Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture
Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe‐plant interaction research. In thi...
Saved in:
Published in | Microbial biotechnology Vol. 16; no. 12; pp. 2250 - 2263 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.12.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe‐plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The “cry for help” mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed.
In this review, we first briefly introduced the typical Bacillus biocontrol mechanisms. Then, we discussed in detail the new mechanisms of pathogen QS interference and reshaping of the soil microbiota, and the “cry for help” mechanism was also introduced. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed. |
---|---|
AbstractList | Abstract Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe‐plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The “cry for help” mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed. Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe-plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The “cry for help” mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere-derived prebiotics, were proposed. Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe-plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The "cry for help" mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere-derived prebiotics, were proposed.Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe-plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The "cry for help" mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere-derived prebiotics, were proposed. Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe‐plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The “cry for help” mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed. In this review, we first briefly introduced the typical Bacillus biocontrol mechanisms. Then, we discussed in detail the new mechanisms of pathogen QS interference and reshaping of the soil microbiota, and the “cry for help” mechanism was also introduced. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed. Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe‐plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The “cry for help” mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed. In this review, we first briefly introduced the typical Bacillus biocontrol mechanisms. Then, we discussed in detail the new mechanisms of pathogen QS interference and reshaping of the soil microbiota, and the “cry for help” mechanism was also introduced. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed. Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe‐plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The “cry for help” mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere‐derived prebiotics, were proposed. |
Author | Liu, Yunpeng Miao, Youzhi Shen, Qirong Zhang, Nan Shao, Jiahui Wang, Zhengqi Xu, Zhihui Xun, Weibing Zhang, Ruifu |
AuthorAffiliation | 2 State Key Laboratory of Efficient Utilization of Arid and Semi‐arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences Beijing China 1 Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes Nanjing Agricultural University Nanjing China |
AuthorAffiliation_xml | – name: 1 Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes Nanjing Agricultural University Nanjing China – name: 2 State Key Laboratory of Efficient Utilization of Arid and Semi‐arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences Beijing China |
Author_xml | – sequence: 1 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: Nanjing Agricultural University – sequence: 2 givenname: Zhengqi surname: Wang fullname: Wang, Zhengqi organization: Nanjing Agricultural University – sequence: 3 givenname: Jiahui surname: Shao fullname: Shao, Jiahui organization: Nanjing Agricultural University – sequence: 4 givenname: Zhihui surname: Xu fullname: Xu, Zhihui organization: Nanjing Agricultural University – sequence: 5 givenname: Yunpeng surname: Liu fullname: Liu, Yunpeng organization: State Key Laboratory of Efficient Utilization of Arid and Semi‐arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences – sequence: 6 givenname: Weibing surname: Xun fullname: Xun, Weibing organization: Nanjing Agricultural University – sequence: 7 givenname: Youzhi orcidid: 0000-0002-0645-0745 surname: Miao fullname: Miao, Youzhi organization: Nanjing Agricultural University – sequence: 8 givenname: Qirong surname: Shen fullname: Shen, Qirong organization: Nanjing Agricultural University – sequence: 9 givenname: Ruifu orcidid: 0000-0002-3334-4286 surname: Zhang fullname: Zhang, Ruifu email: rfzhang@njau.edu.cn organization: Nanjing Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37837627$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9vFCEUxyemxv7QszcziRcv28IMMODFuE2rm9TooZ4Jwzx22TCwwkzN_vcynbppe1AukMfn--XlfTktjnzwUBRvMTrHeV3ghuJFIzA9x6Qm_EVxcqgcPTofF6cpbRFiCNHqVXFcN7xuWNWcFD-WNujghxhc2YPeKG9Tn8pgyqXS1rkxfSxX_S6GO-vX5bCBEoyx2oLX-4laRwBfqnW0enTDGOF18dIol-DNw35W_Ly-ur38urj5_mV1-flmoWlN-YIzyojGHcUCWiFa3lJMVEt4x0yNGRamarkQFGEgqqMZQggLhbtOGYJrVp8Vq9m3C2ord9H2Ku5lUFbeF0JcSxUHqx3IDlhFCEXcKCBQUUF1xwQ2LWdadbrNXp9mr93Y9tBpyPNQ7onp0xtvN3Id7iRGjDPMRXb48OAQw68R0iB7mzQ4pzyEMcmKN03NMaumxt8_Q7dhjD7PKlOCMMFQRTL17nFLh17-JpeBixnQMaQUwRwQjOT0N-SUvpzSl_d_IyvoM4W2gxrslL6y7h86Nut-Wwf7_z0jvy1vq1n4B4ugy5k |
CitedBy_id | crossref_primary_10_1007_s00203_024_03935_3 crossref_primary_10_1111_1751_7915_70026 crossref_primary_10_1016_j_apsoil_2025_106012 crossref_primary_10_1111_1751_7915_70025 crossref_primary_10_1111_1751_7915_70001 crossref_primary_10_1016_j_jece_2024_114539 crossref_primary_10_3389_fmicb_2024_1422476 crossref_primary_10_3389_fsoil_2025_1535734 crossref_primary_10_3390_plants12234037 crossref_primary_10_1007_s11274_024_03935_x crossref_primary_10_1016_j_foodcont_2025_111160 crossref_primary_10_1186_s40793_024_00636_8 crossref_primary_10_1007_s00284_025_04163_8 crossref_primary_10_1007_s42729_024_02137_6 crossref_primary_10_1093_ismejo_wrae071 crossref_primary_10_1007_s11104_025_07208_w crossref_primary_10_1016_j_ijfoodmicro_2024_110918 crossref_primary_10_3389_fpls_2024_1513438 crossref_primary_10_3390_microorganisms12030457 crossref_primary_10_1021_acsami_3c17783 crossref_primary_10_1186_s12866_024_03411_4 crossref_primary_10_3389_fpls_2024_1349357 crossref_primary_10_1016_j_postharvbio_2024_113104 crossref_primary_10_3390_horticulturae10080805 crossref_primary_10_3389_fmicb_2024_1405090 crossref_primary_10_1007_s13353_024_00905_9 crossref_primary_10_1080_23311932_2024_2407064 crossref_primary_10_1186_s40793_025_00679_5 crossref_primary_10_1007_s42161_024_01710_3 crossref_primary_10_1016_j_micres_2025_128054 crossref_primary_10_1111_1751_7915_14437 crossref_primary_10_3390_applmicrobiol5010002 crossref_primary_10_1007_s41348_024_01024_7 crossref_primary_10_1007_s11104_024_06782_9 crossref_primary_10_1080_14735903_2025_2480955 crossref_primary_10_1038_s41598_024_77926_1 crossref_primary_10_22144_ctujos_2025_014 crossref_primary_10_1007_s41748_024_00552_4 |
Cites_doi | 10.1016/j.biocontrol.2018.05.022 10.1094/MPMI-11-17-0273-R 10.1073/pnas.97.7.3526 10.3109/07388551.2015.1130683 10.3389/fmicb.2014.00636 10.1111/j.1365-2958.2012.08109.x 10.1038/s41579-019-0255-9 10.1021/acsomega.2c02202 10.1128/mSphere.00376-21 10.1073/pnas.0610503104 10.1016/j.micres.2007.12.002 10.1093/femsre/fuv038 10.1016/j.isci.2021.102918 10.1128/jb.177.3.815-817.1995 10.1093/femsec/fiaa142 10.1016/j.pbi.2022.102316 10.1104/pp.108.127613 10.1007/s00374-012-0675-4 10.1007/s10658-007-9149-1 10.1093/femsec/fiw070 10.1038/35081216 10.1016/j.micres.2018.01.005 10.1080/09583157.2012.706595 10.1038/s41579-021-00540-9 10.1016/j.celrep.2019.09.061 10.1186/s40168-021-01186-8 10.1111/nph.18886 10.1186/s40168-020-00892-z 10.3389/fmicb.2022.840318 10.3390/antibiotics9120923 10.1094/PDIS-04-17-0478-RE 10.1016/j.apsoil.2020.103710 10.1111/j.1462-2920.2006.01202.x 10.1111/jam.14506 10.3389/fmicb.2020.00701 10.1007/s00374-011-0556-2 10.1094/PDIS-01-19-0143-RE 10.1016/j.soilbio.2017.07.016 10.1073/pnas.0505255102 10.1002/ps.6118 10.1021/acs.jafc.2c08758 10.1007/s00253-019-09710-5 10.1073/pnas.1616148114 10.1128/mBio.01774-21 10.1111/1751-7915.12693 10.1073/pnas.1505765112 10.3390/microorganisms10030596 10.1146/annurev.micro.62.081307.162918 10.1016/j.carbpol.2021.117799 10.1038/s41467-019-09944-x 10.3389/fmicb.2014.00175 10.3389/fpls.2021.756368 10.1111/1574-6968.12406 10.1128/AEM.68.4.1754-1759.2002 10.1038/srep27731 10.3390/biology11121763 10.1094/PHYTO.2004.94.11.1259 10.1186/s40168-021-01138-2 10.1128/AEM.02645-12 10.1002/jobm.201900347 10.1093/femsec/fiad054 10.1111/j.1574-6976.2010.00244.x 10.1038/s41467-022-35452-6 10.1007/s11104-011-0729-7 10.1038/srep12975 10.1073/pnas.1218984110 10.1007/s00248-022-02044-2 10.1094/MPMI-08-20-0225-CR 10.1016/j.micres.2020.126612 10.1094/PBIOMES-11-18-0051-R 10.1038/35081101 10.1016/j.soilbio.2016.10.008 10.1104/pp.103.026583 10.1016/j.biocontrol.2017.10.002 10.1016/j.mib.2019.10.003 10.1038/s41564-022-01134-8 10.1073/pnas.0504996102 10.1038/s41564-023-01402-1 10.1007/s11356-017-9162-7 10.1038/s41467-022-28668-z 10.1016/j.apsoil.2018.12.011 10.3389/fmicb.2020.01196 10.1016/j.jbiotec.2018.07.044 10.1007/s00425-021-03695-0 10.1007/s10526-017-9849-1 10.1128/JB.01474-14 10.1007/s11104-016-3080-1 10.1016/j.soilbio.2018.10.016 10.1007/s10526-010-9290-1 10.1016/j.micpath.2019.103757 10.1128/AAC.00836-07 10.3389/fmicb.2018.00847 10.1016/j.cjche.2014.05.020 10.1111/mec.15012 10.1007/s00203-020-02113-5 10.1007/s13205-020-2060-6 10.1098/rstb.2007.2045 10.3389/fmicb.2021.782523 10.1016/j.mib.2016.03.010 10.1002/advs.202205215 10.1038/s41396-021-01125-3 10.1016/j.bcab.2016.11.004 10.1128/JB.00052-06 10.1016/j.cell.2018.02.024 10.1021/bi701945j 10.3390/ijms140917477 10.1186/s40168-021-01169-9 10.3389/fpls.2022.1063393 10.1021/jf204868z 10.1016/S0168-6496(03)00125-9 10.4014/jmb.1105.05056 10.1038/s41579-020-0412-1 10.7164/antibiotics.48.997 10.3389/fmicb.2022.967885 10.1038/s41396-021-00966-2 10.1093/femsec/fiz138 10.1094/MPMI-07-16-0131-R 10.1074/jbc.M311194200 10.1016/j.biocontrol.2020.104288 10.1038/srep40481 10.1038/nbt1118-1117 10.1016/j.tplants.2012.04.001 10.1016/j.ejsobi.2010.11.001 10.3389/fpls.2015.00566 10.1002/ps.7193 10.3390/ijms24119759 10.1016/j.biocontrol.2020.104421 10.1111/1758-2229.12286 10.1007/s10526-019-09932-6 10.1111/nph.18582 10.1016/j.pmpp.2021.101754 10.3389/fmicb.2015.00780 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Applied Microbiology International and John Wiley & Sons Ltd. 2023 The Authors. Microbial Biotechnology published by Applied Microbiology International and John Wiley & Sons Ltd. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Applied Microbiology International and John Wiley & Sons Ltd. – notice: 2023 The Authors. Microbial Biotechnology published by Applied Microbiology International and John Wiley & Sons Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7T7 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS RC3 7X8 5PM DOA |
DOI | 10.1111/1751-7915.14348 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Engineering Database (NC LIVE) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
DocumentTitleAlternate | Biocontrol mechanisms of Bacillus |
EISSN | 1751-7915 |
EndPage | 2263 |
ExternalDocumentID | oai_doaj_org_article_de6244508fae4e2595cd691fb86cadcb PMC10686189 37837627 10_1111_1751_7915_14348 MBT214348 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China ‐ State Grid Corporation Joint Fund for Smart Grid funderid: 32072665; 42090064; 31972512 – fundername: National Natural Science Foundation of China - State Grid Corporation Joint Fund for Smart Grid grantid: 32072665 – fundername: National Natural Science Foundation of China - State Grid Corporation Joint Fund for Smart Grid grantid: 42090064 – fundername: National Natural Science Foundation of China - State Grid Corporation Joint Fund for Smart Grid grantid: 31972512 – fundername: National Natural Science Foundation of China ‐ State Grid Corporation Joint Fund for Smart Grid grantid: 32072665; 42090064; 31972512 |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 31~ 4.4 53G 5DZ 5VS 7X7 8-1 8FE 8FG 8FH 8FI 8FJ A8Z AAHHS AANHP AAZKR ABDBF ABJCF ABUWG ACBWZ ACCFJ ACCMX ACGFO ACIWK ACPRK ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADPDF ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AEUYN AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ASPBG AVUZU AVWKF AZFZN BAWUL BBNVY BCNDV BDRZF BENPR BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 D-9 DIK EBD EBS EJD EMOBN ESX F5P FEDTE FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HYE IAO IHR ITC KQ8 L6V LH4 LK8 LW6 M48 M7P M7S ML0 MM. O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC PTHSS RNS RPM SV3 TEORI TUS UKHRP WIN AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7QO 7T7 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5358-86564c1d519eb99b8b514ab48d6f31619f2b899501e4ad59eb0019a1ddaf41363 |
IEDL.DBID | M48 |
ISSN | 1751-7915 |
IngestDate | Wed Aug 27 01:24:58 EDT 2025 Thu Aug 21 18:35:49 EDT 2025 Thu Jul 10 17:30:51 EDT 2025 Wed Aug 13 04:53:53 EDT 2025 Wed Feb 19 02:01:27 EST 2025 Tue Jul 01 03:38:05 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Wed Jan 22 16:16:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Microbial Biotechnology published by Applied Microbiology International and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5358-86564c1d519eb99b8b514ab48d6f31619f2b899501e4ad59eb0019a1ddaf41363 |
Notes | Nan Zhang and Zhengqi Wang contributed equally to this paper. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3334-4286 0000-0002-0645-0745 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.14348 |
PMID | 37837627 |
PQID | 2894696024 |
PQPubID | 1016378 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_de6244508fae4e2595cd691fb86cadcb pubmedcentral_primary_oai_pubmedcentral_nih_gov_10686189 proquest_miscellaneous_2877381626 proquest_journals_2894696024 pubmed_primary_37837627 crossref_primary_10_1111_1751_7915_14348 crossref_citationtrail_10_1111_1751_7915_14348 wiley_primary_10_1111_1751_7915_14348_MBT214348 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bedford – name: Hoboken |
PublicationTitle | Microbial biotechnology |
PublicationTitleAlternate | Microb Biotechnol |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018; 285 2007; 104 2023; 79 2019; 95 2021; 203 2019; 10 2019; 17 2016; 31 2012; 17 2018; 208 2020; 11 2020; 10 2018; 9 2018; 172 2021; 77 2020; 96 2005; 102 2000; 97 2019; 28 2007; 9 2016; 40 2019; 29 2021; 152 2013; 110 2012; 22 2018; 31 2023; 71 2001; 411 2018; 36 2003; 45 2017; 62 2009; 63 2019; 3 2018; 102 2019; 103 2021; 260 2016; 92 2008; 52 2020; 147 2022; 117 2018; 25 2016; 6 2004; 279 1995; 48 2013; 79 2022; 7 2002; 68 2015; 112 2022; 12 2022; 13 2019; 49 2020; 156 2022; 10 2021; 254 2022; 11 2012; 48 2022; 16 2006; 188 2021; 24 2010; 55 2012; 60 2017; 7 2020; 60 2023; 8 2018; 126 2020; 128 2008; 148 1995; 177 2019; 128 2021; 242 2017; 114 2017; 9 2017; 115 2004; 134 2020; 8 2017; 30 2014; 5 2023; 24 2013; 14 2021; 34 2019; 64 2017; 37 2020; 9 2011; 21 2021; 9 2023; 10 2021; 6 2015; 6 2023; 13 2015; 5 2023; 99 2007; 362 2011; 35 2014; 353 2014; 196 2015; 7 2008; 163 2023; 86 2015; 23 2021; 15 2011; 344 2004; 94 2007; 119 2021; 12 2021; 18 2017; 10 2021; 19 2019; 137 2023; 238 2019 2023; 237 2019; 136 2016; 412 2011; 47 2007; 46 2017; 104 2012; 85 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Sevugapperumal N. (e_1_2_9_100_1) 2019 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 24 year: 2021 article-title: Synergistically promoting plant health by harnessing synthetic microbial communities and prebiotics publication-title: iScience – volume: 10 year: 2020 article-title: Biocontrol of wilt disease in strawberries using bioorganic fertilizer fortified with X‐1 and Z‐1 publication-title: 3 Biotech – volume: 3 start-page: 125 year: 2019 end-page: 136 article-title: Microbiota associated with sclerotia of soilborne fungal pathogens – a novel source of biocontrol agents producing bioactive volatiles publication-title: Phytobiomes Journal – volume: 156 year: 2020 article-title: Endophytic triggers salicylic acid‐dependent resistance and improves the rhizosphere bacterial community to mitigate rice spikelet rot disease publication-title: Applied Soil Ecology – volume: 353 start-page: 49 year: 2014 end-page: 56 article-title: Enhanced rhizosphere colonization of beneficial SQR9 by pathogen infection publication-title: FEMS Microbiology Letters – volume: 9 year: 2021 article-title: Disease‐induced changes in plant microbiome assembly and functional adaptation publication-title: Microbiome – volume: 25 start-page: 29784 year: 2018 end-page: 29793 article-title: Lipopeptides produced by as new biocontrol products against in ornamental plants publication-title: Environmental Science and Pollution Research International – volume: 45 start-page: 71 year: 2003 end-page: 81 article-title: Degradation of pathogen quorum‐sensing molecules by soil bacteria: a preventive and curative biological control mechanism publication-title: FEMS Microbiology Ecology – volume: 128 start-page: 1583 year: 2020 end-page: 1594 article-title: species in soil as a natural resource for plant health and nutrition publication-title: Journal of Applied Microbiology – volume: 12 year: 2021 article-title: Microbial consortia for effective biocontrol of root and foliar diseases in tomato publication-title: Frontiers in Plant Science – volume: 172 start-page: 1178 year: 2018 end-page: 1180 article-title: The soil‐borne legacy publication-title: Cell – volume: 34 start-page: 15 year: 2021 end-page: 25 article-title: Molecular aspects of plant growth promotion and protection by publication-title: Molecular Plant‐Microbe Interactions – volume: 7 start-page: 25291 year: 2022 end-page: 25308 article-title: Quorum sensing inhibitory and quenching activity of RC1 extracts on soft rot‐causing bacteria publication-title: ACS Omega – volume: 99 year: 2023 article-title: BER1 enriched ‐like bacterium in the rhizosphere of tomato against bacterial wilt publication-title: FEMS Microbiology Ecology – volume: 6 start-page: 27731 year: 2016 article-title: Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana wilt suppression publication-title: Scientific Reports – volume: 104 start-page: 39 year: 2017 end-page: 48 article-title: Inducing the rhizosphere microbiome by biofertilizer application to suppress banana wilt disease publication-title: Soil Biology and Biochemistry – volume: 279 start-page: 13645 year: 2004 end-page: 13651 article-title: Specificity and enzyme kinetics of the quorum‐quenching ‐acyl homoserine lactone lactonase (AHL‐lactonase) publication-title: The Journal of Biological Chemistry – volume: 110 start-page: E1621 year: 2013 end-page: E1630 article-title: biofilm induction by plant polysaccharides publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 30 start-page: 53 year: 2017 end-page: 62 article-title: Identification of root‐secreted compounds involved in the communication between cucumber, the beneficial , and the soil‐borne pathogen publication-title: Molecular Plant‐Microbe Interactions – volume: 7 start-page: 40481 year: 2017 article-title: volatiles adversely affect the physiology and ultra‐structure of and induce systemic resistance in tobacco against bacterial wilt publication-title: Scientific Reports – volume: 411 start-page: 748 year: 2001 end-page: 749 article-title: Quieting the raucous crowd publication-title: Nature – volume: 96 year: 2020 article-title: Harvesting the complex pathways of antibiotic production and resistance of soil for optimizing plant microbiome publication-title: FEMS Microbiology Ecology – volume: 10 start-page: 719 year: 2017 end-page: 734 article-title: Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? publication-title: Microbial Biotechnology – volume: 119 start-page: 353 year: 2007 end-page: 365 article-title: Quorum sensing as a target for developing control strategies for the plant pathogen publication-title: European Journal of Plant Pathology – volume: 8 year: 2020 article-title: Bio‐organic fertilizers stimulate indigenous soil populations to enhance plant disease suppression publication-title: Microbiome – volume: 62 start-page: 835 year: 2017 end-page: 845 article-title: Integrated control of tobacco black shank by combined use of riboflavin and strain Tpb55 publication-title: BioControl – volume: 254 year: 2021 article-title: Phytostimulation and biocontrol potential of Gram‐positive endospore‐forming publication-title: Planta – volume: 114 start-page: E2450 year: 2017 end-page: E2459 article-title: Simplified and representative bacterial community of maize roots publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 year: 2022 article-title: An endophytic strain of suppresses infection of chinese wolfberry by altering its rhizosphere bacterial community publication-title: Frontiers in Microbiology – volume: 10 year: 2023 article-title: Sustained inhibition of maize seed‐borne fusarium using a ‐dominated rhizospheric stable core microbiota with unique cooperative patterns publication-title: Advanced Science – volume: 11 year: 2020 article-title: Probiotic consortia: reshaping the rhizospheric microbiome and its role in suppressing root‐rot disease of panax notoginseng publication-title: Frontiers in Microbiology – volume: 11 start-page: 1763 year: 2022 article-title: spp. as bioagents: uses and application for sustainable agriculture publication-title: Biology – volume: 6 year: 2015 article-title: Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? publication-title: Frontiers in Plant Science – volume: 344 start-page: 87 year: 2011 end-page: 97 article-title: A new bioorganic fertilizer can effectively control banana wilt by strong colonization with N11 publication-title: Plant and Soil – volume: 17 start-page: 725 year: 2019 end-page: 741 article-title: Common principles and best practices for engineering microbiomes publication-title: Nature Reviews. Microbiology – volume: 29 start-page: 1192 year: 2019 end-page: 1202 article-title: Antibiotic bacillomycin D affects iron acquisition and biofilm formation in through a Btr‐mediated feuABC‐dependent pathway publication-title: Cell Reports – volume: 134 start-page: 1017 year: 2004 end-page: 1026 article-title: Bacterial volatiles induce systemic resistance in Arabidopsis publication-title: Plant Physiology – volume: 260 year: 2021 article-title: Differential expression of bio‐active metabolites produced by chitosan polymers‐based fermentation publication-title: Carbohydrate Polymers – volume: 13 year: 2022 article-title: Cross‐kingdom synthetic microbiota supports tomato suppression of wilt disease publication-title: Nature Communications – volume: 47 start-page: 495 year: 2011 end-page: 506 article-title: SQR9 can control wilt in cucumber by colonizing plant roots publication-title: Biology and Fertility of Soils – volume: 6 year: 2021 article-title: Direct antibiotic activity of bacillibactin broadens the biocontrol range of MBI600 publication-title: mSphere – volume: 28 start-page: 1154 year: 2019 end-page: 1169 article-title: A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease publication-title: Molecular Ecology – volume: 23 start-page: 744 year: 2015 end-page: 754 article-title: Natural products from with antimicrobial properties publication-title: Chinese Journal of Chemical Engineering – volume: 12 year: 2021 article-title: Surfactin stimulated by pectin molecular patterns and root exudates acts as a key driver of the ‐plant mutualistic interaction publication-title: mBio – volume: 117 year: 2022 article-title: Plant‐associated and antimicrobial activities in plant disease suppression via biological control mechanisms – a review publication-title: Physiological and Molecular Plant Pathology – volume: 128 start-page: 164 year: 2019 end-page: 174 article-title: Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy publication-title: Soil Biology and Biochemistry – volume: 13 year: 2022 article-title: Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in publication-title: Nature Communications – volume: 95 year: 2019 article-title: Rhizosphere‐enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs publication-title: FEMS Microbiology Ecology – volume: 7 start-page: 570 year: 2015 end-page: 582 article-title: Plant polysaccharides initiate underground crosstalk with by inducing synthesis of the immunogenic lipopeptide surfactin publication-title: Environmental Microbiology Reports – volume: 238 start-page: 2634 year: 2023 end-page: 2650 article-title: Deciphering the mechanism of fungal pathogen‐induced disease‐suppressive soil publication-title: The New Phytologist – volume: 60 start-page: 2976 year: 2012 end-page: 2981 article-title: Production of bacillomycin‐ and macrolactin‐type antibiotics by NJN‐6 for suppressing soilborne plant pathogens publication-title: Journal of Agricultural and Food Chemistry – volume: 48 start-page: 997 year: 1995 end-page: 1003 article-title: Bacillaene, a novel inhibitor of prokaryotic protein‐synthesis produced by ‐production, taxonomy, isolation, physicochemical characterization and biological‐activity publication-title: The Journal of Antibiotics – volume: 63 start-page: 541 year: 2009 end-page: 556 article-title: Plant‐growth‐promoting rhizobacteria publication-title: Annual Review of Microbiology – volume: 24 start-page: 9759 year: 2023 article-title: Plant growth promotion using publication-title: International Journal of Molecular Sciences – volume: 47 start-page: 138 year: 2011 end-page: 145 article-title: The siderophore‐producing bacterium, CAS15, has a biocontrol effect on wilt and promotes the growth of pepper publication-title: European Journal of Soil Biology – volume: 92 year: 2016 article-title: Multiple effects of volatile compounds: plant growth promotion and growth inhibition of phytopathogens publication-title: FEMS Microbiology Ecology – volume: 102 start-page: 17606 year: 2005 end-page: 17611 article-title: The molecular structure and catalytic mechanism of a quorum‐quenching ‐acyl‐ ‐homoserine lactone hydrolase publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 1084 year: 2007 end-page: 1090 article-title: Surfactin and fengycin lipopeptides of as elicitors of induced systemic resistance in plants publication-title: Environmental Microbiology – volume: 188 start-page: 4024 year: 2006 end-page: 4036 article-title: Structural and functional characterization of three polyketide synthase gene clusters in FZB42 publication-title: Journal of Bacteriology – volume: 412 start-page: 425 year: 2016 end-page: 439 article-title: A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea publication-title: Plant and Soil – volume: 102 start-page: 67 year: 2018 end-page: 72 article-title: Mixtures of plant‐growth‐promoting rhizobacteria enhance biological control of multiple plant diseases and plant‐growth promotion in the presence of pathogens publication-title: Plant Disease – volume: 9 year: 2020 article-title: Antibacterial activity of volatile organic compounds produced by the octocoral‐associated bacteria sp. BO53 and s sp. GA327 publication-title: Antibiotics – volume: 97 start-page: 3526 year: 2000 end-page: 3531 article-title: AiiA, an enzyme that inactivates the acylhomoserine lactone quorum‐sensing signal and attenuates the virulence of publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 17 start-page: 478 year: 2012 end-page: 486 article-title: The rhizosphere microbiome and plant health publication-title: Trends in Plant Science – volume: 55 start-page: 673 year: 2010 end-page: 683 article-title: Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to wilt publication-title: BioControl – volume: 52 start-page: 612 year: 2008 end-page: 618 article-title: Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic publication-title: Antimicrobial Agents and Chemotherapy – volume: 46 start-page: 14429 year: 2007 end-page: 14437 article-title: CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines publication-title: Biochemistry – volume: 203 start-page: 1195 year: 2021 end-page: 1209 article-title: Siderophore production by MF497446 and MG209738 and their efficacy in controlling in maize plant publication-title: Archives of Microbiology – start-page: 487 year: 2019 end-page: 514 – volume: 79 start-page: 808 year: 2013 end-page: 815 article-title: Contribution of bacillomycin D in SQR9 to antifungal activity and biofilm formation publication-title: Applied and Environmental Microbiology – volume: 13 year: 2022 article-title: Designing a synthetic microbial community devoted to biological control: the case study of wilt of banana publication-title: Frontiers in Microbiology – volume: 71 year: 2023 article-title: Engineering plant microbiomes by integrating eco‐evolutionary principles into current strategies publication-title: Current Opinion in Plant Biology – volume: 68 start-page: 1754 year: 2002 end-page: 1759 article-title: Identification of quorum‐quenching ‐acyl homoserine lactonases from species publication-title: Applied and Environmental Microbiology – volume: 177 start-page: 815 year: 1995 end-page: 817 article-title: Evidence that the ‐terminal region of the protein constitutes an autoinducer‐binding domain publication-title: Journal of Bacteriology – volume: 5 year: 2015 article-title: Difficidin and bacilysin from FZB42 have antibacterial activity against rice pathogens publication-title: Scientific Reports – volume: 136 start-page: 55 year: 2019 end-page: 66 article-title: B1408 suppresses wilt in cucumber by regulating the rhizosphere microbial community publication-title: Applied Soil Ecology – volume: 103 start-page: 1991 year: 2019 end-page: 1997 article-title: Synergistic effect of combined application of a new fungicide fluopimomide with a biocontrol agent TA‐1 for management of gray mold in tomato publication-title: Plant Disease – volume: 31 start-page: 560 year: 2018 end-page: 567 article-title: Exploring elicitors of the beneficial rhizobacterium SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways publication-title: Molecular Plant‐Microbe Interactions – volume: 79 start-page: 234 year: 2023 end-page: 243 article-title: Combination effects of tebuconazole with to control rice false smut and the related synergistic mechanism publication-title: Pest Management Science – volume: 37 start-page: 202 year: 2017 end-page: 212 article-title: Success evaluation of the biological control of wilts of cucumber, banana, and tomato since 2000 and future research strategies publication-title: Critical Reviews in Biotechnology – volume: 31 start-page: 146 year: 2016 end-page: 153 article-title: Principles for designing synthetic microbial communities publication-title: Current Opinion in Microbiology – volume: 18 start-page: 607 year: 2021 end-page: 621 article-title: Plant‐microbiome interactions: from community assembly to plant health publication-title: Nature Reviews Microbiology – volume: 6 start-page: 780 year: 2015 article-title: Biocontrol mechanism by root‐associated FZB42 – a review publication-title: Frontiers in Microbiology – volume: 137 year: 2019 article-title: Induction of in planta resistance by flagellin (Flg) and elongation factor‐TU (EF‐TU) of VB7 against groundnut bud necrosis virus in tomato publication-title: Microbial Pathogenesis – volume: 35 start-page: 201 year: 2011 end-page: 232 article-title: Diversity and applications of bacteriocins publication-title: FEMS Microbiology Reviews – volume: 362 start-page: 1201 year: 2007 end-page: 1211 article-title: Quorum‐quenching microbial infections: mechanisms and implications publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 36 start-page: 1117 year: 2018 article-title: Rhizosphere microbiome structure alters to enable wilt resistance in tomato publication-title: Nature Biotechnology – volume: 5 year: 2014 article-title: The impact of the pathogen and its beneficial counterpart on the indigenous lettuce microbiome publication-title: Frontiers in Microbiology – volume: 64 start-page: 423 year: 2019 end-page: 433 article-title: Interference in quorum sensing and virulence of the phytopathogen pv. Passiflorae by and species publication-title: BioControl – volume: 7 start-page: 1001 year: 2022 end-page: 1015 article-title: biofilm matrix components target seed oil bodies to promote growth and anti‐fungal resistance in melon publication-title: Nature Microbiology – volume: 40 start-page: 86 year: 2016 end-page: 116 article-title: Quorum quenching: role in nature and applied developments publication-title: FEMS Microbiology Reviews – volume: 49 start-page: 73 year: 2019 end-page: 82 article-title: Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health‐promoting soil microbiomes publication-title: Current Opinion in Microbiology – volume: 112 start-page: E5013 year: 2015 end-page: E5020 article-title: Native root‐associated bacteria rescue a plant from a sudden‐wilt disease that emerged during continuous cropping publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 48 year: 2017 end-page: 57 article-title: Evaluation of quorum quenching spp. for their biocontrol traits against causing soft rot publication-title: Biocatalysis and Agricultural Biotechnology – volume: 242 year: 2021 article-title: Plant growth‐promoting bacterial endophytes as biocontrol agents of pre‐ and post‐harvest diseases: fundamentals, methods of application and future perspectives publication-title: Microbiological Research – volume: 152 year: 2021 article-title: Inhibitory effects of non‐volatiles lipopeptides and volatiles ketones metabolites secreted by C16 against publication-title: Biological Control – volume: 237 start-page: 1333 year: 2023 end-page: 1346 article-title: High carbon resource diversity enhances the certainty of successful plant pathogen and disease control publication-title: The New Phytologist – volume: 94 start-page: 1259 year: 2004 end-page: 1266 article-title: Induced systemic resistance and promotion of plant growth by spp publication-title: Phytopathology – volume: 9 start-page: 217 year: 2021 article-title: A simplified synthetic community rescues from root rot disease by activating plant‐induced systemic resistance publication-title: Microbiome – volume: 71 start-page: 4441 year: 2023 end-page: 4449 article-title: Emerging pathways for engineering the rhizosphere microbiome for optimal plant health publication-title: Journal of Agricultural and Food Chemistry – volume: 77 start-page: 1035 year: 2021 end-page: 1041 article-title: Effect of zinc oxide nanoparticle supplementation on the enhanced production of surfactin and iturin lipopeptides of endophytic sp. Fcl1 and its ameliorated antifungal activity publication-title: Pest Management Science – volume: 5 start-page: 636 year: 2014 article-title: Responses of beneficial SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production publication-title: Frontiers in Microbiology – volume: 103 start-page: 3669 year: 2019 end-page: 3682 article-title: : phylogeny, useful applications, and avenues for exploitation publication-title: Applied Microbiology and Biotechnology – volume: 104 start-page: 1506 year: 2007 end-page: 1509 article-title: The identification of bacillaene, the product of the megacomplex in publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 year: 2022 article-title: Biological control of plant pathogens: a global perspective publication-title: Microorganisms – volume: 60 start-page: 268 year: 2020 end-page: 280 article-title: Biocontrol potential of RH5 against sheath blight of rice caused by publication-title: Journal of Basic Microbiology – volume: 19 start-page: 600 year: 2021 end-page: 614 article-title: biofilm formation and social interactions publication-title: Nature Reviews. Microbiology – volume: 11 year: 2020 article-title: Antifungal effects of volatiles produced by against potato publication-title: Frontiers in Microbiology – volume: 13 year: 2022 article-title: SYL‐3 suppresses and tobacco mosaic virus infecting by regulating the phyllosphere microbial community publication-title: Frontiers in Microbiology – volume: 114 start-page: 238 year: 2017 end-page: 247 article-title: Bio‐fertilizer application induces soil suppressiveness against wilt disease by reshaping the soil microbiome publication-title: Soil Biology and Biochemistry – volume: 163 start-page: 711 year: 2008 end-page: 716 article-title: Expression and characterization of gene from BS‐1 publication-title: Microbiological Research – volume: 85 start-page: 418 year: 2012 end-page: 430 article-title: A sensor kinase involved in triggering biofilm formation on the roots of tomato plants publication-title: Molecular Microbiology – volume: 115 start-page: 119 year: 2017 end-page: 128 article-title: Improvement of biomass and cyclic lipopeptides production in MEP218 by modifying carbon and nitrogen sources and ratios of the culture media publication-title: Biological Control – volume: 208 start-page: 25 year: 2018 end-page: 31 article-title: Microbiome engineering to improve biocontrol and plant growth‐promoting mechanisms publication-title: Microbiological Research – volume: 411 start-page: 813 year: 2001 end-page: 817 article-title: Quenching quorum‐sensing‐dependent bacterial infection by an ‐acyl homoserine lactonase publication-title: Nature – volume: 285 start-page: 44 year: 2018 end-page: 55 article-title: Biological control of plant pathogens by species publication-title: Journal of Biotechnology – volume: 8 start-page: 1434 year: 2023 end-page: 1449 article-title: Plant commensal type VII secretion system causes iron leakage from roots to promote colonization publication-title: Nature Microbiology – volume: 48 start-page: 807 year: 2012 end-page: 816 article-title: Application of bio‐organic fertilizer can control wilt of cucumber plants by regulating microbial community of rhizosphere soil publication-title: Biology and Fertility of Soils – volume: 10 start-page: 1919 year: 2019 article-title: The extracellular matrix protects colonies from invasion and modulates plant co‐colonization publication-title: Nature Communications – volume: 21 start-page: 1001 year: 2011 end-page: 1011 article-title: Diversity and polymorphism in ahl‐lactonase gene ( ) of publication-title: Journal of Microbiology and Biotechnology – volume: 9 year: 2018 article-title: Stomatal closure and SA‐, JA/ET‐signaling pathways are essential for FZB42 to restrict leaf disease caused by in publication-title: Frontiers in Microbiology – volume: 9 start-page: 244 year: 2021 article-title: Glutamic acid reshapes the plant microbiota to protect plants against pathogens publication-title: Microbiome – volume: 196 start-page: 1842 year: 2014 end-page: 1852 article-title: Amylocyclicin, a novel circular bacteriocin produced by FZB42 publication-title: Journal of Bacteriology – volume: 126 start-page: 209 year: 2018 end-page: 217 article-title: Plant growth promoting rhizobacteria‐ improves plant growth and induces resistance in chilli against anthracnose disease publication-title: Biological Control – volume: 13 year: 2023 article-title: Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review publication-title: Frontiers in Plant Science – volume: 147 year: 2020 article-title: Evaluation of the biocontrol potential of sp. WB against . sp. niveum publication-title: Biological Control – volume: 102 start-page: 11882 year: 2005 end-page: 11887 article-title: Three‐dimensional structure of the quorum‐quenching ‐acyl homoserine lactone hydrolase from publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 15 start-page: 2723 year: 2021 end-page: 2737 article-title: Sucrose triggers a novel signaling cascade promoting rhizosphere colonization publication-title: The ISME Journal – volume: 148 start-page: 1547 year: 2008 end-page: 1556 article-title: Root‐secreted malic acid recruits beneficial soil bacteria publication-title: Plant Physiology – volume: 22 start-page: 991 year: 2012 end-page: 1004 article-title: The plant growth‐promoting rhizobacterium AR156 induces resistance in tomato with induction and priming of defence response publication-title: Biocontrol Science and Technology – volume: 86 start-page: 1 year: 2023 end-page: 24 article-title: spp. as bio‐factories for antifungal secondary metabolites: innovation beyond whole organism formulations publication-title: Microbial Ecology – volume: 16 start-page: 774 year: 2022 end-page: 787 article-title: stimulates resident rhizosphere for plant health through metabolic interactions publication-title: The ISME Journal – volume: 14 start-page: 17477 year: 2013 end-page: 17500 article-title: Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing‐dependent infection publication-title: International Journal of Molecular Sciences – ident: e_1_2_9_38_1 doi: 10.1016/j.biocontrol.2018.05.022 – ident: e_1_2_9_115_1 doi: 10.1094/MPMI-11-17-0273-R – ident: e_1_2_9_27_1 doi: 10.1073/pnas.97.7.3526 – ident: e_1_2_9_91_1 doi: 10.3109/07388551.2015.1130683 – ident: e_1_2_9_60_1 doi: 10.3389/fmicb.2014.00636 – ident: e_1_2_9_16_1 doi: 10.1111/j.1365-2958.2012.08109.x – ident: e_1_2_9_58_1 doi: 10.1038/s41579-019-0255-9 – ident: e_1_2_9_49_1 doi: 10.1021/acsomega.2c02202 – ident: e_1_2_9_23_1 doi: 10.1128/mSphere.00376-21 – ident: e_1_2_9_12_1 doi: 10.1073/pnas.0610503104 – ident: e_1_2_9_84_1 doi: 10.1016/j.micres.2007.12.002 – ident: e_1_2_9_39_1 doi: 10.1093/femsre/fuv038 – ident: e_1_2_9_28_1 doi: 10.1016/j.isci.2021.102918 – ident: e_1_2_9_41_1 doi: 10.1128/jb.177.3.815-817.1995 – ident: e_1_2_9_43_1 doi: 10.1093/femsec/fiaa142 – ident: e_1_2_9_76_1 doi: 10.1016/j.pbi.2022.102316 – ident: e_1_2_9_93_1 doi: 10.1104/pp.108.127613 – ident: e_1_2_9_89_1 doi: 10.1007/s00374-012-0675-4 – ident: e_1_2_9_30_1 doi: 10.1007/s10658-007-9149-1 – ident: e_1_2_9_5_1 doi: 10.1093/femsec/fiw070 – ident: e_1_2_9_59_1 doi: 10.1038/35081216 – ident: e_1_2_9_82_1 doi: 10.1016/j.micres.2018.01.005 – ident: e_1_2_9_80_1 doi: 10.1080/09583157.2012.706595 – ident: e_1_2_9_4_1 doi: 10.1038/s41579-021-00540-9 – ident: e_1_2_9_121_1 doi: 10.1016/j.celrep.2019.09.061 – ident: e_1_2_9_52_1 doi: 10.1186/s40168-021-01186-8 – ident: e_1_2_9_114_1 doi: 10.1111/nph.18886 – ident: e_1_2_9_105_1 doi: 10.1186/s40168-020-00892-z – ident: e_1_2_9_64_1 doi: 10.3389/fmicb.2022.840318 – ident: e_1_2_9_36_1 doi: 10.3390/antibiotics9120923 – ident: e_1_2_9_65_1 doi: 10.1094/PDIS-04-17-0478-RE – ident: e_1_2_9_18_1 doi: 10.1016/j.apsoil.2020.103710 – ident: e_1_2_9_81_1 doi: 10.1111/j.1462-2920.2006.01202.x – ident: e_1_2_9_98_1 doi: 10.1111/jam.14506 – ident: e_1_2_9_130_1 doi: 10.3389/fmicb.2020.00701 – ident: e_1_2_9_13_1 doi: 10.1007/s00374-011-0556-2 – ident: e_1_2_9_46_1 doi: 10.1094/PDIS-01-19-0143-RE – ident: e_1_2_9_119_1 doi: 10.1016/j.soilbio.2017.07.016 – ident: e_1_2_9_63_1 doi: 10.1073/pnas.0505255102 – ident: e_1_2_9_90_1 doi: 10.1002/ps.6118 – ident: e_1_2_9_124_1 doi: 10.1021/acs.jafc.2c08758 – ident: e_1_2_9_3_1 doi: 10.1007/s00253-019-09710-5 – ident: e_1_2_9_79_1 doi: 10.1073/pnas.1616148114 – ident: e_1_2_9_42_1 doi: 10.1128/mBio.01774-21 – ident: e_1_2_9_85_1 doi: 10.1111/1751-7915.12693 – ident: e_1_2_9_96_1 doi: 10.1073/pnas.1505765112 – ident: e_1_2_9_57_1 doi: 10.3390/microorganisms10030596 – ident: e_1_2_9_70_1 doi: 10.1146/annurev.micro.62.081307.162918 – ident: e_1_2_9_50_1 doi: 10.1016/j.carbpol.2021.117799 – ident: e_1_2_9_75_1 doi: 10.1038/s41467-019-09944-x – ident: e_1_2_9_29_1 doi: 10.3389/fmicb.2014.00175 – ident: e_1_2_9_73_1 doi: 10.3389/fpls.2021.756368 – ident: e_1_2_9_69_1 doi: 10.1111/1574-6968.12406 – ident: e_1_2_9_24_1 doi: 10.1128/AEM.68.4.1754-1759.2002 – ident: e_1_2_9_33_1 doi: 10.1038/srep27731 – ident: e_1_2_9_51_1 doi: 10.3390/biology11121763 – ident: e_1_2_9_54_1 doi: 10.1094/PHYTO.2004.94.11.1259 – ident: e_1_2_9_34_1 doi: 10.1186/s40168-021-01138-2 – ident: e_1_2_9_122_1 doi: 10.1128/AEM.02645-12 – ident: e_1_2_9_45_1 doi: 10.1002/jobm.201900347 – ident: e_1_2_9_112_1 doi: 10.1093/femsec/fiad054 – ident: e_1_2_9_2_1 doi: 10.1111/j.1574-6976.2010.00244.x – ident: e_1_2_9_133_1 doi: 10.1038/s41467-022-35452-6 – ident: e_1_2_9_131_1 doi: 10.1007/s11104-011-0729-7 – ident: e_1_2_9_117_1 doi: 10.1038/srep12975 – ident: e_1_2_9_8_1 doi: 10.1073/pnas.1218984110 – ident: e_1_2_9_95_1 doi: 10.1007/s00248-022-02044-2 – ident: e_1_2_9_11_1 doi: 10.1094/MPMI-08-20-0225-CR – ident: e_1_2_9_77_1 doi: 10.1016/j.micres.2020.126612 – ident: e_1_2_9_78_1 doi: 10.1094/PBIOMES-11-18-0051-R – ident: e_1_2_9_25_1 doi: 10.1038/35081101 – ident: e_1_2_9_32_1 doi: 10.1016/j.soilbio.2016.10.008 – ident: e_1_2_9_94_1 doi: 10.1104/pp.103.026583 – ident: e_1_2_9_71_1 doi: 10.1016/j.biocontrol.2017.10.002 – ident: e_1_2_9_92_1 doi: 10.1016/j.mib.2019.10.003 – ident: e_1_2_9_10_1 doi: 10.1038/s41564-022-01134-8 – ident: e_1_2_9_53_1 doi: 10.1073/pnas.0504996102 – ident: e_1_2_9_68_1 doi: 10.1038/s41564-023-01402-1 – ident: e_1_2_9_72_1 doi: 10.1007/s11356-017-9162-7 – ident: e_1_2_9_118_1 doi: 10.1038/s41467-022-28668-z – start-page: 487 volume-title: Microbial antagonists: their role in biological control of plant diseases year: 2019 ident: e_1_2_9_100_1 – ident: e_1_2_9_40_1 doi: 10.1016/j.apsoil.2018.12.011 – ident: e_1_2_9_128_1 doi: 10.3389/fmicb.2020.01196 – ident: e_1_2_9_31_1 doi: 10.1016/j.jbiotec.2018.07.044 – ident: e_1_2_9_102_1 doi: 10.1007/s00425-021-03695-0 – ident: e_1_2_9_127_1 doi: 10.1007/s10526-017-9849-1 – ident: e_1_2_9_99_1 doi: 10.1128/JB.01474-14 – ident: e_1_2_9_83_1 doi: 10.1007/s11104-016-3080-1 – ident: e_1_2_9_101_1 doi: 10.1016/j.soilbio.2018.10.016 – ident: e_1_2_9_62_1 doi: 10.1007/s10526-010-9290-1 – ident: e_1_2_9_110_1 doi: 10.1016/j.micpath.2019.103757 – ident: e_1_2_9_86_1 doi: 10.1128/AAC.00836-07 – ident: e_1_2_9_116_1 doi: 10.3389/fmicb.2018.00847 – ident: e_1_2_9_113_1 doi: 10.1016/j.cjche.2014.05.020 – ident: e_1_2_9_97_1 doi: 10.1111/mec.15012 – ident: e_1_2_9_37_1 doi: 10.1007/s00203-020-02113-5 – ident: e_1_2_9_17_1 doi: 10.1007/s13205-020-2060-6 – ident: e_1_2_9_26_1 doi: 10.1098/rstb.2007.2045 – ident: e_1_2_9_109_1 doi: 10.3389/fmicb.2021.782523 – ident: e_1_2_9_47_1 doi: 10.1016/j.mib.2016.03.010 – ident: e_1_2_9_123_1 doi: 10.1002/advs.202205215 – ident: e_1_2_9_103_1 doi: 10.1038/s41396-021-01125-3 – ident: e_1_2_9_35_1 doi: 10.1016/j.bcab.2016.11.004 – ident: e_1_2_9_15_1 doi: 10.1128/JB.00052-06 – ident: e_1_2_9_6_1 doi: 10.1016/j.cell.2018.02.024 – ident: e_1_2_9_19_1 doi: 10.1021/bi701945j – ident: e_1_2_9_14_1 doi: 10.3390/ijms140917477 – ident: e_1_2_9_61_1 doi: 10.1186/s40168-021-01169-9 – ident: e_1_2_9_134_1 doi: 10.3389/fpls.2022.1063393 – ident: e_1_2_9_126_1 doi: 10.1021/jf204868z – ident: e_1_2_9_74_1 doi: 10.1016/S0168-6496(03)00125-9 – ident: e_1_2_9_44_1 doi: 10.4014/jmb.1105.05056 – ident: e_1_2_9_107_1 doi: 10.1038/s41579-020-0412-1 – ident: e_1_2_9_87_1 doi: 10.7164/antibiotics.48.997 – ident: e_1_2_9_88_1 doi: 10.3389/fmicb.2022.967885 – ident: e_1_2_9_106_1 doi: 10.1038/s41396-021-00966-2 – ident: e_1_2_9_108_1 doi: 10.1093/femsec/fiz138 – ident: e_1_2_9_67_1 doi: 10.1094/MPMI-07-16-0131-R – ident: e_1_2_9_111_1 doi: 10.1074/jbc.M311194200 – ident: e_1_2_9_120_1 doi: 10.1016/j.biocontrol.2020.104288 – ident: e_1_2_9_104_1 doi: 10.1038/srep40481 – ident: e_1_2_9_56_1 doi: 10.1038/nbt1118-1117 – ident: e_1_2_9_9_1 doi: 10.1016/j.tplants.2012.04.001 – ident: e_1_2_9_125_1 doi: 10.1016/j.ejsobi.2010.11.001 – ident: e_1_2_9_7_1 doi: 10.3389/fpls.2015.00566 – ident: e_1_2_9_66_1 doi: 10.1002/ps.7193 – ident: e_1_2_9_55_1 doi: 10.3390/ijms24119759 – ident: e_1_2_9_129_1 doi: 10.1016/j.biocontrol.2020.104421 – ident: e_1_2_9_21_1 doi: 10.1111/1758-2229.12286 – ident: e_1_2_9_48_1 doi: 10.1007/s10526-019-09932-6 – ident: e_1_2_9_132_1 doi: 10.1111/nph.18582 – ident: e_1_2_9_22_1 doi: 10.1016/j.pmpp.2021.101754 – ident: e_1_2_9_20_1 doi: 10.3389/fmicb.2015.00780 |
SSID | ssj0060052 |
Score | 2.5539286 |
SecondaryResourceType | review_article |
Snippet | Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms... Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms... Abstract Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2250 |
SubjectTerms | Agricultural development Agriculture Antimicrobial agents Bacillus Bacteria Biofilms Biological control Cell division Competition Enzymes Gram-positive bacteria Metabolites Microbiomes Microbiota Microorganisms Mini Review Nutrients Pathogens Peptides Plant diseases Plant Roots Plants Quorum sensing Rhizosphere Soil Microbiology Special Issue: Part 2: End Hunger: Enhancing Crop Yields with Microbes Sustainable agriculture Sustainable development VOCs Volatile organic compounds |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB3Ekx7Eb-sXETx4qW7bJJt6c0VZhBUPCt5C0qS6sHbFdf-_M2m37KLixVtp0xJeJpk36eQNwGkmVVamvoiVLGTMVcfHhic8RvZrlPWmUzo6Ozy4l_0nfvcsnudKfVFOWC0PXAN34bxED4Q0ojSeeyTronAyT0qLHzeusLT6os-bBVP1Gixpt7MR8qG8HfSRCQkzClwYMir1M-eDglT_T_zye5rkPH0N_ud2HdYa4siu6g5vwJKvNmF1Tk5wCx56w3GTes7ePB3pHU7eJmxcsp4phqPRdHLJ2k0EhsyP-SAgQacvqdUL5eAw8_LR6HH4bXi6vXm87sdNxYS4EJlQCLiQvEgc0jJv89wqi3zIWK6cLDPkdnmZWgywRCfx3DiRh8JBuUmcMyV6M5ntwHI1rvweMMRceiNS5ZABOMTaYqTJwwgggqYTwfkMQ100cuJU1WKkZ2EFga4JdB1Aj-CsfeG9VtL4vWmPBqVtRhLY4QYahm4MQ_9lGBEczoZUN_NyojG85BKDtpRHcNI-xhlFv0lM5cdTatPt0u_UVEawW1tA25OsiwG9TLsRqAXbWOjq4pNq-BpUuxM6jJOoPIKLYEZ_gaAHvcc0XO3_BxwHsJIiP6szcQ5h-fNj6o-QT33a4zB1vgA4Bxpv priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BucAB8SalICNx4BK6TmKvwwWxiKVCKuLQSr1ZfmVZaZuUTff_d8brhF3xukWJEznjseeb8fgbgDelVGVTBJcr6WReqUnITcWrHNGvUTaYSePp7PDpN3lyXn29EBcp4NantMphTYwLte8cxciP0TFAT06iSflw9TOnqlG0u5pKaNyGOxwtDaV0qfmXYSWWFPNMdD6UvYOWkhM9o8DloaSCPzuWKBL2_wll_p4suQtioxWaP4D7CT6yj9vxfgi3QvsI7u2QCj6G77NllxLQ2WWgg73L_rJnXcNmxi1Xq03_no2hBIb4j4VII0FnMKnVgjJxmFmsEytHeALn889nn07yVDchd6IUCsUuZOW4R3AWbF1bZREVGVspL5sSEV7dFBbdLDHhoTJe1LF8UG2496ZBmybLp3DQdm14DqxCfBWMKJRHHOClw6_gCFQBnSaUoJlk8G6QoXaJVJxqW6z04FyQ0DUJXUehZ_B2fOFqy6fx96YzGpSxGRFhxxvdeqHTvNI-SOwPoszGhNgt4byseWNR94x3NoOjYUh1mp29_qVLGbweH-O8os0S04ZuQ22mU9pULWQGz7YaMPaknKJbL4tpBmpPN_a6uv-kXf6I3N2cjuRwVWdwHNXof0LQp7OzIl4d_vtPXsDdAvHXNtPmCA6u15vwEvHStX0VJ8UNsbIQtw priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucAB8W6grYzEgUtg4zhehxtbUVWVinpoJW6WX1lW2iZo0_3_zDhOtMtDiFuUjCNr7PF8Y898BnhXSlU2PLhcSSdzoWYhN6IQOaJfo2wws8ZT7fDlV3l-Iy6-VWM2IdXCDPwQ04YbWUZcr8nAje13jBz9XkFkixUaeynUfXhABbaU1cfF1bgYS9r2jDWRSTix-1Ayzy8_2HNMkb__T6Dz99zJXUwbndLZE3ic0CT7PAz_U7gX2mfwaIdj8DlcLVZdykdnt4HqfFf9bc-6hi2MW63X2_4Tm3YWGMJBFiKrBJVkktSSEnOYWW4SSUd4ATdnX65Pz_N0jULuqrJSOAqVFK7wiNWCrWurLIIkY4XysikR8NUNtxh1VbMiCOOrOt4mVJvCe9Ogi5PlSzhouzYcAhMIt4KpuPIIC7x0-Bf08SJgDIUaNLMMPow61C5xjNNVF2s9xhqkdE1K11HpGbyfGvwY6DX-LrqgQZnEiBc7vug2S53MTPsgsT8IOhsTYrcq52VdNBanovHOZnA0DqlOxtprjDmFxEiOiwzeTp_RzOjsxLSh25LMfE5nrFxm8GqYAVNPyjlG-ZLPM1B7c2Ovq_tf2tX3SOVdUIVOoeoMPsZp9C8l6MvFNY9Pr_-7xRt4yBGhDbk4R3Bwt9mGY0RUd_Yk2sxPkOwUMw priority: 102 providerName: Wiley-Blackwell |
Title | Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.14348 https://www.ncbi.nlm.nih.gov/pubmed/37837627 https://www.proquest.com/docview/2894696024 https://www.proquest.com/docview/2877381626 https://pubmed.ncbi.nlm.nih.gov/PMC10686189 https://doaj.org/article/de6244508fae4e2595cd691fb86cadcb |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-x7QUeEN9kjMpIPPCS0Ti24yAhRNDKhNSpQqvUt8hfKZW6hLWrBP89ZzcJqyjwEkWxEznnO93v7PPvAF6nQqYVdSaWwoiYyaGLFUtYjOhXSe3UsLL-7PD4QpxP2ZcZn_0uB9QKcL03tPP1pKar5emP658f0ODfd1k56AETT7vI0exTJg_gCN1S5ssZjFm_pSD8AmjL7bPnpR23FNj790HOPzMnbyPa4JJGD-B-iyXJx-3kP4Q7rn4E924xDD6GSbFo2mx0cuX8Kd_F-mpNmooUyiyWy836HenXFQiCQeICp4Q_kOl7zX1aDlHzVUvR4Z7AdHR2-ek8bosoxIanXOIccMFMYhGpOZ3nWmqESEozaUWVItzLK6ox5uLDxDFleR5qCeUqsVZV6OBE-hQO66Z2z4EwBFtOcSotggIrDH4FPTxzGEGhBNUwgtNOhqVpGcZ9oYtl2UUaXuilF3oZhB7Bm_6F71tyjb93Lfyk9N08K3Z40KzmZWtkpXUCx4OQs1IuDIsbK_Kk0qiIyhodwUk3pWWnaSVGnExgHEdZBK_6ZjQyv3OiatdsfJ8s8zusVETwbKsB_UjSDGN8QbMI5I5u7Ax1t6VefAtE3ok_n5PIPIK3QY3-J4RyXFzScHf87z95AXcpgrFt2s0JHN6sNu4lgqcbPYADyiZ4zWYZXuXo8wCOirOLyddBWI4YBKP5Bc9rGDo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA8IL4JDDASSLyENYnjOkgIUaB0bJ146KS9eY7tlEpdMppViH-Kv5E7Jymt-HraW5Q40eV8vvudfR8AzxIhkyJ2JpTCiJDLngs1j3iI6FfL3OleYSl3eHwoRkf803F6vAU_ulwYCqvsdKJX1LYytEe-i44BenICTcqbs68hdY2i09WuhUYjFvvu-zd02erXe-9xfp_H8fDD5N0obLsKhCZNUolEpYKbyCJ0cXmW5TJHzKBzLq0oEsQ_WRHn6ISkvchxbdPMN9fJdGStLlDjiwS_ewku8wQtOWWmDz92ml_QHmtbPoiihdAyR1QOMkV1lFCDoTXL5xsE_AnV_h6cuQ6avdUb3oDrLVxlbxv5uglbrrwF19aKGN6Gz4NZ1Qa8s1NHicSz-rRmVcEG2szm82X9iq22LhjiTeZ82QrK-aRRU4r8YXq6aKuAuDtwdCEcvQvbZVW6-8A44jmn01haxB1WGPwKzjh36KQhB3UvgJcdD5Vpi5hTL4256pwZYroipivP9ABerF44a-p3_H3ogCZlNYwKb_sb1WKq2nWsrBNID6LaQjtPVmqsyKIiR1nX1uQB7HRTqlptUKtfshvA09VjXMd0OKNLVy1pTL9Ph7ixCOBeIwErSpK-RDsQ9wOQG7KxQermk3L2xdcKjygFKJJZALtejP7HBDUeTGJ_9eDff_IErowm4wN1sHe4_xCuxoj9miifHdg-XyzdI8Rq5_ljv0AYnFz0ivwJ3oNMOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVELwgLgxFFgkkHgxia_1GgkhTBu1lEYRaqW-mbV3HSKldokbIf4av46Z9dok4nrqWxRvrMnsHN_szgHwPOAiKH1duIIX3A3FSLsy9EIX0a8UuZajUlHt8NGE75-EH06j0y340dXCUFplZxONoVZ1QWfkQwwMMJLj6FKGpU2LmO6O355_dWmCFN20duM0WhE51N-_YfjWvDnYxb1-4fvjveP3-66dMOAWURAJJDDiYeEphDE6T5Jc5IgfZB4KxcsAsVBS-jkGJNHI06FUUWIG7STSU0qWaP15gO-9AtsxRUUD2E73JtNPnR_gdOJqmwlR7hD6aY-aQ0ZonAIaN7TmB824gD9h3N9TNdchtPGB45tww4JX9q6VtluwpavbcH2tpeEdmKbz2qa_szNNZcXz5qxhdclSWcwXi1XzmvUHGQzRJ9OmiQVVgNKqGeUBMTlb2p4g-i6cXApP78Ggqiv9AFiI6E7LyBcKUYjiBb4F9z_UGLIhB-XIgVcdD7PCtjSnyRqLrAttiOkZMT0zTHfgZf-D87abx9-XprQp_TJqw22-qJezzGp1pjRHehDjllIbsqJC8cQrc5R8qYrcgZ1uSzNrG5rslyQ78Kx_jFpNVzWy0vWK1sQxXen63IH7rQT0lASxQK_gxw6IDdnYIHXzSTX_YjqHe1QQ5InEgaERo_8xITtKj33z6eG__8lTuIramH08mBw-gms-AsE25WcHBhfLlX6MwO0if2I1hMHny1bKnywdUc0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocontrol+mechanisms+of+Bacillus%3A+Improving+the+efficiency+of+green+agriculture&rft.jtitle=Microbial+biotechnology&rft.au=Zhang%2C+Nan&rft.au=Wang%2C+Zhengqi&rft.au=Shao%2C+Jiahui&rft.au=Xu%2C+Zhihui&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1751-7915&rft.volume=16&rft.issue=12&rft.spage=2250&rft.epage=2263&rft_id=info:doi/10.1111%2F1751-7915.14348&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon |