A Novel CNN-Based Framework for Classification of Signal Quality and Sleep Position from a Capacitive ECG Measurement
The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framewor...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 7; p. 1731 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.04.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s19071731 |
Cover
Loading…
Abstract | The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring. |
---|---|
AbstractList | The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring.The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring. The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring. |
Author | Kanaya, Shigehiko Tamura, Toshiyo Huang, Ming Altaf-Ul-Amin, MD Kido, Koshiro Sekine, Masaki Ono, Naoaki |
AuthorAffiliation | 2 Future Robotics Organization, Waseda University, Tokorozawa 359-1192, Japan; t.tamura1949@gmail.com 3 Department of Medical care Technology, Tsukuba International University, Tsuchiura 300-0051, Japan; m-sekine@tius.ac.jp 1 Division of Information Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; kido.koshiro.kb3@is.naist.jp (K.K.); nono@is.naist.jp (N.O.); amin-m@is.naist.jp (M.A.-U.-A.); skanaya@gtc.naist.jp (S.K.) |
AuthorAffiliation_xml | – name: 1 Division of Information Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; kido.koshiro.kb3@is.naist.jp (K.K.); nono@is.naist.jp (N.O.); amin-m@is.naist.jp (M.A.-U.-A.); skanaya@gtc.naist.jp (S.K.) – name: 3 Department of Medical care Technology, Tsukuba International University, Tsuchiura 300-0051, Japan; m-sekine@tius.ac.jp – name: 2 Future Robotics Organization, Waseda University, Tokorozawa 359-1192, Japan; t.tamura1949@gmail.com |
Author_xml | – sequence: 1 givenname: Koshiro surname: Kido fullname: Kido, Koshiro – sequence: 2 givenname: Toshiyo orcidid: 0000-0002-8514-4200 surname: Tamura fullname: Tamura, Toshiyo – sequence: 3 givenname: Naoaki surname: Ono fullname: Ono, Naoaki – sequence: 4 givenname: MD surname: Altaf-Ul-Amin fullname: Altaf-Ul-Amin, MD – sequence: 5 givenname: Masaki surname: Sekine fullname: Sekine, Masaki – sequence: 6 givenname: Shigehiko surname: Kanaya fullname: Kanaya, Shigehiko – sequence: 7 givenname: Ming surname: Huang fullname: Huang, Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30978955$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNURD_gwB9AlrjAYak_Yju-IJWoX1JZQIVz5NiTxYsTb-1kUf993d2yaitOY42feTUz7xwWe0MYoCjeEvyJMYWPE1FYEsnIi-KAlLScVZTivUfv_eIwpSXGlDFWvSr2GVayUpwfFNMJmoc1eFTP57MvOoFFZ1H38DfEP6gLEdVep-Q6Z_TowoBCh67dYtAe_Zi0d-Mt0oNF1x5ghb6H5DZQF0OPNKr1SpucWQM6rc_RV9BpitDDML4uXnbaJ3jzEI-KX2enP-uL2dW388v65GpmOOPjjBCDsamqVmOpmRWdpIpXgstWqNYIsLbEtGQVJdZUFqzgvJW8ZVh0qqMEs6Picqtrg142q-h6HW-boF2zSYS4aHQcnfHQWFEqpQWW2LKSUlAghTR5p5KVXILIWp-3Wqup7cGaPEbU_ono05_B_W4WYd2IssJE0izw4UEghpsJ0tj0LhnwXg8QptRkn5TA5RZ9_wxdhinmrd9TVAkhMeeZeve4o10r_9zNwMctYGJIKUK3Qwhu7i-n2V1OZo-fsdm6jed5GOf_U3EHXG3CaQ |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3382720 crossref_primary_10_3390_s20040969 crossref_primary_10_3390_s21196409 crossref_primary_10_3390_s21113668 crossref_primary_10_1016_j_cmpb_2024_108249 crossref_primary_10_1016_j_pmcj_2023_101752 crossref_primary_10_1186_s12938_022_01031_5 crossref_primary_10_1098_rsif_2022_0012 crossref_primary_10_1155_2022_6048088 crossref_primary_10_1016_j_microrel_2024_115374 crossref_primary_10_1007_s11042_023_15123_4 crossref_primary_10_1063_10_0019678 crossref_primary_10_1109_JSEN_2024_3518082 crossref_primary_10_1016_j_heliyon_2024_e31839 crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1109_ACCESS_2023_3312538 crossref_primary_10_3390_s22187013 crossref_primary_10_1109_TIM_2023_3251392 crossref_primary_10_1016_j_compbiomed_2024_107928 crossref_primary_10_1371_journal_pone_0254780 crossref_primary_10_1109_TCE_2024_3370709 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_1155_2023_5287043 crossref_primary_10_1016_j_procs_2023_10_538 crossref_primary_10_1007_s11042_020_09938_8 |
Cites_doi | 10.1109/TBME.2013.2240452 10.3390/s18020405 10.2174/1874120701004010201 10.1016/0002-9149(91)90739-8 10.3390/s150511295 10.1109/TMI.2016.2538465 10.1109/CVPR.2016.90 10.1136/hrt.2003.019323 10.1109/TBME.2006.889201 10.1109/TBME.2015.2468589 10.3390/s18020577 10.1016/j.amjmed.2013.10.003 10.1016/j.gheart.2016.12.003 10.1007/s10439-008-9553-5 10.1109/TMI.2016.2528162 10.1109/JBHI.2018.2825020 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s19071731 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_d6499a6070d3422e9e767c73173457e6 PMC6480172 30978955 10_3390_s19071731 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 17K12778 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c535t-11c00c88ba07a3d6f72958657b69bc6edd40243821dc8ded655b75b306f9f2103 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:19 EDT 2025 Thu Aug 21 18:08:00 EDT 2025 Fri Jul 11 15:36:45 EDT 2025 Fri Jul 25 09:36:11 EDT 2025 Wed Feb 19 02:35:11 EST 2025 Tue Jul 01 00:41:55 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | capacitive coupling deep learning CNN electrocardiogram sleep positions |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c535t-11c00c88ba07a3d6f72958657b69bc6edd40243821dc8ded655b75b306f9f2103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8514-4200 |
OpenAccessLink | https://doaj.org/article/d6499a6070d3422e9e767c73173457e6 |
PMID | 30978955 |
PQID | 2229667055 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d6499a6070d3422e9e767c73173457e6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6480172 proquest_miscellaneous_2209604172 proquest_journals_2229667055 pubmed_primary_30978955 crossref_primary_10_3390_s19071731 crossref_citationtrail_10_3390_s19071731 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190411 |
PublicationDateYYYYMMDD | 2019-04-11 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190411 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kiranyaz (ref_14) 2016; 63 Tabakov (ref_6) 2008; 36 ref_13 Orphanidou (ref_12) 2015; 19 ref_20 Lee (ref_9) 2015; 15 ref_1 Karlson (ref_5) 1991; 68 Behar (ref_11) 2013; 60 Shin (ref_15) 2016; 35 Ueno (ref_8) 2007; 54 ref_19 Krivoshei (ref_4) 2016; 19 ref_18 ref_17 Pereira (ref_16) 2016; 35 Gula (ref_2) 2004; 90 Takano (ref_10) 2018; 23 Evans (ref_7) 2017; 12 Pinheiro (ref_3) 2010; 4 |
References_xml | – volume: 60 start-page: 1660 year: 2013 ident: ref_11 article-title: ECG signal quality during arrhythmia and its application to false alarm reduction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2240452 – volume: 19 start-page: 753 year: 2016 ident: ref_4 article-title: Smart detection of atrial fibrillation publication-title: Europace – ident: ref_17 doi: 10.3390/s18020405 – volume: 4 start-page: 201 year: 2010 ident: ref_3 article-title: Theory and Developments in an Unobtrusive Cardiovascular System Representation: Ballistocardiography publication-title: Open Biomed. Eng. J. doi: 10.2174/1874120701004010201 – volume: 68 start-page: 171 year: 1991 ident: ref_5 article-title: Early prediction of acute myocardial infarction from clinical history, examination and electrocardiogram in the emergency room publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(91)90739-8 – volume: 15 start-page: 11295 year: 2015 ident: ref_9 article-title: Heart rate variability monitoring during sleep based on capacitively coupled textile electrodes on a bed publication-title: Sensors doi: 10.3390/s150511295 – volume: 35 start-page: 1240 year: 2016 ident: ref_16 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – ident: ref_18 doi: 10.1109/CVPR.2016.90 – volume: 90 start-page: 347 year: 2004 ident: ref_2 article-title: Clinical relevance of arrhythmias during sleep: Guidance for clinicians publication-title: Heart doi: 10.1136/hrt.2003.019323 – volume: 54 start-page: 759 year: 2007 ident: ref_8 article-title: Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889201 – volume: 19 start-page: 832 year: 2015 ident: ref_12 article-title: Signal-Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring publication-title: IEEE J. Biomed. Health Inform. – volume: 63 start-page: 664 year: 2016 ident: ref_14 article-title: Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – ident: ref_19 – ident: ref_13 doi: 10.3390/s18020577 – ident: ref_20 – ident: ref_1 doi: 10.1016/j.amjmed.2013.10.003 – volume: 12 start-page: 285 year: 2017 ident: ref_7 article-title: Feasibility of Using Mobile ECG Recording Technology to Detect Atrial Fibrillation in Low-Resource Settings publication-title: Glob. Heart doi: 10.1016/j.gheart.2016.12.003 – volume: 36 start-page: 1805 year: 2008 ident: ref_6 article-title: Online digital filter and QRS detector applicable in low resource ECG monitoring systems publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9553-5 – volume: 35 start-page: 1285 year: 2016 ident: ref_15 article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 23 start-page: 618 year: 2018 ident: ref_10 article-title: Noncontact In-Bed Measurements of Physiological and Behavioral Signals Using an Integrated Fabric-Sheet Sensing Scheme publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2825020 |
SSID | ssj0023338 |
Score | 2.399778 |
Snippet | The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1731 |
SubjectTerms | Accuracy capacitive coupling Cardiac arrhythmia Classification CNN deep learning Discriminant analysis electrocardiogram Electrocardiography Heart rate Neural networks Noise Pattern recognition systems Physiology Quality Sensors Sleep sleep positions Textiles |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAOXKwm8Ss5oXbVpULqCqlU2lvkV0qlVbJ0d5H498w43mwXVVwTOxplxp75PONvCPkEKpWSC85E6SwTjntmqsozb0vfOkwqOrzvfD5TZ5fi21zO04HbKpVVbvfEuFH73uEZ-RH2nVYKuV--LH8x7BqF2dXUQuM-eYDUZVjSpec7wMUBfw1sQhyg_dEKnB8mnYs9HxSp-u-KL_8tk7zld6ZPyOMUMNLjQcNPyb3QPSOPbtEIPiebYzrrf4cFncxm7ATckqfTbc0VhaCUxs6XWBMU1UD7ll5cX-FXBwaNP9R0nl4sQljS76mIi-K9E2roBJypi_VF9HTylZ7vjhRfkMvp6Y_JGUvtFJiTXK5ZUbg8d1VlTa4N96qFuFpWSmqrautU8F4gPWFVFt5VPnglpdXSAqZo6xaQIX9JDrq-C68J9TqoGpGKyb3gpa8KE2xet6GFcKflPCOftz-4cYlrHFteLBrAHKiLZtRFRj6OQ5cDwcZdg05QS-MA5MSOD_qbqyYtscYrQG9GwR7muSjLUAettIPZmgsJAmfkcKvjJi3UVbMzq4x8GF_DEsO8ielCv8ExiPMEhHoZeTWYxCgJx3swNc7We8ayJ-r-m-76Z6TxVsjco8s3_xfrLXkIMVpMYBXFITlY32zCO4iD1vZ9NPa_3IUH1A priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5V5QIHVN5uC1oQBy4Ge5_2oaraqKFCSoRUIvVm7culUmSXNKnov2fGL2qUI1d71lrv7Hjm88x-Q8hHUKmUXPBYMGdj4biPTZb52FvmS4dJRYfnnWdzdb4Q3y7l5Q7pe2x2C3i7FdphP6nFavn596_7YzD4I0ScANm_3IJTw2QygKBH4JA02udMDMkExgGGtaRCY_GRK2oY-7eFmf9WSz5wP9M98rSLG-lJq-hnZCdUz8mTB2yCL8jmhM7ru7Ckk_k8PgXv5Om0L72iEJvSpgEmlgY12qB1SS-ur_CpLZHGPTWVpxfLEG7o966Wi-LxE2roBHyqa8qM6NnkK539_bP4kiymZz8m53HXVSF2kst1nKYuSVyWWZNow70qIbyWmZLaqtw6FbwXyFKYsdS7zAevpLRaWoAWZV4CQOSvyG5VV-ENoV4HlSNgMYkXnPksNcEmeRlKiHpKziPyqV_gwnWU49j5YlkA9EBdFIMuIvJhEL1peTa2CZ2ilgYBpMZuLtSrq6KztMIrAHFGwafMc8FYyINW2sFozYWECUfksNdx0W-3AruaK4XMQhF5P9wGS8P0ialCvUEZhHuwv1hEXrdbYpgJx-MwOY7Wo80ymur4TnX9s2HzVkjgo9n-_3i3A_IYArom25Wmh2R3vdqEtxA0re27xiT-AHQWFWk priority: 102 providerName: Scholars Portal |
Title | A Novel CNN-Based Framework for Classification of Signal Quality and Sleep Position from a Capacitive ECG Measurement |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30978955 https://www.proquest.com/docview/2229667055 https://www.proquest.com/docview/2209604172 https://pubmed.ncbi.nlm.nih.gov/PMC6480172 https://doaj.org/article/d6499a6070d3422e9e767c73173457e6 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BucChgvIylGhBHLhYtb1PH5soaVUpVkWplJu1L0OlyKnaBIl_z8zaMQmqxIWLD961td6Z1Xyfd_YbQj6DSYVgnKW8cDbljvnUaO1TbwvfONxUdHjeeV7J82t-sRCLnVJfmBPWyQN3E3fiJWByI8EzPeNFEcqgpHIKwh7jQoUotg0xb0umeqrFgHl1OkIMSP3JPYQ93G7O96JPFOl_CFn-nSC5E3Fmz8lhDxXpaTfEF-RRaI_Isx0BwZdkc0qr1c-wpJOqSscQkDydbbOtKMBRGmteYjZQNABdNfTq5ju-tdPO-EVN6-nVMoRbetmnb1E8cUINnUAYdTGziE4nZ3T-52fiK3I9m36bnKd9IYXUCSbWaZ67LHNaW5Mpw7xsAFELLYWysrROBu85ChPqIvdO--ClEFYJC2yiKRvghOw1OWhXbXhLqIcpL5GjmMxzVnidm2CzsgkNAJ2GsYR82U5w7XqVcSx2sayBbaAt6sEWCfk0dL3tpDUe6jRGKw0dUA073gAfqXsfqf_lIwk53tq47pfofY2FzKVEMaGEfByaYXHhjolpw2qDfZDhcQB5CXnTucQwEoYnYEp8Wu05y95Q91vamx9RwFuiZo8q3v2Pb3tPngKGixtceX5MDtZ3m_ABcNLajshjtVBw1bOzEXkynlaXX0dxmcB1zvVvnXsS8A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEsd2ckCoXbpsaTdCaivtLU1sp1RaJUt3F9Q_xW9kJq_toopbr_FDVmbs-cYz_gbgPYpUCB5yNwx07oaaGzeLIuOaPDCFpqCipvfO40SOTsJvEzHZgD_dWxhKq-zOxPqgNpWmO_JtqjstJXG_fJ79dKlqFEVXuxIajVoc2Mvf6LLNP-1_Qfl-CILh3vFg5LZVBVwtuFi4vq89T0dRnnkq40YWCC9FJIXKZZxraY0JiaUvCnyjI2ONFCJXIkdoXcQFOkgc570Ft9HwerSj1GTl4HH09xr2Is5jb3uOxpaC3P6azatLA1yHZ_9Ny7xi54YP4H4LUNlOo1EPYcOWj-DeFdrCx7DcYUn1y07ZIEncXTSDhg27HC-GIJjVlTYpB6kWO6sKdnR-RrM2jB2XLCsNO5paO2Pf26QxRu9cWMYGaLx1nc_E9gZf2Xh1hfkETm7kRz-FzbIq7XNgRlkZk2eUeSbkgYn8zOZeXNgC4VXBuQMfux-c6pbbnEpsTFP0cUgWaS8LB971XWcNocd1nXZJSn0H4uCuP1QXZ2m7pVMj0VvMJJ6ZhodBYGOrpNI4WvFQ4IId2OpknLYHwzxdqbEDb_tm3NIUp8lKWy2pD_mVIUJLB541KtGvhNO7m5hGqzVlWVvqekt5_qOmDZfEFKSCF_9f1hu4MzoeH6aH-8nBS7iL-LAOnvn-FmwuLpb2FWKwRf66VnwGpze90_4C-H1DtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN6kFDAIJC7RJnFsJweE2m2XltKoUqm0tzSxnVJplWy7u6D-NX4dM3ltF1Xceo2dyMrMeL7xjL8B-IAiFYKH3A0Dnbuh5sbNosi4Jg9MoSmpqOm-82Ei907Cb2MxXoM_3V0YKqvs9sR6ozaVpjPyAfWdlpK4XwZFWxZxtDP6Mr1wqYMUZVq7dhqNihzYq98Yvs0-7--grD8GwWj3x3DPbTsMuFpwMXd9X3uejqI881TGjSwQaopICpXLONfSGhMSY18U-EZHxhopRK5EjjC7iAsMljh-9w7cVVz4ZGNqvAz2OMZ-DZMR57E3mKHjpYS3v-L_6jYBN2Hbf0s0r_m80SN42IJVttVo12NYs-UTeHCNwvApLLZYUv2yEzZMEncbXaJho67eiyEgZnXXTapHqlWAVQU7Pj-jrzbsHVcsKw07nlg7ZUdtARmjOy8sY0N05LqubWK7w6_scHmc-QxObuVHP4f1sirtS2BGWRlTlJR5JuSBifzM5l5c2AKhVsG5A5-6H5zqluec2m1MUox3SBZpLwsH3vdTpw25x02TtklK_QTi464fVJdnaWveqZEYOWYS90_DwyCwsVVSaXxb8VDggh3Y7GSctpvELF2qtAPv-mE0b8rZZKWtFjSHYswQYaYDLxqV6FfC6Q5OTG-rFWVZWerqSHn-s6YQl8QapIKN_y_rLdxDG0u_7ycHr-A-QsU6j-b7m7A-v1zY1wjH5vmbWu8ZnN62of0FAEBH6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN-Based+Framework+for+Classification+of+Signal+Quality+and+Sleep+Position+from+a+Capacitive+ECG+Measurement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Koshiro+Kido&rft.au=Toshiyo+Tamura&rft.au=Naoaki+Ono&rft.au=MD.+Altaf-Ul-Amin&rft.date=2019-04-11&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=7&rft.spage=1731&rft_id=info:doi/10.3390%2Fs19071731&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d6499a6070d3422e9e767c73173457e6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |