High-efficiency microcrystalline silicon single-junction solar cells
ABSTRACT This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar ce...
Saved in:
Published in | Progress in photovoltaics Vol. 21; no. 5; pp. 821 - 826 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
01.08.2013
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd.
This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8µm of Si. |
---|---|
AbstractList | This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved for single-junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 mu m of Si. Copyright [copy 2013 John Wiley & Sons, Ltd. This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 mu m of Si. This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd. ABSTRACT This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd. This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8µm of Si. This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved for single-junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8µm of Si. Copyright © 2013 John Wiley & Sons, Ltd [PUBLICATION ABSTRACT]. |
Author | Escarré, Jordi Hänni, Simon Bugnon, Grégory Meillaud, Fanny Ballif, Christophe Parascandolo, Gaetano Despeisse, Matthieu Boccard, Mathieu |
Author_xml | – sequence: 1 givenname: Simon surname: Hänni fullname: Hänni, Simon email: Correspondence: Simon Hänni, Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchâtel, Switzerland., simon.haenni@epfl.ch organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland – sequence: 2 givenname: Grégory surname: Bugnon fullname: Bugnon, Grégory organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland – sequence: 3 givenname: Gaetano surname: Parascandolo fullname: Parascandolo, Gaetano organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland – sequence: 4 givenname: Mathieu surname: Boccard fullname: Boccard, Mathieu organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland – sequence: 5 givenname: Jordi surname: Escarré fullname: Escarré, Jordi organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland – sequence: 6 givenname: Matthieu surname: Despeisse fullname: Despeisse, Matthieu organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland – sequence: 7 givenname: Fanny surname: Meillaud fullname: Meillaud, Fanny organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland – sequence: 8 givenname: Christophe surname: Ballif fullname: Ballif, Christophe organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530953$$DView record in Pascal Francis |
BookMark | eNp10FFLwzAQB_AgCs4p-BEGIvjSmTRN0zyq0ymKTlD0LaTpdWZm6Uw6dN_eFEVR9Oku8LvL8d9C665xgNAuwUOCcXq4MIthSkWxhnoEC5EQJh7Xuz5PEy4E20RbIcwwJrwQeQ-Nzs30KYG6NtqA06vB3GjfaL8KrbLWOBgEY41uXKxuaiGZLZ1uTfdurPIDDdaGbbRRKxtg57P20f3Z6d3JeXJ1M744ObpKNKOsSIqcK6ZZquoyY6oUOeRlKaiquK5KjQtSUF2lEC1UhQKNKw7RV6LCkNKson108LF34ZuXJYRWzk3oLlAOmmWQJKOC0xxnPNK9X3TWLL2L10WFacYzwrKo9j-VClrZ2iunTZALb-bKr2TKGcWC0e-PYzYheKi_CMGyi13G2GUXe6TDX1SbVnWJtV4Z-9dA8jHwaiys_l0sJxeTn96EFt6-vPLPMueUM_lwPZa3o8llVnAuj-k79sGkxQ |
CODEN | PPHOED |
CitedBy_id | crossref_primary_10_1002_pip_2577 crossref_primary_10_1016_j_tsf_2015_05_055 crossref_primary_10_1063_1_4921794 crossref_primary_10_1063_1_4922963 crossref_primary_10_1109_JPHOT_2015_2452771 crossref_primary_10_1051_epjpv_2013026 crossref_primary_10_1109_LED_2014_2358559 crossref_primary_10_1016_j_solmat_2015_04_027 crossref_primary_10_1007_s12633_021_01032_4 crossref_primary_10_1364_OE_23_0A1040 crossref_primary_10_1088_0022_3727_47_39_393001 crossref_primary_10_1016_j_solmat_2016_02_018 crossref_primary_10_1016_j_pmatsci_2016_03_005 crossref_primary_10_1016_j_solmat_2013_09_001 crossref_primary_10_1016_j_solmat_2014_03_021 crossref_primary_10_1109_JPHOTOV_2014_2357495 crossref_primary_10_7567_JJAP_57_060101 crossref_primary_10_1088_1361_6528_ad9d47 crossref_primary_10_1364_OE_23_00A106 crossref_primary_10_1002_adts_201800097 crossref_primary_10_1002_er_4402 crossref_primary_10_1016_j_rser_2016_11_190 crossref_primary_10_1016_j_solmat_2014_04_035 crossref_primary_10_1063_1_4936616 crossref_primary_10_1364_OE_23_0A1324 crossref_primary_10_1109_JPHOTOV_2017_2695524 crossref_primary_10_1002_pip_2743 crossref_primary_10_1002_pip_2542 crossref_primary_10_1007_s12596_023_01435_z crossref_primary_10_1021_am5054114 crossref_primary_10_1557_opl_2015_831 crossref_primary_10_1021_acsami_6b03995 crossref_primary_10_1364_AO_57_010072 crossref_primary_10_1007_s10854_024_12889_7 crossref_primary_10_1002_slct_201800405 crossref_primary_10_1063_1_4961937 crossref_primary_10_3390_photonics9030157 crossref_primary_10_1002_pssa_201532021 crossref_primary_10_1364_OE_22_0000A1 crossref_primary_10_1063_1_4904088 crossref_primary_10_1063_1_4826639 crossref_primary_10_1109_JPHOTOV_2015_2478030 crossref_primary_10_1109_JPHOT_2017_2750487 crossref_primary_10_1016_j_ijleo_2023_171089 crossref_primary_10_1016_j_renene_2022_06_058 crossref_primary_10_1016_j_apsusc_2017_04_227 crossref_primary_10_1002_pssa_201431180 crossref_primary_10_1155_2015_358276 crossref_primary_10_1364_OE_25_00A124 crossref_primary_10_1364_OE_22_00A880 crossref_primary_10_1002_pip_2718 crossref_primary_10_7567_JJAP_54_08KB05 crossref_primary_10_1016_j_solmat_2014_11_006 crossref_primary_10_1039_C4EE03346A crossref_primary_10_1088_0034_4885_76_10_106502 crossref_primary_10_3390_app7040427 crossref_primary_10_1007_s10854_017_7340_5 crossref_primary_10_1016_j_solmat_2016_10_005 crossref_primary_10_1002_admi_201700814 crossref_primary_10_1002_pssa_201431708 crossref_primary_10_1063_1_4824806 crossref_primary_10_1016_j_micrna_2024_207940 crossref_primary_10_1051_epjpv_2014006 crossref_primary_10_1016_j_energy_2024_133137 crossref_primary_10_1063_1_4954707 crossref_primary_10_7567_APEX_6_104101 crossref_primary_10_1016_j_solmat_2015_04_016 crossref_primary_10_1038_srep29639 crossref_primary_10_3390_coatings4010162 crossref_primary_10_1002_pip_2404 crossref_primary_10_1088_0022_3727_47_22_224003 crossref_primary_10_1109_JPHOTOV_2014_2355037 crossref_primary_10_1109_JPHOTOV_2016_2571619 crossref_primary_10_1016_j_solmat_2016_05_043 crossref_primary_10_7567_JJAP_53_05FV08 crossref_primary_10_1039_C4RA05107F crossref_primary_10_3390_en16155741 crossref_primary_10_1016_j_apsusc_2017_09_180 crossref_primary_10_1109_JPHOTOV_2014_2366688 crossref_primary_10_1063_1_4958918 crossref_primary_10_1021_acsphotonics_7b01397 crossref_primary_10_1002_pssa_201700544 crossref_primary_10_7567_APEX_11_022301 |
Cites_doi | 10.1016/S0022-3093(01)01142-5 10.1016/j.solmat.2011.10.031 10.1063/1.112183 10.1109/JPHOTOV.2012.2214766 10.1143/JJAP.29.630 10.1016/j.tsf.2007.03.130 10.1116/1.4707154 10.1016/j.solmat.2010.04.043 10.1016/j.solmat.2012.05.016 10.1016/j.jnoncrysol.2005.11.116 10.1143/JJAP.40.L303 10.1109/JPHOTOV.2011.2179414 10.1002/pip.2352 10.1016/j.solener.2004.08.028 10.1016/j.jnoncrysol.2005.12.042 10.1063/1.3463457 10.1016/j.solmat.2008.11.013 10.1063/1.4790642 10.1109/JPHOTOV.2012.2191139 10.1016/0927-0248(94)90068-X 10.1002/adma.201104578 10.1016/j.solmat.2012.05.005 10.1002/adfm.201200299 10.1016/j.solmat.2003.07.004 10.1063/1.2216022 10.1016/j.jnoncrysol.2007.09.084 10.1063/1.4761956 10.1109/WCPEC.2006.279775 10.1038/nphoton.2011.198 10.1063/1.3517492 10.1063/1.89674 10.1063/1.3324704 10.1021/nl203909u 10.1007/s003390050988 10.1016/j.renene.2007.05.024 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: 2014 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SP 7TB 8FD FR3 L7M H8D |
DOI | 10.1002/pip.2398 |
DatabaseName | Istex CrossRef Pascal-Francis Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Aerospace Database |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Aerospace Database |
DatabaseTitleList | Aerospace Database CrossRef Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1099-159X |
EndPage | 826 |
ExternalDocumentID | 3023809361 27530953 10_1002_pip_2398 PIP2398 ark_67375_WNG_QDPK4877_B |
Genre | miscellaneous |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TWZ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION IQODW 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 L7M H8D |
ID | FETCH-LOGICAL-c5358-867a5c52afb45ab96e6bb93ad7cdbc08183cd2e535ed8aec0d7e5c5d9d0e234d3 |
IEDL.DBID | DR2 |
ISSN | 1062-7995 |
IngestDate | Fri Jul 11 08:09:34 EDT 2025 Fri Jul 25 12:07:34 EDT 2025 Wed Apr 02 07:49:44 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 00:21:54 EDT 2025 Wed Jan 22 17:07:32 EST 2025 Wed Oct 30 09:51:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Performance evaluation Silicon solar cells Conversion rate microcrystalline Thin film Photovoltaic cell Solar cell nanocrystalline thin-film Single junction solar cell High efficiency Silicon solar cells Microcrystal Nanocrystal |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5358-867a5c52afb45ab96e6bb93ad7cdbc08183cd2e535ed8aec0d7e5c5d9d0e234d3 |
Notes | istex:8AC87E591BE5610AE1193E3C23E5B513235187A4 ark:/67375/WNG-QDPK4877-B ArticleID:PIP2398 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://infoscience.epfl.ch/record/186732/files/paper_693.pdf |
PQID | 1403474154 |
PQPubID | 1016445 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1439736047 proquest_journals_1403474154 pascalfrancis_primary_27530953 crossref_primary_10_1002_pip_2398 crossref_citationtrail_10_1002_pip_2398 wiley_primary_10_1002_pip_2398_PIP2398 istex_primary_ark_67375_WNG_QDPK4877_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2013 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Progress in photovoltaics |
PublicationTitleAlternate | Prog. Photovolt: Res. Appl |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Bugnon G, Parascandolo G, Söderström T, Cuony P, Despeisse M, Hänni S, Holovský J, Meillaud F, Ballif C. A new view of microcrystalline silicon: the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications. Advanced Functional Materials 2012; 22(17): 3665-3671. Meier J, Flückiger R, Keppner H, Shah A. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? Applied Physics Letters 1994; 65(7): 860-862. Sakai H, Yoshida T, Hama T, Ichikawa Y. Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells. Japanese Journal of Applied Physics 1990; 29(Part 1, No. 4): 630-635. Bailat J, Vallat-Sauvain E, Feitknecht L, Droz C, Shah A. Influence of substrate on the microstructure of microcrystalline silicon layers and cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1219-1223. 19th International Conference on Amorphous and Microcrystalline Semiconductors. Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Meguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y. A high efficiency thin film silicon solar cell and module. Solar Energy 2004; 77(6): 939-949. M Despeisse, G Bugnon, A Feltrin, M Stuckelberger, P Cuony, M Meillaud, A Billet, and C Ballif. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Applied Physics Letters 2010; 96(7): 073507. Boccard M, Cuony P, Battaglia C, Hänni S, Nicolay S, Ding L, Benkhaira M, Bugnon G, Billet A, Charrière M, Söderström K, Escarré J, Sculati-Meillaud F, Despeisse M, Ballif C. Nanometer- and micrometer-scale texturing for high-efficiency micromorph thin-film silicon solar cells. IEEE Journal of Photovoltaics 2012; 2(2): 83-87. Boccard M, Cuony P, Despeisse M, Dominé D, Feltrin A, Wyrsch N, Ballif C. Substrate dependent stability and interplay between optical and electrical properties in single junction solar cells. Solar Energy Materials & Solar Cells 2011; 95(1): 195-198. 19th International Photovoltaic Science and Engineering Conference and Exhibition (PVSEC-19) Jeju, Korea, 9-13 November 2009. Mai Y, Klein S, Carius R, Stiebig H, Houben L, Geng X, Finger F. Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. Journal of Non-Crystalline Solids 2006; 352(9-20): 1859-1862. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology. Staebler DL, CR Wronski. Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 1977; 31(4): 292-294. Escarré J, Söderström K, Despeisse M, Nicolay S, Battaglia C, Bugnon G, Ding L, Meillaud F, Haug F-J, Ballif C. Geometric light trapping for high efficiency thin film silicon solar cells. Solar Energy Materials & Solar Cells 2012; 98(0): 185-190. Battaglia C, Escarré J, Charrière KSM, Despeisse M, Haug F-J, Ballif C. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nature Photonics 2011; 5(9): 535-538. Gordijn A, Hodakova L, Rath JK, Schropp REI. Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD. Journal of Non-Crystalline Solids 2006; 352(9-20): 1868-1871. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology - 21st International Conference on Amorphous and Nanocrystalline Semiconductors. Cuony P, Alexander DTL, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Soderstrom T, Hessler-Wyser A, Hebert C, Ballif C. Silicon filaments in silicon oxide for next-generation photovoltaics. Advanced Materials 2012; 24(9): 1182-1186. Nasuno Y, Kondo M, Matsuda A. Effects of substrate surface morphology on microcrystalline silicon solar cells. Japanese Journal of Applied Physics 2001; 40(Part 2, No. 4A): L303-L305. Nicolay S, Benkhaira M, Ding L, Escarre J, Bugnon G, Meillaud F, Ballif C. Control of CVD-deposited zno films properties through water/DEZ ratio: decoupling of electrode morphology and electrical characteristics. Solar Energy Materials & Solar Cells 2012; 105(0): 46-52. Yue G, Yan B, Sivec L, Zhou Y, Yang J, Guha S. Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2012; 104(0): 109-112. Faÿ S, Steinhauser J, Oliveira N, Vallat-Sauvain E, Ballif C. Opto-electronic properties of rough LP-CVD Zno:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 2007; 515(24): 8558-8561. First International Symposium on Transparent Conducting Oxides. Meillaud F, Billet A, Battaglia C, Boccard M, Bugnon G, Cuony P, Charrière M, Despeisse M, Ding L, Escarre-Palou J, Hänni S, Löfgren L, Nicolay S, Parascandolo G, Stuckelberger M, Ballif C. Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. IEEE Journal of Photovoltaics 2012; 2(3): 236-240. Boccard M, Battaglia C, Hänni S, Söderström K, Escarré J, Nicolay S, Meillaud F, Despeisse M, Ballif C. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. Nano Letters 2012; 12(3): 1344-1348. Matsui T, Tsukiji M, Saika H, Toyama T, Okamoto H. Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1152-1156. 19th International Conference on Amorphous and Microcrystalline Semiconductors. Yamamoto K, Yoshimi M, Tawada Y, Okamoto Y, Nakajima A, Igari S. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Applied Physics A: Materials Science and Processing 1999; 69: 179-185. Sai H, Saito K, Kondo M. Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays. Applied Physics Letters 2012; 101(17): 173901. Droz C, Vallat-Sauvain E, Bailat J, Feitknecht L, Meier J, Shah A. Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2004; 81(1): 61-71. Li HBT, Franken RH, Rath JK, Schropp REI. Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells. Solar Energy Materials & Solar Cells 2009; 93(3): 338-349. Yan B, Yang J, Guha S. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2012; 30(4): 04D108-04D108-10. Python M, Vallat-Sauvain E, Bailat J, Dominé D, Fesquet L, Shah A, Ballif C. Relation between substrate morphology and microcrystalline silicon solar cell performance. Journal of Non-Crystalline Solids 2008; 354(19-25): 2258-2262. Amorphous and Nanocrystalline Semiconductors, 22nd International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology. Veneri PD, Mercaldo LV, Usatii I. Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells. Applied Physics Letters 2010; 97(2): 023512. Feltrin A, Freundlich A. Material considerations for terawatt level deployment of photovoltaics. Renewable Energy 2008; 33(2): 180-185. E-MRS 2006 Symposium M: Materials, Devices and Prospects for Sustainable Energy, 2006 Spring Meeting of the European Materials Research Society. Cuony P, Marending M, Alexander DTL, Boccard M, Bugnon G, Despeisse M, Ballif C. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells. Applied Physics Letters 2010; 97(21): 213502. Sai H, Saito K, Hozuki N, Kondo M. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Applied Physics Letters 2013; 102(5): 053509. Sichanugrist P, Sasaki T, Asano A, Ichikawa Y, Sakai H. Amorphous silicon oxide and its application to metal/n-i-p/ITO type a-si solar cells. Solar Energy Materials & Solar Cells 1994; 34(14): 415-422. Hänni S, Alexander DTL, Ding L, Bugnon G, Boccard M, Battaglia C, Cuony P, Escarré J, Parascandolo G, Nicolay S, Cantoni M, Despeisse M, Meillaud F, Ballif C. On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells. IEEE Journal of Photovoltaics 2013; 3(1): 11-16. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 41). Progress in Photovoltaics: Research and Applications 2013; 21(1): 1-11. Yue G, Yan B, Ganguly G, Yang J, Guha S, Teplin CW. Material structure and metastability of hydrogenated nanocrystalline silicon solar cells. Applied Physics Letters 2006; 88(26): 263507. 2010; 97 2013; 3 2002; 299–302, Part 2 2004; 81 2012; 101 2012 2013; 21 2011 2010 1999; 69 2006; 352 2013; 102 2006 2008; 33 2002 2012; 104 2012; 105 2012; 12 2011; 5 2001; 40 2012; 98 2012; 30 1994; 65 2004; 77 2012; 2 2007; 515 2006; 88 1990; 29 2009; 93 2011; 95 1994; 34 1977; 31 2008; 354 2012; 24 2012; 22 2010; 96 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 Yamamoto K (e_1_2_6_13_1) 1999; 69 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Matsui T (e_1_2_6_23_1) 2002 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Escarré J, Söderström K, Despeisse M, Nicolay S, Battaglia C, Bugnon G, Ding L, Meillaud F, Haug F-J, Ballif C. Geometric light trapping for high efficiency thin film silicon solar cells. Solar Energy Materials & Solar Cells 2012; 98(0): 185-190. – reference: Boccard M, Cuony P, Despeisse M, Dominé D, Feltrin A, Wyrsch N, Ballif C. Substrate dependent stability and interplay between optical and electrical properties in single junction solar cells. Solar Energy Materials & Solar Cells 2011; 95(1): 195-198. 19th International Photovoltaic Science and Engineering Conference and Exhibition (PVSEC-19) Jeju, Korea, 9-13 November 2009. – reference: Cuony P, Alexander DTL, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Soderstrom T, Hessler-Wyser A, Hebert C, Ballif C. Silicon filaments in silicon oxide for next-generation photovoltaics. Advanced Materials 2012; 24(9): 1182-1186. – reference: Yamamoto K, Yoshimi M, Tawada Y, Okamoto Y, Nakajima A, Igari S. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Applied Physics A: Materials Science and Processing 1999; 69: 179-185. – reference: Meillaud F, Billet A, Battaglia C, Boccard M, Bugnon G, Cuony P, Charrière M, Despeisse M, Ding L, Escarre-Palou J, Hänni S, Löfgren L, Nicolay S, Parascandolo G, Stuckelberger M, Ballif C. Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. IEEE Journal of Photovoltaics 2012; 2(3): 236-240. – reference: Bailat J, Vallat-Sauvain E, Feitknecht L, Droz C, Shah A. Influence of substrate on the microstructure of microcrystalline silicon layers and cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1219-1223. 19th International Conference on Amorphous and Microcrystalline Semiconductors. – reference: Hänni S, Alexander DTL, Ding L, Bugnon G, Boccard M, Battaglia C, Cuony P, Escarré J, Parascandolo G, Nicolay S, Cantoni M, Despeisse M, Meillaud F, Ballif C. On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells. IEEE Journal of Photovoltaics 2013; 3(1): 11-16. – reference: Yan B, Yang J, Guha S. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2012; 30(4): 04D108-04D108-10. – reference: Yue G, Yan B, Sivec L, Zhou Y, Yang J, Guha S. Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2012; 104(0): 109-112. – reference: Boccard M, Cuony P, Battaglia C, Hänni S, Nicolay S, Ding L, Benkhaira M, Bugnon G, Billet A, Charrière M, Söderström K, Escarré J, Sculati-Meillaud F, Despeisse M, Ballif C. Nanometer- and micrometer-scale texturing for high-efficiency micromorph thin-film silicon solar cells. IEEE Journal of Photovoltaics 2012; 2(2): 83-87. – reference: Sichanugrist P, Sasaki T, Asano A, Ichikawa Y, Sakai H. Amorphous silicon oxide and its application to metal/n-i-p/ITO type a-si solar cells. Solar Energy Materials & Solar Cells 1994; 34(14): 415-422. – reference: Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Meguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y. A high efficiency thin film silicon solar cell and module. Solar Energy 2004; 77(6): 939-949. – reference: Meier J, Flückiger R, Keppner H, Shah A. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? Applied Physics Letters 1994; 65(7): 860-862. – reference: Bugnon G, Parascandolo G, Söderström T, Cuony P, Despeisse M, Hänni S, Holovský J, Meillaud F, Ballif C. A new view of microcrystalline silicon: the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications. Advanced Functional Materials 2012; 22(17): 3665-3671. – reference: Matsui T, Tsukiji M, Saika H, Toyama T, Okamoto H. Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1152-1156. 19th International Conference on Amorphous and Microcrystalline Semiconductors. – reference: Veneri PD, Mercaldo LV, Usatii I. Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells. Applied Physics Letters 2010; 97(2): 023512. – reference: Li HBT, Franken RH, Rath JK, Schropp REI. Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells. Solar Energy Materials & Solar Cells 2009; 93(3): 338-349. – reference: M Despeisse, G Bugnon, A Feltrin, M Stuckelberger, P Cuony, M Meillaud, A Billet, and C Ballif. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Applied Physics Letters 2010; 96(7): 073507. – reference: Faÿ S, Steinhauser J, Oliveira N, Vallat-Sauvain E, Ballif C. Opto-electronic properties of rough LP-CVD Zno:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 2007; 515(24): 8558-8561. First International Symposium on Transparent Conducting Oxides. – reference: Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 41). Progress in Photovoltaics: Research and Applications 2013; 21(1): 1-11. – reference: Nicolay S, Benkhaira M, Ding L, Escarre J, Bugnon G, Meillaud F, Ballif C. Control of CVD-deposited zno films properties through water/DEZ ratio: decoupling of electrode morphology and electrical characteristics. Solar Energy Materials & Solar Cells 2012; 105(0): 46-52. – reference: Sai H, Saito K, Kondo M. Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays. Applied Physics Letters 2012; 101(17): 173901. – reference: Battaglia C, Escarré J, Charrière KSM, Despeisse M, Haug F-J, Ballif C. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nature Photonics 2011; 5(9): 535-538. – reference: Boccard M, Battaglia C, Hänni S, Söderström K, Escarré J, Nicolay S, Meillaud F, Despeisse M, Ballif C. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. Nano Letters 2012; 12(3): 1344-1348. – reference: Python M, Vallat-Sauvain E, Bailat J, Dominé D, Fesquet L, Shah A, Ballif C. Relation between substrate morphology and microcrystalline silicon solar cell performance. Journal of Non-Crystalline Solids 2008; 354(19-25): 2258-2262. Amorphous and Nanocrystalline Semiconductors, 22nd International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology. – reference: Droz C, Vallat-Sauvain E, Bailat J, Feitknecht L, Meier J, Shah A. Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2004; 81(1): 61-71. – reference: Sai H, Saito K, Hozuki N, Kondo M. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Applied Physics Letters 2013; 102(5): 053509. – reference: Cuony P, Marending M, Alexander DTL, Boccard M, Bugnon G, Despeisse M, Ballif C. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells. Applied Physics Letters 2010; 97(21): 213502. – reference: Yue G, Yan B, Ganguly G, Yang J, Guha S, Teplin CW. Material structure and metastability of hydrogenated nanocrystalline silicon solar cells. Applied Physics Letters 2006; 88(26): 263507. – reference: Sakai H, Yoshida T, Hama T, Ichikawa Y. Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells. Japanese Journal of Applied Physics 1990; 29(Part 1, No. 4): 630-635. – reference: Feltrin A, Freundlich A. Material considerations for terawatt level deployment of photovoltaics. Renewable Energy 2008; 33(2): 180-185. E-MRS 2006 Symposium M: Materials, Devices and Prospects for Sustainable Energy, 2006 Spring Meeting of the European Materials Research Society. – reference: Staebler DL, CR Wronski. Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 1977; 31(4): 292-294. – reference: Gordijn A, Hodakova L, Rath JK, Schropp REI. Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD. Journal of Non-Crystalline Solids 2006; 352(9-20): 1868-1871. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology - 21st International Conference on Amorphous and Nanocrystalline Semiconductors. – reference: Mai Y, Klein S, Carius R, Stiebig H, Houben L, Geng X, Finger F. Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. Journal of Non-Crystalline Solids 2006; 352(9-20): 1859-1862. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology. – reference: Nasuno Y, Kondo M, Matsuda A. Effects of substrate surface morphology on microcrystalline silicon solar cells. Japanese Journal of Applied Physics 2001; 40(Part 2, No. 4A): L303-L305. – year: 2011 – volume: 40 start-page: L303 issue: 4A year: 2001 end-page: L305 article-title: Effects of substrate surface morphology on microcrystalline silicon solar cells publication-title: Japanese Journal of Applied Physics – volume: 12 start-page: 1344 issue: 3 year: 2012 end-page: 1348 article-title: Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells publication-title: Nano Letters – volume: 65 start-page: 860 issue: 7 year: 1994 end-page: 862 article-title: Complete microcrystalline p‐i‐n solar cell—crystalline or amorphous cell behavior? publication-title: Applied Physics Letters – volume: 352 start-page: 1859 issue: 9‐20 year: 2006 end-page: 1862 article-title: Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers publication-title: Journal of Non‐Crystalline Solids – volume: 352 start-page: 1868 issue: 9–20 year: 2006 end-page: 1871 article-title: Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD publication-title: Journal of Non‐Crystalline Solids – volume: 97 start-page: 023512 issue: 2 year: 2010 article-title: Silicon oxide based n‐doped layer for improved performance of thin film silicon solar cells publication-title: Applied Physics Letters – volume: 97 start-page: 213502 issue: 21 year: 2010 article-title: Mixed‐phase p‐type silicon oxide containing silicon nanocrystals and its role in thin‐film silicon solar cells publication-title: Applied Physics Letters – volume: 31 start-page: 292 issue: 4 year: 1977 end-page: 294 article-title: Reversible conductivity changes in discharge‐produced amorphous Si publication-title: Applied Physics Letters – volume: 81 start-page: 61 issue: 1 year: 2004 end-page: 71 article-title: Relationship between Raman crystallinity and open‐circuit voltage in microcrystalline silicon solar cells publication-title: Solar Energy Materials & Solar Cells – volume: 101 start-page: 173901 issue: 17 year: 2012 article-title: Enhanced photocurrent and conversion efficiency in thin‐film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays publication-title: Applied Physics Letters – volume: 102 start-page: 053509 issue: 5 year: 2013 article-title: Relationship between the cell thickness and the optimum period of textured back reflectors in thin‐film microcrystalline silicon solar cells publication-title: Applied Physics Letters – volume: 299–302, Part 2 start-page: 1219 issue: 0 year: 2002 end-page: 1223 article-title: Influence of substrate on the microstructure of microcrystalline silicon layers and cells publication-title: Journal of Non‐Crystalline Solids – volume: 96 start-page: 073507 issue: 7 year: 2010 article-title: Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate publication-title: Applied Physics Letters – start-page: 299 year: 2002 end-page: 302 article-title: Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells publication-title: Journal of Non‐Crystalline Solids – year: 2010 – volume: 30 start-page: 04D108–04D108–10 issue: 4 year: 2012 article-title: Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates publication-title: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films – volume: 93 start-page: 338 issue: 3 year: 2009 end-page: 349 article-title: Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano‐crystalline silicon n‐i‐p solar cells publication-title: Solar Energy Materials & Solar Cells – year: 2012 – volume: 3 start-page: 11 issue: 1 year: 2013 end-page: 16 article-title: On the interplay between microstructure and interfaces in high‐efficiency microcrystalline silicon solar cells publication-title: IEEE Journal of Photovoltaics – volume: 22 start-page: 3665 issue: 17 year: 2012 end-page: 3671 article-title: A new view of microcrystalline silicon: the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications publication-title: Advanced Functional Materials – volume: 105 start-page: 46 issue: 0 year: 2012 end-page: 52 article-title: Control of CVD‐deposited zno films properties through water/DEZ ratio: decoupling of electrode morphology and electrical characteristics publication-title: Solar Energy Materials & Solar Cells – volume: 88 start-page: 263507 issue: 26 year: 2006 article-title: Material structure and metastability of hydrogenated nanocrystalline silicon solar cells publication-title: Applied Physics Letters – volume: 95 start-page: 195 issue: 1 year: 2011 end-page: 198 article-title: Substrate dependent stability and interplay between optical and electrical properties in single junction solar cells publication-title: Solar Energy Materials & Solar Cells – volume: 5 start-page: 535 issue: 9 year: 2011 end-page: 538 article-title: Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells publication-title: Nature Photonics – year: 2006 – volume: 104 start-page: 109 year: 2012 end-page: 112 article-title: Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells publication-title: Solar Energy Materials & Solar Cells – volume: 34 start-page: 415 issue: 14 year: 1994 end-page: 422 article-title: Amorphous silicon oxide and its application to metal/n‐i‐p/ITO type a‐si solar cells publication-title: Solar Energy Materials & Solar Cells – volume: 354 start-page: 2258 issue: 19‐25 year: 2008 end-page: 2262 article-title: Relation between substrate morphology and microcrystalline silicon solar cell performance publication-title: Journal of Non‐Crystalline Solids – volume: 98 start-page: 185 year: 2012 end-page: 190 article-title: Geometric light trapping for high efficiency thin film silicon solar cells publication-title: Solar Energy Materials & Solar Cells – volume: 29 start-page: 630 issue: 4 year: 1990 end-page: 635 article-title: Effects of surface morphology of transparent electrode on the open‐circuit voltage in a‐Si:H solar cells publication-title: Japanese Journal of Applied Physics – volume: 69 start-page: 179 year: 1999 end-page: 185 article-title: Thin‐film poly‐Si solar cells on glass substrate fabricated at low temperature publication-title: Applied Physics A: Materials Science and Processing – volume: 2 start-page: 83 issue: 2 year: 2012 end-page: 87 article-title: Nanometer‐ and micrometer‐scale texturing for high‐efficiency micromorph thin‐film silicon solar cells publication-title: IEEE Journal of Photovoltaics – volume: 33 start-page: 180 issue: 2 year: 2008 end-page: 185 article-title: Material considerations for terawatt level deployment of photovoltaics publication-title: Renewable Energy – volume: 24 start-page: 1182 issue: 9 year: 2012 end-page: 1186 article-title: Silicon filaments in silicon oxide for next‐generation photovoltaics publication-title: Advanced Materials – volume: 515 start-page: 8558 issue: 24 year: 2007 end-page: 8561 article-title: Opto‐electronic properties of rough LP‐CVD Zno:B for use as TCO in thin‐film silicon solar cells publication-title: Thin Solid Films – volume: 77 start-page: 939 issue: 6 year: 2004 end-page: 949 article-title: A high efficiency thin film silicon solar cell and module publication-title: Solar Energy – volume: 2 start-page: 236 issue: 3 year: 2012 end-page: 240 article-title: Latest developments of high‐efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design publication-title: IEEE Journal of Photovoltaics – volume: 21 start-page: 1 issue: 1 year: 2013 end-page: 11 article-title: Solar cell efficiency tables (version 41) publication-title: Progress in Photovoltaics: Research and Applications – ident: e_1_2_6_22_1 doi: 10.1016/S0022-3093(01)01142-5 – ident: e_1_2_6_35_1 doi: 10.1016/j.solmat.2011.10.031 – ident: e_1_2_6_10_1 doi: 10.1063/1.112183 – ident: e_1_2_6_18_1 doi: 10.1109/JPHOTOV.2012.2214766 – ident: e_1_2_6_20_1 doi: 10.1143/JJAP.29.630 – start-page: 299 year: 2002 ident: e_1_2_6_23_1 article-title: Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells publication-title: Journal of Non‐Crystalline Solids – ident: e_1_2_6_32_1 doi: 10.1016/j.tsf.2007.03.130 – ident: e_1_2_6_37_1 – ident: e_1_2_6_7_1 doi: 10.1116/1.4707154 – ident: e_1_2_6_12_1 doi: 10.1016/j.solmat.2010.04.043 – ident: e_1_2_6_40_1 doi: 10.1016/j.solmat.2012.05.016 – ident: e_1_2_6_15_1 doi: 10.1016/j.jnoncrysol.2005.11.116 – ident: e_1_2_6_21_1 doi: 10.1143/JJAP.40.L303 – ident: e_1_2_6_33_1 doi: 10.1109/JPHOTOV.2011.2179414 – ident: e_1_2_6_36_1 doi: 10.1002/pip.2352 – ident: e_1_2_6_4_1 doi: 10.1016/j.solener.2004.08.028 – ident: e_1_2_6_14_1 doi: 10.1016/j.jnoncrysol.2005.12.042 – ident: e_1_2_6_28_1 doi: 10.1063/1.3463457 – ident: e_1_2_6_24_1 doi: 10.1016/j.solmat.2008.11.013 – ident: e_1_2_6_17_1 doi: 10.1063/1.4790642 – ident: e_1_2_6_6_1 doi: 10.1109/JPHOTOV.2012.2191139 – ident: e_1_2_6_25_1 doi: 10.1016/0927-0248(94)90068-X – ident: e_1_2_6_5_1 – ident: e_1_2_6_29_1 doi: 10.1002/adma.201104578 – ident: e_1_2_6_16_1 doi: 10.1016/j.solmat.2012.05.005 – ident: e_1_2_6_31_1 doi: 10.1002/adfm.201200299 – ident: e_1_2_6_34_1 doi: 10.1016/j.solmat.2003.07.004 – ident: e_1_2_6_11_1 doi: 10.1063/1.2216022 – ident: e_1_2_6_8_1 – ident: e_1_2_6_3_1 – ident: e_1_2_6_19_1 doi: 10.1016/j.jnoncrysol.2007.09.084 – ident: e_1_2_6_38_1 doi: 10.1063/1.4761956 – ident: e_1_2_6_30_1 doi: 10.1109/WCPEC.2006.279775 – ident: e_1_2_6_39_1 doi: 10.1038/nphoton.2011.198 – ident: e_1_2_6_26_1 doi: 10.1063/1.3517492 – ident: e_1_2_6_9_1 doi: 10.1063/1.89674 – ident: e_1_2_6_27_1 doi: 10.1063/1.3324704 – ident: e_1_2_6_41_1 doi: 10.1021/nl203909u – volume: 69 start-page: 179 year: 1999 ident: e_1_2_6_13_1 article-title: Thin‐film poly‐Si solar cells on glass substrate fabricated at low temperature publication-title: Applied Physics A: Materials Science and Processing doi: 10.1007/s003390050988 – ident: e_1_2_6_2_1 doi: 10.1016/j.renene.2007.05.024 |
SSID | ssj0017896 |
Score | 2.3743849 |
Snippet | ABSTRACT
This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining... This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell... This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 821 |
SubjectTerms | Applied sciences Conversion Energy Exact sciences and technology high efficiency microcrystalline nanocrystalline Natural energy Photovoltaic conversion silicon solar cells Solar cells. Photoelectrochemical cells Solar energy thin-film |
Title | High-efficiency microcrystalline silicon single-junction solar cells |
URI | https://api.istex.fr/ark:/67375/WNG-QDPK4877-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2398 https://www.proquest.com/docview/1403474154 https://www.proquest.com/docview/1439736047 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe4EDlJdY-lCQEJyyzcZ2HB8pUBYQ1YKoqMTB8mNWKl3S1WZXKpz4CfxGfgkzzoMuAglxyiFjaTLj8XyOx98w9nBUeFkCyFSOrEoFBJ9anYkUuC5DsF5oT3eH3xwV42Px6kSetFWVdBem4Yfof7hRZMT1mgLcunr_F2no_HQ-JPI6XH6pVIvw0LueOWqkytiaCzc8CCC1lh3vbJbvdwPXMtEmGfWCKiNtjcaZNl0t1mDnZfAas8_hDfax07spOjkbrpZu6L_-Run4fx-2xa63oDR50syim-wKVLfYtUtUhbfZmApCfnz7DpFygu5rJp-pls8vviC-JGJvSOrTGc6rKqHfDzNA4U-YNMnxSU0b6IQOCeo77Pjw-fun47TtwpB6yWWZloWy0svcTp2Q1ukCCuc0t0H54Dwx4nEfckBZCKUFnwUFKB90yCDnIvC7bKM6r-AeS7wCzJdaQAaAwC1ztuBTreKhMucjOWCPO48Y31KUU6eMmWnIlXODtjFkmwF70EvOG1qOP8g8ik7tBezijMrYlDQfjl6Yt88mr3G3pszBgO2teb0fkONejvj4BmynmwamDfHaENGhIDwmUJn-NQYnGdNWcL4iGYR7vMiEQmWiz_-qrZm8nNDz_r8KbrOreWzNQcWIO2xjuVjBLgKkpduLofAT8OQQXQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6V9gAc-EeklGIkfk5OHe-u7T1wAEJJSBsF1IrelvXuRCpN3ShOBOXEI_AevApPwZMw4z8aBBKXHjj54LE13plZfzs7-w1jDzuRlQmA9GXHxL4AZ32jAuEDV4lzxgpl6ezw7jDq7YvXB_JghX2rz8KU_BBNwo0io5ivKcApIb31izV0ejhtE3tdVVE5gNOPuF7Ln_a7aNxHYbj9cu9Fz69aCvhWcpn4SRQbaWVoxqmQJlURRGmquHGxdaklejduXQgoCy4xYAMXA8o75QIIuXAc33uBrVEDcSLq775tuKo6cVI0A8MlFkJWpWTNdBuEW7WmS_--NTLjJ6rFNDmaY1z20VgCumfhcvG_277KvtcjVZa5HLUX87RtP_9GIvmfDOU1dqXC3d6zMlCusxXIbrDLZ9gYb7Ie1bz8-PIVClYNOpLqHVO5op2dIoQm7nLw8sMJhk7mUYZlAij8AXEB-baXU47Ao32Q_BbbP5dPuc1Ws5MM7jDPxoCQQAkIABCbBqmJ-FjFxb455x3ZYk9qF9C2YmGnZiATXfJHhxptockWLfagkZyWzCN_kHlceFEjYGZHVKkXS_1u-Eq_6Y4GuCCN9fMW21xys-aBEJerRDnYYhu13-lqFss1cTkKgpwClWlu4_xDg2kyOFmQDCJaHgUiRmUKJ_urtnrUH9F1_V8F77OLvb3dHb3THw7uskth0YmEai832Op8toB7iAfn6WYRhx57f97e-hMyrnGZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVkJw4B8RKMVI_JycOvau13vgAISQEIgCompvy3p3IrVN3ShOBOXEI_AcvApvwZMw4z8aBBKXHjj54LE13plZf7M7-w1jDzqxFQmA8EXHSJ-Ds75RAfchUolzxnJl6ezwm1Hc3-Gv9sTeGvtWn4Up-SGaBTeKjGK-pgCfucn2L9LQ2f6sTeR1VUHlEE4-YrqWPxl00bYPw7D34v3zvl91FPCtiETiJ7E0worQTFIuTKpiiNNURcZJ61JL7G6RdSGgLLjEgA2cBJR3ygUQRtxF-N5zbIPHgaI2Ed13DVVVRyZFLzDMsBCxKiVqotsg3K41Xfn1bZAVP1EppsnRGpOyjcYKzj2NlovfXe8y-14PVFnlctheLtK2_fwbh-T_MZJX2KUKdXtPyzC5ytYgu8YunuJivM76VPHy48tXKDg16ECqd0TFinZ-ggCamMvBy_enGDiZR-srU0DhA0QF5NleTisEHu2C5DfYzpl8yk22nh1ncIt5VgICAsUhAEBkGqQmjiZKFrvmUdQRLfa49gBtKw52agUy1SV7dKjRFpps0WL3G8lZyTvyB5lHhRM1AmZ-SHV6Uujd0Uv9tjseYjoq9bMW21rxsuaBEJNVIhxssc3a7XQ1h-WamBw5AU6OyjS3cfahwTQZHC9JBvFsFAdcojKFj_1VWz0ejOl6-18F77Hz425Pvx6MhnfYhbBoQ0KFl5tsfTFfwl0Eg4t0q4hCj304a2f9CW8icEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+microcrystalline+silicon+single-junction+solar+cells&rft.jtitle=Progress+in+photovoltaics&rft.au=Haenni%2C+Simon&rft.au=Bugnon%2C+Gregory&rft.au=Parascandolo%2C+Gaetano&rft.au=Boccard%2C+Mathieu&rft.date=2013-08-01&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=21&rft.issue=5&rft.spage=821&rft.epage=826&rft_id=info:doi/10.1002%2Fpip.2398&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon |