A Novel CNN-Based Framework for Classification of Signal Quality and Sleep Position from a Capacitive ECG Measurement

The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framewor...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 7; p. 1731
Main Authors Kido, Koshiro, Tamura, Toshiyo, Ono, Naoaki, Altaf-Ul-Amin, MD, Sekine, Masaki, Kanaya, Shigehiko, Huang, Ming
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.04.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19071731

Cover

Loading…
Abstract The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring.
AbstractList The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring.The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring.
The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring.
Author Kanaya, Shigehiko
Tamura, Toshiyo
Huang, Ming
Altaf-Ul-Amin, MD
Kido, Koshiro
Sekine, Masaki
Ono, Naoaki
AuthorAffiliation 2 Future Robotics Organization, Waseda University, Tokorozawa 359-1192, Japan; t.tamura1949@gmail.com
3 Department of Medical care Technology, Tsukuba International University, Tsuchiura 300-0051, Japan; m-sekine@tius.ac.jp
1 Division of Information Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; kido.koshiro.kb3@is.naist.jp (K.K.); nono@is.naist.jp (N.O.); amin-m@is.naist.jp (M.A.-U.-A.); skanaya@gtc.naist.jp (S.K.)
AuthorAffiliation_xml – name: 1 Division of Information Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; kido.koshiro.kb3@is.naist.jp (K.K.); nono@is.naist.jp (N.O.); amin-m@is.naist.jp (M.A.-U.-A.); skanaya@gtc.naist.jp (S.K.)
– name: 3 Department of Medical care Technology, Tsukuba International University, Tsuchiura 300-0051, Japan; m-sekine@tius.ac.jp
– name: 2 Future Robotics Organization, Waseda University, Tokorozawa 359-1192, Japan; t.tamura1949@gmail.com
Author_xml – sequence: 1
  givenname: Koshiro
  surname: Kido
  fullname: Kido, Koshiro
– sequence: 2
  givenname: Toshiyo
  orcidid: 0000-0002-8514-4200
  surname: Tamura
  fullname: Tamura, Toshiyo
– sequence: 3
  givenname: Naoaki
  surname: Ono
  fullname: Ono, Naoaki
– sequence: 4
  givenname: MD
  surname: Altaf-Ul-Amin
  fullname: Altaf-Ul-Amin, MD
– sequence: 5
  givenname: Masaki
  surname: Sekine
  fullname: Sekine, Masaki
– sequence: 6
  givenname: Shigehiko
  surname: Kanaya
  fullname: Kanaya, Shigehiko
– sequence: 7
  givenname: Ming
  surname: Huang
  fullname: Huang, Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30978955$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AlrjAYak_Yju-IJWoX1JZQIVz5NiTxYsTb-1kUf993d2yaitOY42feTUz7xwWe0MYoCjeEvyJMYWPE1FYEsnIi-KAlLScVZTivUfv_eIwpSXGlDFWvSr2GVayUpwfFNMJmoc1eFTP57MvOoFFZ1H38DfEP6gLEdVep-Q6Z_TowoBCh67dYtAe_Zi0d-Mt0oNF1x5ghb6H5DZQF0OPNKr1SpucWQM6rc_RV9BpitDDML4uXnbaJ3jzEI-KX2enP-uL2dW388v65GpmOOPjjBCDsamqVmOpmRWdpIpXgstWqNYIsLbEtGQVJdZUFqzgvJW8ZVh0qqMEs6Picqtrg142q-h6HW-boF2zSYS4aHQcnfHQWFEqpQWW2LKSUlAghTR5p5KVXILIWp-3Wqup7cGaPEbU_ono05_B_W4WYd2IssJE0izw4UEghpsJ0tj0LhnwXg8QptRkn5TA5RZ9_wxdhinmrd9TVAkhMeeZeve4o10r_9zNwMctYGJIKUK3Qwhu7i-n2V1OZo-fsdm6jed5GOf_U3EHXG3CaQ
CitedBy_id crossref_primary_10_1109_JSEN_2024_3382720
crossref_primary_10_3390_s20040969
crossref_primary_10_3390_s21196409
crossref_primary_10_3390_s21113668
crossref_primary_10_1016_j_cmpb_2024_108249
crossref_primary_10_1016_j_pmcj_2023_101752
crossref_primary_10_1186_s12938_022_01031_5
crossref_primary_10_1098_rsif_2022_0012
crossref_primary_10_1155_2022_6048088
crossref_primary_10_1016_j_microrel_2024_115374
crossref_primary_10_1007_s11042_023_15123_4
crossref_primary_10_1063_10_0019678
crossref_primary_10_1109_JSEN_2024_3518082
crossref_primary_10_1016_j_heliyon_2024_e31839
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1109_ACCESS_2023_3312538
crossref_primary_10_3390_s22187013
crossref_primary_10_1109_TIM_2023_3251392
crossref_primary_10_1016_j_compbiomed_2024_107928
crossref_primary_10_1371_journal_pone_0254780
crossref_primary_10_1109_TCE_2024_3370709
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_1155_2023_5287043
crossref_primary_10_1016_j_procs_2023_10_538
crossref_primary_10_1007_s11042_020_09938_8
Cites_doi 10.1109/TBME.2013.2240452
10.3390/s18020405
10.2174/1874120701004010201
10.1016/0002-9149(91)90739-8
10.3390/s150511295
10.1109/TMI.2016.2538465
10.1109/CVPR.2016.90
10.1136/hrt.2003.019323
10.1109/TBME.2006.889201
10.1109/TBME.2015.2468589
10.3390/s18020577
10.1016/j.amjmed.2013.10.003
10.1016/j.gheart.2016.12.003
10.1007/s10439-008-9553-5
10.1109/TMI.2016.2528162
10.1109/JBHI.2018.2825020
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19071731
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d6499a6070d3422e9e767c73173457e6
PMC6480172
30978955
10_3390_s19071731
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 17K12778
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c535t-11c00c88ba07a3d6f72958657b69bc6edd40243821dc8ded655b75b306f9f2103
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:19 EDT 2025
Thu Aug 21 18:08:00 EDT 2025
Fri Jul 11 15:36:45 EDT 2025
Fri Jul 25 09:36:11 EDT 2025
Wed Feb 19 02:35:11 EST 2025
Tue Jul 01 00:41:55 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords capacitive coupling
deep learning
CNN
electrocardiogram
sleep positions
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-11c00c88ba07a3d6f72958657b69bc6edd40243821dc8ded655b75b306f9f2103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8514-4200
OpenAccessLink https://doaj.org/article/d6499a6070d3422e9e767c73173457e6
PMID 30978955
PQID 2229667055
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d6499a6070d3422e9e767c73173457e6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6480172
proquest_miscellaneous_2209604172
proquest_journals_2229667055
pubmed_primary_30978955
crossref_primary_10_3390_s19071731
crossref_citationtrail_10_3390_s19071731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190411
PublicationDateYYYYMMDD 2019-04-11
PublicationDate_xml – month: 4
  year: 2019
  text: 20190411
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kiranyaz (ref_14) 2016; 63
Tabakov (ref_6) 2008; 36
ref_13
Orphanidou (ref_12) 2015; 19
ref_20
Lee (ref_9) 2015; 15
ref_1
Karlson (ref_5) 1991; 68
Behar (ref_11) 2013; 60
Shin (ref_15) 2016; 35
Ueno (ref_8) 2007; 54
ref_19
Krivoshei (ref_4) 2016; 19
ref_18
ref_17
Pereira (ref_16) 2016; 35
Gula (ref_2) 2004; 90
Takano (ref_10) 2018; 23
Evans (ref_7) 2017; 12
Pinheiro (ref_3) 2010; 4
References_xml – volume: 60
  start-page: 1660
  year: 2013
  ident: ref_11
  article-title: ECG signal quality during arrhythmia and its application to false alarm reduction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2240452
– volume: 19
  start-page: 753
  year: 2016
  ident: ref_4
  article-title: Smart detection of atrial fibrillation
  publication-title: Europace
– ident: ref_17
  doi: 10.3390/s18020405
– volume: 4
  start-page: 201
  year: 2010
  ident: ref_3
  article-title: Theory and Developments in an Unobtrusive Cardiovascular System Representation: Ballistocardiography
  publication-title: Open Biomed. Eng. J.
  doi: 10.2174/1874120701004010201
– volume: 68
  start-page: 171
  year: 1991
  ident: ref_5
  article-title: Early prediction of acute myocardial infarction from clinical history, examination and electrocardiogram in the emergency room
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(91)90739-8
– volume: 15
  start-page: 11295
  year: 2015
  ident: ref_9
  article-title: Heart rate variability monitoring during sleep based on capacitively coupled textile electrodes on a bed
  publication-title: Sensors
  doi: 10.3390/s150511295
– volume: 35
  start-page: 1240
  year: 2016
  ident: ref_16
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– ident: ref_18
  doi: 10.1109/CVPR.2016.90
– volume: 90
  start-page: 347
  year: 2004
  ident: ref_2
  article-title: Clinical relevance of arrhythmias during sleep: Guidance for clinicians
  publication-title: Heart
  doi: 10.1136/hrt.2003.019323
– volume: 54
  start-page: 759
  year: 2007
  ident: ref_8
  article-title: Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889201
– volume: 19
  start-page: 832
  year: 2015
  ident: ref_12
  article-title: Signal-Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 63
  start-page: 664
  year: 2016
  ident: ref_14
  article-title: Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– ident: ref_19
– ident: ref_13
  doi: 10.3390/s18020577
– ident: ref_20
– ident: ref_1
  doi: 10.1016/j.amjmed.2013.10.003
– volume: 12
  start-page: 285
  year: 2017
  ident: ref_7
  article-title: Feasibility of Using Mobile ECG Recording Technology to Detect Atrial Fibrillation in Low-Resource Settings
  publication-title: Glob. Heart
  doi: 10.1016/j.gheart.2016.12.003
– volume: 36
  start-page: 1805
  year: 2008
  ident: ref_6
  article-title: Online digital filter and QRS detector applicable in low resource ECG monitoring systems
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9553-5
– volume: 35
  start-page: 1285
  year: 2016
  ident: ref_15
  article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 23
  start-page: 618
  year: 2018
  ident: ref_10
  article-title: Noncontact In-Bed Measurements of Physiological and Behavioral Signals Using an Integrated Fabric-Sheet Sensing Scheme
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2825020
SSID ssj0023338
Score 2.399778
Snippet The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1731
SubjectTerms Accuracy
capacitive coupling
Cardiac arrhythmia
Classification
CNN
deep learning
Discriminant analysis
electrocardiogram
Electrocardiography
Heart rate
Neural networks
Noise
Pattern recognition systems
Physiology
Quality
Sensors
Sleep
sleep positions
Textiles
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAOXKwm8Ss5oXbVpULqCqlU2lvkV0qlVbJ0d5H498w43mwXVVwTOxplxp75PONvCPkEKpWSC85E6SwTjntmqsozb0vfOkwqOrzvfD5TZ5fi21zO04HbKpVVbvfEuFH73uEZ-RH2nVYKuV--LH8x7BqF2dXUQuM-eYDUZVjSpec7wMUBfw1sQhyg_dEKnB8mnYs9HxSp-u-KL_8tk7zld6ZPyOMUMNLjQcNPyb3QPSOPbtEIPiebYzrrf4cFncxm7ATckqfTbc0VhaCUxs6XWBMU1UD7ll5cX-FXBwaNP9R0nl4sQljS76mIi-K9E2roBJypi_VF9HTylZ7vjhRfkMvp6Y_JGUvtFJiTXK5ZUbg8d1VlTa4N96qFuFpWSmqrautU8F4gPWFVFt5VPnglpdXSAqZo6xaQIX9JDrq-C68J9TqoGpGKyb3gpa8KE2xet6GFcKflPCOftz-4cYlrHFteLBrAHKiLZtRFRj6OQ5cDwcZdg05QS-MA5MSOD_qbqyYtscYrQG9GwR7muSjLUAettIPZmgsJAmfkcKvjJi3UVbMzq4x8GF_DEsO8ielCv8ExiPMEhHoZeTWYxCgJx3swNc7We8ayJ-r-m-76Z6TxVsjco8s3_xfrLXkIMVpMYBXFITlY32zCO4iD1vZ9NPa_3IUH1A
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5V5QIHVN5uC1oQBy4Ge5_2oaraqKFCSoRUIvVm7culUmSXNKnov2fGL2qUI1d71lrv7Hjm88x-Q8hHUKmUXPBYMGdj4biPTZb52FvmS4dJRYfnnWdzdb4Q3y7l5Q7pe2x2C3i7FdphP6nFavn596_7YzD4I0ScANm_3IJTw2QygKBH4JA02udMDMkExgGGtaRCY_GRK2oY-7eFmf9WSz5wP9M98rSLG-lJq-hnZCdUz8mTB2yCL8jmhM7ru7Ckk_k8PgXv5Om0L72iEJvSpgEmlgY12qB1SS-ur_CpLZHGPTWVpxfLEG7o966Wi-LxE2roBHyqa8qM6NnkK539_bP4kiymZz8m53HXVSF2kst1nKYuSVyWWZNow70qIbyWmZLaqtw6FbwXyFKYsdS7zAevpLRaWoAWZV4CQOSvyG5VV-ENoV4HlSNgMYkXnPksNcEmeRlKiHpKziPyqV_gwnWU49j5YlkA9EBdFIMuIvJhEL1peTa2CZ2ilgYBpMZuLtSrq6KztMIrAHFGwafMc8FYyINW2sFozYWECUfksNdx0W-3AruaK4XMQhF5P9wGS8P0ialCvUEZhHuwv1hEXrdbYpgJx-MwOY7Wo80ymur4TnX9s2HzVkjgo9n-_3i3A_IYArom25Wmh2R3vdqEtxA0re27xiT-AHQWFWk
  priority: 102
  providerName: Scholars Portal
Title A Novel CNN-Based Framework for Classification of Signal Quality and Sleep Position from a Capacitive ECG Measurement
URI https://www.ncbi.nlm.nih.gov/pubmed/30978955
https://www.proquest.com/docview/2229667055
https://www.proquest.com/docview/2209604172
https://pubmed.ncbi.nlm.nih.gov/PMC6480172
https://doaj.org/article/d6499a6070d3422e9e767c73173457e6
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BucChgvIylGhBHLhYtb1PH5soaVUpVkWplJu1L0OlyKnaBIl_z8zaMQmqxIWLD961td6Z1Xyfd_YbQj6DSYVgnKW8cDbljvnUaO1TbwvfONxUdHjeeV7J82t-sRCLnVJfmBPWyQN3E3fiJWByI8EzPeNFEcqgpHIKwh7jQoUotg0xb0umeqrFgHl1OkIMSP3JPYQ93G7O96JPFOl_CFn-nSC5E3Fmz8lhDxXpaTfEF-RRaI_Isx0BwZdkc0qr1c-wpJOqSscQkDydbbOtKMBRGmteYjZQNABdNfTq5ju-tdPO-EVN6-nVMoRbetmnb1E8cUINnUAYdTGziE4nZ3T-52fiK3I9m36bnKd9IYXUCSbWaZ67LHNaW5Mpw7xsAFELLYWysrROBu85ChPqIvdO--ClEFYJC2yiKRvghOw1OWhXbXhLqIcpL5GjmMxzVnidm2CzsgkNAJ2GsYR82U5w7XqVcSx2sayBbaAt6sEWCfk0dL3tpDUe6jRGKw0dUA073gAfqXsfqf_lIwk53tq47pfofY2FzKVEMaGEfByaYXHhjolpw2qDfZDhcQB5CXnTucQwEoYnYEp8Wu05y95Q91vamx9RwFuiZo8q3v2Pb3tPngKGixtceX5MDtZ3m_ABcNLajshjtVBw1bOzEXkynlaXX0dxmcB1zvVvnXsS8A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCVqEsd2ckCoXbpsaTdCaivtLU1sp1RaJUt3F9Q_xW9kJq_toopbr_FDVmbs-cYz_gbgPYpUCB5yNwx07oaaGzeLIuOaPDCFpqCipvfO40SOTsJvEzHZgD_dWxhKq-zOxPqgNpWmO_JtqjstJXG_fJ79dKlqFEVXuxIajVoc2Mvf6LLNP-1_Qfl-CILh3vFg5LZVBVwtuFi4vq89T0dRnnkq40YWCC9FJIXKZZxraY0JiaUvCnyjI2ONFCJXIkdoXcQFOkgc570Ft9HwerSj1GTl4HH09xr2Is5jb3uOxpaC3P6azatLA1yHZ_9Ny7xi54YP4H4LUNlOo1EPYcOWj-DeFdrCx7DcYUn1y07ZIEncXTSDhg27HC-GIJjVlTYpB6kWO6sKdnR-RrM2jB2XLCsNO5paO2Pf26QxRu9cWMYGaLx1nc_E9gZf2Xh1hfkETm7kRz-FzbIq7XNgRlkZk2eUeSbkgYn8zOZeXNgC4VXBuQMfux-c6pbbnEpsTFP0cUgWaS8LB971XWcNocd1nXZJSn0H4uCuP1QXZ2m7pVMj0VvMJJ6ZhodBYGOrpNI4WvFQ4IId2OpknLYHwzxdqbEDb_tm3NIUp8lKWy2pD_mVIUJLB541KtGvhNO7m5hGqzVlWVvqekt5_qOmDZfEFKSCF_9f1hu4MzoeH6aH-8nBS7iL-LAOnvn-FmwuLpb2FWKwRf66VnwGpze90_4C-H1DtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN6kFDAIJC7RJnFsJweE2m2XltKoUqm0tzSxnVJplWy7u6D-NX4dM3ltF1Xceo2dyMrMeL7xjL8B-IAiFYKH3A0Dnbuh5sbNosi4Jg9MoSmpqOm-82Ei907Cb2MxXoM_3V0YKqvs9sR6ozaVpjPyAfWdlpK4XwZFWxZxtDP6Mr1wqYMUZVq7dhqNihzYq98Yvs0-7--grD8GwWj3x3DPbTsMuFpwMXd9X3uejqI881TGjSwQaopICpXLONfSGhMSY18U-EZHxhopRK5EjjC7iAsMljh-9w7cVVz4ZGNqvAz2OMZ-DZMR57E3mKHjpYS3v-L_6jYBN2Hbf0s0r_m80SN42IJVttVo12NYs-UTeHCNwvApLLZYUv2yEzZMEncbXaJho67eiyEgZnXXTapHqlWAVQU7Pj-jrzbsHVcsKw07nlg7ZUdtARmjOy8sY0N05LqubWK7w6_scHmc-QxObuVHP4f1sirtS2BGWRlTlJR5JuSBifzM5l5c2AKhVsG5A5-6H5zqluec2m1MUox3SBZpLwsH3vdTpw25x02TtklK_QTi464fVJdnaWveqZEYOWYS90_DwyCwsVVSaXxb8VDggh3Y7GSctpvELF2qtAPv-mE0b8rZZKWtFjSHYswQYaYDLxqV6FfC6Q5OTG-rFWVZWerqSHn-s6YQl8QapIKN_y_rLdxDG0u_7ycHr-A-QsU6j-b7m7A-v1zY1wjH5vmbWu8ZnN62of0FAEBH6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN-Based+Framework+for+Classification+of+Signal+Quality+and+Sleep+Position+from+a+Capacitive+ECG+Measurement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Koshiro+Kido&rft.au=Toshiyo+Tamura&rft.au=Naoaki+Ono&rft.au=MD.+Altaf-Ul-Amin&rft.date=2019-04-11&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=7&rft.spage=1731&rft_id=info:doi/10.3390%2Fs19071731&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d6499a6070d3422e9e767c73173457e6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon