email: kang.zhou@nus.edu.sg
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33342558$$D View this record in MEDLINE/PubMed
BookMark eNqNUkGL1DAYDbLizo7-BKXgxUvHpGmaRtFFiqPCggfdc0iTr5oxbXaTVNj99abMrIcBGU-Bl_de8r33XaCzyU-A0HOCNwST5vVuk2yfQP_cVLjKGNlk9BFakZaLkmLRnKFVRnjJuRDn6CLGHcaYckGeoHNKaV0x1q7Qm-topx9F58tudmkOUCRfbOdJJ-sn5ew9FJ3zMQVr7DwWWwgjTEktt0_R40G5CM8O5xpdbz9-7z6XV18_fek-XJWaUZbKCnOolCFNXzMQtGXGiIyRYdC4xgyUpgPpRWMwF6rn7dBrqHRDNQy8BjPQNXq1970J_naGmORoowbn1AR-jjIPkiNoKatPU2tOGBWkJpn68oi683PIIy-GTfYTrcCZ9eLAmvsRjLwJdlThTj4EmAlv9wQdfIwBBqntPp4UlHWSYLnUJXfyUJdc6pKEyIxmNTtSPzxwSne510HO_beFIKO2MGkwNoBO0nh70uH9kYN2drJauV9wB_FvFkTGSmL5bVmlZZMqTDElOcQ1evdvg__4wB-jNtod
CitedBy_id crossref_primary_10_1016_j_lwt_2024_116739
crossref_primary_10_1088_2515_7620_aca647
crossref_primary_10_1016_j_cej_2023_142599
crossref_primary_10_1016_j_crmicr_2024_100250
crossref_primary_10_1039_D3SE00916E
crossref_primary_10_1016_j_biotechadv_2022_107954
crossref_primary_10_1111_1751_7915_14148
crossref_primary_10_1186_s13068_024_02505_5
crossref_primary_10_1016_j_ijhydene_2024_06_121
crossref_primary_10_1186_s12934_022_02010_0
crossref_primary_10_1002_elsc_202100152
crossref_primary_10_1016_j_rser_2022_112091
crossref_primary_10_1002_biot_202300161
crossref_primary_10_1016_j_jece_2022_107789
crossref_primary_10_1016_j_jff_2023_105987
crossref_primary_10_3390_fermentation9090811
crossref_primary_10_1007_s13399_024_06221_w
crossref_primary_10_1016_j_biortech_2021_126097
crossref_primary_10_1128_aem_00484_22
crossref_primary_10_1128_msystems_00572_24
crossref_primary_10_1128_msystems_00297_22
crossref_primary_10_1360_TB_2022_1300
crossref_primary_10_1016_j_biteb_2023_101538
crossref_primary_10_1021_acssynbio_3c00329
crossref_primary_10_1007_s13399_024_06225_6
crossref_primary_10_1016_j_biortech_2024_131191
crossref_primary_10_1016_j_psep_2024_03_027
crossref_primary_10_15302_J_QB_022_0314
crossref_primary_10_1016_j_jbiotec_2025_01_007
crossref_primary_10_1021_acssynbio_1c00289
crossref_primary_10_1007_s12649_025_02913_0
crossref_primary_10_1016_j_biortech_2024_131232
crossref_primary_10_1038_s41598_023_47007_w
crossref_primary_10_3389_fbioe_2022_965614
crossref_primary_10_1016_j_ijhydene_2023_10_330
crossref_primary_10_3389_fbioe_2021_661694
crossref_primary_10_1007_s00253_025_13428_y
crossref_primary_10_1016_j_cogsc_2023_100842
Cites_doi 10.1186/s12934-014-0092-5
10.3389/fmicb.2016.01773
10.1016/j.csbj.2020.10.003
10.1016/j.biortech.2019.121965
10.1016/j.energy.2018.04.101
10.1038/s41929-017-0005-1
10.1186/s13068-016-0495-0
10.1016/j.biortech.2018.09.033
10.1016/j.biortech.2016.09.072
10.1080/15435075.2015.1088443
10.1021/acssynbio.6b00044
10.1038/s41467-020-14371-4
10.1080/07388551.2017.1376309
10.1186/s13068-016-0577-z
10.1016/j.tibtech.2020.02.002
10.1016/j.tibtech.2018.08.007
10.1016/j.rser.2016.10.017
10.1186/s13068-016-0528-8
10.1128/mBio.00621-17
10.1186/s13068-017-0805-1
10.1038/ncomms7283
10.1186/s12934-016-0412-z
10.1371/journal.pone.0141160
10.1002/bab.1522
10.1186/s13068-019-1508-6
10.1007/s00253-018-8970-0
10.1128/AEM.00735-15
10.1016/j.biortech.2016.05.121
10.1002/biot.201000159
10.1038/s41598-019-54445-y
10.1016/j.biortech.2015.11.068
10.1128/AEM.00706-11
10.1016/j.ymben.2016.10.013
10.1007/s10295-020-02279-3
10.1186/1754-6834-6-59
10.1016/j.biortech.2020.123065
10.1093/femsle/fnw073
10.1186/s13068-017-0764-6
10.1128/AEM.00789-16
10.1002/bit.26478
10.1038/s41564-019-0567-6
10.1186/s13068-018-1092-1
10.1016/j.ijhydene.2015.05.135
10.1007/s00253-019-09916-7
10.1186/s13068-019-1495-7
10.1021/acs.energyfuels.7b01362
10.1016/j.ymben.2019.06.006
10.1038/s41467-019-12027-6
10.18178/JOCET.2017.5.1.338
10.1016/j.mec.2020.e00137
10.1186/s13568-018-0705-1
10.1016/j.egypro.2011.09.052
10.1016/j.biortech.2017.09.060
10.1007/s00253-018-9151-x
10.1002/bit.25827
10.1002/bit.27333
10.1016/j.rser.2011.06.001
10.1016/j.fuel.2018.03.125
10.1002/bit.27221
10.1016/j.ymben.2018.10.006
10.1002/bit.26393
10.1128/AEM.02560-18
10.3389/fmolb.2019.00002
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M0T
M1P
M2O
M7P
M7S
MBDVC
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7S9
L.6
DOI 10.1016/j.tibtech.2020.11.016
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
Research Library
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Health Management
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
Materials Research Database

AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3096
EndPage 926
ExternalDocumentID 33342558
10_1016_j_tibtech_2020_11_016
S0167779920303115
1_s2_0_S0167779920303115
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABJCF
ABJNI
ABLJU
ABMAC
ABNUV
ABUDA
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AQUVI
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKOJK
BLXMC
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HLW
HMCUK
HVGLF
HZ~
IHE
J1W
KOM
L6V
LK8
LX3
M0T
M1P
M2O
M41
M7P
M7S
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q38
R2-
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSU
SSZ
T5K
TAE
TN5
UKHRP
WUQ
XPP
Y6R
Z5R
ZGI
ZMT
~02
~G-
~KM
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
RCE
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
G8K
XFK
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c535t-207e2ad16b45e9385dd92071ffc0405eac3f1b96d079ab78fbce2c63cef74edf3
IEDL.DBID 7X7
ISSN 0167-7799
1879-3096
IngestDate Fri Jul 11 11:43:44 EDT 2025
Fri Jul 11 06:26:58 EDT 2025
Wed Aug 13 03:13:21 EDT 2025
Thu Apr 03 06:57:59 EDT 2025
Tue Jul 01 02:44:27 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Fri Feb 23 02:43:19 EST 2024
Tue Feb 25 20:12:26 EST 2025
Tue Aug 26 19:34:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Clostridium
metabolic engineering
biofuel
acetone-butanol-ethanol fermentation
co-culture
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-207e2ad16b45e9385dd92071ffc0405eac3f1b96d079ab78fbce2c63cef74edf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0606-7030
0000-0002-7958-9334
0000-0002-2039-5674
PMID 33342558
PQID 2560289890
PQPubID 2031074
PageCount 13
ParticipantIDs proquest_miscellaneous_2552028354
proquest_miscellaneous_2471539141
proquest_journals_2560289890
pubmed_primary_33342558
crossref_citationtrail_10_1016_j_tibtech_2020_11_016
crossref_primary_10_1016_j_tibtech_2020_11_016
elsevier_sciencedirect_doi_10_1016_j_tibtech_2020_11_016
elsevier_clinicalkeyesjournals_1_s2_0_S0167779920303115
elsevier_clinicalkey_doi_10_1016_j_tibtech_2020_11_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Trends in biotechnology (Regular ed.)
PublicationTitleAlternate Trends Biotechnol
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Sun (bb0095) 2018; 247
Jones (bb0035) 2017; 8
Martin (bb0085) 2016; 113
Benito-Vaquerizo (bb0270) 2020; 18
Xin (bb0070) 2017; 10
Johnston (bb0200) 2020; 11
Tian (bb0240) 2016; 9
Mai (bb0300) 2017; 64
Richter (bb0105) 2016; 7
Benomar (bb0180) 2015; 6
Liu (bb0065) 2019; 292
Jin (bb0010) 2011; 15
Moraïs (bb0230) 2016; 9
Zhao (bb0225) 2017; 114
Ebrahimi (bb0145) 2020; 117
Mi (bb0125) 2018; 102
Nakayama (bb0250) 2011; 77
Zuñiga (bb0285) 2019; 4
Diender (bb0325) 2019; 9
Wu (bb0115) 2016; 15
Gildemyn (bb0090) 2017; 10
Wushke (bb0135) 2015; 81
Xin (bb0050) 2019; 37
Diender (bb0330) 2016; 9
Cui (bb0130) 2020; 47
Dash (bb0245) 2019; 55
Stephens (bb0205) 2019; 10
Friedl (bb0030) 2016; 363
Charubin, Papoutsakis (bb0165) 2019; 52
Wen (bb0075) 2019; 85
Machado (bb0185) 2018; 153
Yan, Dong (bb0320) 2018; 8
Shen (bb0150) 2016; 216
Jiang (bb0045) 2019; 12
Wen (bb0255) 2014; 13
Lu (bb0190) 2016; 82
Birgen (bb0155) 2019; 12
Xin (bb0025) 2018; 38
Cheng (bb0235) 2019; 103
Cui (bb0120) 2020; 11
Kao (bb0315) 2016; 13
Liu (bb0100) 2018; 224
Wang (bb0060) 2017
Salimi (bb0290) 2010; 5
Wen (bb0295) 2020; 117
Sun (bb0080) 2019; 7
Huang (bb0210) 2016; 5
Bu (bb0305) 2017; 31
Zuroff (bb0140) 2013; 6
Jiang (bb0055) 2020; 38
Hastings (bb0280) 2019; 6
Tri, Kamei (bb0260) 2020; 305
Jiang (bb0040) 2018; 102
Ponthein, Cheirsilp (bb0265) 2011; 9
Bharathiraja (bb0005) 2017; 68
Kim (bb0195) 2018; 270
Wen (bb0215) 2017; 39
Mahapatra, Kumar (bb0020) 2017; 5
Jiang (bb0015) 2018; 11
Barca (bb0310) 2016; 221
Lu, Lee (bb0175) 2015; 40
Guan (bb0275) 2018; 115
Haas (bb0110) 2018; 1
Luo (bb0160) 2015; 10
Xin (bb0170) 2016; 202
Dargode (bb0220) 2020; 3
Jiang (10.1016/j.tibtech.2020.11.016_bb0015) 2018; 11
Wang (10.1016/j.tibtech.2020.11.016_bb0060) 2017
Diender (10.1016/j.tibtech.2020.11.016_bb0330) 2016; 9
Mi (10.1016/j.tibtech.2020.11.016_bb0125) 2018; 102
Huang (10.1016/j.tibtech.2020.11.016_bb0210) 2016; 5
Dash (10.1016/j.tibtech.2020.11.016_bb0245) 2019; 55
Nakayama (10.1016/j.tibtech.2020.11.016_bb0250) 2011; 77
Xin (10.1016/j.tibtech.2020.11.016_bb0025) 2018; 38
Jones (10.1016/j.tibtech.2020.11.016_bb0035) 2017; 8
Mai (10.1016/j.tibtech.2020.11.016_bb0300) 2017; 64
Liu (10.1016/j.tibtech.2020.11.016_bb0100) 2018; 224
Charubin (10.1016/j.tibtech.2020.11.016_bb0165) 2019; 52
Cui (10.1016/j.tibtech.2020.11.016_bb0130) 2020; 47
Jiang (10.1016/j.tibtech.2020.11.016_bb0040) 2018; 102
Shen (10.1016/j.tibtech.2020.11.016_bb0150) 2016; 216
Kim (10.1016/j.tibtech.2020.11.016_bb0195) 2018; 270
Dargode (10.1016/j.tibtech.2020.11.016_bb0220) 2020; 3
Benomar (10.1016/j.tibtech.2020.11.016_bb0180) 2015; 6
Gildemyn (10.1016/j.tibtech.2020.11.016_bb0090) 2017; 10
Benito-Vaquerizo (10.1016/j.tibtech.2020.11.016_bb0270) 2020; 18
Xin (10.1016/j.tibtech.2020.11.016_bb0070) 2017; 10
Hastings (10.1016/j.tibtech.2020.11.016_bb0280) 2019; 6
Bu (10.1016/j.tibtech.2020.11.016_bb0305) 2017; 31
Cheng (10.1016/j.tibtech.2020.11.016_bb0235) 2019; 103
Diender (10.1016/j.tibtech.2020.11.016_bb0325) 2019; 9
Richter (10.1016/j.tibtech.2020.11.016_bb0105) 2016; 7
Tian (10.1016/j.tibtech.2020.11.016_bb0240) 2016; 9
Jiang (10.1016/j.tibtech.2020.11.016_bb0045) 2019; 12
Zhao (10.1016/j.tibtech.2020.11.016_bb0225) 2017; 114
Wen (10.1016/j.tibtech.2020.11.016_bb0255) 2014; 13
Tri (10.1016/j.tibtech.2020.11.016_bb0260) 2020; 305
Cui (10.1016/j.tibtech.2020.11.016_bb0120) 2020; 11
Guan (10.1016/j.tibtech.2020.11.016_bb0275) 2018; 115
Wushke (10.1016/j.tibtech.2020.11.016_bb0135) 2015; 81
Jin (10.1016/j.tibtech.2020.11.016_bb0010) 2011; 15
Liu (10.1016/j.tibtech.2020.11.016_bb0065) 2019; 292
Ponthein (10.1016/j.tibtech.2020.11.016_bb0265) 2011; 9
Yan (10.1016/j.tibtech.2020.11.016_bb0320) 2018; 8
Mahapatra (10.1016/j.tibtech.2020.11.016_bb0020) 2017; 5
Kao (10.1016/j.tibtech.2020.11.016_bb0315) 2016; 13
Xin (10.1016/j.tibtech.2020.11.016_bb0050) 2019; 37
Sun (10.1016/j.tibtech.2020.11.016_bb0095) 2018; 247
Birgen (10.1016/j.tibtech.2020.11.016_bb0155) 2019; 12
Sun (10.1016/j.tibtech.2020.11.016_bb0080) 2019; 7
Haas (10.1016/j.tibtech.2020.11.016_bb0110) 2018; 1
Zuñiga (10.1016/j.tibtech.2020.11.016_bb0285) 2019; 4
Luo (10.1016/j.tibtech.2020.11.016_bb0160) 2015; 10
Jiang (10.1016/j.tibtech.2020.11.016_bb0055) 2020; 38
Lu (10.1016/j.tibtech.2020.11.016_bb0190) 2016; 82
Moraïs (10.1016/j.tibtech.2020.11.016_bb0230) 2016; 9
Wen (10.1016/j.tibtech.2020.11.016_bb0295) 2020; 117
Martin (10.1016/j.tibtech.2020.11.016_bb0085) 2016; 113
Lu (10.1016/j.tibtech.2020.11.016_bb0175) 2015; 40
Barca (10.1016/j.tibtech.2020.11.016_bb0310) 2016; 221
Machado (10.1016/j.tibtech.2020.11.016_bb0185) 2018; 153
Stephens (10.1016/j.tibtech.2020.11.016_bb0205) 2019; 10
Wen (10.1016/j.tibtech.2020.11.016_bb0215) 2017; 39
Zuroff (10.1016/j.tibtech.2020.11.016_bb0140) 2013; 6
Xin (10.1016/j.tibtech.2020.11.016_bb0170) 2016; 202
Salimi (10.1016/j.tibtech.2020.11.016_bb0290) 2010; 5
Wen (10.1016/j.tibtech.2020.11.016_bb0075) 2019; 85
Bharathiraja (10.1016/j.tibtech.2020.11.016_bb0005) 2017; 68
Friedl (10.1016/j.tibtech.2020.11.016_bb0030) 2016; 363
Wu (10.1016/j.tibtech.2020.11.016_bb0115) 2016; 15
Ebrahimi (10.1016/j.tibtech.2020.11.016_bb0145) 2020; 117
Johnston (10.1016/j.tibtech.2020.11.016_bb0200) 2020; 11
References_xml – volume: 224
  start-page: 537
  year: 2018
  end-page: 544
  ident: bb0100
  article-title: The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation
  publication-title: Fuel
– volume: 13
  start-page: 1
  year: 2014
  end-page: 11
  ident: bb0255
  article-title: Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of
  publication-title: Microb. Cell Factories
– volume: 11
  year: 2020
  ident: bb0120
  article-title: Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of
  publication-title: Metab. Eng. Commun.
– volume: 82
  start-page: 4546
  year: 2016
  end-page: 4559
  ident: bb0190
  article-title: Transcriptomic responses of the interactions between
  publication-title: Appl. Environ. Microbiol.
– volume: 12
  start-page: 155
  year: 2019
  ident: bb0045
  article-title: Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems
  publication-title: Biotechnol. Biofuels
– volume: 292
  year: 2019
  ident: bb0065
  article-title: Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  ident: bb0325
  article-title: Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas
  publication-title: Sci. Rep.
– volume: 64
  start-page: 719
  year: 2017
  end-page: 726
  ident: bb0300
  article-title: Interactions between
  publication-title: Biotechnol. Appl. Biochem.
– volume: 102
  start-page: 6753
  year: 2018
  end-page: 6763
  ident: bb0125
  article-title: Improvement of butanol production by the development and co-culture of
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 153
  start-page: 861
  year: 2018
  end-page: 869
  ident: bb0185
  article-title: Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation
  publication-title: Energy
– volume: 8
  start-page: 175
  year: 2018
  ident: bb0320
  article-title: Improvement of caproic acid production in a
  publication-title: AMB Express
– volume: 38
  start-page: 529
  year: 2018
  end-page: 540
  ident: bb0025
  article-title: Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts
  publication-title: Crit. Rev. Biotechnol.
– volume: 202
  start-page: 214
  year: 2016
  end-page: 219
  ident: bb0170
  article-title: Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification
  publication-title: Bioresour. Technol.
– volume: 247
  start-page: 291
  year: 2018
  end-page: 301
  ident: bb0095
  article-title: Enhanced ethanol production by
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: e00621
  year: 2017
  end-page: e00717
  ident: bb0035
  article-title: Complete biosynthesis of anthocyanins using
  publication-title: MBio
– volume: 40
  start-page: 11800
  year: 2015
  end-page: 11808
  ident: bb0175
  article-title: Effects of cellulose concentrations on the syntrophic interactions between
  publication-title: Int. J. Hydrog. Energy
– volume: 115
  start-page: 483
  year: 2018
  end-page: 494
  ident: bb0275
  article-title: Comparative genomics and transcriptomics analysis‐guided metabolic engineering of
  publication-title: Biotechnol. Bioeng.
– volume: 10
  year: 2015
  ident: bb0160
  article-title: Enhancing butanol production under the stress environments of co-culturing
  publication-title: PLoS One
– volume: 18
  start-page: 3255
  year: 2020
  end-page: 3266
  ident: bb0270
  article-title: Modeling a co-culture of
  publication-title: Comput. Struct. Biotechnol.
– volume: 7
  year: 2019
  ident: bb0080
  article-title: Syngas fermentation process development for production of biofuels and chemicals: a review
  publication-title: Bioresour. Technol. Rep.
– volume: 117
  start-page: 2008
  year: 2020
  end-page: 2022
  ident: bb0295
  article-title: Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial
  publication-title: Biotechnol. Bioeng.
– volume: 39
  start-page: 38
  year: 2017
  end-page: 48
  ident: bb0215
  article-title: Enhanced solvent production by metabolic engineering of a twin-clostridial consortium
  publication-title: Metab. Eng.
– volume: 5
  start-page: 27
  year: 2017
  end-page: 30
  ident: bb0020
  article-title: A short review on biobutanol, a second generation biofuel production from lignocellulosic biomass
  publication-title: J. Clean Energy Technol.
– volume: 38
  start-page: P828
  year: 2020
  end-page: P831
  ident: bb0055
  article-title: Designing synthetic microbial consortia for biofuel production
  publication-title: Trends Biotechnol.
– volume: 10
  start-page: 118
  year: 2017
  ident: bb0070
  article-title: Strategies for improved isopropanol–butanol production by a
  publication-title: Biotechnol. Biofuels
– volume: 77
  start-page: 6470
  year: 2011
  end-page: 6475
  ident: bb0250
  article-title: Butanol production from crystalline cellulose by cocultured
  publication-title: Appl. Environ. Microbiol.
– volume: 9
  start-page: 1
  year: 2016
  end-page: 11
  ident: bb0240
  article-title: Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
  publication-title: Biotechnol. Biofuels
– volume: 9
  start-page: 459
  year: 2011
  end-page: 467
  ident: bb0265
  article-title: Development of acetone butanol ethanol (ABE) production from palm pressed fiber by mixed culture of
  publication-title: Energy Procedia
– volume: 31
  start-page: 9477
  year: 2017
  end-page: 9483
  ident: bb0305
  article-title: Enhanced biodegradation of sugar cane bagasse by coculture of
  publication-title: Energy Fuel
– volume: 37
  start-page: 167
  year: 2019
  end-page: 180
  ident: bb0050
  article-title: Biobutanol production from crystalline cellulose through consolidated bioprocessing
  publication-title: Trends Biotechnol.
– volume: 10
  start-page: 83
  year: 2017
  ident: bb0090
  article-title: Upgrading syngas fermentation effluent using
  publication-title: Biotechnol. Biofuels
– volume: 6
  start-page: 6283
  year: 2015
  ident: bb0180
  article-title: Nutritional stress induces exchange of cell material and energetic coupling between bacterial species
  publication-title: Nat. Commun.
– volume: 81
  start-page: 5567
  year: 2015
  end-page: 5573
  ident: bb0135
  article-title: Facultative anaerobe
  publication-title: Appl. Environ. Microbiol.
– start-page: 137
  year: 2017
  end-page: 158
  ident: bb0060
  article-title: Design of bifunctional solid catalysts for conversion of biomass-derived syngas into biofuels
  publication-title: Production of Biofuels and Chemicals with Bifunctional Catalysts
– volume: 6
  start-page: 2
  year: 2019
  ident: bb0280
  article-title: Multi-omics and genome-scale modeling reveal a metabolic shift during
  publication-title: Front. Mol. Biosci.
– volume: 7
  start-page: 1773
  year: 2016
  ident: bb0105
  article-title: A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of
  publication-title: Front. Microbiol.
– volume: 363
  year: 2016
  ident: bb0030
  article-title: Downstream process options for the ABE fermentation
  publication-title: FEMS Microbiol. Lett.
– volume: 15
  start-page: 1
  year: 2016
  end-page: 11
  ident: bb0115
  article-title: Butanol production under microaerobic conditions with a symbiotic system of
  publication-title: Microb. Cell Factories
– volume: 103
  start-page: 5549
  year: 2019
  end-page: 5566
  ident: bb0235
  article-title: Engineering
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 13
  start-page: 715
  year: 2016
  end-page: 719
  ident: bb0315
  article-title: Biohydrogen production by
  publication-title: Int. J. Green Energy
– volume: 9
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0230
  article-title: Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability
  publication-title: Biotechnol. Biofuels
– volume: 11
  start-page: 1
  year: 2018
  end-page: 14
  ident: bb0015
  article-title: Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5
  publication-title: Biotechnol. Biofuels
– volume: 47
  start-page: 543
  year: 2020
  end-page: 550
  ident: bb0130
  article-title: Production of isopropyl and butyl esters by
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 55
  start-page: 161
  year: 2019
  end-page: 169
  ident: bb0245
  article-title: Thermodynamic analysis of the pathway for ethanol production from cellobiose in
  publication-title: Metab. Eng.
– volume: 305
  year: 2020
  ident: bb0260
  article-title: Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 82
  year: 2016
  ident: bb0330
  article-title: Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas
  publication-title: Biotechnol. Biofuels
– volume: 85
  year: 2019
  ident: bb0075
  article-title: Improved n-butanol production from
  publication-title: App. Environ. Microbiol.
– volume: 216
  start-page: 601
  year: 2016
  end-page: 606
  ident: bb0150
  article-title: Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 118
  year: 2020
  end-page: 128
  ident: bb0220
  article-title: Design of substrate specific consortium for improved biogas production
  publication-title: Acta Sci. Microbiol.
– volume: 102
  start-page: 5419
  year: 2018
  end-page: 5425
  ident: bb0040
  article-title: Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  ident: bb0205
  article-title: Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition
  publication-title: Nat. Commun.
– volume: 12
  start-page: 167
  year: 2019
  ident: bb0155
  article-title: Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis
  publication-title: Biotechnol. Biofuels
– volume: 68
  start-page: 788
  year: 2017
  end-page: 807
  ident: bb0005
  article-title: Biobutanol–an impending biofuel for future: a review on upstream and downstream processing techniques
  publication-title: Renew. Sust. Energ. Rev.
– volume: 113
  start-page: 531
  year: 2016
  end-page: 539
  ident: bb0085
  article-title: Traits of selected
  publication-title: Biotechnol. Bioeng.
– volume: 52
  start-page: 9
  year: 2019
  end-page: 19
  ident: bb0165
  article-title: Direct cell-to-cell exchange of matter in a synthetic
  publication-title: Metab. Eng.
– volume: 1
  start-page: 32
  year: 2018
  end-page: 39
  ident: bb0110
  article-title: Technical photosynthesis involving CO
  publication-title: Nat. Catal.
– volume: 221
  start-page: 526
  year: 2016
  end-page: 533
  ident: bb0310
  article-title: Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 726
  year: 2010
  end-page: 738
  ident: bb0290
  article-title: Genome‐scale metabolic modeling of a clostridial co‐culture for consolidated bioprocessing
  publication-title: Biotechnol. J.
– volume: 5
  start-page: 1355
  year: 2016
  end-page: 1361
  ident: bb0210
  article-title: CRISPR/Cas9-based efficient genome editing in
  publication-title: ACS Synth. Biol.
– volume: 6
  start-page: 59
  year: 2013
  ident: bb0140
  article-title: Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic
  publication-title: Biotechnol. Biofuels
– volume: 117
  start-page: 392
  year: 2020
  end-page: 405
  ident: bb0145
  article-title: Efficient butanol production under aerobic conditions by coculture of
  publication-title: Biotechnol. Bioeng.
– volume: 114
  start-page: 2907
  year: 2017
  end-page: 2919
  ident: bb0225
  article-title: A dynamic metabolic flux analysis of ABE (acetone‐butanol‐ethanol) fermentation by
  publication-title: Biotechnol. Bioeng.
– volume: 270
  start-page: 498
  year: 2018
  end-page: 503
  ident: bb0195
  article-title: New coculture system of
  publication-title: Bioresour. Technol.
– volume: 15
  start-page: 4080
  year: 2011
  end-page: 4106
  ident: bb0010
  article-title: Progress in the production and application of n-butanol as a biofuel
  publication-title: Renew. Sust. Energ. Rev.
– volume: 4
  start-page: 2184
  year: 2019
  end-page: 2191
  ident: bb0285
  article-title: Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities
  publication-title: Nat. Microbiol.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb0200
  article-title: Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1
  year: 2014
  ident: 10.1016/j.tibtech.2020.11.016_bb0255
  article-title: Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-014-0092-5
– volume: 7
  start-page: 1773
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0105
  article-title: A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01773
– volume: 18
  start-page: 3255
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0270
  article-title: Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids
  publication-title: Comput. Struct. Biotechnol.
  doi: 10.1016/j.csbj.2020.10.003
– volume: 292
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0065
  article-title: Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121965
– volume: 153
  start-page: 861
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0185
  article-title: Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.101
– volume: 1
  start-page: 32
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0110
  article-title: Technical photosynthesis involving CO2 electrolysis and fermentation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0005-1
– volume: 9
  start-page: 82
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0330
  article-title: Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0495-0
– volume: 270
  start-page: 498
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0195
  article-title: New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.09.033
– volume: 221
  start-page: 526
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0310
  article-title: Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.09.072
– volume: 13
  start-page: 715
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0315
  article-title: Biohydrogen production by Clostridium butyricum and Rhodopseudomonas palustris in co-cultures
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2015.1088443
– volume: 5
  start-page: 1355
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0210
  article-title: CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00044
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0200
  article-title: Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14371-4
– volume: 38
  start-page: 529
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0025
  article-title: Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2017.1376309
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0230
  article-title: Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0577-z
– volume: 38
  start-page: P828
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0055
  article-title: Designing synthetic microbial consortia for biofuel production
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.02.002
– volume: 37
  start-page: 167
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0050
  article-title: Biobutanol production from crystalline cellulose through consolidated bioprocessing
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.08.007
– volume: 68
  start-page: 788
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0005
  article-title: Biobutanol–an impending biofuel for future: a review on upstream and downstream processing techniques
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2016.10.017
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0240
  article-title: Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0528-8
– volume: 8
  start-page: e00621
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0035
  article-title: Complete biosynthesis of anthocyanins using E. coli polycultures
  publication-title: MBio
  doi: 10.1128/mBio.00621-17
– volume: 10
  start-page: 118
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0070
  article-title: Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0805-1
– volume: 6
  start-page: 6283
  year: 2015
  ident: 10.1016/j.tibtech.2020.11.016_bb0180
  article-title: Nutritional stress induces exchange of cell material and energetic coupling between bacterial species
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7283
– volume: 3
  start-page: 118
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0220
  article-title: Design of substrate specific consortium for improved biogas production
  publication-title: Acta Sci. Microbiol.
– volume: 15
  start-page: 1
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0115
  article-title: Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-016-0412-z
– volume: 10
  year: 2015
  ident: 10.1016/j.tibtech.2020.11.016_bb0160
  article-title: Enhancing butanol production under the stress environments of co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous butyrate addition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141160
– volume: 64
  start-page: 719
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0300
  article-title: Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1522
– volume: 12
  start-page: 167
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0155
  article-title: Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1508-6
– volume: 102
  start-page: 5419
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0040
  article-title: Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-8970-0
– volume: 81
  start-page: 5567
  year: 2015
  ident: 10.1016/j.tibtech.2020.11.016_bb0135
  article-title: Facultative anaerobe Caldibacillus debilis GB1: characterization and use in a designed aerotolerant, cellulose-degrading coculture with Clostridium thermocellum
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00735-15
– volume: 216
  start-page: 601
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0150
  article-title: Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.121
– volume: 5
  start-page: 726
  year: 2010
  ident: 10.1016/j.tibtech.2020.11.016_bb0290
  article-title: Genome‐scale metabolic modeling of a clostridial co‐culture for consolidated bioprocessing
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201000159
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0325
  article-title: Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54445-y
– volume: 202
  start-page: 214
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0170
  article-title: Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.11.068
– volume: 77
  start-page: 6470
  year: 2011
  ident: 10.1016/j.tibtech.2020.11.016_bb0250
  article-title: Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00706-11
– volume: 39
  start-page: 38
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0215
  article-title: Enhanced solvent production by metabolic engineering of a twin-clostridial consortium
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2016.10.013
– volume: 47
  start-page: 543
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0130
  article-title: Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-020-02279-3
– volume: 6
  start-page: 59
  year: 2013
  ident: 10.1016/j.tibtech.2020.11.016_bb0140
  article-title: Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-59
– volume: 305
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0260
  article-title: Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123065
– volume: 363
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0030
  article-title: Downstream process options for the ABE fermentation
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fnw073
– volume: 10
  start-page: 83
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0090
  article-title: Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0764-6
– volume: 82
  start-page: 4546
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0190
  article-title: Transcriptomic responses of the interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a cellulose-grown coculture for enhanced hydrogen production
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00789-16
– volume: 115
  start-page: 483
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0275
  article-title: Comparative genomics and transcriptomics analysis‐guided metabolic engineering of Propionibacterium acidipropionici for improved propionic acid production
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26478
– volume: 4
  start-page: 2184
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0285
  article-title: Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-019-0567-6
– volume: 11
  start-page: 1
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0015
  article-title: Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1092-1
– volume: 40
  start-page: 11800
  year: 2015
  ident: 10.1016/j.tibtech.2020.11.016_bb0175
  article-title: Effects of cellulose concentrations on the syntrophic interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in coculture fermentation for biohydrogen production
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.05.135
– volume: 103
  start-page: 5549
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0235
  article-title: Engineering Clostridium for improved solvent production: recent progress and perspective
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09916-7
– volume: 12
  start-page: 155
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0045
  article-title: Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1495-7
– volume: 31
  start-page: 9477
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0305
  article-title: Enhanced biodegradation of sugar cane bagasse by coculture of Clostridium thermocellum and Thermoanaerobacterium aotearoense supplemented with CaCO3
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.7b01362
– volume: 55
  start-page: 161
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0245
  article-title: Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.06.006
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0205
  article-title: Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12027-6
– volume: 5
  start-page: 27
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0020
  article-title: A short review on biobutanol, a second generation biofuel production from lignocellulosic biomass
  publication-title: J. Clean Energy Technol.
  doi: 10.18178/JOCET.2017.5.1.338
– volume: 11
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0120
  article-title: Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of Clostridium beijerinckii G117 and recombinant Bacillus subtilis 1A1
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.mec.2020.e00137
– volume: 8
  start-page: 175
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0320
  article-title: Improvement of caproic acid production in a Clostridium kluyveri H068 and Methanogen 166 co-culture fermentation system
  publication-title: AMB Express
  doi: 10.1186/s13568-018-0705-1
– volume: 9
  start-page: 459
  year: 2011
  ident: 10.1016/j.tibtech.2020.11.016_bb0265
  article-title: Development of acetone butanol ethanol (ABE) production from palm pressed fiber by mixed culture of Clostridium sp. and Bacillus sp
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.09.052
– start-page: 137
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0060
  article-title: Design of bifunctional solid catalysts for conversion of biomass-derived syngas into biofuels
– volume: 247
  start-page: 291
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0095
  article-title: Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.060
– volume: 102
  start-page: 6753
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0125
  article-title: Improvement of butanol production by the development and co-culture of C. acetobutylicum TSH1 and B. cereus TSH2
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9151-x
– volume: 113
  start-page: 531
  year: 2016
  ident: 10.1016/j.tibtech.2020.11.016_bb0085
  article-title: Traits of selected Clostridium strains for syngas fermentation to ethanol
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25827
– volume: 7
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0080
  article-title: Syngas fermentation process development for production of biofuels and chemicals: a review
  publication-title: Bioresour. Technol. Rep.
– volume: 117
  start-page: 2008
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0295
  article-title: Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27333
– volume: 15
  start-page: 4080
  year: 2011
  ident: 10.1016/j.tibtech.2020.11.016_bb0010
  article-title: Progress in the production and application of n-butanol as a biofuel
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2011.06.001
– volume: 224
  start-page: 537
  year: 2018
  ident: 10.1016/j.tibtech.2020.11.016_bb0100
  article-title: The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.03.125
– volume: 117
  start-page: 392
  year: 2020
  ident: 10.1016/j.tibtech.2020.11.016_bb0145
  article-title: Efficient butanol production under aerobic conditions by coculture of Clostridium acetobutylicum and Nesterenkonia sp. strain F
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27221
– volume: 52
  start-page: 9
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0165
  article-title: Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.10.006
– volume: 114
  start-page: 2907
  year: 2017
  ident: 10.1016/j.tibtech.2020.11.016_bb0225
  article-title: A dynamic metabolic flux analysis of ABE (acetone‐butanol‐ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by‐product
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26393
– volume: 85
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0075
  article-title: Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering
  publication-title: App. Environ. Microbiol.
  doi: 10.1128/AEM.02560-18
– volume: 6
  start-page: 2
  year: 2019
  ident: 10.1016/j.tibtech.2020.11.016_bb0280
  article-title: Multi-omics and genome-scale modeling reveal a metabolic shift during C. elegans aging
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00002
SSID ssj0003791
Score 2.513674
SecondaryResourceType review_article
Snippet Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 914
SubjectTerms acetone-butanol-ethanol fermentation
Anaerobic conditions
Anaerobic digestion
Anaerobic treatment
Biodiesel fuels
biofuel
Biofuels
Biomass
biotechnology
Butanol
Cell division
Clostridium
co-culture
coculture
Ethanol
Fatty acids
Fermentation
Glucose
Internal Medicine
Lignocellulose
metabolic engineering
Substrates
Synthesis gas
value added
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvRQOqC2vlIKCxDW78SuOuaGoq4oDF6jUmxXHtrRVSSp298KB385MXgW1UMTV8cjWZPzNOPlmBuAdY4G7yHjGneaZLL3KaqNCpk1A9-5DLGLP8v1UnF_Ij5fqcg-qKReGaJUj9g-Y3qP1OLIctbm8Wa-Xn4lAr7UxHO2UasZQBrvUZOWLH7c0D6GHrnlU35tm32bxLK_QKzgqlYrXRE7gscip7fn9_ulP8Wfvh1aH8GQMINMPwx6PYC-0x3BQTX3bjuHxLyUGn8L7nhOQVl02FM8M6bZLV-jMhm-A6-8hra47at7h17uv6QqBesxGap_BxersS3Wejf0SskYJtUWD14HXnhVOqmBEqbxH5WgWY4NHVSHEisicKXyuTe10GV0TeFOIJkQtg4_iOey3XRteQprLqGtmJN7HSqlK57hrlGdRRwwnMQRIQE5ass1YTJx6WlzbiTV2ZUflWlIuXjQsjiawmMVuhmoaDwkU0yuwU6oogptFvH9IUN8nGDbjEd1YZjfc5vaOGSVQzpK_WeK_LHo6WYmd16GYklOTzjyBt_NjtAn6M1O3odvhHAwRlDBMsr_MUYpTMKhkAi8GC5x1KIRA7FXlyf_v_RU84kTX6elzp7C__bYLrzHe2ro3_YH6CYIkJzM
  priority: 102
  providerName: Elsevier
Title Using Co-Culture to Functionalize Clostridium Fermentation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167779920303115
https://www.clinicalkey.es/playcontent/1-s2.0-S0167779920303115
https://dx.doi.org/10.1016/j.tibtech.2020.11.016
https://www.ncbi.nlm.nih.gov/pubmed/33342558
https://www.proquest.com/docview/2560289890
https://www.proquest.com/docview/2471539141
https://www.proquest.com/docview/2552028354
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoewAOCAqUQFkFiWu28VeccEFl1bCw0gpVVOzNimNbalWSwu5eOPDbmUmclENpucRS4pEje_xmbI_nEfKWUseMpyxhRrFE5FYmVSFdogoH5t06n_kuyneZzc_E55VchQ23dQirHDCxA2rb1rhHfoSmmSHXYfr-6keCrFF4uhooNHbIHqYuw5AutRoXXClXPWMe5vZWqiiub_AcXYBFMJgmFZaIDIFjmiLl-c226V--Z2eDysfkUXAe4-N-tJ-Qe67ZJ_dnA2fbPnn4V3rBp-RdFw8Qz9qkT5zp4k0bl2DI-v2_818unl22SNxhz7ff4xJAOtxEap6Rs_Lk62yeBK6EpJZcbkDZlWOVpZkR0hU8l9YW8I56X8M0lQCv3FNTZDZVRWVU7k3tWJ3x2nklnPX8Odlt2sa9IHEqvKpoIWAtlguZG8NMLS31yoMrCeY_ImLoJV2HROLIZ3Gph4ixCx06V2PnwiJDw9uITEexqz6Txl0C2TAEergmCsCmAevvElQ3Cbp1mJ5rTfWa6RQj2zKFisEA6jDtUETyUTJ4IL1n8T-NHg5aosd2rpU2Im_Gz6ATeCpTNa7dQh1wDyQvqKC31JGSoSMoRUQOeg0c-5BzDrgr85e3_8Ar8oBhOE4XHndIdjc_t-41-FMbMyE709900k0deOblxwnZO_60mC-xXJx-W0D54WT55fQPq04j3g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigcEBQogQJBgmPa-CuOkRBCC8uWlp5aqTcTJ7bUqiSF3RWCH8VvZCZf5VBaLr0mmSSajN88O-N5AC8Z89wFxhPuNE9kXqmkMMon2nhM75UPWWirfPez2aH8dKSOVuD3sBeGyioHTGyBumpKWiPfptTMSeswfXv2LSHVKPq7OkhodGGx63_-wCnb_M3Oe_y-rziffjiYzJJeVSAplVALDAvteVGxzEnljchVVRk8xkIoMaAVApEIzJmsSrUpnM6DKz0vM1H6oKWvgsD73oCbUghDIyqffhyRX-hOoY96iWttzPmOoe0TzECO2rLilJQTUG2lJLF-cS78F9dtc970LtzpyWr8rouue7Di63VYmwwacetw-692hvfhdVt_EE-apGvU6eNFE08xcXbrjce_fDw5bUgopDpefo2nmBT6nU_1Azi8Fi8-hNW6qf0jiFMZdMGMxLlfLlXuHHelqljQAakr0o0I5OAlW_aNy0k_49QOFWontneuJefipMbi0Qi2RrOzrnPHVQbZ8AnssC0VgdRibrnKUF9k6Oc9HMwts3NuU6qkyzQFBkdopTZHEeSjZc94OibzPw_dHKLEjs85HyQRvBhPY0zQX6Ci9s0Sr0E6ooRhkl1yjVKciKeSEWx0ETj6UAiBOK_yx5e_wHNYmx183rN7O_u7T-AWp1KgtjRvE1YX35f-KXK5hXvWDqAYvlz3iP0Dhi1bvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICgUAgWCBMd041ccIyGEtqxaiioOVNqbiRNbalWSwu4KwU_j1zGTVzmUlkuvSSaJJvP4xhnPB_CSMc9dYDzhTvNE5pVKCqN8oo3H9F75kIW2y_cg2z2UH-Zqvga_h70w1FY5xMQ2UFdNSWvkE0rNnLgO00no2yI-7czenn5LiEGK_rQOdBqdiez7nz-wfFu82dvBb_2K89n7z9PdpGcYSEol1BJNRHteVCxzUnkjclVVBo-xEEo0boVBSQTmTFal2hRO58GVnpeZKH3Q0ldB4H2vwXUtFCMf0_Ox2EuF7tj6aK641sac7R6aHGM2cjSiFctTTkFrOyW69fPz4r9wb5v_ZnfhTg9c43edpd2DNV9vwM3pwBe3Abf_Gm14H163vQjxtEm6oZ0-XjbxDJNot_Z49MvH05OGSEOqo9XXeIYJot8FVT-AwyvR4ias103tH0GcyqALZiTWgblUuXPclapiQQeEsQg9IpCDlmzZDzEnLo0TO3SrHdteuZaUiwWOxaMRbI9ip90Uj8sEsuET2GGLKgZVi3nmMkF9nqBf9KFhYZldcJtSV12myTA4hlkaeRRBPkr26KdDNf_z0K3BSuz4nDOHieDFeBptgv4IFbVvVngNQhMlDJPsgmuU4gRClYzgYWeBow6FEBjzVf744hd4DjfQV-3HvYP9J3CLU1dQ26W3BevL7yv_FGHd0j1r_SeGL1ftsH8Amp5f7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Co-Culture+to+Functionalize+Clostridium+Fermentation&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Cui%2C+Yonghao&rft.au=Yang%2C+Kun-Lin&rft.au=Zhou%2C+Kang&rft.date=2021-09-01&rft.issn=0167-7799&rft.volume=39&rft.issue=9&rft.spage=914&rft.epage=926&rft_id=info:doi/10.1016%2Fj.tibtech.2020.11.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tibtech_2020_11_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7799&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7799&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7799&client=summon