Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottom‐Up Fabrication

It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom‐up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose—both cellulose...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 28; pp. e2000657 - n/a
Main Authors De France, Kevin, Zeng, Zhihui, Wu, Tingting, Nyström, Gustav
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202000657

Cover

Abstract It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom‐up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose—both cellulose nanocrystals and cellulose nanofibrils—has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure‐based functionality within nanocellulose‐based bottom‐up fabricated materials. Herein, the organization of nanocellulose into biomimetic‐aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process‐induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose. As a natural and renewable building block for bottom‐up fabrication, nanocellulose has gained considerable interest for the assembly of sophisticated materials with advanced functionality. The organization of nanocellulose into aligned, porous, and fibrous materials is highlighted, focusing on the inherent material properties enabling the formation of such structures, along with discussing key advancements and critical challenges within the field.
AbstractList It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom‐up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose—both cellulose nanocrystals and cellulose nanofibrils—has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure‐based functionality within nanocellulose‐based bottom‐up fabricated materials. Herein, the organization of nanocellulose into biomimetic‐aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process‐induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose. As a natural and renewable building block for bottom‐up fabrication, nanocellulose has gained considerable interest for the assembly of sophisticated materials with advanced functionality. The organization of nanocellulose into aligned, porous, and fibrous materials is highlighted, focusing on the inherent material properties enabling the formation of such structures, along with discussing key advancements and critical challenges within the field.
It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom-up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose-both cellulose nanocrystals and cellulose nanofibrils-has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure-based functionality within nanocellulose-based bottom-up fabricated materials. Herein, the organization of nanocellulose into biomimetic-aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process-induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.
It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom-up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose-both cellulose nanocrystals and cellulose nanofibrils-has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure-based functionality within nanocellulose-based bottom-up fabricated materials. Herein, the organization of nanocellulose into biomimetic-aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process-induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom-up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose-both cellulose nanocrystals and cellulose nanofibrils-has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure-based functionality within nanocellulose-based bottom-up fabricated materials. Herein, the organization of nanocellulose into biomimetic-aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process-induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.
Author De France, Kevin
Zeng, Zhihui
Wu, Tingting
Nyström, Gustav
AuthorAffiliation 1 Laboratory for Cellulose and Wood Materials Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 Dübendorf 8600 Switzerland
2 Department of Health Science and Technology ETH Zürich Schmelzbergstrasse 9 Zürich 8092 Switzerland
AuthorAffiliation_xml – name: 2 Department of Health Science and Technology ETH Zürich Schmelzbergstrasse 9 Zürich 8092 Switzerland
– name: 1 Laboratory for Cellulose and Wood Materials Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 Dübendorf 8600 Switzerland
Author_xml – sequence: 1
  givenname: Kevin
  surname: De France
  fullname: De France, Kevin
  organization: Swiss Federal Laboratories for Materials Science and Technology (Empa)
– sequence: 2
  givenname: Zhihui
  surname: Zeng
  fullname: Zeng, Zhihui
  organization: Swiss Federal Laboratories for Materials Science and Technology (Empa)
– sequence: 3
  givenname: Tingting
  surname: Wu
  fullname: Wu, Tingting
  organization: Swiss Federal Laboratories for Materials Science and Technology (Empa)
– sequence: 4
  givenname: Gustav
  orcidid: 0000-0003-2739-3222
  surname: Nyström
  fullname: Nyström, Gustav
  email: gustav.nystroem@empa.ch
  organization: ETH Zürich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32267033$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFLUsUiU03GfwT2zEbNJQOILUFAbO2nMRpXTl2sJ2i6aqPgMQb9klIOv2BSoiVF_c7x_eeswO2nHcagOcIzhGE-JVqOjXHEEMIGeWPwAxRjPICCroFZlAQmgtWlNtgJ8azkREMsidgm2DMOCRkBvrl4OpkvFM2O1JJB6NszNrgu-xYOV9rawfro36drZKx5sK4k-xrCkOdhqCvLn99Dr7XIa2zL9qqySeemj5mxmVvfUq-u7r8ueqzpaqCqa_nT8HjdvxCP7t5d8FqefBt_0N--On9x_3FYV5TQnkucMVbhVpYVrhEsKKQN7xtSqIbKIQoCWoYo5iqFtZUNK0iqCQVZtV4v-aFILvgzca3H6pON7V2KSgr-2A6FdbSKyP_njhzKk_8uUSoYCUnk8PejUPw3wcdk-xMnAJRTvshSkxKziijcEJfPkDP_BDGTEeKUsgKRAQfqRd_rnS3y20bI1BsgDr4GINuZW3SdWrjhsZKBOVUupxKl3elj7L5A9mt8z8FYiP4Yaxe_4eWi3dHi3vtbwiawtU
CitedBy_id crossref_primary_10_1007_s40820_022_00883_9
crossref_primary_10_1080_09276440_2022_2111773
crossref_primary_10_1039_D2RA03556A
crossref_primary_10_1007_s00226_022_01371_4
crossref_primary_10_1002_smtd_202100889
crossref_primary_10_1021_acsami_1c17894
crossref_primary_10_3103_S1062873822100070
crossref_primary_10_1021_acsapm_1c01430
crossref_primary_10_1002_cjoc_202200552
crossref_primary_10_1021_acs_biomac_3c01353
crossref_primary_10_3390_polym15102323
crossref_primary_10_1021_acsbiomaterials_0c01158
crossref_primary_10_1039_D1TA02412D
crossref_primary_10_1088_2043_6262_ad7c1a
crossref_primary_10_1039_D0TA05961G
crossref_primary_10_1021_acs_jpcc_1c03506
crossref_primary_10_1080_15583724_2024_2374929
crossref_primary_10_1021_acsabm_1c00712
crossref_primary_10_1016_j_cis_2024_103232
crossref_primary_10_1021_acsami_2c14406
crossref_primary_10_1002_ange_202008153
crossref_primary_10_1007_s40820_021_00627_1
crossref_primary_10_1002_cjce_25253
crossref_primary_10_1002_adfm_202104991
crossref_primary_10_3389_fenrg_2022_879257
crossref_primary_10_1007_s10570_023_05325_2
crossref_primary_10_1002_smm2_1118
crossref_primary_10_1007_s11356_024_35449_2
crossref_primary_10_5458_bag_13_4_203
crossref_primary_10_1002_adfm_202213357
crossref_primary_10_1016_j_pmatsci_2023_101152
crossref_primary_10_3389_fmats_2022_1072249
crossref_primary_10_1002_adma_202418464
crossref_primary_10_1002_smll_202401283
crossref_primary_10_1007_s12274_023_5521_5
crossref_primary_10_1002_anie_202306518
crossref_primary_10_1021_acsnano_1c00856
crossref_primary_10_1002_smll_202104702
crossref_primary_10_1021_acsomega_1c05069
crossref_primary_10_1016_j_compositesa_2022_106907
crossref_primary_10_1021_acs_biomac_1c00422
crossref_primary_10_1021_acs_biomac_0c01267
crossref_primary_10_1021_acsnano_0c07613
crossref_primary_10_1007_s42114_022_00463_w
crossref_primary_10_3390_coatings15020149
crossref_primary_10_1016_j_addma_2024_104449
crossref_primary_10_1039_D4NR02840F
crossref_primary_10_1021_acs_macromol_3c00369
crossref_primary_10_1002_ange_202117703
crossref_primary_10_1016_j_ijbiomac_2024_134520
crossref_primary_10_1002_adma_202412858
crossref_primary_10_1021_acsami_4c06182
crossref_primary_10_1002_smtd_202200664
crossref_primary_10_1002_adfm_202414222
crossref_primary_10_1016_j_carbpol_2021_118033
crossref_primary_10_1007_s42765_024_00388_7
crossref_primary_10_1021_acs_iecr_1c01830
crossref_primary_10_1039_D4CS00387J
crossref_primary_10_24323_akademik_gida_1554476
crossref_primary_10_1016_j_compositesa_2022_106970
crossref_primary_10_1016_j_matt_2022_06_044
crossref_primary_10_1021_acs_iecr_4c02979
crossref_primary_10_1002_adsu_202000251
crossref_primary_10_1007_s10570_022_04717_0
crossref_primary_10_1002_adma_202400084
crossref_primary_10_1002_anie_202117703
crossref_primary_10_1039_D3SM00798G
crossref_primary_10_3390_nano12162888
crossref_primary_10_1002_adma_202401858
crossref_primary_10_1016_j_compstruct_2023_116896
crossref_primary_10_1016_j_cis_2022_102758
crossref_primary_10_1021_acs_biomac_3c00380
crossref_primary_10_1021_acsnano_3c11335
crossref_primary_10_1002_cssc_202201955
crossref_primary_10_1007_s00253_023_12381_y
crossref_primary_10_1039_D0QM00748J
crossref_primary_10_1515_ntrev_2024_0006
crossref_primary_10_1007_s12274_024_6824_x
crossref_primary_10_1016_j_ijbiomac_2023_126287
crossref_primary_10_2115_fiberst_2020_0039
crossref_primary_10_1002_advs_202000979
crossref_primary_10_1021_acs_biomac_2c00813
crossref_primary_10_3390_nano12193483
crossref_primary_10_1007_s10570_022_04577_8
crossref_primary_10_1021_acsmaterialslett_2c00778
crossref_primary_10_1039_D3NR02109B
crossref_primary_10_3390_ma17215339
crossref_primary_10_1002_advs_202400403
crossref_primary_10_1021_acsagscitech_4c00383
crossref_primary_10_1021_acs_chemrev_1c00683
crossref_primary_10_1016_j_ultsonch_2024_106898
crossref_primary_10_1016_j_carbpol_2023_121437
crossref_primary_10_1002_macp_202400150
crossref_primary_10_1002_admt_202300652
crossref_primary_10_1038_s41467_024_53708_1
crossref_primary_10_1007_s10570_021_04198_7
crossref_primary_10_1007_s10570_024_06265_1
crossref_primary_10_1002_adfm_202502946
crossref_primary_10_1016_j_cej_2024_154105
crossref_primary_10_1002_ange_202306518
crossref_primary_10_1021_acssuschemeng_3c01113
crossref_primary_10_1038_s41467_022_31283_7
crossref_primary_10_1007_s40843_022_2279_3
crossref_primary_10_1002_advs_202303235
crossref_primary_10_1016_j_matt_2022_05_043
crossref_primary_10_1021_acs_iecr_0c04319
crossref_primary_10_1039_D3TA05636H
crossref_primary_10_1002_adma_202101368
crossref_primary_10_1016_j_mtchem_2022_100886
crossref_primary_10_1016_j_ccr_2021_214263
crossref_primary_10_1002_adfm_202401687
crossref_primary_10_1016_j_ijbiomac_2025_141173
crossref_primary_10_1021_acsami_0c14485
crossref_primary_10_1007_s10570_022_04712_5
crossref_primary_10_1021_acs_iecr_2c01402
crossref_primary_10_1039_D2TB02611B
crossref_primary_10_1021_acssuschemeng_1c01901
crossref_primary_10_1021_acs_chemrev_0c01333
crossref_primary_10_1002_adma_202417617
crossref_primary_10_1021_acs_jpcc_3c00577
crossref_primary_10_1002_pen_26535
crossref_primary_10_1016_j_jcis_2023_12_164
crossref_primary_10_1039_D0NA00408A
crossref_primary_10_1016_j_matt_2022_11_024
crossref_primary_10_3390_cryst12010106
crossref_primary_10_1007_s10570_021_04407_3
crossref_primary_10_1016_j_carbpol_2022_119234
crossref_primary_10_1039_D1SM00251A
crossref_primary_10_1021_acssuschemeng_4c08984
crossref_primary_10_1002_masy_202300113
crossref_primary_10_1039_D3NR03087C
crossref_primary_10_1002_admi_202200988
crossref_primary_10_1007_s10570_023_05567_0
crossref_primary_10_1021_acsami_3c01794
crossref_primary_10_1016_j_carbon_2022_01_055
crossref_primary_10_1016_j_cej_2023_141402
crossref_primary_10_3390_coatings12101598
crossref_primary_10_1016_j_pmatsci_2023_101164
crossref_primary_10_1016_j_carbpol_2024_122148
crossref_primary_10_1021_acs_biomac_2c01172
crossref_primary_10_1002_adma_202400436
crossref_primary_10_5937_savteh2102073K
crossref_primary_10_1002_admi_202101593
crossref_primary_10_1002_aelm_202000944
crossref_primary_10_1002_macp_202100501
crossref_primary_10_1039_D2CY01904C
crossref_primary_10_1016_j_carbpol_2023_121383
crossref_primary_10_1016_j_cej_2023_142166
crossref_primary_10_1016_j_snb_2024_135375
crossref_primary_10_1007_s10570_023_05324_3
crossref_primary_10_1007_s12649_021_01619_3
crossref_primary_10_1002_asia_202200257
crossref_primary_10_1007_s10570_022_04750_z
crossref_primary_10_1021_acsami_2c01729
crossref_primary_10_1016_j_seppur_2024_128794
crossref_primary_10_3390_molecules28041691
crossref_primary_10_1007_s12274_022_4269_7
crossref_primary_10_3389_fbioe_2022_872149
crossref_primary_10_1039_D0MA00606H
crossref_primary_10_1002_anie_202008153
Cites_doi 10.1039/c1sm06179h
10.1002/adfm.201602103
10.1002/adma.201100580
10.1002/admi.201600289
10.1016/j.carbon.2017.01.054
10.1021/acsmacrolett.5b00919
10.1039/C7CS00790F
10.1007/978-3-642-45232-1_61
10.1002/adma.201801934
10.1021/bm501629g
10.1002/anie.201710951
10.1021/bm400075f
10.1021/ma9711452
10.1038/srep30695
10.1021/ma00042a032
10.1021/la5017577
10.1021/acs.biomac.6b00145
10.1021/bm501161v
10.1016/j.nanoen.2017.06.043
10.1021/acsapm.9b00981
10.1038/ncomms8564
10.1002/anie.201709014
10.1016/j.mattod.2018.02.001
10.1021/acsnano.5b05074
10.1021/acssuschemeng.9b03640
10.1002/adfm.201904472
10.1016/j.cej.2019.123101
10.1002/adma.201704285
10.1002/adma.201304966
10.1021/acs.jpcc.6b07289
10.1039/C9TA00596J
10.1002/anie.201305137
10.1016/j.ijbiomac.2018.11.214
10.1002/adma.201701469
10.1016/j.mser.2018.01.002
10.32964/TJ13.5.9
10.1039/C8MH00586A
10.1021/ma201649f
10.1021/acsami.9b15153
10.1039/c0cs00108b
10.1002/ange.201405123
10.1021/acs.langmuir.6b03084
10.1016/j.polymer.2012.12.035
10.1021/acsmacrolett.9b00692
10.1021/acsami.9b16458
10.1021/acs.nanolett.6b04405
10.1021/acssuschemeng.7b01608
10.1023/A:1016624330458
10.32964/TJ13.6.57
10.1007/s10853-015-9409-y
10.1016/j.eurpolymj.2014.07.025
10.1007/s10570-012-9733-1
10.1002/adma.201405873
10.1021/bm101510r
10.1039/C4CC07596J
10.1021/la900323n
10.1021/am506786t
10.1016/j.colsurfa.2008.04.042
10.1021/acsnano.8b00512
10.1021/acsami.5b01679
10.1021/am500359f
10.1039/C7NR08966J
10.1080/02678299408036525
10.1039/c3ra42321b
10.22203/eCM.v019a19
10.1007/s10570-018-2142-3
10.1021/la702481v
10.1021/ja501642p
10.1021/acs.langmuir.6b00690
10.1039/C6CS00895J
10.1016/j.actbio.2012.08.050
10.1021/acsami.9b03731
10.1002/app.41719
10.1021/acs.langmuir.6b01827
10.1021/acs.macromol.9b00863
10.1016/j.eurpolymj.2018.10.006
10.1021/bm5017173
10.1039/C6GC00687F
10.1007/s11837-016-2018-7
10.1021/bm501355x
10.1016/j.carbon.2018.02.033
10.1021/acsnano.8b02366
10.1021/bm101315y
10.1021/acssuschemeng.8b05085
10.1016/j.matlet.2018.06.101
10.1002/adma.201601351
10.1021/acs.biomac.7b00026
10.1007/s10570-017-1377-8
10.1039/C7MH01139C
10.1021/la200971f
10.1021/acs.langmuir.7b03920
10.1016/j.carbpol.2019.04.059
10.1002/adfm.201808518
10.1002/adfm.201404304
10.1002/admi.201600233
10.7569/JRM.2016.634112
10.3390/colloids3020046
10.1002/adfm.201904127
10.1016/j.compscitech.2017.07.011
10.3390/app8122463
10.1016/j.biomaterials.2015.09.033
10.1039/c2nr30260h
10.1038/nnano.2014.248
10.1039/C2TA00386D
10.1021/bm401656a
10.1002/adma.201902977
10.1039/c001939a
10.1021/bm301755u
10.1021/bm1001203
10.1038/am.2013.69
10.1021/la302077a
10.1021/acsami.6b13528
10.1002/adfm.201301737
10.1016/j.cobme.2017.06.002
10.1007/s10570-018-2090-y
10.1021/mz300234a
10.1089/ind.2014.0024
10.1016/j.carbpol.2017.09.084
10.1021/bm201828g
10.1002/adma.201703779
10.1021/acs.macromol.5b02201
10.1021/acsnano.8b01084
10.1002/polb.21479
10.1021/acs.chemrev.7b00627
10.1021/acsami.7b13466
10.1021/acsami.8b15439
10.1039/C5NR00660K
10.1021/acsbiomaterials.9b00522
10.1002/anie.201407141
10.1039/C4NR07402E
10.1021/am501808h
10.1021/ma401788c
10.1021/bm300746r
10.3390/nano9081142
10.1002/jor.22802
10.1039/C9NR01602C
10.1021/acsnano.8b00997
10.2217/nnm.12.211
10.1002/adma.201704477
10.1039/c2jm30688c
10.1016/j.compscitech.2011.07.003
10.1021/bm400219u
10.1002/adma.201606208
10.1007/s10570-016-1132-6
10.1021/ma970503y
10.1016/S0141-8130(05)80008-X
10.1002/adfm.201800032
10.1038/426611a
10.1016/j.matdes.2017.09.054
10.1002/adma.201706705
10.1002/smll.201001715
10.1021/acsami.5b03091
10.1039/c3nr05929d
10.1007/s10570-015-0722-z
10.1002/adfm.201804531
10.1021/acs.biomac.6b00304
10.1039/C9TA03950C
10.1021/bm061215p
10.1021/acs.biomac.8b00100
10.1002/anie.201803076
10.1021/la001070m
10.1021/am400171y
10.1021/la0475728
10.1126/sciadv.aao6804
10.1021/acs.chemmater.7b00531
10.1021/acsami.8b09735
10.3390/ma10060572
10.1002/aenm.201702615
10.1002/smll.201801937
10.1038/srep20434
10.1021/acsanm.8b01268
10.1002/adma.201504784
10.1021/acsanm.9b00640
10.1002/advs.201802190
10.1002/smtd.201700222
10.1021/acs.nanolett.7b03600
10.1021/acs.iecr.6b04010
10.1039/C5NR02520F
10.1039/C5TA03089G
10.1080/14686996.2017.1401423
10.1209/0295-5075/107/28006
10.1021/cm502873c
10.1021/cr900339w
10.1021/bm0703970
10.1021/acsami.6b00410
10.1021/bm500524s
10.1016/j.nanoen.2015.02.015
10.1021/la0600402
10.1038/ncomms8259
10.1021/nn4060368
10.1007/s10971-017-4451-7
10.1021/bm201764y
10.1039/C4TA00743C
10.1002/adfm.201604619
10.1021/am507999s
10.1038/s41598-017-17713-3
10.1021/acsami.6b13577
10.3390/polym9090392
10.3390/polym11040712
10.1021/acsnano.6b03355
10.1039/c3ra42050g
10.1002/adma.201502284
10.1007/s00339-007-3882-3
10.1021/bm100684k
10.1111/j.1749-6632.1949.tb27296.x
10.1021/acsnano.7b02359
10.1021/acsami.7b08214
10.1002/adma.201004134
10.1021/acsnano.8b04379
10.1016/j.compositesa.2017.10.019
10.1021/cm5004164
10.1021/bm049300p
10.1039/C6RA06574K
10.1021/acs.cgd.6b00707
10.1021/acs.biomac.7b00059
10.1021/acsmacrolett.7b00087
10.1021/acssuschemeng.7b03439
10.1039/c3ta12591b
10.1038/s41467-019-08351-6
10.1021/acs.biomac.8b00023
10.1021/acs.langmuir.5b00924
10.1021/acsnano.8b01747
10.1002/smll.201802060
10.1021/ar400243m
10.1021/acssuschemeng.8b06713
10.1021/ma902383k
10.1021/mz400464d
10.1021/acsnano.9b03305
10.1002/polb.23490
10.1007/s10086-015-1533-4
10.1021/acs.biomac.5b00188
10.1039/c2jm33975g
10.1021/acs.biomac.7b00256
10.1002/anie.201001273
10.1002/anie.201410411
10.3183/NPPRJ-2014-29-01-p105-118
10.1039/C3TA14642A
10.1021/acsami.8b08153
10.1002/adma.201300256
10.1021/acsnano.6b05808
10.1007/s10570-019-02642-3
10.1039/c3cc47337f
10.1039/C3CS60204D
10.1002/smll.201805363
10.1021/am507726t
10.1016/j.carbpol.2017.06.032
10.1021/acs.chemmater.6b00792
10.1021/la9610462
10.1002/adma.201600427
10.1002/smll.201702084
10.1021/acsami.8b04985
10.1038/ncomms5018
10.1021/acs.langmuir.5b04008
10.1007/s10570-015-0745-5
10.1021/acssuschemeng.9b06291
10.1021/acsami.8b16232
10.1021/acs.langmuir.6b03765
10.1021/acs.biomac.5b01598
10.1007/s10853-018-2235-2
10.1016/j.carbpol.2016.11.023
10.1021/acssuschemeng.8b06081
10.1002/adma.201505555
10.1002/adhm.201700927
10.1021/acssuschemeng.6b00126
10.1016/j.polymer.2016.07.004
10.1002/anie.201402214
10.1002/adma.201402699
10.1038/nmat4089
10.1021/acsami.6b11578
10.1039/C5RA24539G
10.1016/j.ijbiomac.2019.08.055
10.1016/j.carbpol.2016.02.015
10.1039/C7TA02807E
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.202000657
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC11468739
32267033
10_1002_adma_202000657
ADMA202000657
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: China Scholarship Council Fellowship
– fundername: Natural Science and Engineering Research Council of Canada
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
5PM
ID FETCH-LOGICAL-c5357-92b7fa1f08b2810b507d7fd83ed0999831d66525af0c59dfa3183b26b152e7493
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 18:35:24 EDT 2025
Thu Jul 10 22:06:55 EDT 2025
Sun Jul 13 05:26:04 EDT 2025
Thu Apr 03 06:54:05 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 02:32:46 EDT 2025
Wed Jan 22 16:28:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords cellulose nanofibrils
self-assembly
structured biomaterials
biopolymer aerogels
cellulose nanocrystals
Language English
License Attribution
2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5357-92b7fa1f08b2810b507d7fd83ed0999831d66525af0c59dfa3183b26b152e7493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2739-3222
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000657
PMID 32267033
PQID 2550641397
PQPubID 2045203
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468739
proquest_miscellaneous_2387656509
proquest_journals_2550641397
pubmed_primary_32267033
crossref_citationtrail_10_1002_adma_202000657
crossref_primary_10_1002_adma_202000657
wiley_primary_10_1002_adma_202000657_ADMA202000657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 84
2010; 11
2013; 3
2013; 1
2013; 2
2010; 19
2019; 11
2019; 10
2019; 13
2019; 15
2016; 32
2014; 26
2012; 19
2014; 24
2017; 150
2016; 143
2014; 29
2013; 8
2012; 13
2017; 157
2013; 5
2014; 136
2018; 47
2013; 9
2018; 7
2018; 6
2018; 8
2018; 5
2013; 54
2018; 1
2006; 22
2011; 71
2018; 179
2019; 26
2015; 132
2013; 52
2010; 110
2007; 8
2014; 15
2014; 13
2008; 24
2019; 29
2018; 30
2012; 28
2018; 34
2012; 22
2014; 126
2010; 6
2019; 8
2019; 7
2018; 28
2019; 9
2019; 3
2019; 6
2019; 5
2020; 383
2019; 31
2015; 51
2019; 2
2018; 229
2018; 104
2015; 54
2016; 10
2014; 47
2018; 109
2016; 18
2016; 17
2018; 21
2016; 16
2017; 136
2011; 7
2014; 43
2018; 25
2016; 99
2016; 4
2018; 19
2016; 5
2016; 6
2010; 43
2016; 3
2020; 30
1997; 30
2018; 118
2017; 56
2005; 6
2008; 46
1994; 16
2019; 218
1992; 25
2018; 12
2014; 30
2007; 87
2016; 28
2018; 10
2016; 26
2016; 8
2018; 14
2017; 5
2017; 6
2017; 7
2017; 1
2017; 2
2013; 25
2017; 3
2017; 4
2019; 52
2015; 31
2015; 33
2018; 125
2019; 124
2016; 74
2005; 21
2011; 12
1992; 14
1949; 51
2017; 9
2017; 115
2020; 8
2015; 48
2018; 132
2014; 5
2013; 14
2020; 2
2014; 2
2017; 39
2017; 33
1997; 13
2014; 59
2011; 23
2001; 17
2014; 52
2014; 8
2011; 27
2014; 6
2014; 53
2015; 13
2009; 25
2015; 14
2015; 6
2015; 16
2015; 5
2013; 49
2015; 3
2012
2013; 46
2017; 27
2011; 40
2015; 11
2017; 24
2015; 10
2016; 51
2008; 325
2017; 174
2017; 29
2019; 140
2015; 9
2015; 7
2016; 120
2014; 107
2015; 25
2012; 2
2003; 426
2015; 27
2012; 1
2017; 17
2017; 11
2017; 10
2015; 22
2017; 13
2011; 50
2001; 8
2019
2011; 44
2016; 62
2017; 18
2015
2012; 4
1998; 31
2018; 53
2016; 68
2018; 57
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
e_1_2_7_263_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_275_1
e_1_2_7_252_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
Khalil H. P. S. A. (e_1_2_7_226_1) 2015
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_249_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_264_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_253_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
Reising A. B. (e_1_2_7_43_1) 2012; 2
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_265_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_254_1
e_1_2_7_231_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_266_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_255_1
e_1_2_7_157_1
e_1_2_7_270_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_278_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_267_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_271_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_277_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_268_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_260_1
e_1_2_7_113_1
e_1_2_7_51_1
Li V. C. F. (e_1_2_7_211_1) 2017; 7
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_257_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_272_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_276_1
e_1_2_7_17_1
e_1_2_7_62_1
Abitbol T. (e_1_2_7_34_1) 2012
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_269_1
e_1_2_7_186_1
e_1_2_7_246_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_261_1
Xu W. (e_1_2_7_256_1) 2019
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_258_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_273_1
e_1_2_7_250_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_262_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_259_1
e_1_2_7_138_1
e_1_2_7_274_1
e_1_2_7_251_1
References_xml – volume: 54
  start-page: 935
  year: 2013
  publication-title: Polymer
– volume: 7
  start-page: 6013
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  start-page: 345
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 15
  start-page: 4343
  year: 2014
  publication-title: Biomacromolecules
– volume: 25
  start-page: 7225
  year: 2018
  publication-title: Cellulose
– volume: 13
  start-page: 3029
  year: 1997
  publication-title: Langmuir
– volume: 12
  start-page: 6926
  year: 2018
  publication-title: ACS Nano
– volume: 19
  start-page: 1037
  year: 2018
  publication-title: Biomacromolecules
– start-page: 79
  year: 2012
  end-page: 103
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 17
  start-page: 6487
  year: 2017
  publication-title: Nano Lett.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 6387
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 39
  start-page: 140
  year: 2017
  publication-title: Nano Energy
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 32
  start-page: 7564
  year: 2016
  publication-title: Langmuir
– volume: 24
  start-page: 3825
  year: 2017
  publication-title: Cellulose
– volume: 16
  start-page: 822
  year: 2015
  publication-title: Biomacromolecules
– volume: 11
  start-page: 762
  year: 2010
  publication-title: Biomacromolecules
– volume: 10
  start-page: 4421
  year: 2018
  publication-title: Nanoscale
– volume: 84
  start-page: 475
  year: 2017
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 8
  start-page: 1934
  year: 2007
  publication-title: Biomacromolecules
– volume: 47
  start-page: 1088
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 1048
  year: 2005
  publication-title: Biomacromolecules
– volume: 51
  start-page: 530
  year: 2015
  publication-title: Chem. Commun.
– volume: 7
  start-page: 4595
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 9074
  year: 2019
  publication-title: ACS Nano
– volume: 34
  start-page: 646
  year: 2018
  publication-title: Langmuir
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 2011
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 287
  year: 2013
  publication-title: Nanomedicine
– volume: 24
  start-page: 327
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 8990
  year: 2011
  publication-title: Macromolecules
– volume: 21
  start-page: 720
  year: 2018
  publication-title: Mater. Today
– volume: 16
  start-page: 1489
  year: 2015
  publication-title: Biomacromolecules
– volume: 21
  start-page: 2034
  year: 2005
  publication-title: Langmuir
– volume: 30
  start-page: 9327
  year: 2014
  publication-title: Langmuir
– volume: 13
  start-page: 2528
  year: 2012
  publication-title: Biomacromolecules
– start-page: 191
  year: 2015
  end-page: 227
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 7471
  year: 2011
  publication-title: Langmuir
– volume: 27
  start-page: 2989
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6127
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 15
  start-page: 2327
  year: 2014
  publication-title: Biomacromolecules
– volume: 11
  start-page: 25
  year: 2015
  publication-title: Ind. Biotechnol.
– volume: 19
  start-page: 193
  year: 2010
  publication-title: Eur. Cells Mater.
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 47
  start-page: 2837
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 6437
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 91
  year: 2019
  publication-title: Int. J. Biol. Macromol.
– volume: 9
  start-page: 2010
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 150
  start-page: 79
  year: 2017
  publication-title: Compos. Sci. Technol.
– volume: 26
  start-page: 7178
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3298
  year: 2010
  publication-title: Soft Matter
– volume: 10
  start-page: 8443
  year: 2016
  publication-title: ACS Nano
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 2825
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2011
  publication-title: Soft Matter
– volume: 8
  start-page: 1334
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 4
  start-page: 327
  year: 2016
  publication-title: J. Renewable Mater.
– volume: 17
  start-page: 1358
  year: 2016
  publication-title: Biomacromolecules
– volume: 13
  year: 2017
  publication-title: Small
– volume: 46
  start-page: 8957
  year: 2013
  publication-title: Macromolecules
– volume: 12
  start-page: 831
  year: 2011
  publication-title: Biomacromolecules
– volume: 136
  start-page: 45
  year: 2017
  publication-title: Mater. Des.
– volume: 87
  start-page: 641
  year: 2007
  publication-title: Appl. Phys. A
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 28
  start-page: 6292
  year: 2016
  publication-title: Adv. Mater.
– volume: 13
  start-page: 57
  year: 2014
  publication-title: Tappi J.
– volume: 6
  start-page: 4083
  year: 2014
  publication-title: Nanoscale
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 2659
  year: 2014
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1185
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 74
  start-page: 42
  year: 2016
  publication-title: Biomaterials
– volume: 11
  start-page: 2498
  year: 2010
  publication-title: Biomacromolecules
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 17
  start-page: 1875
  year: 2016
  publication-title: Biomacromolecules
– volume: 126
  year: 2014
  publication-title: Angew. Chem.
– volume: 325
  start-page: 44
  year: 2008
  publication-title: Colloids Surf. A
– volume: 16
  start-page: 127
  year: 1994
  publication-title: Liq. Cryst.
– volume: 29
  start-page: 105
  year: 2014
  publication-title: Nord. Pulp Pap. Res. J.
– volume: 26
  start-page: 6016
  year: 2014
  publication-title: Chem. Mater.
– volume: 143
  start-page: 270
  year: 2016
  publication-title: Carbohydr. Polym.
– volume: 33
  start-page: 572
  year: 2015
  publication-title: J. Orthop. Res.
– volume: 1
  start-page: 867
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 12
  start-page: 7425
  year: 2018
  publication-title: ACS Nano
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 4305
  year: 2016
  publication-title: Langmuir
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 408
  year: 2018
  publication-title: Mater. Horiz.
– volume: 28
  year: 2012
  publication-title: Langmuir
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 6325
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 4620
  year: 2016
  publication-title: Cryst. Growth Des.
– volume: 426
  start-page: 611
  year: 2003
  publication-title: Nature
– volume: 57
  start-page: 7580
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 4010
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 132
  year: 2015
  publication-title: J. Appl. Polym. Sci.
– volume: 12
  start-page: 5816
  year: 2018
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 54
  start-page: 2888
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 104
  start-page: 101
  year: 2018
  publication-title: Composites, Part A
– volume: 7
  start-page: 302
  year: 2011
  publication-title: Small
– volume: 24
  start-page: 797
  year: 2017
  publication-title: Cellulose
– volume: 8
  start-page: 2463
  year: 2018
  publication-title: Appl. Sci.
– year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 71
  start-page: 1593
  year: 2011
  publication-title: Compos. Sci. Technol.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 110
  start-page: 3479
  year: 2010
  publication-title: Chem. Rev.
– volume: 4
  start-page: 2632
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 14
  start-page: 23
  year: 2015
  publication-title: Nat. Mater.
– volume: 5
  start-page: 4018
  year: 2014
  publication-title: Nat. Commun.
– volume: 23
  start-page: 2924
  year: 2011
  publication-title: Adv. Mater.
– volume: 9
  start-page: 392
  year: 2017
  publication-title: Polymers
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 5969
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1381
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 17
  start-page: 21
  year: 2001
  publication-title: Langmuir
– volume: 31
  start-page: 5717
  year: 1998
  publication-title: Macromolecules
– volume: 46
  start-page: 1430
  year: 2008
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 581
  year: 2019
  publication-title: Cellulose
– volume: 12
  start-page: 650
  year: 2011
  publication-title: Biomacromolecules
– volume: 43
  start-page: 3851
  year: 2010
  publication-title: Macromolecules
– volume: 125
  start-page: 1
  year: 2018
  publication-title: Mater. Sci. Eng., R
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 2428
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1223
  year: 2013
  publication-title: Biomacromolecules
– volume: 22
  start-page: 3715
  year: 2015
  publication-title: Cellulose
– volume: 2
  start-page: 4169
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 15
  start-page: 4579
  year: 2014
  publication-title: Biomacromolecules
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 132
  start-page: 199
  year: 2018
  publication-title: Carbon
– volume: 5
  start-page: 1076
  year: 2018
  publication-title: Mater. Horiz.
– volume: 53
  start-page: 9842
  year: 2018
  publication-title: J. Mater. Sci.
– volume: 2
  start-page: 1016
  year: 2013
  publication-title: ACS Macro Lett.
– volume: 31
  start-page: 6507
  year: 2015
  publication-title: Langmuir
– volume: 6
  year: 2014
  publication-title: NPG Asia Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 68
  start-page: 2383
  year: 2016
  publication-title: JOM
– volume: 47
  start-page: 2609
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 4707
  year: 2013
  publication-title: Acta Biomater.
– volume: 2
  start-page: 6337
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 179
  start-page: 333
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 6
  start-page: 9418
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 791
  year: 2014
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 12
  start-page: 4583
  year: 2018
  publication-title: ACS Nano
– volume: 18
  start-page: 1482
  year: 2017
  publication-title: Biomacromolecules
– volume: 18
  start-page: 3835
  year: 2016
  publication-title: Green Chem.
– volume: 99
  start-page: 147
  year: 2016
  publication-title: Polymer
– volume: 8
  start-page: 5
  year: 2001
  publication-title: Cellulose
– volume: 13
  start-page: 346
  year: 2015
  publication-title: Nano Energy
– volume: 15
  start-page: 3827
  year: 2014
  publication-title: Biomacromolecules
– volume: 53
  start-page: 8880
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 14
  start-page: 1160
  year: 2013
  publication-title: Biomacromolecules
– volume: 7
  start-page: 8092
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 33
  start-page: 1583
  year: 2017
  publication-title: Langmuir
– volume: 14
  start-page: 170
  year: 1992
  publication-title: Int. J. Biol. Macromol.
– volume: 32
  start-page: 442
  year: 2016
  publication-title: Langmuir
– volume: 15
  start-page: 618
  year: 2014
  publication-title: Biomacromolecules
– volume: 25
  start-page: 7675
  year: 2009
  publication-title: Langmuir
– volume: 157
  start-page: 1434
  year: 2017
  publication-title: Carbohydr. Polym.
– volume: 2
  start-page: 32
  year: 2012
  publication-title: J. Sci. Technol. For. Prod. Processes
– volume: 25
  start-page: 2175
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 918
  year: 2012
  publication-title: Biomacromolecules
– volume: 229
  start-page: 103
  year: 2018
  publication-title: Mater. Lett.
– volume: 174
  start-page: 318
  year: 2017
  publication-title: Carbohydr. Polym.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1276
  year: 2018
  publication-title: Biomacromolecules
– volume: 1
  start-page: 5279
  year: 2018
  publication-title: ACS Appl. Nano Mater.
– volume: 54
  start-page: 4304
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 3110
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 124
  start-page: 411
  year: 2019
  publication-title: Int. J. Biol. Macromol.
– volume: 3
  start-page: 46
  year: 2019
  publication-title: Colloids Interfaces
– volume: 18
  start-page: 959
  year: 2017
  publication-title: Sci. Technol. Adv. Mater.
– volume: 13
  start-page: 850
  year: 2012
  publication-title: Biomacromolecules
– volume: 109
  start-page: 367
  year: 2018
  publication-title: Eur. Polym. J.
– volume: 7
  start-page: 3959
  year: 2015
  publication-title: Nanoscale
– volume: 12
  start-page: 5141
  year: 2018
  publication-title: ACS Nano
– volume: 24
  start-page: 784
  year: 2008
  publication-title: Langmuir
– volume: 40
  start-page: 3941
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 107
  year: 2014
  publication-title: Europhys. Lett.
– volume: 1
  start-page: 63
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 712
  year: 2019
  publication-title: Polymers.
– volume: 52
  start-page: 5317
  year: 2019
  publication-title: Macromolecules
– volume: 6
  start-page: 7259
  year: 2015
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5167
  year: 2017
  publication-title: ACS Nano
– volume: 48
  start-page: 8844
  year: 2015
  publication-title: Macromolecules
– volume: 136
  start-page: 4788
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 8508
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 6378
  year: 2018
  publication-title: ACS Nano
– volume: 17
  start-page: 1439
  year: 2017
  publication-title: Nano Lett.
– volume: 10
  start-page: 277
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 3406
  year: 2016
  publication-title: Chem. Mater.
– volume: 22
  start-page: 2983
  year: 2015
  publication-title: Cellulose
– volume: 62
  start-page: 174
  year: 2016
  publication-title: J. Wood Sci.
– volume: 43
  start-page: 1519
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 185
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 4
  start-page: 3274
  year: 2012
  publication-title: Nanoscale
– volume: 7
  start-page: 3263
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 7564
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2235
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 26
  start-page: 2323
  year: 2014
  publication-title: Adv. Mater.
– volume: 51
  start-page: 218
  year: 2016
  publication-title: J. Mater. Sci.
– volume: 7
  start-page: 6287
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 17
  start-page: 649
  year: 2016
  publication-title: Biomacromolecules
– volume: 26
  start-page: 7585
  year: 2019
  publication-title: Cellulose
– volume: 28
  start-page: 5181
  year: 2016
  publication-title: Adv. Mater.
– volume: 14
  start-page: 503
  year: 2013
  publication-title: Biomacromolecules
– volume: 51
  start-page: 627
  year: 1949
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 25
  start-page: 4232
  year: 1992
  publication-title: Macromolecules
– volume: 28
  start-page: 7652
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 572
  year: 2017
  publication-title: Materials
– volume: 30
  start-page: 6395
  year: 1997
  publication-title: Macromolecules
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 8
  year: 2017
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 510
  year: 2019
  publication-title: Nat. Commun.
– volume: 49
  year: 2013
  publication-title: Chem. Commun.
– volume: 22
  start-page: 4899
  year: 2006
  publication-title: Langmuir
– volume: 218
  start-page: 103
  year: 2019
  publication-title: Carbohydr. Polym.
– volume: 59
  start-page: 302
  year: 2014
  publication-title: Eur. Polym. J.
– volume: 2
  start-page: 29
  year: 2017
  publication-title: Curr. Opin. Biomed. Eng.
– volume: 13
  start-page: 9
  year: 2014
  publication-title: Tappi J.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 29
  start-page: 4609
  year: 2017
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1016
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 27
  start-page: 6104
  year: 2015
  publication-title: Adv. Mater.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 3751
  year: 2011
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2485
  year: 2007
  publication-title: Biomacromolecules
– volume: 9
  start-page: 1142
  year: 2019
  publication-title: Nanomaterials
– volume: 7
  start-page: 7436
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 2353
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 32
  year: 2016
  publication-title: Langmuir
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 7
  start-page: 6612
  year: 2015
  publication-title: Nanoscale
– volume: 18
  start-page: 1293
  year: 2017
  publication-title: Biomacromolecules
– volume: 115
  start-page: 629
  year: 2017
  publication-title: Carbon
– volume: 8
  start-page: 2467
  year: 2014
  publication-title: ACS Nano
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 28
  start-page: 1765
  year: 2016
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1803
  year: 2017
  publication-title: Biomacromolecules
– volume: 50
  start-page: 5438
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 19
  start-page: 1599
  year: 2012
  publication-title: Cellulose
– ident: e_1_2_7_171_1
  doi: 10.1039/c1sm06179h
– ident: e_1_2_7_223_1
  doi: 10.1002/adfm.201602103
– ident: e_1_2_7_228_1
  doi: 10.1002/adma.201100580
– ident: e_1_2_7_277_1
  doi: 10.1002/admi.201600289
– ident: e_1_2_7_201_1
  doi: 10.1016/j.carbon.2017.01.054
– ident: e_1_2_7_264_1
  doi: 10.1021/acsmacrolett.5b00919
– ident: e_1_2_7_164_1
  doi: 10.1039/C7CS00790F
– start-page: 191
  volume-title: Handbook of Polymer Nanocomposites. Processing, Performance and Application
  year: 2015
  ident: e_1_2_7_226_1
  doi: 10.1007/978-3-642-45232-1_61
– ident: e_1_2_7_278_1
  doi: 10.1002/adma.201801934
– ident: e_1_2_7_125_1
  doi: 10.1021/bm501629g
– ident: e_1_2_7_258_1
  doi: 10.1002/anie.201710951
– ident: e_1_2_7_148_1
  doi: 10.1021/bm400075f
– ident: e_1_2_7_48_1
  doi: 10.1021/ma9711452
– ident: e_1_2_7_38_1
  doi: 10.1038/srep30695
– ident: e_1_2_7_69_1
  doi: 10.1021/ma00042a032
– ident: e_1_2_7_265_1
  doi: 10.1021/la5017577
– ident: e_1_2_7_273_1
  doi: 10.1021/acs.biomac.6b00145
– ident: e_1_2_7_56_1
  doi: 10.1021/bm501161v
– ident: e_1_2_7_165_1
  doi: 10.1016/j.nanoen.2017.06.043
– ident: e_1_2_7_13_1
  doi: 10.1021/acsapm.9b00981
– ident: e_1_2_7_29_1
  doi: 10.1038/ncomms8564
– ident: e_1_2_7_130_1
  doi: 10.1002/anie.201709014
– ident: e_1_2_7_11_1
  doi: 10.1016/j.mattod.2018.02.001
– ident: e_1_2_7_101_1
  doi: 10.1021/acsnano.5b05074
– ident: e_1_2_7_221_1
  doi: 10.1021/acssuschemeng.9b03640
– ident: e_1_2_7_131_1
  doi: 10.1002/adfm.201904472
– ident: e_1_2_7_157_1
  doi: 10.1016/j.cej.2019.123101
– ident: e_1_2_7_272_1
  doi: 10.1002/adma.201704285
– ident: e_1_2_7_116_1
  doi: 10.1002/adma.201304966
– ident: e_1_2_7_152_1
  doi: 10.1021/acs.jpcc.6b07289
– ident: e_1_2_7_166_1
  doi: 10.1039/C9TA00596J
– ident: e_1_2_7_209_1
  doi: 10.1002/anie.201305137
– ident: e_1_2_7_247_1
  doi: 10.1016/j.ijbiomac.2018.11.214
– ident: e_1_2_7_123_1
  doi: 10.1002/adma.201701469
– ident: e_1_2_7_133_1
  doi: 10.1016/j.mser.2018.01.002
– ident: e_1_2_7_6_1
  doi: 10.32964/TJ13.5.9
– ident: e_1_2_7_51_1
  doi: 10.1039/C8MH00586A
– ident: e_1_2_7_85_1
  doi: 10.1021/ma201649f
– ident: e_1_2_7_145_1
  doi: 10.1021/acsami.9b15153
– ident: e_1_2_7_3_1
  doi: 10.1039/c0cs00108b
– ident: e_1_2_7_172_1
  doi: 10.1002/ange.201405123
– ident: e_1_2_7_220_1
  doi: 10.1021/acs.langmuir.6b03084
– ident: e_1_2_7_57_1
  doi: 10.1016/j.polymer.2012.12.035
– ident: e_1_2_7_243_1
  doi: 10.1021/acsmacrolett.9b00692
– ident: e_1_2_7_250_1
  doi: 10.1021/acsami.9b16458
– ident: e_1_2_7_149_1
  doi: 10.1021/acs.nanolett.6b04405
– ident: e_1_2_7_179_1
  doi: 10.1021/acssuschemeng.7b01608
– ident: e_1_2_7_121_1
  doi: 10.1023/A:1016624330458
– start-page: 79
  volume-title: Handbook of Green Materials
  year: 2012
  ident: e_1_2_7_34_1
– ident: e_1_2_7_18_1
  doi: 10.32964/TJ13.6.57
– ident: e_1_2_7_40_1
  doi: 10.1007/s10853-015-9409-y
– ident: e_1_2_7_17_1
  doi: 10.1016/j.eurpolymj.2014.07.025
– ident: e_1_2_7_92_1
  doi: 10.1007/s10570-012-9733-1
– ident: e_1_2_7_269_1
  doi: 10.1002/adma.201405873
– ident: e_1_2_7_58_1
  doi: 10.1021/bm101510r
– ident: e_1_2_7_114_1
  doi: 10.1039/C4CC07596J
– volume: 7
  year: 2017
  ident: e_1_2_7_211_1
  publication-title: Sci. Rep.
– ident: e_1_2_7_33_1
  doi: 10.1021/la900323n
– ident: e_1_2_7_99_1
  doi: 10.1021/am506786t
– ident: e_1_2_7_35_1
  doi: 10.1016/j.colsurfa.2008.04.042
– ident: e_1_2_7_96_1
  doi: 10.1021/acsnano.8b00512
– ident: e_1_2_7_187_1
  doi: 10.1021/acsami.5b01679
– ident: e_1_2_7_21_1
  doi: 10.1021/am500359f
– ident: e_1_2_7_255_1
  doi: 10.1039/C7NR08966J
– ident: e_1_2_7_118_1
  doi: 10.1080/02678299408036525
– ident: e_1_2_7_198_1
  doi: 10.1039/c3ra42321b
– ident: e_1_2_7_252_1
  doi: 10.22203/eCM.v019a19
– ident: e_1_2_7_254_1
  doi: 10.1007/s10570-018-2142-3
– ident: e_1_2_7_31_1
  doi: 10.1021/la702481v
– ident: e_1_2_7_260_1
  doi: 10.1021/ja501642p
– ident: e_1_2_7_88_1
  doi: 10.1021/acs.langmuir.6b00690
– ident: e_1_2_7_12_1
  doi: 10.1039/C6CS00895J
– ident: e_1_2_7_54_1
  doi: 10.1016/j.actbio.2012.08.050
– ident: e_1_2_7_151_1
  doi: 10.1021/acsami.9b03731
– ident: e_1_2_7_15_1
  doi: 10.1002/app.41719
– ident: e_1_2_7_122_1
  doi: 10.1021/acs.langmuir.6b01827
– ident: e_1_2_7_52_1
  doi: 10.1021/acs.macromol.9b00863
– ident: e_1_2_7_240_1
  doi: 10.1016/j.eurpolymj.2018.10.006
– ident: e_1_2_7_169_1
  doi: 10.1021/bm5017173
– ident: e_1_2_7_23_1
  doi: 10.1039/C6GC00687F
– ident: e_1_2_7_8_1
  doi: 10.1007/s11837-016-2018-7
– ident: e_1_2_7_97_1
  doi: 10.1021/bm501355x
– ident: e_1_2_7_191_1
  doi: 10.1016/j.carbon.2018.02.033
– ident: e_1_2_7_66_1
  doi: 10.1021/acsnano.8b02366
– ident: e_1_2_7_141_1
  doi: 10.1021/bm101315y
– ident: e_1_2_7_189_1
  doi: 10.1021/acssuschemeng.8b05085
– ident: e_1_2_7_212_1
  doi: 10.1016/j.matlet.2018.06.101
– ident: e_1_2_7_224_1
  doi: 10.1002/adma.201601351
– ident: e_1_2_7_106_1
  doi: 10.1021/acs.biomac.7b00026
– ident: e_1_2_7_178_1
  doi: 10.1007/s10570-017-1377-8
– ident: e_1_2_7_271_1
  doi: 10.1039/C7MH01139C
– ident: e_1_2_7_268_1
  doi: 10.1021/la200971f
– ident: e_1_2_7_95_1
  doi: 10.1021/acs.langmuir.7b03920
– ident: e_1_2_7_219_1
  doi: 10.1016/j.carbpol.2019.04.059
– ident: e_1_2_7_104_1
  doi: 10.1002/adfm.201808518
– ident: e_1_2_7_112_1
  doi: 10.1002/adfm.201404304
– ident: e_1_2_7_276_1
  doi: 10.1002/admi.201600233
– ident: e_1_2_7_227_1
  doi: 10.7569/JRM.2016.634112
– ident: e_1_2_7_213_1
  doi: 10.3390/colloids3020046
– ident: e_1_2_7_257_1
  doi: 10.1002/adfm.201904127
– ident: e_1_2_7_234_1
  doi: 10.1016/j.compscitech.2017.07.011
– ident: e_1_2_7_140_1
  doi: 10.3390/app8122463
– ident: e_1_2_7_263_1
  doi: 10.1016/j.biomaterials.2015.09.033
– ident: e_1_2_7_90_1
  doi: 10.1039/c2nr30260h
– ident: e_1_2_7_186_1
  doi: 10.1038/nnano.2014.248
– ident: e_1_2_7_202_1
  doi: 10.1039/C2TA00386D
– ident: e_1_2_7_246_1
  doi: 10.1021/bm401656a
– ident: e_1_2_7_162_1
  doi: 10.1002/adma.201902977
– ident: e_1_2_7_173_1
  doi: 10.1039/c001939a
– ident: e_1_2_7_174_1
  doi: 10.1021/bm301755u
– ident: e_1_2_7_44_1
  doi: 10.1021/bm1001203
– ident: e_1_2_7_46_1
  doi: 10.1038/am.2013.69
– ident: e_1_2_7_147_1
  doi: 10.1021/la302077a
– ident: e_1_2_7_215_1
  doi: 10.1021/acsami.6b13528
– ident: e_1_2_7_108_1
  doi: 10.1002/adfm.201301737
– ident: e_1_2_7_65_1
  doi: 10.1016/j.cobme.2017.06.002
– ident: e_1_2_7_216_1
  doi: 10.1007/s10570-018-2090-y
– ident: e_1_2_7_77_1
  doi: 10.1021/mz300234a
– ident: e_1_2_7_7_1
  doi: 10.1089/ind.2014.0024
– ident: e_1_2_7_207_1
  doi: 10.1016/j.carbpol.2017.09.084
– ident: e_1_2_7_245_1
  doi: 10.1021/bm201828g
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201703779
– ident: e_1_2_7_119_1
  doi: 10.1021/acs.macromol.5b02201
– ident: e_1_2_7_64_1
  doi: 10.1021/acsnano.8b01084
– ident: e_1_2_7_73_1
  doi: 10.1002/polb.21479
– ident: e_1_2_7_136_1
  doi: 10.1021/acs.chemrev.7b00627
– ident: e_1_2_7_244_1
  doi: 10.1021/acsami.7b13466
– ident: e_1_2_7_167_1
  doi: 10.1021/acsami.8b15439
– ident: e_1_2_7_100_1
  doi: 10.1039/C5NR00660K
– ident: e_1_2_7_82_1
  doi: 10.1021/acsbiomaterials.9b00522
– ident: e_1_2_7_113_1
  doi: 10.1002/anie.201407141
– ident: e_1_2_7_203_1
  doi: 10.1039/C4NR07402E
– ident: e_1_2_7_70_1
  doi: 10.1021/am501808h
– ident: e_1_2_7_76_1
  doi: 10.1021/ma401788c
– ident: e_1_2_7_79_1
  doi: 10.1021/bm300746r
– ident: e_1_2_7_175_1
  doi: 10.3390/nano9081142
– year: 2019
  ident: e_1_2_7_256_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_251_1
  doi: 10.1002/jor.22802
– ident: e_1_2_7_154_1
  doi: 10.1039/C9NR01602C
– ident: e_1_2_7_163_1
  doi: 10.1021/acsnano.8b00997
– ident: e_1_2_7_10_1
  doi: 10.2217/nnm.12.211
– ident: e_1_2_7_84_1
  doi: 10.1002/adma.201704477
– ident: e_1_2_7_204_1
  doi: 10.1039/c2jm30688c
– ident: e_1_2_7_176_1
  doi: 10.1016/j.compscitech.2011.07.003
– ident: e_1_2_7_74_1
  doi: 10.1021/am501808h
– ident: e_1_2_7_26_1
  doi: 10.1021/bm400219u
– ident: e_1_2_7_124_1
  doi: 10.1002/adma.201606208
– ident: e_1_2_7_217_1
  doi: 10.1007/s10570-016-1132-6
– ident: e_1_2_7_49_1
  doi: 10.1021/ma970503y
– ident: e_1_2_7_86_1
  doi: 10.1016/S0141-8130(05)80008-X
– ident: e_1_2_7_98_1
  doi: 10.1002/adfm.201800032
– ident: e_1_2_7_142_1
  doi: 10.1038/426611a
– ident: e_1_2_7_235_1
  doi: 10.1016/j.matdes.2017.09.054
– ident: e_1_2_7_161_1
  doi: 10.1002/adma.201706705
– ident: e_1_2_7_24_1
  doi: 10.1002/smll.201001715
– ident: e_1_2_7_231_1
  doi: 10.1021/acsami.5b03091
– ident: e_1_2_7_200_1
  doi: 10.1039/c3nr05929d
– ident: e_1_2_7_45_1
  doi: 10.1007/s10570-015-0722-z
– ident: e_1_2_7_107_1
  doi: 10.1002/adfm.201804531
– ident: e_1_2_7_182_1
  doi: 10.1021/acs.biomac.6b00304
– ident: e_1_2_7_261_1
  doi: 10.1039/C9TA03950C
– ident: e_1_2_7_30_1
  doi: 10.1021/bm061215p
– ident: e_1_2_7_68_1
  doi: 10.1021/acs.biomac.8b00100
– ident: e_1_2_7_153_1
  doi: 10.1002/anie.201803076
– ident: e_1_2_7_27_1
  doi: 10.1021/la001070m
– ident: e_1_2_7_194_1
  doi: 10.1021/am400171y
– ident: e_1_2_7_126_1
  doi: 10.1021/la0475728
– ident: e_1_2_7_270_1
  doi: 10.1126/sciadv.aao6804
– ident: e_1_2_7_135_1
  doi: 10.1021/acs.chemmater.7b00531
– ident: e_1_2_7_208_1
  doi: 10.1021/acsami.8b09735
– ident: e_1_2_7_249_1
  doi: 10.3390/ma10060572
– ident: e_1_2_7_150_1
  doi: 10.1002/aenm.201702615
– ident: e_1_2_7_229_1
  doi: 10.1002/smll.201801937
– ident: e_1_2_7_183_1
  doi: 10.1038/srep20434
– ident: e_1_2_7_237_1
  doi: 10.1021/acsanm.8b01268
– ident: e_1_2_7_225_1
  doi: 10.1002/adma.201504784
– ident: e_1_2_7_134_1
  doi: 10.1021/acsanm.9b00640
– ident: e_1_2_7_275_1
  doi: 10.1002/advs.201802190
– ident: e_1_2_7_146_1
  doi: 10.1002/smtd.201700222
– ident: e_1_2_7_80_1
  doi: 10.1021/acs.nanolett.7b03600
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.iecr.6b04010
– ident: e_1_2_7_111_1
  doi: 10.1039/C5NR02520F
– ident: e_1_2_7_137_1
  doi: 10.1039/C5TA03089G
– ident: e_1_2_7_267_1
  doi: 10.1080/14686996.2017.1401423
– ident: e_1_2_7_72_1
  doi: 10.1209/0295-5075/107/28006
– ident: e_1_2_7_214_1
  doi: 10.1021/cm502873c
– ident: e_1_2_7_4_1
  doi: 10.1021/cr900339w
– ident: e_1_2_7_25_1
  doi: 10.1021/bm0703970
– ident: e_1_2_7_102_1
  doi: 10.1021/acsami.6b00410
– ident: e_1_2_7_9_1
  doi: 10.1021/bm500524s
– ident: e_1_2_7_160_1
  doi: 10.1016/j.nanoen.2015.02.015
– ident: e_1_2_7_71_1
  doi: 10.1021/la0600402
– ident: e_1_2_7_210_1
  doi: 10.1038/ncomms8259
– ident: e_1_2_7_155_1
  doi: 10.1021/nn4060368
– ident: e_1_2_7_170_1
  doi: 10.1007/s10971-017-4451-7
– ident: e_1_2_7_41_1
  doi: 10.1021/bm201764y
– ident: e_1_2_7_138_1
  doi: 10.1039/C4TA00743C
– ident: e_1_2_7_67_1
  doi: 10.1002/adfm.201604619
– ident: e_1_2_7_188_1
  doi: 10.1021/am507999s
– ident: e_1_2_7_59_1
  doi: 10.1038/s41598-017-17713-3
– ident: e_1_2_7_206_1
  doi: 10.1021/acsami.6b13577
– ident: e_1_2_7_232_1
  doi: 10.3390/polym9090392
– ident: e_1_2_7_190_1
  doi: 10.3390/polym11040712
– ident: e_1_2_7_94_1
  doi: 10.1021/acsnano.6b03355
– ident: e_1_2_7_199_1
  doi: 10.1039/c3ra42050g
– ident: e_1_2_7_222_1
  doi: 10.1002/adma.201502284
– ident: e_1_2_7_78_1
  doi: 10.1007/s00339-007-3882-3
– ident: e_1_2_7_55_1
  doi: 10.1021/bm100684k
– ident: e_1_2_7_83_1
  doi: 10.1111/j.1749-6632.1949.tb27296.x
– ident: e_1_2_7_158_1
  doi: 10.1021/acsnano.7b02359
– ident: e_1_2_7_159_1
  doi: 10.1021/acsami.7b08214
– ident: e_1_2_7_196_1
  doi: 10.1002/adma.201004134
– ident: e_1_2_7_1_1
  doi: 10.1021/acsnano.8b04379
– ident: e_1_2_7_60_1
  doi: 10.1016/j.compositesa.2017.10.019
– ident: e_1_2_7_177_1
  doi: 10.1021/cm5004164
– ident: e_1_2_7_20_1
  doi: 10.1021/bm049300p
– ident: e_1_2_7_37_1
  doi: 10.1039/C6RA06574K
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.cgd.6b00707
– ident: e_1_2_7_242_1
  doi: 10.1021/acs.biomac.7b00059
– ident: e_1_2_7_181_1
  doi: 10.1021/acsmacrolett.7b00087
– ident: e_1_2_7_139_1
  doi: 10.1021/acssuschemeng.7b03439
– ident: e_1_2_7_144_1
  doi: 10.1039/c3ta12591b
– ident: e_1_2_7_117_1
  doi: 10.1038/s41467-019-08351-6
– ident: e_1_2_7_230_1
  doi: 10.1021/acs.biomac.8b00023
– ident: e_1_2_7_87_1
  doi: 10.1021/acs.langmuir.5b00924
– ident: e_1_2_7_185_1
  doi: 10.1021/acsnano.8b01747
– ident: e_1_2_7_89_1
  doi: 10.1002/smll.201802060
– ident: e_1_2_7_47_1
  doi: 10.1021/ar400243m
– ident: e_1_2_7_238_1
  doi: 10.1021/acssuschemeng.8b06713
– ident: e_1_2_7_91_1
  doi: 10.1021/ma902383k
– ident: e_1_2_7_110_1
  doi: 10.1021/mz400464d
– ident: e_1_2_7_143_1
  doi: 10.1021/acsnano.9b03305
– ident: e_1_2_7_19_1
  doi: 10.1002/polb.23490
– ident: e_1_2_7_61_1
  doi: 10.1007/s10086-015-1533-4
– ident: e_1_2_7_253_1
  doi: 10.1021/acs.biomac.5b00188
– ident: e_1_2_7_195_1
  doi: 10.1039/c2jm33975g
– ident: e_1_2_7_236_1
  doi: 10.1021/acs.biomac.7b00256
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.201001273
– ident: e_1_2_7_115_1
  doi: 10.1002/anie.201410411
– ident: e_1_2_7_14_1
  doi: 10.3183/NPPRJ-2014-29-01-p105-118
– ident: e_1_2_7_193_1
  doi: 10.1039/C3TA14642A
– ident: e_1_2_7_62_1
  doi: 10.1021/acsami.8b08153
– ident: e_1_2_7_197_1
  doi: 10.1002/adma.201300256
– ident: e_1_2_7_184_1
  doi: 10.1021/acsnano.6b05808
– ident: e_1_2_7_168_1
  doi: 10.1007/s10570-019-02642-3
– ident: e_1_2_7_93_1
  doi: 10.1039/c3cc47337f
– ident: e_1_2_7_16_1
  doi: 10.1039/C3CS60204D
– ident: e_1_2_7_180_1
  doi: 10.1002/smll.201805363
– ident: e_1_2_7_53_1
  doi: 10.1021/am507726t
– ident: e_1_2_7_32_1
  doi: 10.1016/j.carbpol.2017.06.032
– ident: e_1_2_7_192_1
  doi: 10.1021/acs.chemmater.6b00792
– ident: e_1_2_7_120_1
  doi: 10.1021/la9610462
– ident: e_1_2_7_274_1
  doi: 10.1002/adma.201600427
– ident: e_1_2_7_103_1
  doi: 10.1002/smll.201702084
– ident: e_1_2_7_50_1
  doi: 10.1021/acsami.8b04985
– ident: e_1_2_7_63_1
  doi: 10.1038/ncomms5018
– ident: e_1_2_7_75_1
  doi: 10.1021/acs.langmuir.5b04008
– ident: e_1_2_7_205_1
  doi: 10.1007/s10570-015-0745-5
– ident: e_1_2_7_266_1
  doi: 10.1021/acssuschemeng.9b06291
– ident: e_1_2_7_262_1
  doi: 10.1021/acsami.8b16232
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.langmuir.6b03765
– ident: e_1_2_7_81_1
  doi: 10.1021/acs.biomac.5b01598
– ident: e_1_2_7_218_1
  doi: 10.1007/s10853-018-2235-2
– ident: e_1_2_7_156_1
  doi: 10.1016/j.carbpol.2016.11.023
– ident: e_1_2_7_239_1
  doi: 10.1021/acssuschemeng.8b06081
– ident: e_1_2_7_128_1
  doi: 10.1002/adma.201505555
– volume: 2
  start-page: 32
  year: 2012
  ident: e_1_2_7_43_1
  publication-title: J. Sci. Technol. For. Prod. Processes
– ident: e_1_2_7_127_1
  doi: 10.1002/adhm.201700927
– ident: e_1_2_7_22_1
  doi: 10.1021/acssuschemeng.6b00126
– ident: e_1_2_7_42_1
  doi: 10.1016/j.polymer.2016.07.004
– ident: e_1_2_7_109_1
  doi: 10.1002/anie.201402214
– ident: e_1_2_7_259_1
  doi: 10.1002/adma.201402699
– ident: e_1_2_7_129_1
  doi: 10.1038/nmat4089
– ident: e_1_2_7_241_1
  doi: 10.1021/acsami.6b11578
– ident: e_1_2_7_233_1
  doi: 10.1039/C5RA24539G
– ident: e_1_2_7_105_1
  doi: 10.1016/j.ijbiomac.2019.08.055
– ident: e_1_2_7_248_1
  doi: 10.1016/j.carbpol.2016.02.015
– ident: e_1_2_7_132_1
  doi: 10.1039/C7TA02807E
SSID ssj0009606
Score 2.6838238
SecondaryResourceType review_article
Snippet It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000657
SubjectTerms Anisotropy
Biomimetic materials
biopolymer aerogels
Cellulose
cellulose nanocrystals
cellulose nanofibrils
Functional materials
Material properties
Materials science
Nanocrystals
Porous materials
Progress Report
Progress Reports
Rheological properties
self‐assembly
Silk
Strategic materials
structured biomaterials
Surface charge
Title Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottom‐Up Fabrication
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000657
https://www.ncbi.nlm.nih.gov/pubmed/32267033
https://www.proquest.com/docview/2550641397
https://www.proquest.com/docview/2387656509
https://pubmed.ncbi.nlm.nih.gov/PMC11468739
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMct6AkOPMprS6mMhMQpbWLHjsNt27KqkBZVwEq9RXbsqBFLstrNHtpTPwIS37CfhBknm-5SVUhwjGLn4cyM_3FmfiHkHUfoiTAmsJg7GEttA8OVCUxodBg5KW2EtcPjz_JkEn86E2drVfwtH6JfcEPP8PEaHVybxcENNFRbzw3ypSYCy8kjLhGef_zlhh-F8tzD9rgIUhmrFbUxZAeb3TdnpVtS83bG5LqS9VPR6DHRq5toM1C-7y8bs59f_sF3_J-7fEIedTqVDlvDekruuWqbPFyjFz4jsxHMie1SIh3rpjVlivUqFGJ2jZ8EltN64T7QSVNOy0voRL96XO1y7q6vfp3id4B5c0H7hLzzcragZUUP66apf1xf_ZzM6Eibebeu-JxMRh-_HZ0E3Q8cglxwkQQpM0mhoyJUhqkoNKA9bVJYxZ1FYap4ZKUUTOgizEVqC40BxjBpQFS4JE75C7JV1ZV7RahjzJkilXmUWNB8BbxmpakIrVUiYaHjAxKsHmCWd3Rz_MnGNGu5zCzDkcz6kRyQ9337Wcv1uLPl7soess6_Fxm8iIGWQ_U8IG_73eCZOLa6cvUS2nCYaQQSCgfkZWs-_akgjEqItXDZasOw-gZI_d7cU5Xnnv6NZeQq4XBQ5g3nL5efDY_Hw35r5186vSYPGGby-CTlXbIFluLegBRrzB65z-LTPe90vwEw8y9e
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZtcmh7KEn6t03SKlDoycSWLFnObZN02bbZEGgWejPSSiaGrb3seg_tKY9Q6BvmSTIje50soRR6NJJsodHMfBrPfCLkA0fSE2FMYDF3MJbaBoYrE5jQ6DByUtoIa4dH53I4jr98F6tsQqyFafghuoAbaoa316jgGJA-vGMN1dYTB_laE5E8JpsxgHPM6mPxxR3vrvTXa-LvviCVsVrxNobscH38ul96ADYf5kzex7LeGQ22yPMWRdJ-I_Zt8siVO-TZPW7BF2Q2AI_VBProSNfNRqNYTULBolYYsF9Oq4U7ouO6mBa_YBD95slkl3N3c_3nAqP08_on7dLlrorZghYlPa7quvpxc_17PKMDbeZt1O8lGQ8-XZ4Mg_Z6hWAiuEiClJkk11EeKsNUFBpAhjbJreLOImxUPLJSCiZ0Hk5EanON6m-YNODyXRKn_BXZKKvSvSHUMeZMnspJlFhAZDkcgtJUhNYqkbDQ8R4JVoubTVrucbwCY5o1rMksQ2FknTB65GPXf9awbvy1595KVlmrfYsMjkmAtBDb9shB1wx6g2urS1ctoQ8HPyCQP7BHXjei7T4FRk6CJYRpqzWhdx2Qk3u9pSyuPDc3FnmrhMNLmd8f_5h-1j8d9bunt_8z6D15MrwcnWVnn8-_7pKnDHNufDrxHtmAXeP2ATTV5p1Xi1vQMhDU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOvB8LBYyExCltYsdOwm2hROWxVQWs1Ftkx44asSTRbvZAT_0JSPzD_hJmnGy6S4WQ4Bh5nNjOzPizPfOZkBccSU-E1p7B2MFQKuNpHmtP-1r5gZXSBJg7PDmQ-9Pw_ZE4Wsvi7_ghhg03tAznr9HAG1PsnpOGKuN4g1yqiYgukyuhBDiBsOjTOYEU4nPHtseFl8gwXtE2-mx3s_7mtHQBa14MmVyHsm4uSm8StepFF4LydWfZ6p385DeCx__p5i1yoweqdNxp1m1yyVZ3yPU1-sK7pElhUuz2EulEtZ0uU0xYoeC0azwTWM7qhX1Fp205K0-gEv3s-GqXc3t2-vMQDwLm7Xc6ROQdl82ClhV9Xbdt_e3s9Me0oanS835j8R6Zpm-_vNn3-hscvFxwEXkJ01GhgsKPNYsDXwP4NFFhYm4NItOYB0ZKwYQq_FwkplDoYTSTGlCFjcKE3ydbVV3Zh4RaxqwuEpkHkQHQV8A6K0mEb0wsIuZbPiLe6gdmeU9vjrdszLKOmJllOJLZMJIj8nKQbzpijz9Kbq_0IesNfJHBSgzAHMLnEXk-FINp4tiqytZLkOEw1QikKByRB536DJ8CPyrB2UKz4w3FGgSQ9nuzpCqPHf035pHHEYeXMqc4f2l-Nt6bjIenR_9S6Rm5eriXZh_fHXx4TK4xjOpxAcvbZAuUxj4BWNbqp87yfgExjDFV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Materials+from+Nanocellulose%3A+Utilizing+Structure-Property+Relationships+in+Bottom-Up+Fabrication&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=De+France%2C+Kevin&rft.au=Zeng%2C+Zhihui&rft.au=Wu%2C+Tingting&rft.au=Nystr%C3%B6m%2C+Gustav&rft.date=2021-07-01&rft.eissn=1521-4095&rft.volume=33&rft.issue=28&rft.spage=e2000657&rft_id=info:doi/10.1002%2Fadma.202000657&rft_id=info%3Apmid%2F32267033&rft.externalDocID=32267033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon