Using Co-Culture to Functionalize Clostridium Fermentation
Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to...
Saved in:
Published in | Trends in biotechnology (Regular ed.) Vol. 39; no. 9; pp. 914 - 926 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains’ functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures.
Clostridium co-culture has emerged as a solution to some problems faced by Clostridium monoculture.Co-culturing Clostridium with cellulolytic strains or acetogens enables the production of butanol from cheaper substrates such as lignocellulosic biomass and syngas.Aerotolerance is possible in anaerobic Clostridium fermentation in co-cultures with oxygen-consuming microbes.Co-culturing solventogenic Clostridium with acetogens can improve the production of butanol and its derivatives by increasing carbon recovery and relieving solvent toxicity.Other products, such as H2 or fatty acids, can be efficiently produced by the co-culture of Clostridium and other H2-producing strains (such as PNS bacteria), or chain-elongating strains respectively. |
---|---|
AbstractList | Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains' functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures. Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains’ functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures. Clostridium co-culture has emerged as a solution to some problems faced by Clostridium monoculture.Co-culturing Clostridium with cellulolytic strains or acetogens enables the production of butanol from cheaper substrates such as lignocellulosic biomass and syngas.Aerotolerance is possible in anaerobic Clostridium fermentation in co-cultures with oxygen-consuming microbes.Co-culturing solventogenic Clostridium with acetogens can improve the production of butanol and its derivatives by increasing carbon recovery and relieving solvent toxicity.Other products, such as H2 or fatty acids, can be efficiently produced by the co-culture of Clostridium and other H2-producing strains (such as PNS bacteria), or chain-elongating strains respectively. Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains' functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures.Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations, such as relatively high substrate cost and the need to maintain an anaerobic condition. Recently, co-culture is emerging as a popular way to address these limitations by introducing a partner strain with Clostridium. Generally speaking, the co-culture strategy enables the use of a cheaper substrate, maintains the growth of Clostridium without any anaerobic treatment, improves product yields, and/or widens the product spectrum. Herein, we review recent developments of co-culture strategies involving Clostridium species according to their partner stains' functions with representative examples. We also discuss research challenges that need to be addressed for the future development of Clostridium co-cultures. |
Author | Zhou, Kang Yang, Kun-Lin Cui, Yonghao |
Author_xml | – sequence: 1 givenname: Yonghao orcidid: 0000-0002-2039-5674 surname: Cui fullname: Cui, Yonghao organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore – sequence: 2 givenname: Kun-Lin orcidid: 0000-0002-7958-9334 surname: Yang fullname: Yang, Kun-Lin email: cheyk@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore – sequence: 3 givenname: Kang orcidid: 0000-0003-0606-7030 surname: Zhou fullname: Zhou, Kang email: kang.zhou@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33342558$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUkGL1DAYDbLizo7-BKXgxUvHpGmaRtFFiqPCggfdc0iTr5oxbXaTVNj99abMrIcBGU-Bl_de8r33XaCzyU-A0HOCNwST5vVuk2yfQP_cVLjKGNlk9BFakZaLkmLRnKFVRnjJuRDn6CLGHcaYckGeoHNKaV0x1q7Qm-topx9F58tudmkOUCRfbOdJJ-sn5ew9FJ3zMQVr7DwWWwgjTEktt0_R40G5CM8O5xpdbz9-7z6XV18_fek-XJWaUZbKCnOolCFNXzMQtGXGiIyRYdC4xgyUpgPpRWMwF6rn7dBrqHRDNQy8BjPQNXq1970J_naGmORoowbn1AR-jjIPkiNoKatPU2tOGBWkJpn68oi683PIIy-GTfYTrcCZ9eLAmvsRjLwJdlThTj4EmAlv9wQdfIwBBqntPp4UlHWSYLnUJXfyUJdc6pKEyIxmNTtSPzxwSne510HO_beFIKO2MGkwNoBO0nh70uH9kYN2drJauV9wB_FvFkTGSmL5bVmlZZMqTDElOcQ1evdvg__4wB-jNtod |
CitedBy_id | crossref_primary_10_1016_j_lwt_2024_116739 crossref_primary_10_1088_2515_7620_aca647 crossref_primary_10_1016_j_cej_2023_142599 crossref_primary_10_1016_j_crmicr_2024_100250 crossref_primary_10_1039_D3SE00916E crossref_primary_10_1016_j_biotechadv_2022_107954 crossref_primary_10_1111_1751_7915_14148 crossref_primary_10_1186_s13068_024_02505_5 crossref_primary_10_1016_j_ijhydene_2024_06_121 crossref_primary_10_1186_s12934_022_02010_0 crossref_primary_10_1002_elsc_202100152 crossref_primary_10_1016_j_rser_2022_112091 crossref_primary_10_1002_biot_202300161 crossref_primary_10_1016_j_jece_2022_107789 crossref_primary_10_1016_j_jff_2023_105987 crossref_primary_10_3390_fermentation9090811 crossref_primary_10_1007_s13399_024_06221_w crossref_primary_10_1016_j_biortech_2021_126097 crossref_primary_10_1128_aem_00484_22 crossref_primary_10_1128_msystems_00572_24 crossref_primary_10_1128_msystems_00297_22 crossref_primary_10_1360_TB_2022_1300 crossref_primary_10_1016_j_biteb_2023_101538 crossref_primary_10_1021_acssynbio_3c00329 crossref_primary_10_1007_s13399_024_06225_6 crossref_primary_10_1016_j_biortech_2024_131191 crossref_primary_10_1016_j_psep_2024_03_027 crossref_primary_10_15302_J_QB_022_0314 crossref_primary_10_1016_j_jbiotec_2025_01_007 crossref_primary_10_1021_acssynbio_1c00289 crossref_primary_10_1007_s12649_025_02913_0 crossref_primary_10_1016_j_biortech_2024_131232 crossref_primary_10_1038_s41598_023_47007_w crossref_primary_10_3389_fbioe_2022_965614 crossref_primary_10_1016_j_ijhydene_2023_10_330 crossref_primary_10_3389_fbioe_2021_661694 crossref_primary_10_1007_s00253_025_13428_y crossref_primary_10_1016_j_cogsc_2023_100842 |
Cites_doi | 10.1186/s12934-014-0092-5 10.3389/fmicb.2016.01773 10.1016/j.csbj.2020.10.003 10.1016/j.biortech.2019.121965 10.1016/j.energy.2018.04.101 10.1038/s41929-017-0005-1 10.1186/s13068-016-0495-0 10.1016/j.biortech.2018.09.033 10.1016/j.biortech.2016.09.072 10.1080/15435075.2015.1088443 10.1021/acssynbio.6b00044 10.1038/s41467-020-14371-4 10.1080/07388551.2017.1376309 10.1186/s13068-016-0577-z 10.1016/j.tibtech.2020.02.002 10.1016/j.tibtech.2018.08.007 10.1016/j.rser.2016.10.017 10.1186/s13068-016-0528-8 10.1128/mBio.00621-17 10.1186/s13068-017-0805-1 10.1038/ncomms7283 10.1186/s12934-016-0412-z 10.1371/journal.pone.0141160 10.1002/bab.1522 10.1186/s13068-019-1508-6 10.1007/s00253-018-8970-0 10.1128/AEM.00735-15 10.1016/j.biortech.2016.05.121 10.1002/biot.201000159 10.1038/s41598-019-54445-y 10.1016/j.biortech.2015.11.068 10.1128/AEM.00706-11 10.1016/j.ymben.2016.10.013 10.1007/s10295-020-02279-3 10.1186/1754-6834-6-59 10.1016/j.biortech.2020.123065 10.1093/femsle/fnw073 10.1186/s13068-017-0764-6 10.1128/AEM.00789-16 10.1002/bit.26478 10.1038/s41564-019-0567-6 10.1186/s13068-018-1092-1 10.1016/j.ijhydene.2015.05.135 10.1007/s00253-019-09916-7 10.1186/s13068-019-1495-7 10.1021/acs.energyfuels.7b01362 10.1016/j.ymben.2019.06.006 10.1038/s41467-019-12027-6 10.18178/JOCET.2017.5.1.338 10.1016/j.mec.2020.e00137 10.1186/s13568-018-0705-1 10.1016/j.egypro.2011.09.052 10.1016/j.biortech.2017.09.060 10.1007/s00253-018-9151-x 10.1002/bit.25827 10.1002/bit.27333 10.1016/j.rser.2011.06.001 10.1016/j.fuel.2018.03.125 10.1002/bit.27221 10.1016/j.ymben.2018.10.006 10.1002/bit.26393 10.1128/AEM.02560-18 10.3389/fmolb.2019.00002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ GUQSH H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M0T M1P M2O M7P M7S MBDVC P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 7S9 L.6 |
DOI | 10.1016/j.tibtech.2020.11.016 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database Research Library Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Health Management ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed Materials Research Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3096 |
EndPage | 926 |
ExternalDocumentID | 33342558 10_1016_j_tibtech_2020_11_016 S0167779920303115 1_s2_0_S0167779920303115 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .1- .DC .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKC AAIKJ AAKOC AALRI AAMNW AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABJCF ABJNI ABLJU ABMAC ABNUV ABUDA ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADFRT ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHMBA AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AQUVI ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKOJK BLXMC BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HLW HMCUK HVGLF HZ~ IHE J1W KOM L6V LK8 LX3 M0T M1P M2O M41 M7P M7S MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q38 R2- RNS ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSU SSZ T5K TAE TN5 UKHRP WUQ XPP Y6R Z5R ZGI ZMT ~02 ~G- ~KM 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW RCE RIG AAIAV ABYKQ AJBFU DOVZS EFLBG G8K XFK AAYXX AGRNS BNPGV CITATION SSH NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c535t-207e2ad16b45e9385dd92071ffc0405eac3f1b96d079ab78fbce2c63cef74edf3 |
IEDL.DBID | 7X7 |
ISSN | 0167-7799 1879-3096 |
IngestDate | Fri Jul 11 11:43:44 EDT 2025 Fri Jul 11 06:26:58 EDT 2025 Wed Aug 13 03:13:21 EDT 2025 Thu Apr 03 06:57:59 EDT 2025 Tue Jul 01 02:44:27 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Fri Feb 23 02:43:19 EST 2024 Tue Feb 25 20:12:26 EST 2025 Tue Aug 26 19:34:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Clostridium metabolic engineering biofuel acetone-butanol-ethanol fermentation co-culture |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-207e2ad16b45e9385dd92071ffc0405eac3f1b96d079ab78fbce2c63cef74edf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0606-7030 0000-0002-7958-9334 0000-0002-2039-5674 |
PMID | 33342558 |
PQID | 2560289890 |
PQPubID | 2031074 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2552028354 proquest_miscellaneous_2471539141 proquest_journals_2560289890 pubmed_primary_33342558 crossref_citationtrail_10_1016_j_tibtech_2020_11_016 crossref_primary_10_1016_j_tibtech_2020_11_016 elsevier_sciencedirect_doi_10_1016_j_tibtech_2020_11_016 elsevier_clinicalkeyesjournals_1_s2_0_S0167779920303115 elsevier_clinicalkey_doi_10_1016_j_tibtech_2020_11_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Trends in biotechnology (Regular ed.) |
PublicationTitleAlternate | Trends Biotechnol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Sun (bb0095) 2018; 247 Jones (bb0035) 2017; 8 Martin (bb0085) 2016; 113 Benito-Vaquerizo (bb0270) 2020; 18 Xin (bb0070) 2017; 10 Johnston (bb0200) 2020; 11 Tian (bb0240) 2016; 9 Mai (bb0300) 2017; 64 Richter (bb0105) 2016; 7 Benomar (bb0180) 2015; 6 Liu (bb0065) 2019; 292 Jin (bb0010) 2011; 15 Moraïs (bb0230) 2016; 9 Zhao (bb0225) 2017; 114 Ebrahimi (bb0145) 2020; 117 Mi (bb0125) 2018; 102 Nakayama (bb0250) 2011; 77 Zuñiga (bb0285) 2019; 4 Diender (bb0325) 2019; 9 Wu (bb0115) 2016; 15 Gildemyn (bb0090) 2017; 10 Wushke (bb0135) 2015; 81 Xin (bb0050) 2019; 37 Diender (bb0330) 2016; 9 Cui (bb0130) 2020; 47 Dash (bb0245) 2019; 55 Stephens (bb0205) 2019; 10 Friedl (bb0030) 2016; 363 Charubin, Papoutsakis (bb0165) 2019; 52 Wen (bb0075) 2019; 85 Machado (bb0185) 2018; 153 Yan, Dong (bb0320) 2018; 8 Shen (bb0150) 2016; 216 Jiang (bb0045) 2019; 12 Wen (bb0255) 2014; 13 Lu (bb0190) 2016; 82 Birgen (bb0155) 2019; 12 Xin (bb0025) 2018; 38 Cheng (bb0235) 2019; 103 Cui (bb0120) 2020; 11 Kao (bb0315) 2016; 13 Liu (bb0100) 2018; 224 Wang (bb0060) 2017 Salimi (bb0290) 2010; 5 Wen (bb0295) 2020; 117 Sun (bb0080) 2019; 7 Huang (bb0210) 2016; 5 Bu (bb0305) 2017; 31 Zuroff (bb0140) 2013; 6 Jiang (bb0055) 2020; 38 Hastings (bb0280) 2019; 6 Tri, Kamei (bb0260) 2020; 305 Jiang (bb0040) 2018; 102 Ponthein, Cheirsilp (bb0265) 2011; 9 Bharathiraja (bb0005) 2017; 68 Kim (bb0195) 2018; 270 Wen (bb0215) 2017; 39 Mahapatra, Kumar (bb0020) 2017; 5 Jiang (bb0015) 2018; 11 Barca (bb0310) 2016; 221 Lu, Lee (bb0175) 2015; 40 Guan (bb0275) 2018; 115 Haas (bb0110) 2018; 1 Luo (bb0160) 2015; 10 Xin (bb0170) 2016; 202 Dargode (bb0220) 2020; 3 Jiang (10.1016/j.tibtech.2020.11.016_bb0015) 2018; 11 Wang (10.1016/j.tibtech.2020.11.016_bb0060) 2017 Diender (10.1016/j.tibtech.2020.11.016_bb0330) 2016; 9 Mi (10.1016/j.tibtech.2020.11.016_bb0125) 2018; 102 Huang (10.1016/j.tibtech.2020.11.016_bb0210) 2016; 5 Dash (10.1016/j.tibtech.2020.11.016_bb0245) 2019; 55 Nakayama (10.1016/j.tibtech.2020.11.016_bb0250) 2011; 77 Xin (10.1016/j.tibtech.2020.11.016_bb0025) 2018; 38 Jones (10.1016/j.tibtech.2020.11.016_bb0035) 2017; 8 Mai (10.1016/j.tibtech.2020.11.016_bb0300) 2017; 64 Liu (10.1016/j.tibtech.2020.11.016_bb0100) 2018; 224 Charubin (10.1016/j.tibtech.2020.11.016_bb0165) 2019; 52 Cui (10.1016/j.tibtech.2020.11.016_bb0130) 2020; 47 Jiang (10.1016/j.tibtech.2020.11.016_bb0040) 2018; 102 Shen (10.1016/j.tibtech.2020.11.016_bb0150) 2016; 216 Kim (10.1016/j.tibtech.2020.11.016_bb0195) 2018; 270 Dargode (10.1016/j.tibtech.2020.11.016_bb0220) 2020; 3 Benomar (10.1016/j.tibtech.2020.11.016_bb0180) 2015; 6 Gildemyn (10.1016/j.tibtech.2020.11.016_bb0090) 2017; 10 Benito-Vaquerizo (10.1016/j.tibtech.2020.11.016_bb0270) 2020; 18 Xin (10.1016/j.tibtech.2020.11.016_bb0070) 2017; 10 Hastings (10.1016/j.tibtech.2020.11.016_bb0280) 2019; 6 Bu (10.1016/j.tibtech.2020.11.016_bb0305) 2017; 31 Cheng (10.1016/j.tibtech.2020.11.016_bb0235) 2019; 103 Diender (10.1016/j.tibtech.2020.11.016_bb0325) 2019; 9 Richter (10.1016/j.tibtech.2020.11.016_bb0105) 2016; 7 Tian (10.1016/j.tibtech.2020.11.016_bb0240) 2016; 9 Jiang (10.1016/j.tibtech.2020.11.016_bb0045) 2019; 12 Zhao (10.1016/j.tibtech.2020.11.016_bb0225) 2017; 114 Wen (10.1016/j.tibtech.2020.11.016_bb0255) 2014; 13 Tri (10.1016/j.tibtech.2020.11.016_bb0260) 2020; 305 Cui (10.1016/j.tibtech.2020.11.016_bb0120) 2020; 11 Guan (10.1016/j.tibtech.2020.11.016_bb0275) 2018; 115 Wushke (10.1016/j.tibtech.2020.11.016_bb0135) 2015; 81 Jin (10.1016/j.tibtech.2020.11.016_bb0010) 2011; 15 Liu (10.1016/j.tibtech.2020.11.016_bb0065) 2019; 292 Ponthein (10.1016/j.tibtech.2020.11.016_bb0265) 2011; 9 Yan (10.1016/j.tibtech.2020.11.016_bb0320) 2018; 8 Mahapatra (10.1016/j.tibtech.2020.11.016_bb0020) 2017; 5 Kao (10.1016/j.tibtech.2020.11.016_bb0315) 2016; 13 Xin (10.1016/j.tibtech.2020.11.016_bb0050) 2019; 37 Sun (10.1016/j.tibtech.2020.11.016_bb0095) 2018; 247 Birgen (10.1016/j.tibtech.2020.11.016_bb0155) 2019; 12 Sun (10.1016/j.tibtech.2020.11.016_bb0080) 2019; 7 Haas (10.1016/j.tibtech.2020.11.016_bb0110) 2018; 1 Zuñiga (10.1016/j.tibtech.2020.11.016_bb0285) 2019; 4 Luo (10.1016/j.tibtech.2020.11.016_bb0160) 2015; 10 Jiang (10.1016/j.tibtech.2020.11.016_bb0055) 2020; 38 Lu (10.1016/j.tibtech.2020.11.016_bb0190) 2016; 82 Moraïs (10.1016/j.tibtech.2020.11.016_bb0230) 2016; 9 Wen (10.1016/j.tibtech.2020.11.016_bb0295) 2020; 117 Martin (10.1016/j.tibtech.2020.11.016_bb0085) 2016; 113 Lu (10.1016/j.tibtech.2020.11.016_bb0175) 2015; 40 Barca (10.1016/j.tibtech.2020.11.016_bb0310) 2016; 221 Machado (10.1016/j.tibtech.2020.11.016_bb0185) 2018; 153 Stephens (10.1016/j.tibtech.2020.11.016_bb0205) 2019; 10 Wen (10.1016/j.tibtech.2020.11.016_bb0215) 2017; 39 Zuroff (10.1016/j.tibtech.2020.11.016_bb0140) 2013; 6 Xin (10.1016/j.tibtech.2020.11.016_bb0170) 2016; 202 Salimi (10.1016/j.tibtech.2020.11.016_bb0290) 2010; 5 Wen (10.1016/j.tibtech.2020.11.016_bb0075) 2019; 85 Bharathiraja (10.1016/j.tibtech.2020.11.016_bb0005) 2017; 68 Friedl (10.1016/j.tibtech.2020.11.016_bb0030) 2016; 363 Wu (10.1016/j.tibtech.2020.11.016_bb0115) 2016; 15 Ebrahimi (10.1016/j.tibtech.2020.11.016_bb0145) 2020; 117 Johnston (10.1016/j.tibtech.2020.11.016_bb0200) 2020; 11 |
References_xml | – volume: 224 start-page: 537 year: 2018 end-page: 544 ident: bb0100 article-title: The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation publication-title: Fuel – volume: 13 start-page: 1 year: 2014 end-page: 11 ident: bb0255 article-title: Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of publication-title: Microb. Cell Factories – volume: 11 year: 2020 ident: bb0120 article-title: Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of publication-title: Metab. Eng. Commun. – volume: 82 start-page: 4546 year: 2016 end-page: 4559 ident: bb0190 article-title: Transcriptomic responses of the interactions between publication-title: Appl. Environ. Microbiol. – volume: 12 start-page: 155 year: 2019 ident: bb0045 article-title: Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems publication-title: Biotechnol. Biofuels – volume: 292 year: 2019 ident: bb0065 article-title: Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production publication-title: Bioresour. Technol. – volume: 9 start-page: 1 year: 2019 end-page: 11 ident: bb0325 article-title: Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas publication-title: Sci. Rep. – volume: 64 start-page: 719 year: 2017 end-page: 726 ident: bb0300 article-title: Interactions between publication-title: Biotechnol. Appl. Biochem. – volume: 102 start-page: 6753 year: 2018 end-page: 6763 ident: bb0125 article-title: Improvement of butanol production by the development and co-culture of publication-title: Appl. Microbiol. Biotechnol. – volume: 153 start-page: 861 year: 2018 end-page: 869 ident: bb0185 article-title: Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation publication-title: Energy – volume: 8 start-page: 175 year: 2018 ident: bb0320 article-title: Improvement of caproic acid production in a publication-title: AMB Express – volume: 38 start-page: 529 year: 2018 end-page: 540 ident: bb0025 article-title: Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts publication-title: Crit. Rev. Biotechnol. – volume: 202 start-page: 214 year: 2016 end-page: 219 ident: bb0170 article-title: Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification publication-title: Bioresour. Technol. – volume: 247 start-page: 291 year: 2018 end-page: 301 ident: bb0095 article-title: Enhanced ethanol production by publication-title: Bioresour. Technol. – volume: 8 start-page: e00621 year: 2017 end-page: e00717 ident: bb0035 article-title: Complete biosynthesis of anthocyanins using publication-title: MBio – volume: 40 start-page: 11800 year: 2015 end-page: 11808 ident: bb0175 article-title: Effects of cellulose concentrations on the syntrophic interactions between publication-title: Int. J. Hydrog. Energy – volume: 115 start-page: 483 year: 2018 end-page: 494 ident: bb0275 article-title: Comparative genomics and transcriptomics analysis‐guided metabolic engineering of publication-title: Biotechnol. Bioeng. – volume: 10 year: 2015 ident: bb0160 article-title: Enhancing butanol production under the stress environments of co-culturing publication-title: PLoS One – volume: 18 start-page: 3255 year: 2020 end-page: 3266 ident: bb0270 article-title: Modeling a co-culture of publication-title: Comput. Struct. Biotechnol. – volume: 7 year: 2019 ident: bb0080 article-title: Syngas fermentation process development for production of biofuels and chemicals: a review publication-title: Bioresour. Technol. Rep. – volume: 117 start-page: 2008 year: 2020 end-page: 2022 ident: bb0295 article-title: Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial publication-title: Biotechnol. Bioeng. – volume: 39 start-page: 38 year: 2017 end-page: 48 ident: bb0215 article-title: Enhanced solvent production by metabolic engineering of a twin-clostridial consortium publication-title: Metab. Eng. – volume: 5 start-page: 27 year: 2017 end-page: 30 ident: bb0020 article-title: A short review on biobutanol, a second generation biofuel production from lignocellulosic biomass publication-title: J. Clean Energy Technol. – volume: 38 start-page: P828 year: 2020 end-page: P831 ident: bb0055 article-title: Designing synthetic microbial consortia for biofuel production publication-title: Trends Biotechnol. – volume: 10 start-page: 118 year: 2017 ident: bb0070 article-title: Strategies for improved isopropanol–butanol production by a publication-title: Biotechnol. Biofuels – volume: 77 start-page: 6470 year: 2011 end-page: 6475 ident: bb0250 article-title: Butanol production from crystalline cellulose by cocultured publication-title: Appl. Environ. Microbiol. – volume: 9 start-page: 1 year: 2016 end-page: 11 ident: bb0240 article-title: Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum publication-title: Biotechnol. Biofuels – volume: 9 start-page: 459 year: 2011 end-page: 467 ident: bb0265 article-title: Development of acetone butanol ethanol (ABE) production from palm pressed fiber by mixed culture of publication-title: Energy Procedia – volume: 31 start-page: 9477 year: 2017 end-page: 9483 ident: bb0305 article-title: Enhanced biodegradation of sugar cane bagasse by coculture of publication-title: Energy Fuel – volume: 37 start-page: 167 year: 2019 end-page: 180 ident: bb0050 article-title: Biobutanol production from crystalline cellulose through consolidated bioprocessing publication-title: Trends Biotechnol. – volume: 10 start-page: 83 year: 2017 ident: bb0090 article-title: Upgrading syngas fermentation effluent using publication-title: Biotechnol. Biofuels – volume: 6 start-page: 6283 year: 2015 ident: bb0180 article-title: Nutritional stress induces exchange of cell material and energetic coupling between bacterial species publication-title: Nat. Commun. – volume: 81 start-page: 5567 year: 2015 end-page: 5573 ident: bb0135 article-title: Facultative anaerobe publication-title: Appl. Environ. Microbiol. – start-page: 137 year: 2017 end-page: 158 ident: bb0060 article-title: Design of bifunctional solid catalysts for conversion of biomass-derived syngas into biofuels publication-title: Production of Biofuels and Chemicals with Bifunctional Catalysts – volume: 6 start-page: 2 year: 2019 ident: bb0280 article-title: Multi-omics and genome-scale modeling reveal a metabolic shift during publication-title: Front. Mol. Biosci. – volume: 7 start-page: 1773 year: 2016 ident: bb0105 article-title: A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of publication-title: Front. Microbiol. – volume: 363 year: 2016 ident: bb0030 article-title: Downstream process options for the ABE fermentation publication-title: FEMS Microbiol. Lett. – volume: 15 start-page: 1 year: 2016 end-page: 11 ident: bb0115 article-title: Butanol production under microaerobic conditions with a symbiotic system of publication-title: Microb. Cell Factories – volume: 103 start-page: 5549 year: 2019 end-page: 5566 ident: bb0235 article-title: Engineering publication-title: Appl. Microbiol. Biotechnol. – volume: 13 start-page: 715 year: 2016 end-page: 719 ident: bb0315 article-title: Biohydrogen production by publication-title: Int. J. Green Energy – volume: 9 start-page: 1 year: 2016 end-page: 12 ident: bb0230 article-title: Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability publication-title: Biotechnol. Biofuels – volume: 11 start-page: 1 year: 2018 end-page: 14 ident: bb0015 article-title: Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5 publication-title: Biotechnol. Biofuels – volume: 47 start-page: 543 year: 2020 end-page: 550 ident: bb0130 article-title: Production of isopropyl and butyl esters by publication-title: J. Ind. Microbiol. Biotechnol. – volume: 55 start-page: 161 year: 2019 end-page: 169 ident: bb0245 article-title: Thermodynamic analysis of the pathway for ethanol production from cellobiose in publication-title: Metab. Eng. – volume: 305 year: 2020 ident: bb0260 article-title: Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus publication-title: Bioresour. Technol. – volume: 9 start-page: 82 year: 2016 ident: bb0330 article-title: Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas publication-title: Biotechnol. Biofuels – volume: 85 year: 2019 ident: bb0075 article-title: Improved n-butanol production from publication-title: App. Environ. Microbiol. – volume: 216 start-page: 601 year: 2016 end-page: 606 ident: bb0150 article-title: Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in publication-title: Bioresour. Technol. – volume: 3 start-page: 118 year: 2020 end-page: 128 ident: bb0220 article-title: Design of substrate specific consortium for improved biogas production publication-title: Acta Sci. Microbiol. – volume: 102 start-page: 5419 year: 2018 end-page: 5425 ident: bb0040 article-title: Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing publication-title: Appl. Microbiol. Biotechnol. – volume: 10 start-page: 1 year: 2019 end-page: 11 ident: bb0205 article-title: Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition publication-title: Nat. Commun. – volume: 12 start-page: 167 year: 2019 ident: bb0155 article-title: Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis publication-title: Biotechnol. Biofuels – volume: 68 start-page: 788 year: 2017 end-page: 807 ident: bb0005 article-title: Biobutanol–an impending biofuel for future: a review on upstream and downstream processing techniques publication-title: Renew. Sust. Energ. Rev. – volume: 113 start-page: 531 year: 2016 end-page: 539 ident: bb0085 article-title: Traits of selected publication-title: Biotechnol. Bioeng. – volume: 52 start-page: 9 year: 2019 end-page: 19 ident: bb0165 article-title: Direct cell-to-cell exchange of matter in a synthetic publication-title: Metab. Eng. – volume: 1 start-page: 32 year: 2018 end-page: 39 ident: bb0110 article-title: Technical photosynthesis involving CO publication-title: Nat. Catal. – volume: 221 start-page: 526 year: 2016 end-page: 533 ident: bb0310 article-title: Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of publication-title: Bioresour. Technol. – volume: 5 start-page: 726 year: 2010 end-page: 738 ident: bb0290 article-title: Genome‐scale metabolic modeling of a clostridial co‐culture for consolidated bioprocessing publication-title: Biotechnol. J. – volume: 5 start-page: 1355 year: 2016 end-page: 1361 ident: bb0210 article-title: CRISPR/Cas9-based efficient genome editing in publication-title: ACS Synth. Biol. – volume: 6 start-page: 59 year: 2013 ident: bb0140 article-title: Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic publication-title: Biotechnol. Biofuels – volume: 117 start-page: 392 year: 2020 end-page: 405 ident: bb0145 article-title: Efficient butanol production under aerobic conditions by coculture of publication-title: Biotechnol. Bioeng. – volume: 114 start-page: 2907 year: 2017 end-page: 2919 ident: bb0225 article-title: A dynamic metabolic flux analysis of ABE (acetone‐butanol‐ethanol) fermentation by publication-title: Biotechnol. Bioeng. – volume: 270 start-page: 498 year: 2018 end-page: 503 ident: bb0195 article-title: New coculture system of publication-title: Bioresour. Technol. – volume: 15 start-page: 4080 year: 2011 end-page: 4106 ident: bb0010 article-title: Progress in the production and application of n-butanol as a biofuel publication-title: Renew. Sust. Energ. Rev. – volume: 4 start-page: 2184 year: 2019 end-page: 2191 ident: bb0285 article-title: Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities publication-title: Nat. Microbiol. – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: bb0200 article-title: Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation publication-title: Nat. Commun. – volume: 13 start-page: 1 year: 2014 ident: 10.1016/j.tibtech.2020.11.016_bb0255 article-title: Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans publication-title: Microb. Cell Factories doi: 10.1186/s12934-014-0092-5 – volume: 7 start-page: 1773 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0105 article-title: A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01773 – volume: 18 start-page: 3255 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0270 article-title: Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids publication-title: Comput. Struct. Biotechnol. doi: 10.1016/j.csbj.2020.10.003 – volume: 292 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0065 article-title: Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121965 – volume: 153 start-page: 861 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0185 article-title: Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation publication-title: Energy doi: 10.1016/j.energy.2018.04.101 – volume: 1 start-page: 32 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0110 article-title: Technical photosynthesis involving CO2 electrolysis and fermentation publication-title: Nat. Catal. doi: 10.1038/s41929-017-0005-1 – volume: 9 start-page: 82 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0330 article-title: Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0495-0 – volume: 270 start-page: 498 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0195 article-title: New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.033 – volume: 221 start-page: 526 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0310 article-title: Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.072 – volume: 13 start-page: 715 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0315 article-title: Biohydrogen production by Clostridium butyricum and Rhodopseudomonas palustris in co-cultures publication-title: Int. J. Green Energy doi: 10.1080/15435075.2015.1088443 – volume: 5 start-page: 1355 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0210 article-title: CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00044 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0200 article-title: Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation publication-title: Nat. Commun. doi: 10.1038/s41467-020-14371-4 – volume: 38 start-page: 529 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0025 article-title: Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2017.1376309 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0230 article-title: Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0577-z – volume: 38 start-page: P828 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0055 article-title: Designing synthetic microbial consortia for biofuel production publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.02.002 – volume: 37 start-page: 167 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0050 article-title: Biobutanol production from crystalline cellulose through consolidated bioprocessing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.08.007 – volume: 68 start-page: 788 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0005 article-title: Biobutanol–an impending biofuel for future: a review on upstream and downstream processing techniques publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2016.10.017 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0240 article-title: Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0528-8 – volume: 8 start-page: e00621 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0035 article-title: Complete biosynthesis of anthocyanins using E. coli polycultures publication-title: MBio doi: 10.1128/mBio.00621-17 – volume: 10 start-page: 118 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0070 article-title: Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0805-1 – volume: 6 start-page: 6283 year: 2015 ident: 10.1016/j.tibtech.2020.11.016_bb0180 article-title: Nutritional stress induces exchange of cell material and energetic coupling between bacterial species publication-title: Nat. Commun. doi: 10.1038/ncomms7283 – volume: 3 start-page: 118 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0220 article-title: Design of substrate specific consortium for improved biogas production publication-title: Acta Sci. Microbiol. – volume: 15 start-page: 1 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0115 article-title: Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus publication-title: Microb. Cell Factories doi: 10.1186/s12934-016-0412-z – volume: 10 year: 2015 ident: 10.1016/j.tibtech.2020.11.016_bb0160 article-title: Enhancing butanol production under the stress environments of co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous butyrate addition publication-title: PLoS One doi: 10.1371/journal.pone.0141160 – volume: 64 start-page: 719 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0300 article-title: Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1522 – volume: 12 start-page: 167 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0155 article-title: Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-019-1508-6 – volume: 102 start-page: 5419 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0040 article-title: Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-8970-0 – volume: 81 start-page: 5567 year: 2015 ident: 10.1016/j.tibtech.2020.11.016_bb0135 article-title: Facultative anaerobe Caldibacillus debilis GB1: characterization and use in a designed aerotolerant, cellulose-degrading coculture with Clostridium thermocellum publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00735-15 – volume: 216 start-page: 601 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0150 article-title: Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.121 – volume: 5 start-page: 726 year: 2010 ident: 10.1016/j.tibtech.2020.11.016_bb0290 article-title: Genome‐scale metabolic modeling of a clostridial co‐culture for consolidated bioprocessing publication-title: Biotechnol. J. doi: 10.1002/biot.201000159 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0325 article-title: Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas publication-title: Sci. Rep. doi: 10.1038/s41598-019-54445-y – volume: 202 start-page: 214 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0170 article-title: Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.068 – volume: 77 start-page: 6470 year: 2011 ident: 10.1016/j.tibtech.2020.11.016_bb0250 article-title: Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00706-11 – volume: 39 start-page: 38 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0215 article-title: Enhanced solvent production by metabolic engineering of a twin-clostridial consortium publication-title: Metab. Eng. doi: 10.1016/j.ymben.2016.10.013 – volume: 47 start-page: 543 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0130 article-title: Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-020-02279-3 – volume: 6 start-page: 59 year: 2013 ident: 10.1016/j.tibtech.2020.11.016_bb0140 article-title: Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-59 – volume: 305 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0260 article-title: Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123065 – volume: 363 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0030 article-title: Downstream process options for the ABE fermentation publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnw073 – volume: 10 start-page: 83 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0090 article-title: Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0764-6 – volume: 82 start-page: 4546 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0190 article-title: Transcriptomic responses of the interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a cellulose-grown coculture for enhanced hydrogen production publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00789-16 – volume: 115 start-page: 483 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0275 article-title: Comparative genomics and transcriptomics analysis‐guided metabolic engineering of Propionibacterium acidipropionici for improved propionic acid production publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26478 – volume: 4 start-page: 2184 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0285 article-title: Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0567-6 – volume: 11 start-page: 1 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0015 article-title: Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-018-1092-1 – volume: 40 start-page: 11800 year: 2015 ident: 10.1016/j.tibtech.2020.11.016_bb0175 article-title: Effects of cellulose concentrations on the syntrophic interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in coculture fermentation for biohydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.05.135 – volume: 103 start-page: 5549 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0235 article-title: Engineering Clostridium for improved solvent production: recent progress and perspective publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09916-7 – volume: 12 start-page: 155 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0045 article-title: Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-019-1495-7 – volume: 31 start-page: 9477 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0305 article-title: Enhanced biodegradation of sugar cane bagasse by coculture of Clostridium thermocellum and Thermoanaerobacterium aotearoense supplemented with CaCO3 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b01362 – volume: 55 start-page: 161 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0245 article-title: Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.06.006 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0205 article-title: Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition publication-title: Nat. Commun. doi: 10.1038/s41467-019-12027-6 – volume: 5 start-page: 27 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0020 article-title: A short review on biobutanol, a second generation biofuel production from lignocellulosic biomass publication-title: J. Clean Energy Technol. doi: 10.18178/JOCET.2017.5.1.338 – volume: 11 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0120 article-title: Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of Clostridium beijerinckii G117 and recombinant Bacillus subtilis 1A1 publication-title: Metab. Eng. Commun. doi: 10.1016/j.mec.2020.e00137 – volume: 8 start-page: 175 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0320 article-title: Improvement of caproic acid production in a Clostridium kluyveri H068 and Methanogen 166 co-culture fermentation system publication-title: AMB Express doi: 10.1186/s13568-018-0705-1 – volume: 9 start-page: 459 year: 2011 ident: 10.1016/j.tibtech.2020.11.016_bb0265 article-title: Development of acetone butanol ethanol (ABE) production from palm pressed fiber by mixed culture of Clostridium sp. and Bacillus sp publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.09.052 – start-page: 137 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0060 article-title: Design of bifunctional solid catalysts for conversion of biomass-derived syngas into biofuels – volume: 247 start-page: 291 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0095 article-title: Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.060 – volume: 102 start-page: 6753 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0125 article-title: Improvement of butanol production by the development and co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9151-x – volume: 113 start-page: 531 year: 2016 ident: 10.1016/j.tibtech.2020.11.016_bb0085 article-title: Traits of selected Clostridium strains for syngas fermentation to ethanol publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25827 – volume: 7 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0080 article-title: Syngas fermentation process development for production of biofuels and chemicals: a review publication-title: Bioresour. Technol. Rep. – volume: 117 start-page: 2008 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0295 article-title: Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27333 – volume: 15 start-page: 4080 year: 2011 ident: 10.1016/j.tibtech.2020.11.016_bb0010 article-title: Progress in the production and application of n-butanol as a biofuel publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2011.06.001 – volume: 224 start-page: 537 year: 2018 ident: 10.1016/j.tibtech.2020.11.016_bb0100 article-title: The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation publication-title: Fuel doi: 10.1016/j.fuel.2018.03.125 – volume: 117 start-page: 392 year: 2020 ident: 10.1016/j.tibtech.2020.11.016_bb0145 article-title: Efficient butanol production under aerobic conditions by coculture of Clostridium acetobutylicum and Nesterenkonia sp. strain F publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27221 – volume: 52 start-page: 9 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0165 article-title: Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.10.006 – volume: 114 start-page: 2907 year: 2017 ident: 10.1016/j.tibtech.2020.11.016_bb0225 article-title: A dynamic metabolic flux analysis of ABE (acetone‐butanol‐ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by‐product publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26393 – volume: 85 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0075 article-title: Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering publication-title: App. Environ. Microbiol. doi: 10.1128/AEM.02560-18 – volume: 6 start-page: 2 year: 2019 ident: 10.1016/j.tibtech.2020.11.016_bb0280 article-title: Multi-omics and genome-scale modeling reveal a metabolic shift during C. elegans aging publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00002 |
SSID | ssj0003791 |
Score | 2.513674 |
SecondaryResourceType | review_article |
Snippet | Clostridium fermentations have been developed for producing butanol and other value-added chemicals, but their development is constrained by some limitations,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 914 |
SubjectTerms | acetone-butanol-ethanol fermentation Anaerobic conditions Anaerobic digestion Anaerobic treatment Biodiesel fuels biofuel Biofuels Biomass biotechnology Butanol Cell division Clostridium co-culture coculture Ethanol Fatty acids Fermentation Glucose Internal Medicine Lignocellulose metabolic engineering Substrates Synthesis gas value added |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvRQOqC2vlIKCxDW78SuOuaGoq4oDF6jUmxXHtrRVSSp298KB385MXgW1UMTV8cjWZPzNOPlmBuAdY4G7yHjGneaZLL3KaqNCpk1A9-5DLGLP8v1UnF_Ij5fqcg-qKReGaJUj9g-Y3qP1OLIctbm8Wa-Xn4lAr7UxHO2UasZQBrvUZOWLH7c0D6GHrnlU35tm32bxLK_QKzgqlYrXRE7gscip7fn9_ulP8Wfvh1aH8GQMINMPwx6PYC-0x3BQTX3bjuHxLyUGn8L7nhOQVl02FM8M6bZLV-jMhm-A6-8hra47at7h17uv6QqBesxGap_BxersS3Wejf0SskYJtUWD14HXnhVOqmBEqbxH5WgWY4NHVSHEisicKXyuTe10GV0TeFOIJkQtg4_iOey3XRteQprLqGtmJN7HSqlK57hrlGdRRwwnMQRIQE5ass1YTJx6WlzbiTV2ZUflWlIuXjQsjiawmMVuhmoaDwkU0yuwU6oogptFvH9IUN8nGDbjEd1YZjfc5vaOGSVQzpK_WeK_LHo6WYmd16GYklOTzjyBt_NjtAn6M1O3odvhHAwRlDBMsr_MUYpTMKhkAi8GC5x1KIRA7FXlyf_v_RU84kTX6elzp7C__bYLrzHe2ro3_YH6CYIkJzM priority: 102 providerName: Elsevier |
Title | Using Co-Culture to Functionalize Clostridium Fermentation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167779920303115 https://www.clinicalkey.es/playcontent/1-s2.0-S0167779920303115 https://dx.doi.org/10.1016/j.tibtech.2020.11.016 https://www.ncbi.nlm.nih.gov/pubmed/33342558 https://www.proquest.com/docview/2560289890 https://www.proquest.com/docview/2471539141 https://www.proquest.com/docview/2552028354 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoewAOCAqUQFkFiWu28VeccEFl1bCw0gpVVOzNimNbalWSwu5eOPDbmUmclENpucRS4pEje_xmbI_nEfKWUseMpyxhRrFE5FYmVSFdogoH5t06n_kuyneZzc_E55VchQ23dQirHDCxA2rb1rhHfoSmmSHXYfr-6keCrFF4uhooNHbIHqYuw5AutRoXXClXPWMe5vZWqiiub_AcXYBFMJgmFZaIDIFjmiLl-c226V--Z2eDysfkUXAe4-N-tJ-Qe67ZJ_dnA2fbPnn4V3rBp-RdFw8Qz9qkT5zp4k0bl2DI-v2_818unl22SNxhz7ff4xJAOtxEap6Rs_Lk62yeBK6EpJZcbkDZlWOVpZkR0hU8l9YW8I56X8M0lQCv3FNTZDZVRWVU7k3tWJ3x2nklnPX8Odlt2sa9IHEqvKpoIWAtlguZG8NMLS31yoMrCeY_ImLoJV2HROLIZ3Gph4ixCx06V2PnwiJDw9uITEexqz6Txl0C2TAEergmCsCmAevvElQ3Cbp1mJ5rTfWa6RQj2zKFisEA6jDtUETyUTJ4IL1n8T-NHg5aosd2rpU2Im_Gz6ATeCpTNa7dQh1wDyQvqKC31JGSoSMoRUQOeg0c-5BzDrgr85e3_8Ar8oBhOE4XHndIdjc_t-41-FMbMyE709900k0deOblxwnZO_60mC-xXJx-W0D54WT55fQPq04j3g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigcEBQogQJBgmPa-CuOkRBCC8uWlp5aqTcTJ7bUqiSF3RWCH8VvZCZf5VBaLr0mmSSajN88O-N5AC8Z89wFxhPuNE9kXqmkMMon2nhM75UPWWirfPez2aH8dKSOVuD3sBeGyioHTGyBumpKWiPfptTMSeswfXv2LSHVKPq7OkhodGGx63_-wCnb_M3Oe_y-rziffjiYzJJeVSAplVALDAvteVGxzEnljchVVRk8xkIoMaAVApEIzJmsSrUpnM6DKz0vM1H6oKWvgsD73oCbUghDIyqffhyRX-hOoY96iWttzPmOoe0TzECO2rLilJQTUG2lJLF-cS78F9dtc970LtzpyWr8rouue7Di63VYmwwacetw-692hvfhdVt_EE-apGvU6eNFE08xcXbrjce_fDw5bUgopDpefo2nmBT6nU_1Azi8Fi8-hNW6qf0jiFMZdMGMxLlfLlXuHHelqljQAakr0o0I5OAlW_aNy0k_49QOFWontneuJefipMbi0Qi2RrOzrnPHVQbZ8AnssC0VgdRibrnKUF9k6Oc9HMwts3NuU6qkyzQFBkdopTZHEeSjZc94OibzPw_dHKLEjs85HyQRvBhPY0zQX6Ci9s0Sr0E6ooRhkl1yjVKciKeSEWx0ETj6UAiBOK_yx5e_wHNYmx183rN7O_u7T-AWp1KgtjRvE1YX35f-KXK5hXvWDqAYvlz3iP0Dhi1bvw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICgUAgWCBMd041ccIyGEtqxaiioOVNqbiRNbalWSwu4KwU_j1zGTVzmUlkuvSSaJJvP4xhnPB_CSMc9dYDzhTvNE5pVKCqN8oo3H9F75kIW2y_cg2z2UH-Zqvga_h70w1FY5xMQ2UFdNSWvkE0rNnLgO00no2yI-7czenn5LiEGK_rQOdBqdiez7nz-wfFu82dvBb_2K89n7z9PdpGcYSEol1BJNRHteVCxzUnkjclVVBo-xEEo0boVBSQTmTFal2hRO58GVnpeZKH3Q0ldB4H2vwXUtFCMf0_Ox2EuF7tj6aK641sac7R6aHGM2cjSiFctTTkFrOyW69fPz4r9wb5v_ZnfhTg9c43edpd2DNV9vwM3pwBe3Abf_Gm14H163vQjxtEm6oZ0-XjbxDJNot_Z49MvH05OGSEOqo9XXeIYJot8FVT-AwyvR4ias103tH0GcyqALZiTWgblUuXPclapiQQeEsQg9IpCDlmzZDzEnLo0TO3SrHdteuZaUiwWOxaMRbI9ip90Uj8sEsuET2GGLKgZVi3nmMkF9nqBf9KFhYZldcJtSV12myTA4hlkaeRRBPkr26KdDNf_z0K3BSuz4nDOHieDFeBptgv4IFbVvVngNQhMlDJPsgmuU4gRClYzgYWeBow6FEBjzVf744hd4DjfQV-3HvYP9J3CLU1dQ26W3BevL7yv_FGHd0j1r_SeGL1ftsH8Amp5f7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Co-Culture+to+Functionalize+Clostridium+Fermentation&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Cui%2C+Yonghao&rft.au=Yang%2C+Kun-Lin&rft.au=Zhou%2C+Kang&rft.date=2021-09-01&rft.issn=0167-7799&rft.volume=39&rft.issue=9&rft.spage=914&rft.epage=926&rft_id=info:doi/10.1016%2Fj.tibtech.2020.11.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tibtech_2020_11_016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7799&client=summon |