High-efficiency microcrystalline silicon single-junction solar cells

ABSTRACT This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar ce...

Full description

Saved in:
Bibliographic Details
Published inProgress in photovoltaics Vol. 21; no. 5; pp. 821 - 826
Main Authors Hänni, Simon, Bugnon, Grégory, Parascandolo, Gaetano, Boccard, Mathieu, Escarré, Jordi, Despeisse, Matthieu, Meillaud, Fanny, Ballif, Christophe
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.08.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd. This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8µm of Si.
AbstractList This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved for single-junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 mu m of Si. Copyright [copy 2013 John Wiley & Sons, Ltd. This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 mu m of Si.
This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd.
ABSTRACT This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd. This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8µm of Si.
This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved for single-junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8µm of Si. Copyright © 2013 John Wiley & Sons, Ltd [PUBLICATION ABSTRACT].
Author Escarré, Jordi
Hänni, Simon
Bugnon, Grégory
Meillaud, Fanny
Ballif, Christophe
Parascandolo, Gaetano
Despeisse, Matthieu
Boccard, Mathieu
Author_xml – sequence: 1
  givenname: Simon
  surname: Hänni
  fullname: Hänni, Simon
  email: Correspondence: Simon Hänni, Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchâtel, Switzerland., simon.haenni@epfl.ch
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
– sequence: 2
  givenname: Grégory
  surname: Bugnon
  fullname: Bugnon, Grégory
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
– sequence: 3
  givenname: Gaetano
  surname: Parascandolo
  fullname: Parascandolo, Gaetano
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
– sequence: 4
  givenname: Mathieu
  surname: Boccard
  fullname: Boccard, Mathieu
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
– sequence: 5
  givenname: Jordi
  surname: Escarré
  fullname: Escarré, Jordi
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
– sequence: 6
  givenname: Matthieu
  surname: Despeisse
  fullname: Despeisse, Matthieu
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
– sequence: 7
  givenname: Fanny
  surname: Meillaud
  fullname: Meillaud, Fanny
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
– sequence: 8
  givenname: Christophe
  surname: Ballif
  fullname: Ballif, Christophe
  organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Neuchâtel, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530953$$DView record in Pascal Francis
BookMark eNp10FFLwzAQB_AgCs4p-BEGIvjSmTRN0zyq0ymKTlD0LaTpdWZm6Uw6dN_eFEVR9Oku8LvL8d9C665xgNAuwUOCcXq4MIthSkWxhnoEC5EQJh7Xuz5PEy4E20RbIcwwJrwQeQ-Nzs30KYG6NtqA06vB3GjfaL8KrbLWOBgEY41uXKxuaiGZLZ1uTfdurPIDDdaGbbRRKxtg57P20f3Z6d3JeXJ1M744ObpKNKOsSIqcK6ZZquoyY6oUOeRlKaiquK5KjQtSUF2lEC1UhQKNKw7RV6LCkNKson108LF34ZuXJYRWzk3oLlAOmmWQJKOC0xxnPNK9X3TWLL2L10WFacYzwrKo9j-VClrZ2iunTZALb-bKr2TKGcWC0e-PYzYheKi_CMGyi13G2GUXe6TDX1SbVnWJtV4Z-9dA8jHwaiys_l0sJxeTn96EFt6-vPLPMueUM_lwPZa3o8llVnAuj-k79sGkxQ
CODEN PPHOED
CitedBy_id crossref_primary_10_1002_pip_2577
crossref_primary_10_1016_j_tsf_2015_05_055
crossref_primary_10_1063_1_4921794
crossref_primary_10_1063_1_4922963
crossref_primary_10_1109_JPHOT_2015_2452771
crossref_primary_10_1051_epjpv_2013026
crossref_primary_10_1109_LED_2014_2358559
crossref_primary_10_1016_j_solmat_2015_04_027
crossref_primary_10_1007_s12633_021_01032_4
crossref_primary_10_1364_OE_23_0A1040
crossref_primary_10_1088_0022_3727_47_39_393001
crossref_primary_10_1016_j_solmat_2016_02_018
crossref_primary_10_1016_j_pmatsci_2016_03_005
crossref_primary_10_1016_j_solmat_2013_09_001
crossref_primary_10_1016_j_solmat_2014_03_021
crossref_primary_10_1109_JPHOTOV_2014_2357495
crossref_primary_10_7567_JJAP_57_060101
crossref_primary_10_1088_1361_6528_ad9d47
crossref_primary_10_1364_OE_23_00A106
crossref_primary_10_1002_adts_201800097
crossref_primary_10_1002_er_4402
crossref_primary_10_1016_j_rser_2016_11_190
crossref_primary_10_1016_j_solmat_2014_04_035
crossref_primary_10_1063_1_4936616
crossref_primary_10_1364_OE_23_0A1324
crossref_primary_10_1109_JPHOTOV_2017_2695524
crossref_primary_10_1002_pip_2743
crossref_primary_10_1002_pip_2542
crossref_primary_10_1007_s12596_023_01435_z
crossref_primary_10_1021_am5054114
crossref_primary_10_1557_opl_2015_831
crossref_primary_10_1021_acsami_6b03995
crossref_primary_10_1364_AO_57_010072
crossref_primary_10_1007_s10854_024_12889_7
crossref_primary_10_1002_slct_201800405
crossref_primary_10_1063_1_4961937
crossref_primary_10_3390_photonics9030157
crossref_primary_10_1002_pssa_201532021
crossref_primary_10_1364_OE_22_0000A1
crossref_primary_10_1063_1_4904088
crossref_primary_10_1063_1_4826639
crossref_primary_10_1109_JPHOTOV_2015_2478030
crossref_primary_10_1109_JPHOT_2017_2750487
crossref_primary_10_1016_j_ijleo_2023_171089
crossref_primary_10_1016_j_renene_2022_06_058
crossref_primary_10_1016_j_apsusc_2017_04_227
crossref_primary_10_1002_pssa_201431180
crossref_primary_10_1155_2015_358276
crossref_primary_10_1364_OE_25_00A124
crossref_primary_10_1364_OE_22_00A880
crossref_primary_10_1002_pip_2718
crossref_primary_10_7567_JJAP_54_08KB05
crossref_primary_10_1016_j_solmat_2014_11_006
crossref_primary_10_1039_C4EE03346A
crossref_primary_10_1088_0034_4885_76_10_106502
crossref_primary_10_3390_app7040427
crossref_primary_10_1007_s10854_017_7340_5
crossref_primary_10_1016_j_solmat_2016_10_005
crossref_primary_10_1002_admi_201700814
crossref_primary_10_1002_pssa_201431708
crossref_primary_10_1063_1_4824806
crossref_primary_10_1016_j_micrna_2024_207940
crossref_primary_10_1051_epjpv_2014006
crossref_primary_10_1016_j_energy_2024_133137
crossref_primary_10_1063_1_4954707
crossref_primary_10_7567_APEX_6_104101
crossref_primary_10_1016_j_solmat_2015_04_016
crossref_primary_10_1038_srep29639
crossref_primary_10_3390_coatings4010162
crossref_primary_10_1002_pip_2404
crossref_primary_10_1088_0022_3727_47_22_224003
crossref_primary_10_1109_JPHOTOV_2014_2355037
crossref_primary_10_1109_JPHOTOV_2016_2571619
crossref_primary_10_1016_j_solmat_2016_05_043
crossref_primary_10_7567_JJAP_53_05FV08
crossref_primary_10_1039_C4RA05107F
crossref_primary_10_3390_en16155741
crossref_primary_10_1016_j_apsusc_2017_09_180
crossref_primary_10_1109_JPHOTOV_2014_2366688
crossref_primary_10_1063_1_4958918
crossref_primary_10_1021_acsphotonics_7b01397
crossref_primary_10_1002_pssa_201700544
crossref_primary_10_7567_APEX_11_022301
Cites_doi 10.1016/S0022-3093(01)01142-5
10.1016/j.solmat.2011.10.031
10.1063/1.112183
10.1109/JPHOTOV.2012.2214766
10.1143/JJAP.29.630
10.1016/j.tsf.2007.03.130
10.1116/1.4707154
10.1016/j.solmat.2010.04.043
10.1016/j.solmat.2012.05.016
10.1016/j.jnoncrysol.2005.11.116
10.1143/JJAP.40.L303
10.1109/JPHOTOV.2011.2179414
10.1002/pip.2352
10.1016/j.solener.2004.08.028
10.1016/j.jnoncrysol.2005.12.042
10.1063/1.3463457
10.1016/j.solmat.2008.11.013
10.1063/1.4790642
10.1109/JPHOTOV.2012.2191139
10.1016/0927-0248(94)90068-X
10.1002/adma.201104578
10.1016/j.solmat.2012.05.005
10.1002/adfm.201200299
10.1016/j.solmat.2003.07.004
10.1063/1.2216022
10.1016/j.jnoncrysol.2007.09.084
10.1063/1.4761956
10.1109/WCPEC.2006.279775
10.1038/nphoton.2011.198
10.1063/1.3517492
10.1063/1.89674
10.1063/1.3324704
10.1021/nl203909u
10.1007/s003390050988
10.1016/j.renene.2007.05.024
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SP
7TB
8FD
FR3
L7M
H8D
DOI 10.1002/pip.2398
DatabaseName Istex
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Aerospace Database
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Aerospace Database
DatabaseTitleList Aerospace Database
CrossRef

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1099-159X
EndPage 826
ExternalDocumentID 3023809361
27530953
10_1002_pip_2398
PIP2398
ark_67375_WNG_QDPK4877_B
Genre miscellaneous
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
L7M
H8D
ID FETCH-LOGICAL-c5358-867a5c52afb45ab96e6bb93ad7cdbc08183cd2e535ed8aec0d7e5c5d9d0e234d3
IEDL.DBID DR2
ISSN 1062-7995
IngestDate Fri Jul 11 08:09:34 EDT 2025
Fri Jul 25 12:07:34 EDT 2025
Wed Apr 02 07:49:44 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Tue Jul 01 00:21:54 EDT 2025
Wed Jan 22 17:07:32 EST 2025
Wed Oct 30 09:51:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Performance evaluation
Silicon solar cells
Conversion rate
microcrystalline
Thin film
Photovoltaic cell
Solar cell
nanocrystalline
thin-film
Single junction solar cell
High efficiency
Silicon
solar cells
Microcrystal
Nanocrystal
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5358-867a5c52afb45ab96e6bb93ad7cdbc08183cd2e535ed8aec0d7e5c5d9d0e234d3
Notes istex:8AC87E591BE5610AE1193E3C23E5B513235187A4
ark:/67375/WNG-QDPK4877-B
ArticleID:PIP2398
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://infoscience.epfl.ch/record/186732/files/paper_693.pdf
PQID 1403474154
PQPubID 1016445
PageCount 6
ParticipantIDs proquest_miscellaneous_1439736047
proquest_journals_1403474154
pascalfrancis_primary_27530953
crossref_primary_10_1002_pip_2398
crossref_citationtrail_10_1002_pip_2398
wiley_primary_10_1002_pip_2398_PIP2398
istex_primary_ark_67375_WNG_QDPK4877_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Progress in photovoltaics
PublicationTitleAlternate Prog. Photovolt: Res. Appl
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Bugnon G, Parascandolo G, Söderström T, Cuony P, Despeisse M, Hänni S, Holovský J, Meillaud F, Ballif C. A new view of microcrystalline silicon: the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications. Advanced Functional Materials 2012; 22(17): 3665-3671.
Meier J, Flückiger R, Keppner H, Shah A. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? Applied Physics Letters 1994; 65(7): 860-862.
Sakai H, Yoshida T, Hama T, Ichikawa Y. Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells. Japanese Journal of Applied Physics 1990; 29(Part 1, No. 4): 630-635.
Bailat J, Vallat-Sauvain E, Feitknecht L, Droz C, Shah A. Influence of substrate on the microstructure of microcrystalline silicon layers and cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1219-1223. 19th International Conference on Amorphous and Microcrystalline Semiconductors.
Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Meguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y. A high efficiency thin film silicon solar cell and module. Solar Energy 2004; 77(6): 939-949.
M Despeisse, G Bugnon, A Feltrin, M Stuckelberger, P Cuony, M Meillaud, A Billet, and C Ballif. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Applied Physics Letters 2010; 96(7): 073507.
Boccard M, Cuony P, Battaglia C, Hänni S, Nicolay S, Ding L, Benkhaira M, Bugnon G, Billet A, Charrière M, Söderström K, Escarré J, Sculati-Meillaud F, Despeisse M, Ballif C. Nanometer- and micrometer-scale texturing for high-efficiency micromorph thin-film silicon solar cells. IEEE Journal of Photovoltaics 2012; 2(2): 83-87.
Boccard M, Cuony P, Despeisse M, Dominé D, Feltrin A, Wyrsch N, Ballif C. Substrate dependent stability and interplay between optical and electrical properties in single junction solar cells. Solar Energy Materials & Solar Cells 2011; 95(1): 195-198. 19th International Photovoltaic Science and Engineering Conference and Exhibition (PVSEC-19) Jeju, Korea, 9-13 November 2009.
Mai Y, Klein S, Carius R, Stiebig H, Houben L, Geng X, Finger F. Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. Journal of Non-Crystalline Solids 2006; 352(9-20): 1859-1862. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology.
Staebler DL, CR Wronski. Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 1977; 31(4): 292-294.
Escarré J, Söderström K, Despeisse M, Nicolay S, Battaglia C, Bugnon G, Ding L, Meillaud F, Haug F-J, Ballif C. Geometric light trapping for high efficiency thin film silicon solar cells. Solar Energy Materials & Solar Cells 2012; 98(0): 185-190.
Battaglia C, Escarré J, Charrière KSM, Despeisse M, Haug F-J, Ballif C. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nature Photonics 2011; 5(9): 535-538.
Gordijn A, Hodakova L, Rath JK, Schropp REI. Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD. Journal of Non-Crystalline Solids 2006; 352(9-20): 1868-1871. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology - 21st International Conference on Amorphous and Nanocrystalline Semiconductors.
Cuony P, Alexander DTL, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Soderstrom T, Hessler-Wyser A, Hebert C, Ballif C. Silicon filaments in silicon oxide for next-generation photovoltaics. Advanced Materials 2012; 24(9): 1182-1186.
Nasuno Y, Kondo M, Matsuda A. Effects of substrate surface morphology on microcrystalline silicon solar cells. Japanese Journal of Applied Physics 2001; 40(Part 2, No. 4A): L303-L305.
Nicolay S, Benkhaira M, Ding L, Escarre J, Bugnon G, Meillaud F, Ballif C. Control of CVD-deposited zno films properties through water/DEZ ratio: decoupling of electrode morphology and electrical characteristics. Solar Energy Materials & Solar Cells 2012; 105(0): 46-52.
Yue G, Yan B, Sivec L, Zhou Y, Yang J, Guha S. Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2012; 104(0): 109-112.
Faÿ S, Steinhauser J, Oliveira N, Vallat-Sauvain E, Ballif C. Opto-electronic properties of rough LP-CVD Zno:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 2007; 515(24): 8558-8561. First International Symposium on Transparent Conducting Oxides.
Meillaud F, Billet A, Battaglia C, Boccard M, Bugnon G, Cuony P, Charrière M, Despeisse M, Ding L, Escarre-Palou J, Hänni S, Löfgren L, Nicolay S, Parascandolo G, Stuckelberger M, Ballif C. Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. IEEE Journal of Photovoltaics 2012; 2(3): 236-240.
Boccard M, Battaglia C, Hänni S, Söderström K, Escarré J, Nicolay S, Meillaud F, Despeisse M, Ballif C. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. Nano Letters 2012; 12(3): 1344-1348.
Matsui T, Tsukiji M, Saika H, Toyama T, Okamoto H. Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1152-1156. 19th International Conference on Amorphous and Microcrystalline Semiconductors.
Yamamoto K, Yoshimi M, Tawada Y, Okamoto Y, Nakajima A, Igari S. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Applied Physics A: Materials Science and Processing 1999; 69: 179-185.
Sai H, Saito K, Kondo M. Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays. Applied Physics Letters 2012; 101(17): 173901.
Droz C, Vallat-Sauvain E, Bailat J, Feitknecht L, Meier J, Shah A. Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2004; 81(1): 61-71.
Li HBT, Franken RH, Rath JK, Schropp REI. Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells. Solar Energy Materials & Solar Cells 2009; 93(3): 338-349.
Yan B, Yang J, Guha S. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2012; 30(4): 04D108-04D108-10.
Python M, Vallat-Sauvain E, Bailat J, Dominé D, Fesquet L, Shah A, Ballif C. Relation between substrate morphology and microcrystalline silicon solar cell performance. Journal of Non-Crystalline Solids 2008; 354(19-25): 2258-2262. Amorphous and Nanocrystalline Semiconductors, 22nd International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology.
Veneri PD, Mercaldo LV, Usatii I. Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells. Applied Physics Letters 2010; 97(2): 023512.
Feltrin A, Freundlich A. Material considerations for terawatt level deployment of photovoltaics. Renewable Energy 2008; 33(2): 180-185. E-MRS 2006 Symposium M: Materials, Devices and Prospects for Sustainable Energy, 2006 Spring Meeting of the European Materials Research Society.
Cuony P, Marending M, Alexander DTL, Boccard M, Bugnon G, Despeisse M, Ballif C. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells. Applied Physics Letters 2010; 97(21): 213502.
Sai H, Saito K, Hozuki N, Kondo M. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Applied Physics Letters 2013; 102(5): 053509.
Sichanugrist P, Sasaki T, Asano A, Ichikawa Y, Sakai H. Amorphous silicon oxide and its application to metal/n-i-p/ITO type a-si solar cells. Solar Energy Materials & Solar Cells 1994; 34(14): 415-422.
Hänni S, Alexander DTL, Ding L, Bugnon G, Boccard M, Battaglia C, Cuony P, Escarré J, Parascandolo G, Nicolay S, Cantoni M, Despeisse M, Meillaud F, Ballif C. On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells. IEEE Journal of Photovoltaics 2013; 3(1): 11-16.
Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 41). Progress in Photovoltaics: Research and Applications 2013; 21(1): 1-11.
Yue G, Yan B, Ganguly G, Yang J, Guha S, Teplin CW. Material structure and metastability of hydrogenated nanocrystalline silicon solar cells. Applied Physics Letters 2006; 88(26): 263507.
2010; 97
2013; 3
2002; 299–302, Part 2
2004; 81
2012; 101
2012
2013; 21
2011
2010
1999; 69
2006; 352
2013; 102
2006
2008; 33
2002
2012; 104
2012; 105
2012; 12
2011; 5
2001; 40
2012; 98
2012; 30
1994; 65
2004; 77
2012; 2
2007; 515
2006; 88
1990; 29
2009; 93
2011; 95
1994; 34
1977; 31
2008; 354
2012; 24
2012; 22
2010; 96
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
Yamamoto K (e_1_2_6_13_1) 1999; 69
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Matsui T (e_1_2_6_23_1) 2002
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Escarré J, Söderström K, Despeisse M, Nicolay S, Battaglia C, Bugnon G, Ding L, Meillaud F, Haug F-J, Ballif C. Geometric light trapping for high efficiency thin film silicon solar cells. Solar Energy Materials & Solar Cells 2012; 98(0): 185-190.
– reference: Boccard M, Cuony P, Despeisse M, Dominé D, Feltrin A, Wyrsch N, Ballif C. Substrate dependent stability and interplay between optical and electrical properties in single junction solar cells. Solar Energy Materials & Solar Cells 2011; 95(1): 195-198. 19th International Photovoltaic Science and Engineering Conference and Exhibition (PVSEC-19) Jeju, Korea, 9-13 November 2009.
– reference: Cuony P, Alexander DTL, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Soderstrom T, Hessler-Wyser A, Hebert C, Ballif C. Silicon filaments in silicon oxide for next-generation photovoltaics. Advanced Materials 2012; 24(9): 1182-1186.
– reference: Yamamoto K, Yoshimi M, Tawada Y, Okamoto Y, Nakajima A, Igari S. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Applied Physics A: Materials Science and Processing 1999; 69: 179-185.
– reference: Meillaud F, Billet A, Battaglia C, Boccard M, Bugnon G, Cuony P, Charrière M, Despeisse M, Ding L, Escarre-Palou J, Hänni S, Löfgren L, Nicolay S, Parascandolo G, Stuckelberger M, Ballif C. Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. IEEE Journal of Photovoltaics 2012; 2(3): 236-240.
– reference: Bailat J, Vallat-Sauvain E, Feitknecht L, Droz C, Shah A. Influence of substrate on the microstructure of microcrystalline silicon layers and cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1219-1223. 19th International Conference on Amorphous and Microcrystalline Semiconductors.
– reference: Hänni S, Alexander DTL, Ding L, Bugnon G, Boccard M, Battaglia C, Cuony P, Escarré J, Parascandolo G, Nicolay S, Cantoni M, Despeisse M, Meillaud F, Ballif C. On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells. IEEE Journal of Photovoltaics 2013; 3(1): 11-16.
– reference: Yan B, Yang J, Guha S. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2012; 30(4): 04D108-04D108-10.
– reference: Yue G, Yan B, Sivec L, Zhou Y, Yang J, Guha S. Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2012; 104(0): 109-112.
– reference: Boccard M, Cuony P, Battaglia C, Hänni S, Nicolay S, Ding L, Benkhaira M, Bugnon G, Billet A, Charrière M, Söderström K, Escarré J, Sculati-Meillaud F, Despeisse M, Ballif C. Nanometer- and micrometer-scale texturing for high-efficiency micromorph thin-film silicon solar cells. IEEE Journal of Photovoltaics 2012; 2(2): 83-87.
– reference: Sichanugrist P, Sasaki T, Asano A, Ichikawa Y, Sakai H. Amorphous silicon oxide and its application to metal/n-i-p/ITO type a-si solar cells. Solar Energy Materials & Solar Cells 1994; 34(14): 415-422.
– reference: Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Meguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y. A high efficiency thin film silicon solar cell and module. Solar Energy 2004; 77(6): 939-949.
– reference: Meier J, Flückiger R, Keppner H, Shah A. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? Applied Physics Letters 1994; 65(7): 860-862.
– reference: Bugnon G, Parascandolo G, Söderström T, Cuony P, Despeisse M, Hänni S, Holovský J, Meillaud F, Ballif C. A new view of microcrystalline silicon: the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications. Advanced Functional Materials 2012; 22(17): 3665-3671.
– reference: Matsui T, Tsukiji M, Saika H, Toyama T, Okamoto H. Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells. Journal of Non-Crystalline Solids 2002; 299-302, Part 2(0): 1152-1156. 19th International Conference on Amorphous and Microcrystalline Semiconductors.
– reference: Veneri PD, Mercaldo LV, Usatii I. Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells. Applied Physics Letters 2010; 97(2): 023512.
– reference: Li HBT, Franken RH, Rath JK, Schropp REI. Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells. Solar Energy Materials & Solar Cells 2009; 93(3): 338-349.
– reference: M Despeisse, G Bugnon, A Feltrin, M Stuckelberger, P Cuony, M Meillaud, A Billet, and C Ballif. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Applied Physics Letters 2010; 96(7): 073507.
– reference: Faÿ S, Steinhauser J, Oliveira N, Vallat-Sauvain E, Ballif C. Opto-electronic properties of rough LP-CVD Zno:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 2007; 515(24): 8558-8561. First International Symposium on Transparent Conducting Oxides.
– reference: Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 41). Progress in Photovoltaics: Research and Applications 2013; 21(1): 1-11.
– reference: Nicolay S, Benkhaira M, Ding L, Escarre J, Bugnon G, Meillaud F, Ballif C. Control of CVD-deposited zno films properties through water/DEZ ratio: decoupling of electrode morphology and electrical characteristics. Solar Energy Materials & Solar Cells 2012; 105(0): 46-52.
– reference: Sai H, Saito K, Kondo M. Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays. Applied Physics Letters 2012; 101(17): 173901.
– reference: Battaglia C, Escarré J, Charrière KSM, Despeisse M, Haug F-J, Ballif C. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nature Photonics 2011; 5(9): 535-538.
– reference: Boccard M, Battaglia C, Hänni S, Söderström K, Escarré J, Nicolay S, Meillaud F, Despeisse M, Ballif C. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. Nano Letters 2012; 12(3): 1344-1348.
– reference: Python M, Vallat-Sauvain E, Bailat J, Dominé D, Fesquet L, Shah A, Ballif C. Relation between substrate morphology and microcrystalline silicon solar cell performance. Journal of Non-Crystalline Solids 2008; 354(19-25): 2258-2262. Amorphous and Nanocrystalline Semiconductors, 22nd International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology.
– reference: Droz C, Vallat-Sauvain E, Bailat J, Feitknecht L, Meier J, Shah A. Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells. Solar Energy Materials & Solar Cells 2004; 81(1): 61-71.
– reference: Sai H, Saito K, Hozuki N, Kondo M. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Applied Physics Letters 2013; 102(5): 053509.
– reference: Cuony P, Marending M, Alexander DTL, Boccard M, Bugnon G, Despeisse M, Ballif C. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells. Applied Physics Letters 2010; 97(21): 213502.
– reference: Yue G, Yan B, Ganguly G, Yang J, Guha S, Teplin CW. Material structure and metastability of hydrogenated nanocrystalline silicon solar cells. Applied Physics Letters 2006; 88(26): 263507.
– reference: Sakai H, Yoshida T, Hama T, Ichikawa Y. Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells. Japanese Journal of Applied Physics 1990; 29(Part 1, No. 4): 630-635.
– reference: Feltrin A, Freundlich A. Material considerations for terawatt level deployment of photovoltaics. Renewable Energy 2008; 33(2): 180-185. E-MRS 2006 Symposium M: Materials, Devices and Prospects for Sustainable Energy, 2006 Spring Meeting of the European Materials Research Society.
– reference: Staebler DL, CR Wronski. Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 1977; 31(4): 292-294.
– reference: Gordijn A, Hodakova L, Rath JK, Schropp REI. Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD. Journal of Non-Crystalline Solids 2006; 352(9-20): 1868-1871. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology - 21st International Conference on Amorphous and Nanocrystalline Semiconductors.
– reference: Mai Y, Klein S, Carius R, Stiebig H, Houben L, Geng X, Finger F. Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. Journal of Non-Crystalline Solids 2006; 352(9-20): 1859-1862. Amorphous and Nanocrystalline Semiconductors - Science and Technology - Proceedings of the 21st International Conference on Amorphous and Nanocrystalline Semiconductors - Science and Technology.
– reference: Nasuno Y, Kondo M, Matsuda A. Effects of substrate surface morphology on microcrystalline silicon solar cells. Japanese Journal of Applied Physics 2001; 40(Part 2, No. 4A): L303-L305.
– year: 2011
– volume: 40
  start-page: L303
  issue: 4A
  year: 2001
  end-page: L305
  article-title: Effects of substrate surface morphology on microcrystalline silicon solar cells
  publication-title: Japanese Journal of Applied Physics
– volume: 12
  start-page: 1344
  issue: 3
  year: 2012
  end-page: 1348
  article-title: Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells
  publication-title: Nano Letters
– volume: 65
  start-page: 860
  issue: 7
  year: 1994
  end-page: 862
  article-title: Complete microcrystalline p‐i‐n solar cell—crystalline or amorphous cell behavior?
  publication-title: Applied Physics Letters
– volume: 352
  start-page: 1859
  issue: 9‐20
  year: 2006
  end-page: 1862
  article-title: Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers
  publication-title: Journal of Non‐Crystalline Solids
– volume: 352
  start-page: 1868
  issue: 9–20
  year: 2006
  end-page: 1871
  article-title: Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD
  publication-title: Journal of Non‐Crystalline Solids
– volume: 97
  start-page: 023512
  issue: 2
  year: 2010
  article-title: Silicon oxide based n‐doped layer for improved performance of thin film silicon solar cells
  publication-title: Applied Physics Letters
– volume: 97
  start-page: 213502
  issue: 21
  year: 2010
  article-title: Mixed‐phase p‐type silicon oxide containing silicon nanocrystals and its role in thin‐film silicon solar cells
  publication-title: Applied Physics Letters
– volume: 31
  start-page: 292
  issue: 4
  year: 1977
  end-page: 294
  article-title: Reversible conductivity changes in discharge‐produced amorphous Si
  publication-title: Applied Physics Letters
– volume: 81
  start-page: 61
  issue: 1
  year: 2004
  end-page: 71
  article-title: Relationship between Raman crystallinity and open‐circuit voltage in microcrystalline silicon solar cells
  publication-title: Solar Energy Materials & Solar Cells
– volume: 101
  start-page: 173901
  issue: 17
  year: 2012
  article-title: Enhanced photocurrent and conversion efficiency in thin‐film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays
  publication-title: Applied Physics Letters
– volume: 102
  start-page: 053509
  issue: 5
  year: 2013
  article-title: Relationship between the cell thickness and the optimum period of textured back reflectors in thin‐film microcrystalline silicon solar cells
  publication-title: Applied Physics Letters
– volume: 299–302, Part 2
  start-page: 1219
  issue: 0
  year: 2002
  end-page: 1223
  article-title: Influence of substrate on the microstructure of microcrystalline silicon layers and cells
  publication-title: Journal of Non‐Crystalline Solids
– volume: 96
  start-page: 073507
  issue: 7
  year: 2010
  article-title: Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate
  publication-title: Applied Physics Letters
– start-page: 299
  year: 2002
  end-page: 302
  article-title: Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells
  publication-title: Journal of Non‐Crystalline Solids
– year: 2010
– volume: 30
  start-page: 04D108–04D108–10
  issue: 4
  year: 2012
  article-title: Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates
  publication-title: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
– volume: 93
  start-page: 338
  issue: 3
  year: 2009
  end-page: 349
  article-title: Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano‐crystalline silicon n‐i‐p solar cells
  publication-title: Solar Energy Materials & Solar Cells
– year: 2012
– volume: 3
  start-page: 11
  issue: 1
  year: 2013
  end-page: 16
  article-title: On the interplay between microstructure and interfaces in high‐efficiency microcrystalline silicon solar cells
  publication-title: IEEE Journal of Photovoltaics
– volume: 22
  start-page: 3665
  issue: 17
  year: 2012
  end-page: 3671
  article-title: A new view of microcrystalline silicon: the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications
  publication-title: Advanced Functional Materials
– volume: 105
  start-page: 46
  issue: 0
  year: 2012
  end-page: 52
  article-title: Control of CVD‐deposited zno films properties through water/DEZ ratio: decoupling of electrode morphology and electrical characteristics
  publication-title: Solar Energy Materials & Solar Cells
– volume: 88
  start-page: 263507
  issue: 26
  year: 2006
  article-title: Material structure and metastability of hydrogenated nanocrystalline silicon solar cells
  publication-title: Applied Physics Letters
– volume: 95
  start-page: 195
  issue: 1
  year: 2011
  end-page: 198
  article-title: Substrate dependent stability and interplay between optical and electrical properties in single junction solar cells
  publication-title: Solar Energy Materials & Solar Cells
– volume: 5
  start-page: 535
  issue: 9
  year: 2011
  end-page: 538
  article-title: Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells
  publication-title: Nature Photonics
– year: 2006
– volume: 104
  start-page: 109
  year: 2012
  end-page: 112
  article-title: Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells
  publication-title: Solar Energy Materials & Solar Cells
– volume: 34
  start-page: 415
  issue: 14
  year: 1994
  end-page: 422
  article-title: Amorphous silicon oxide and its application to metal/n‐i‐p/ITO type a‐si solar cells
  publication-title: Solar Energy Materials & Solar Cells
– volume: 354
  start-page: 2258
  issue: 19‐25
  year: 2008
  end-page: 2262
  article-title: Relation between substrate morphology and microcrystalline silicon solar cell performance
  publication-title: Journal of Non‐Crystalline Solids
– volume: 98
  start-page: 185
  year: 2012
  end-page: 190
  article-title: Geometric light trapping for high efficiency thin film silicon solar cells
  publication-title: Solar Energy Materials & Solar Cells
– volume: 29
  start-page: 630
  issue: 4
  year: 1990
  end-page: 635
  article-title: Effects of surface morphology of transparent electrode on the open‐circuit voltage in a‐Si:H solar cells
  publication-title: Japanese Journal of Applied Physics
– volume: 69
  start-page: 179
  year: 1999
  end-page: 185
  article-title: Thin‐film poly‐Si solar cells on glass substrate fabricated at low temperature
  publication-title: Applied Physics A: Materials Science and Processing
– volume: 2
  start-page: 83
  issue: 2
  year: 2012
  end-page: 87
  article-title: Nanometer‐ and micrometer‐scale texturing for high‐efficiency micromorph thin‐film silicon solar cells
  publication-title: IEEE Journal of Photovoltaics
– volume: 33
  start-page: 180
  issue: 2
  year: 2008
  end-page: 185
  article-title: Material considerations for terawatt level deployment of photovoltaics
  publication-title: Renewable Energy
– volume: 24
  start-page: 1182
  issue: 9
  year: 2012
  end-page: 1186
  article-title: Silicon filaments in silicon oxide for next‐generation photovoltaics
  publication-title: Advanced Materials
– volume: 515
  start-page: 8558
  issue: 24
  year: 2007
  end-page: 8561
  article-title: Opto‐electronic properties of rough LP‐CVD Zno:B for use as TCO in thin‐film silicon solar cells
  publication-title: Thin Solid Films
– volume: 77
  start-page: 939
  issue: 6
  year: 2004
  end-page: 949
  article-title: A high efficiency thin film silicon solar cell and module
  publication-title: Solar Energy
– volume: 2
  start-page: 236
  issue: 3
  year: 2012
  end-page: 240
  article-title: Latest developments of high‐efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design
  publication-title: IEEE Journal of Photovoltaics
– volume: 21
  start-page: 1
  issue: 1
  year: 2013
  end-page: 11
  article-title: Solar cell efficiency tables (version 41)
  publication-title: Progress in Photovoltaics: Research and Applications
– ident: e_1_2_6_22_1
  doi: 10.1016/S0022-3093(01)01142-5
– ident: e_1_2_6_35_1
  doi: 10.1016/j.solmat.2011.10.031
– ident: e_1_2_6_10_1
  doi: 10.1063/1.112183
– ident: e_1_2_6_18_1
  doi: 10.1109/JPHOTOV.2012.2214766
– ident: e_1_2_6_20_1
  doi: 10.1143/JJAP.29.630
– start-page: 299
  year: 2002
  ident: e_1_2_6_23_1
  article-title: Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells
  publication-title: Journal of Non‐Crystalline Solids
– ident: e_1_2_6_32_1
  doi: 10.1016/j.tsf.2007.03.130
– ident: e_1_2_6_37_1
– ident: e_1_2_6_7_1
  doi: 10.1116/1.4707154
– ident: e_1_2_6_12_1
  doi: 10.1016/j.solmat.2010.04.043
– ident: e_1_2_6_40_1
  doi: 10.1016/j.solmat.2012.05.016
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jnoncrysol.2005.11.116
– ident: e_1_2_6_21_1
  doi: 10.1143/JJAP.40.L303
– ident: e_1_2_6_33_1
  doi: 10.1109/JPHOTOV.2011.2179414
– ident: e_1_2_6_36_1
  doi: 10.1002/pip.2352
– ident: e_1_2_6_4_1
  doi: 10.1016/j.solener.2004.08.028
– ident: e_1_2_6_14_1
  doi: 10.1016/j.jnoncrysol.2005.12.042
– ident: e_1_2_6_28_1
  doi: 10.1063/1.3463457
– ident: e_1_2_6_24_1
  doi: 10.1016/j.solmat.2008.11.013
– ident: e_1_2_6_17_1
  doi: 10.1063/1.4790642
– ident: e_1_2_6_6_1
  doi: 10.1109/JPHOTOV.2012.2191139
– ident: e_1_2_6_25_1
  doi: 10.1016/0927-0248(94)90068-X
– ident: e_1_2_6_5_1
– ident: e_1_2_6_29_1
  doi: 10.1002/adma.201104578
– ident: e_1_2_6_16_1
  doi: 10.1016/j.solmat.2012.05.005
– ident: e_1_2_6_31_1
  doi: 10.1002/adfm.201200299
– ident: e_1_2_6_34_1
  doi: 10.1016/j.solmat.2003.07.004
– ident: e_1_2_6_11_1
  doi: 10.1063/1.2216022
– ident: e_1_2_6_8_1
– ident: e_1_2_6_3_1
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jnoncrysol.2007.09.084
– ident: e_1_2_6_38_1
  doi: 10.1063/1.4761956
– ident: e_1_2_6_30_1
  doi: 10.1109/WCPEC.2006.279775
– ident: e_1_2_6_39_1
  doi: 10.1038/nphoton.2011.198
– ident: e_1_2_6_26_1
  doi: 10.1063/1.3517492
– ident: e_1_2_6_9_1
  doi: 10.1063/1.89674
– ident: e_1_2_6_27_1
  doi: 10.1063/1.3324704
– ident: e_1_2_6_41_1
  doi: 10.1021/nl203909u
– volume: 69
  start-page: 179
  year: 1999
  ident: e_1_2_6_13_1
  article-title: Thin‐film poly‐Si solar cells on glass substrate fabricated at low temperature
  publication-title: Applied Physics A: Materials Science and Processing
  doi: 10.1007/s003390050988
– ident: e_1_2_6_2_1
  doi: 10.1016/j.renene.2007.05.024
SSID ssj0017896
Score 2.3743849
Snippet ABSTRACT This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining...
This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell...
This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 821
SubjectTerms Applied sciences
Conversion
Energy
Exact sciences and technology
high efficiency
microcrystalline
nanocrystalline
Natural energy
Photovoltaic conversion
silicon
solar cells
Solar cells. Photoelectrochemical cells
Solar energy
thin-film
Title High-efficiency microcrystalline silicon single-junction solar cells
URI https://api.istex.fr/ark:/67375/WNG-QDPK4877-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2398
https://www.proquest.com/docview/1403474154
https://www.proquest.com/docview/1439736047
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe4EDlJdY-lCQEJyyzcZ2HB8pUBYQ1YKoqMTB8mNWKl3S1WZXKpz4CfxGfgkzzoMuAglxyiFjaTLj8XyOx98w9nBUeFkCyFSOrEoFBJ9anYkUuC5DsF5oT3eH3xwV42Px6kSetFWVdBem4Yfof7hRZMT1mgLcunr_F2no_HQ-JPI6XH6pVIvw0LueOWqkytiaCzc8CCC1lh3vbJbvdwPXMtEmGfWCKiNtjcaZNl0t1mDnZfAas8_hDfax07spOjkbrpZu6L_-Run4fx-2xa63oDR50syim-wKVLfYtUtUhbfZmApCfnz7DpFygu5rJp-pls8vviC-JGJvSOrTGc6rKqHfDzNA4U-YNMnxSU0b6IQOCeo77Pjw-fun47TtwpB6yWWZloWy0svcTp2Q1ukCCuc0t0H54Dwx4nEfckBZCKUFnwUFKB90yCDnIvC7bKM6r-AeS7wCzJdaQAaAwC1ztuBTreKhMucjOWCPO48Y31KUU6eMmWnIlXODtjFkmwF70EvOG1qOP8g8ik7tBezijMrYlDQfjl6Yt88mr3G3pszBgO2teb0fkONejvj4BmynmwamDfHaENGhIDwmUJn-NQYnGdNWcL4iGYR7vMiEQmWiz_-qrZm8nNDz_r8KbrOreWzNQcWIO2xjuVjBLgKkpduLofAT8OQQXQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6V9gAc-EeklGIkfk5OHe-u7T1wAEJJSBsF1IrelvXuRCpN3ShOBOXEI_AevApPwZMw4z8aBBKXHjj54LE13plZfzs7-w1jDzuRlQmA9GXHxL4AZ32jAuEDV4lzxgpl6ezw7jDq7YvXB_JghX2rz8KU_BBNwo0io5ivKcApIb31izV0ejhtE3tdVVE5gNOPuF7Ln_a7aNxHYbj9cu9Fz69aCvhWcpn4SRQbaWVoxqmQJlURRGmquHGxdaklejduXQgoCy4xYAMXA8o75QIIuXAc33uBrVEDcSLq775tuKo6cVI0A8MlFkJWpWTNdBuEW7WmS_--NTLjJ6rFNDmaY1z20VgCumfhcvG_277KvtcjVZa5HLUX87RtP_9GIvmfDOU1dqXC3d6zMlCusxXIbrDLZ9gYb7Ie1bz8-PIVClYNOpLqHVO5op2dIoQm7nLw8sMJhk7mUYZlAij8AXEB-baXU47Ao32Q_BbbP5dPuc1Ws5MM7jDPxoCQQAkIABCbBqmJ-FjFxb455x3ZYk9qF9C2YmGnZiATXfJHhxptockWLfagkZyWzCN_kHlceFEjYGZHVKkXS_1u-Eq_6Y4GuCCN9fMW21xys-aBEJerRDnYYhu13-lqFss1cTkKgpwClWlu4_xDg2kyOFmQDCJaHgUiRmUKJ_urtnrUH9F1_V8F77OLvb3dHb3THw7uskth0YmEai832Op8toB7iAfn6WYRhx57f97e-hMyrnGZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVkJw4B8RKMVI_JycOvau13vgAISQEIgCompvy3p3IrVN3ShOBOXEI_AcvApvwZMw4z8aBBKXHjj54LE13plZf7M7-w1jDzqxFQmA8EXHSJ-Ds75RAfchUolzxnJl6ezwm1Hc3-Gv9sTeGvtWn4Up-SGaBTeKjGK-pgCfucn2L9LQ2f6sTeR1VUHlEE4-YrqWPxl00bYPw7D34v3zvl91FPCtiETiJ7E0worQTFIuTKpiiNNURcZJ61JL7G6RdSGgLLjEgA2cBJR3ygUQRtxF-N5zbIPHgaI2Ed13DVVVRyZFLzDMsBCxKiVqotsg3K41Xfn1bZAVP1EppsnRGpOyjcYKzj2NlovfXe8y-14PVFnlctheLtK2_fwbh-T_MZJX2KUKdXtPyzC5ytYgu8YunuJivM76VPHy48tXKDg16ECqd0TFinZ-ggCamMvBy_enGDiZR-srU0DhA0QF5NleTisEHu2C5DfYzpl8yk22nh1ncIt5VgICAsUhAEBkGqQmjiZKFrvmUdQRLfa49gBtKw52agUy1SV7dKjRFpps0WL3G8lZyTvyB5lHhRM1AmZ-SHV6Uujd0Uv9tjseYjoq9bMW21rxsuaBEJNVIhxssc3a7XQ1h-WamBw5AU6OyjS3cfahwTQZHC9JBvFsFAdcojKFj_1VWz0ejOl6-18F77Hz425Pvx6MhnfYhbBoQ0KFl5tsfTFfwl0Eg4t0q4hCj304a2f9CW8icEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+microcrystalline+silicon+single-junction+solar+cells&rft.jtitle=Progress+in+photovoltaics&rft.au=Haenni%2C+Simon&rft.au=Bugnon%2C+Gregory&rft.au=Parascandolo%2C+Gaetano&rft.au=Boccard%2C+Mathieu&rft.date=2013-08-01&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=21&rft.issue=5&rft.spage=821&rft.epage=826&rft_id=info:doi/10.1002%2Fpip.2398&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon