Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottom‐Up Fabrication
It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom‐up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose—both cellulose...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 28; pp. e2000657 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202000657 |
Cover
Abstract | It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom‐up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose—both cellulose nanocrystals and cellulose nanofibrils—has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure‐based functionality within nanocellulose‐based bottom‐up fabricated materials. Herein, the organization of nanocellulose into biomimetic‐aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process‐induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.
As a natural and renewable building block for bottom‐up fabrication, nanocellulose has gained considerable interest for the assembly of sophisticated materials with advanced functionality. The organization of nanocellulose into aligned, porous, and fibrous materials is highlighted, focusing on the inherent material properties enabling the formation of such structures, along with discussing key advancements and critical challenges within the field. |
---|---|
AbstractList | It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom‐up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose—both cellulose nanocrystals and cellulose nanofibrils—has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure‐based functionality within nanocellulose‐based bottom‐up fabricated materials. Herein, the organization of nanocellulose into biomimetic‐aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process‐induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.
As a natural and renewable building block for bottom‐up fabrication, nanocellulose has gained considerable interest for the assembly of sophisticated materials with advanced functionality. The organization of nanocellulose into aligned, porous, and fibrous materials is highlighted, focusing on the inherent material properties enabling the formation of such structures, along with discussing key advancements and critical challenges within the field. It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom-up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose-both cellulose nanocrystals and cellulose nanofibrils-has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure-based functionality within nanocellulose-based bottom-up fabricated materials. Herein, the organization of nanocellulose into biomimetic-aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process-induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose. It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom-up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose-both cellulose nanocrystals and cellulose nanofibrils-has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure-based functionality within nanocellulose-based bottom-up fabricated materials. Herein, the organization of nanocellulose into biomimetic-aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process-induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom-up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose-both cellulose nanocrystals and cellulose nanofibrils-has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure-based functionality within nanocellulose-based bottom-up fabricated materials. Herein, the organization of nanocellulose into biomimetic-aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process-induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose. |
Author | De France, Kevin Zeng, Zhihui Wu, Tingting Nyström, Gustav |
AuthorAffiliation | 1 Laboratory for Cellulose and Wood Materials Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 Dübendorf 8600 Switzerland 2 Department of Health Science and Technology ETH Zürich Schmelzbergstrasse 9 Zürich 8092 Switzerland |
AuthorAffiliation_xml | – name: 2 Department of Health Science and Technology ETH Zürich Schmelzbergstrasse 9 Zürich 8092 Switzerland – name: 1 Laboratory for Cellulose and Wood Materials Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 Dübendorf 8600 Switzerland |
Author_xml | – sequence: 1 givenname: Kevin surname: De France fullname: De France, Kevin organization: Swiss Federal Laboratories for Materials Science and Technology (Empa) – sequence: 2 givenname: Zhihui surname: Zeng fullname: Zeng, Zhihui organization: Swiss Federal Laboratories for Materials Science and Technology (Empa) – sequence: 3 givenname: Tingting surname: Wu fullname: Wu, Tingting organization: Swiss Federal Laboratories for Materials Science and Technology (Empa) – sequence: 4 givenname: Gustav orcidid: 0000-0003-2739-3222 surname: Nyström fullname: Nyström, Gustav email: gustav.nystroem@empa.ch organization: ETH Zürich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32267033$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUsUiU03GfwT2zEbNJQOILUFAbO2nMRpXTl2sJ2i6aqPgMQb9klIOv2BSoiVF_c7x_eeswO2nHcagOcIzhGE-JVqOjXHEEMIGeWPwAxRjPICCroFZlAQmgtWlNtgJ8azkREMsidgm2DMOCRkBvrl4OpkvFM2O1JJB6NszNrgu-xYOV9rawfro36drZKx5sK4k-xrCkOdhqCvLn99Dr7XIa2zL9qqySeemj5mxmVvfUq-u7r8ueqzpaqCqa_nT8HjdvxCP7t5d8FqefBt_0N--On9x_3FYV5TQnkucMVbhVpYVrhEsKKQN7xtSqIbKIQoCWoYo5iqFtZUNK0iqCQVZtV4v-aFILvgzca3H6pON7V2KSgr-2A6FdbSKyP_njhzKk_8uUSoYCUnk8PejUPw3wcdk-xMnAJRTvshSkxKziijcEJfPkDP_BDGTEeKUsgKRAQfqRd_rnS3y20bI1BsgDr4GINuZW3SdWrjhsZKBOVUupxKl3elj7L5A9mt8z8FYiP4Yaxe_4eWi3dHi3vtbwiawtU |
CitedBy_id | crossref_primary_10_1007_s40820_022_00883_9 crossref_primary_10_1080_09276440_2022_2111773 crossref_primary_10_1039_D2RA03556A crossref_primary_10_1007_s00226_022_01371_4 crossref_primary_10_1002_smtd_202100889 crossref_primary_10_1021_acsami_1c17894 crossref_primary_10_3103_S1062873822100070 crossref_primary_10_1021_acsapm_1c01430 crossref_primary_10_1002_cjoc_202200552 crossref_primary_10_1021_acs_biomac_3c01353 crossref_primary_10_3390_polym15102323 crossref_primary_10_1021_acsbiomaterials_0c01158 crossref_primary_10_1039_D1TA02412D crossref_primary_10_1088_2043_6262_ad7c1a crossref_primary_10_1039_D0TA05961G crossref_primary_10_1021_acs_jpcc_1c03506 crossref_primary_10_1080_15583724_2024_2374929 crossref_primary_10_1021_acsabm_1c00712 crossref_primary_10_1016_j_cis_2024_103232 crossref_primary_10_1021_acsami_2c14406 crossref_primary_10_1002_ange_202008153 crossref_primary_10_1007_s40820_021_00627_1 crossref_primary_10_1002_cjce_25253 crossref_primary_10_1002_adfm_202104991 crossref_primary_10_3389_fenrg_2022_879257 crossref_primary_10_1007_s10570_023_05325_2 crossref_primary_10_1002_smm2_1118 crossref_primary_10_1007_s11356_024_35449_2 crossref_primary_10_5458_bag_13_4_203 crossref_primary_10_1002_adfm_202213357 crossref_primary_10_1016_j_pmatsci_2023_101152 crossref_primary_10_3389_fmats_2022_1072249 crossref_primary_10_1002_adma_202418464 crossref_primary_10_1002_smll_202401283 crossref_primary_10_1007_s12274_023_5521_5 crossref_primary_10_1002_anie_202306518 crossref_primary_10_1021_acsnano_1c00856 crossref_primary_10_1002_smll_202104702 crossref_primary_10_1021_acsomega_1c05069 crossref_primary_10_1016_j_compositesa_2022_106907 crossref_primary_10_1021_acs_biomac_1c00422 crossref_primary_10_1021_acs_biomac_0c01267 crossref_primary_10_1021_acsnano_0c07613 crossref_primary_10_1007_s42114_022_00463_w crossref_primary_10_3390_coatings15020149 crossref_primary_10_1016_j_addma_2024_104449 crossref_primary_10_1039_D4NR02840F crossref_primary_10_1021_acs_macromol_3c00369 crossref_primary_10_1002_ange_202117703 crossref_primary_10_1016_j_ijbiomac_2024_134520 crossref_primary_10_1002_adma_202412858 crossref_primary_10_1021_acsami_4c06182 crossref_primary_10_1002_smtd_202200664 crossref_primary_10_1002_adfm_202414222 crossref_primary_10_1016_j_carbpol_2021_118033 crossref_primary_10_1007_s42765_024_00388_7 crossref_primary_10_1021_acs_iecr_1c01830 crossref_primary_10_1039_D4CS00387J crossref_primary_10_24323_akademik_gida_1554476 crossref_primary_10_1016_j_compositesa_2022_106970 crossref_primary_10_1016_j_matt_2022_06_044 crossref_primary_10_1021_acs_iecr_4c02979 crossref_primary_10_1002_adsu_202000251 crossref_primary_10_1007_s10570_022_04717_0 crossref_primary_10_1002_adma_202400084 crossref_primary_10_1002_anie_202117703 crossref_primary_10_1039_D3SM00798G crossref_primary_10_3390_nano12162888 crossref_primary_10_1002_adma_202401858 crossref_primary_10_1016_j_compstruct_2023_116896 crossref_primary_10_1016_j_cis_2022_102758 crossref_primary_10_1021_acs_biomac_3c00380 crossref_primary_10_1021_acsnano_3c11335 crossref_primary_10_1002_cssc_202201955 crossref_primary_10_1007_s00253_023_12381_y crossref_primary_10_1039_D0QM00748J crossref_primary_10_1515_ntrev_2024_0006 crossref_primary_10_1007_s12274_024_6824_x crossref_primary_10_1016_j_ijbiomac_2023_126287 crossref_primary_10_2115_fiberst_2020_0039 crossref_primary_10_1002_advs_202000979 crossref_primary_10_1021_acs_biomac_2c00813 crossref_primary_10_3390_nano12193483 crossref_primary_10_1007_s10570_022_04577_8 crossref_primary_10_1021_acsmaterialslett_2c00778 crossref_primary_10_1039_D3NR02109B crossref_primary_10_3390_ma17215339 crossref_primary_10_1002_advs_202400403 crossref_primary_10_1021_acsagscitech_4c00383 crossref_primary_10_1021_acs_chemrev_1c00683 crossref_primary_10_1016_j_ultsonch_2024_106898 crossref_primary_10_1016_j_carbpol_2023_121437 crossref_primary_10_1002_macp_202400150 crossref_primary_10_1002_admt_202300652 crossref_primary_10_1038_s41467_024_53708_1 crossref_primary_10_1007_s10570_021_04198_7 crossref_primary_10_1007_s10570_024_06265_1 crossref_primary_10_1002_adfm_202502946 crossref_primary_10_1016_j_cej_2024_154105 crossref_primary_10_1002_ange_202306518 crossref_primary_10_1021_acssuschemeng_3c01113 crossref_primary_10_1038_s41467_022_31283_7 crossref_primary_10_1007_s40843_022_2279_3 crossref_primary_10_1002_advs_202303235 crossref_primary_10_1016_j_matt_2022_05_043 crossref_primary_10_1021_acs_iecr_0c04319 crossref_primary_10_1039_D3TA05636H crossref_primary_10_1002_adma_202101368 crossref_primary_10_1016_j_mtchem_2022_100886 crossref_primary_10_1016_j_ccr_2021_214263 crossref_primary_10_1002_adfm_202401687 crossref_primary_10_1016_j_ijbiomac_2025_141173 crossref_primary_10_1021_acsami_0c14485 crossref_primary_10_1007_s10570_022_04712_5 crossref_primary_10_1021_acs_iecr_2c01402 crossref_primary_10_1039_D2TB02611B crossref_primary_10_1021_acssuschemeng_1c01901 crossref_primary_10_1021_acs_chemrev_0c01333 crossref_primary_10_1002_adma_202417617 crossref_primary_10_1021_acs_jpcc_3c00577 crossref_primary_10_1002_pen_26535 crossref_primary_10_1016_j_jcis_2023_12_164 crossref_primary_10_1039_D0NA00408A crossref_primary_10_1016_j_matt_2022_11_024 crossref_primary_10_3390_cryst12010106 crossref_primary_10_1007_s10570_021_04407_3 crossref_primary_10_1016_j_carbpol_2022_119234 crossref_primary_10_1039_D1SM00251A crossref_primary_10_1021_acssuschemeng_4c08984 crossref_primary_10_1002_masy_202300113 crossref_primary_10_1039_D3NR03087C crossref_primary_10_1002_admi_202200988 crossref_primary_10_1007_s10570_023_05567_0 crossref_primary_10_1021_acsami_3c01794 crossref_primary_10_1016_j_carbon_2022_01_055 crossref_primary_10_1016_j_cej_2023_141402 crossref_primary_10_3390_coatings12101598 crossref_primary_10_1016_j_pmatsci_2023_101164 crossref_primary_10_1016_j_carbpol_2024_122148 crossref_primary_10_1021_acs_biomac_2c01172 crossref_primary_10_1002_adma_202400436 crossref_primary_10_5937_savteh2102073K crossref_primary_10_1002_admi_202101593 crossref_primary_10_1002_aelm_202000944 crossref_primary_10_1002_macp_202100501 crossref_primary_10_1039_D2CY01904C crossref_primary_10_1016_j_carbpol_2023_121383 crossref_primary_10_1016_j_cej_2023_142166 crossref_primary_10_1016_j_snb_2024_135375 crossref_primary_10_1007_s10570_023_05324_3 crossref_primary_10_1007_s12649_021_01619_3 crossref_primary_10_1002_asia_202200257 crossref_primary_10_1007_s10570_022_04750_z crossref_primary_10_1021_acsami_2c01729 crossref_primary_10_1016_j_seppur_2024_128794 crossref_primary_10_3390_molecules28041691 crossref_primary_10_1007_s12274_022_4269_7 crossref_primary_10_3389_fbioe_2022_872149 crossref_primary_10_1039_D0MA00606H crossref_primary_10_1002_anie_202008153 |
Cites_doi | 10.1039/c1sm06179h 10.1002/adfm.201602103 10.1002/adma.201100580 10.1002/admi.201600289 10.1016/j.carbon.2017.01.054 10.1021/acsmacrolett.5b00919 10.1039/C7CS00790F 10.1007/978-3-642-45232-1_61 10.1002/adma.201801934 10.1021/bm501629g 10.1002/anie.201710951 10.1021/bm400075f 10.1021/ma9711452 10.1038/srep30695 10.1021/ma00042a032 10.1021/la5017577 10.1021/acs.biomac.6b00145 10.1021/bm501161v 10.1016/j.nanoen.2017.06.043 10.1021/acsapm.9b00981 10.1038/ncomms8564 10.1002/anie.201709014 10.1016/j.mattod.2018.02.001 10.1021/acsnano.5b05074 10.1021/acssuschemeng.9b03640 10.1002/adfm.201904472 10.1016/j.cej.2019.123101 10.1002/adma.201704285 10.1002/adma.201304966 10.1021/acs.jpcc.6b07289 10.1039/C9TA00596J 10.1002/anie.201305137 10.1016/j.ijbiomac.2018.11.214 10.1002/adma.201701469 10.1016/j.mser.2018.01.002 10.32964/TJ13.5.9 10.1039/C8MH00586A 10.1021/ma201649f 10.1021/acsami.9b15153 10.1039/c0cs00108b 10.1002/ange.201405123 10.1021/acs.langmuir.6b03084 10.1016/j.polymer.2012.12.035 10.1021/acsmacrolett.9b00692 10.1021/acsami.9b16458 10.1021/acs.nanolett.6b04405 10.1021/acssuschemeng.7b01608 10.1023/A:1016624330458 10.32964/TJ13.6.57 10.1007/s10853-015-9409-y 10.1016/j.eurpolymj.2014.07.025 10.1007/s10570-012-9733-1 10.1002/adma.201405873 10.1021/bm101510r 10.1039/C4CC07596J 10.1021/la900323n 10.1021/am506786t 10.1016/j.colsurfa.2008.04.042 10.1021/acsnano.8b00512 10.1021/acsami.5b01679 10.1021/am500359f 10.1039/C7NR08966J 10.1080/02678299408036525 10.1039/c3ra42321b 10.22203/eCM.v019a19 10.1007/s10570-018-2142-3 10.1021/la702481v 10.1021/ja501642p 10.1021/acs.langmuir.6b00690 10.1039/C6CS00895J 10.1016/j.actbio.2012.08.050 10.1021/acsami.9b03731 10.1002/app.41719 10.1021/acs.langmuir.6b01827 10.1021/acs.macromol.9b00863 10.1016/j.eurpolymj.2018.10.006 10.1021/bm5017173 10.1039/C6GC00687F 10.1007/s11837-016-2018-7 10.1021/bm501355x 10.1016/j.carbon.2018.02.033 10.1021/acsnano.8b02366 10.1021/bm101315y 10.1021/acssuschemeng.8b05085 10.1016/j.matlet.2018.06.101 10.1002/adma.201601351 10.1021/acs.biomac.7b00026 10.1007/s10570-017-1377-8 10.1039/C7MH01139C 10.1021/la200971f 10.1021/acs.langmuir.7b03920 10.1016/j.carbpol.2019.04.059 10.1002/adfm.201808518 10.1002/adfm.201404304 10.1002/admi.201600233 10.7569/JRM.2016.634112 10.3390/colloids3020046 10.1002/adfm.201904127 10.1016/j.compscitech.2017.07.011 10.3390/app8122463 10.1016/j.biomaterials.2015.09.033 10.1039/c2nr30260h 10.1038/nnano.2014.248 10.1039/C2TA00386D 10.1021/bm401656a 10.1002/adma.201902977 10.1039/c001939a 10.1021/bm301755u 10.1021/bm1001203 10.1038/am.2013.69 10.1021/la302077a 10.1021/acsami.6b13528 10.1002/adfm.201301737 10.1016/j.cobme.2017.06.002 10.1007/s10570-018-2090-y 10.1021/mz300234a 10.1089/ind.2014.0024 10.1016/j.carbpol.2017.09.084 10.1021/bm201828g 10.1002/adma.201703779 10.1021/acs.macromol.5b02201 10.1021/acsnano.8b01084 10.1002/polb.21479 10.1021/acs.chemrev.7b00627 10.1021/acsami.7b13466 10.1021/acsami.8b15439 10.1039/C5NR00660K 10.1021/acsbiomaterials.9b00522 10.1002/anie.201407141 10.1039/C4NR07402E 10.1021/am501808h 10.1021/ma401788c 10.1021/bm300746r 10.3390/nano9081142 10.1002/jor.22802 10.1039/C9NR01602C 10.1021/acsnano.8b00997 10.2217/nnm.12.211 10.1002/adma.201704477 10.1039/c2jm30688c 10.1016/j.compscitech.2011.07.003 10.1021/bm400219u 10.1002/adma.201606208 10.1007/s10570-016-1132-6 10.1021/ma970503y 10.1016/S0141-8130(05)80008-X 10.1002/adfm.201800032 10.1038/426611a 10.1016/j.matdes.2017.09.054 10.1002/adma.201706705 10.1002/smll.201001715 10.1021/acsami.5b03091 10.1039/c3nr05929d 10.1007/s10570-015-0722-z 10.1002/adfm.201804531 10.1021/acs.biomac.6b00304 10.1039/C9TA03950C 10.1021/bm061215p 10.1021/acs.biomac.8b00100 10.1002/anie.201803076 10.1021/la001070m 10.1021/am400171y 10.1021/la0475728 10.1126/sciadv.aao6804 10.1021/acs.chemmater.7b00531 10.1021/acsami.8b09735 10.3390/ma10060572 10.1002/aenm.201702615 10.1002/smll.201801937 10.1038/srep20434 10.1021/acsanm.8b01268 10.1002/adma.201504784 10.1021/acsanm.9b00640 10.1002/advs.201802190 10.1002/smtd.201700222 10.1021/acs.nanolett.7b03600 10.1021/acs.iecr.6b04010 10.1039/C5NR02520F 10.1039/C5TA03089G 10.1080/14686996.2017.1401423 10.1209/0295-5075/107/28006 10.1021/cm502873c 10.1021/cr900339w 10.1021/bm0703970 10.1021/acsami.6b00410 10.1021/bm500524s 10.1016/j.nanoen.2015.02.015 10.1021/la0600402 10.1038/ncomms8259 10.1021/nn4060368 10.1007/s10971-017-4451-7 10.1021/bm201764y 10.1039/C4TA00743C 10.1002/adfm.201604619 10.1021/am507999s 10.1038/s41598-017-17713-3 10.1021/acsami.6b13577 10.3390/polym9090392 10.3390/polym11040712 10.1021/acsnano.6b03355 10.1039/c3ra42050g 10.1002/adma.201502284 10.1007/s00339-007-3882-3 10.1021/bm100684k 10.1111/j.1749-6632.1949.tb27296.x 10.1021/acsnano.7b02359 10.1021/acsami.7b08214 10.1002/adma.201004134 10.1021/acsnano.8b04379 10.1016/j.compositesa.2017.10.019 10.1021/cm5004164 10.1021/bm049300p 10.1039/C6RA06574K 10.1021/acs.cgd.6b00707 10.1021/acs.biomac.7b00059 10.1021/acsmacrolett.7b00087 10.1021/acssuschemeng.7b03439 10.1039/c3ta12591b 10.1038/s41467-019-08351-6 10.1021/acs.biomac.8b00023 10.1021/acs.langmuir.5b00924 10.1021/acsnano.8b01747 10.1002/smll.201802060 10.1021/ar400243m 10.1021/acssuschemeng.8b06713 10.1021/ma902383k 10.1021/mz400464d 10.1021/acsnano.9b03305 10.1002/polb.23490 10.1007/s10086-015-1533-4 10.1021/acs.biomac.5b00188 10.1039/c2jm33975g 10.1021/acs.biomac.7b00256 10.1002/anie.201001273 10.1002/anie.201410411 10.3183/NPPRJ-2014-29-01-p105-118 10.1039/C3TA14642A 10.1021/acsami.8b08153 10.1002/adma.201300256 10.1021/acsnano.6b05808 10.1007/s10570-019-02642-3 10.1039/c3cc47337f 10.1039/C3CS60204D 10.1002/smll.201805363 10.1021/am507726t 10.1016/j.carbpol.2017.06.032 10.1021/acs.chemmater.6b00792 10.1021/la9610462 10.1002/adma.201600427 10.1002/smll.201702084 10.1021/acsami.8b04985 10.1038/ncomms5018 10.1021/acs.langmuir.5b04008 10.1007/s10570-015-0745-5 10.1021/acssuschemeng.9b06291 10.1021/acsami.8b16232 10.1021/acs.langmuir.6b03765 10.1021/acs.biomac.5b01598 10.1007/s10853-018-2235-2 10.1016/j.carbpol.2016.11.023 10.1021/acssuschemeng.8b06081 10.1002/adma.201505555 10.1002/adhm.201700927 10.1021/acssuschemeng.6b00126 10.1016/j.polymer.2016.07.004 10.1002/anie.201402214 10.1002/adma.201402699 10.1038/nmat4089 10.1021/acsami.6b11578 10.1039/C5RA24539G 10.1016/j.ijbiomac.2019.08.055 10.1016/j.carbpol.2016.02.015 10.1039/C7TA02807E |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.202000657 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC11468739 32267033 10_1002_adma_202000657 ADMA202000657 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: China Scholarship Council Fellowship – fundername: Natural Science and Engineering Research Council of Canada – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 5PM |
ID | FETCH-LOGICAL-c5357-92b7fa1f08b2810b507d7fd83ed0999831d66525af0c59dfa3183b26b152e7493 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 18:35:24 EDT 2025 Thu Jul 10 22:06:55 EDT 2025 Sun Jul 13 05:26:04 EDT 2025 Thu Apr 03 06:54:05 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 02:32:46 EDT 2025 Wed Jan 22 16:28:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | cellulose nanofibrils self-assembly structured biomaterials biopolymer aerogels cellulose nanocrystals |
Language | English |
License | Attribution 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5357-92b7fa1f08b2810b507d7fd83ed0999831d66525af0c59dfa3183b26b152e7493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2739-3222 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000657 |
PMID | 32267033 |
PQID | 2550641397 |
PQPubID | 2045203 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468739 proquest_miscellaneous_2387656509 proquest_journals_2550641397 pubmed_primary_32267033 crossref_citationtrail_10_1002_adma_202000657 crossref_primary_10_1002_adma_202000657 wiley_primary_10_1002_adma_202000657_ADMA202000657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 84 2010; 11 2013; 3 2013; 1 2013; 2 2010; 19 2019; 11 2019; 10 2019; 13 2019; 15 2016; 32 2014; 26 2012; 19 2014; 24 2017; 150 2016; 143 2014; 29 2013; 8 2012; 13 2017; 157 2013; 5 2014; 136 2018; 47 2013; 9 2018; 7 2018; 6 2018; 8 2018; 5 2013; 54 2018; 1 2006; 22 2011; 71 2018; 179 2019; 26 2015; 132 2013; 52 2010; 110 2007; 8 2014; 15 2014; 13 2008; 24 2019; 29 2018; 30 2012; 28 2018; 34 2012; 22 2014; 126 2010; 6 2019; 8 2019; 7 2018; 28 2019; 9 2019; 3 2019; 6 2019; 5 2020; 383 2019; 31 2015; 51 2019; 2 2018; 229 2018; 104 2015; 54 2016; 10 2014; 47 2018; 109 2016; 18 2016; 17 2018; 21 2016; 16 2017; 136 2011; 7 2014; 43 2018; 25 2016; 99 2016; 4 2018; 19 2016; 5 2016; 6 2010; 43 2016; 3 2020; 30 1997; 30 2018; 118 2017; 56 2005; 6 2008; 46 1994; 16 2019; 218 1992; 25 2018; 12 2014; 30 2007; 87 2016; 28 2018; 10 2016; 26 2016; 8 2018; 14 2017; 5 2017; 6 2017; 7 2017; 1 2017; 2 2013; 25 2017; 3 2017; 4 2019; 52 2015; 31 2015; 33 2018; 125 2019; 124 2016; 74 2005; 21 2011; 12 1992; 14 1949; 51 2017; 9 2017; 115 2020; 8 2015; 48 2018; 132 2014; 5 2013; 14 2020; 2 2014; 2 2017; 39 2017; 33 1997; 13 2014; 59 2011; 23 2001; 17 2014; 52 2014; 8 2011; 27 2014; 6 2014; 53 2015; 13 2009; 25 2015; 14 2015; 6 2015; 16 2015; 5 2013; 49 2015; 3 2012 2013; 46 2017; 27 2011; 40 2015; 11 2017; 24 2015; 10 2016; 51 2008; 325 2017; 174 2017; 29 2019; 140 2015; 9 2015; 7 2016; 120 2014; 107 2015; 25 2012; 2 2003; 426 2015; 27 2012; 1 2017; 17 2017; 11 2017; 10 2015; 22 2017; 13 2011; 50 2001; 8 2019 2011; 44 2016; 62 2017; 18 2015 2012; 4 1998; 31 2018; 53 2016; 68 2018; 57 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_263_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_275_1 e_1_2_7_252_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 Khalil H. P. S. A. (e_1_2_7_226_1) 2015 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_249_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 Reising A. B. (e_1_2_7_43_1) 2012; 2 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_270_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_278_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_267_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_271_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_277_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_113_1 e_1_2_7_51_1 Li V. C. F. (e_1_2_7_211_1) 2017; 7 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_257_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_272_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_276_1 e_1_2_7_17_1 e_1_2_7_62_1 Abitbol T. (e_1_2_7_34_1) 2012 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_261_1 Xu W. (e_1_2_7_256_1) 2019 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_262_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 e_1_2_7_138_1 e_1_2_7_274_1 e_1_2_7_251_1 |
References_xml | – volume: 54 start-page: 935 year: 2013 publication-title: Polymer – volume: 7 start-page: 6013 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 6 start-page: 345 year: 2017 publication-title: ACS Macro Lett. – volume: 15 start-page: 4343 year: 2014 publication-title: Biomacromolecules – volume: 25 start-page: 7225 year: 2018 publication-title: Cellulose – volume: 13 start-page: 3029 year: 1997 publication-title: Langmuir – volume: 12 start-page: 6926 year: 2018 publication-title: ACS Nano – volume: 19 start-page: 1037 year: 2018 publication-title: Biomacromolecules – start-page: 79 year: 2012 end-page: 103 – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 17 start-page: 6487 year: 2017 publication-title: Nano Lett. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 6387 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 39 start-page: 140 year: 2017 publication-title: Nano Energy – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 32 start-page: 7564 year: 2016 publication-title: Langmuir – volume: 24 start-page: 3825 year: 2017 publication-title: Cellulose – volume: 16 start-page: 822 year: 2015 publication-title: Biomacromolecules – volume: 11 start-page: 762 year: 2010 publication-title: Biomacromolecules – volume: 10 start-page: 4421 year: 2018 publication-title: Nanoscale – volume: 84 start-page: 475 year: 2017 publication-title: J. Sol‐Gel Sci. Technol. – volume: 8 start-page: 1934 year: 2007 publication-title: Biomacromolecules – volume: 47 start-page: 1088 year: 2014 publication-title: Acc. Chem. Res. – volume: 6 start-page: 1048 year: 2005 publication-title: Biomacromolecules – volume: 51 start-page: 530 year: 2015 publication-title: Chem. Commun. – volume: 7 start-page: 4595 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 9074 year: 2019 publication-title: ACS Nano – volume: 34 start-page: 646 year: 2018 publication-title: Langmuir – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 2011 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 start-page: 287 year: 2013 publication-title: Nanomedicine – volume: 24 start-page: 327 year: 2014 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 8990 year: 2011 publication-title: Macromolecules – volume: 21 start-page: 720 year: 2018 publication-title: Mater. Today – volume: 16 start-page: 1489 year: 2015 publication-title: Biomacromolecules – volume: 21 start-page: 2034 year: 2005 publication-title: Langmuir – volume: 30 start-page: 9327 year: 2014 publication-title: Langmuir – volume: 13 start-page: 2528 year: 2012 publication-title: Biomacromolecules – start-page: 191 year: 2015 end-page: 227 – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 27 start-page: 7471 year: 2011 publication-title: Langmuir – volume: 27 start-page: 2989 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 6127 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 15 start-page: 2327 year: 2014 publication-title: Biomacromolecules – volume: 11 start-page: 25 year: 2015 publication-title: Ind. Biotechnol. – volume: 19 start-page: 193 year: 2010 publication-title: Eur. Cells Mater. – volume: 118 year: 2018 publication-title: Chem. Rev. – volume: 47 start-page: 2837 year: 2018 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 6437 year: 2016 publication-title: Adv. Funct. Mater. – volume: 140 start-page: 91 year: 2019 publication-title: Int. J. Biol. Macromol. – volume: 9 start-page: 2010 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 150 start-page: 79 year: 2017 publication-title: Compos. Sci. Technol. – volume: 26 start-page: 7178 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 3298 year: 2010 publication-title: Soft Matter – volume: 10 start-page: 8443 year: 2016 publication-title: ACS Nano – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 2825 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2011 publication-title: Soft Matter – volume: 8 start-page: 1334 year: 2019 publication-title: ACS Macro Lett. – volume: 4 start-page: 327 year: 2016 publication-title: J. Renewable Mater. – volume: 17 start-page: 1358 year: 2016 publication-title: Biomacromolecules – volume: 13 year: 2017 publication-title: Small – volume: 46 start-page: 8957 year: 2013 publication-title: Macromolecules – volume: 12 start-page: 831 year: 2011 publication-title: Biomacromolecules – volume: 136 start-page: 45 year: 2017 publication-title: Mater. Des. – volume: 87 start-page: 641 year: 2007 publication-title: Appl. Phys. A – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 28 start-page: 6292 year: 2016 publication-title: Adv. Mater. – volume: 13 start-page: 57 year: 2014 publication-title: Tappi J. – volume: 6 start-page: 4083 year: 2014 publication-title: Nanoscale – volume: 9 year: 2015 publication-title: ACS Nano – volume: 26 start-page: 2659 year: 2014 publication-title: Chem. Mater. – volume: 8 start-page: 1185 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 74 start-page: 42 year: 2016 publication-title: Biomaterials – volume: 11 start-page: 2498 year: 2010 publication-title: Biomacromolecules – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 17 start-page: 1875 year: 2016 publication-title: Biomacromolecules – volume: 126 year: 2014 publication-title: Angew. Chem. – volume: 325 start-page: 44 year: 2008 publication-title: Colloids Surf. A – volume: 16 start-page: 127 year: 1994 publication-title: Liq. Cryst. – volume: 29 start-page: 105 year: 2014 publication-title: Nord. Pulp Pap. Res. J. – volume: 26 start-page: 6016 year: 2014 publication-title: Chem. Mater. – volume: 143 start-page: 270 year: 2016 publication-title: Carbohydr. Polym. – volume: 33 start-page: 572 year: 2015 publication-title: J. Orthop. Res. – volume: 1 start-page: 867 year: 2012 publication-title: ACS Macro Lett. – volume: 12 start-page: 7425 year: 2018 publication-title: ACS Nano – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 32 start-page: 4305 year: 2016 publication-title: Langmuir – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 408 year: 2018 publication-title: Mater. Horiz. – volume: 28 year: 2012 publication-title: Langmuir – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 6325 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 4620 year: 2016 publication-title: Cryst. Growth Des. – volume: 426 start-page: 611 year: 2003 publication-title: Nature – volume: 57 start-page: 7580 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 7 start-page: 4010 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 132 year: 2015 publication-title: J. Appl. Polym. Sci. – volume: 12 start-page: 5816 year: 2018 publication-title: ACS Nano – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 54 start-page: 2888 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 104 start-page: 101 year: 2018 publication-title: Composites, Part A – volume: 7 start-page: 302 year: 2011 publication-title: Small – volume: 24 start-page: 797 year: 2017 publication-title: Cellulose – volume: 8 start-page: 2463 year: 2018 publication-title: Appl. Sci. – year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 71 start-page: 1593 year: 2011 publication-title: Compos. Sci. Technol. – volume: 15 year: 2019 publication-title: Small – volume: 110 start-page: 3479 year: 2010 publication-title: Chem. Rev. – volume: 4 start-page: 2632 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 14 start-page: 23 year: 2015 publication-title: Nat. Mater. – volume: 5 start-page: 4018 year: 2014 publication-title: Nat. Commun. – volume: 23 start-page: 2924 year: 2011 publication-title: Adv. Mater. – volume: 9 start-page: 392 year: 2017 publication-title: Polymers – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 5969 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1381 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 17 start-page: 21 year: 2001 publication-title: Langmuir – volume: 31 start-page: 5717 year: 1998 publication-title: Macromolecules – volume: 46 start-page: 1430 year: 2008 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 581 year: 2019 publication-title: Cellulose – volume: 12 start-page: 650 year: 2011 publication-title: Biomacromolecules – volume: 43 start-page: 3851 year: 2010 publication-title: Macromolecules – volume: 125 start-page: 1 year: 2018 publication-title: Mater. Sci. Eng., R – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 2428 year: 2013 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 14 start-page: 1223 year: 2013 publication-title: Biomacromolecules – volume: 22 start-page: 3715 year: 2015 publication-title: Cellulose – volume: 2 start-page: 4169 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 15 start-page: 4579 year: 2014 publication-title: Biomacromolecules – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 132 start-page: 199 year: 2018 publication-title: Carbon – volume: 5 start-page: 1076 year: 2018 publication-title: Mater. Horiz. – volume: 53 start-page: 9842 year: 2018 publication-title: J. Mater. Sci. – volume: 2 start-page: 1016 year: 2013 publication-title: ACS Macro Lett. – volume: 31 start-page: 6507 year: 2015 publication-title: Langmuir – volume: 6 year: 2014 publication-title: NPG Asia Mater. – volume: 14 year: 2018 publication-title: Small – volume: 68 start-page: 2383 year: 2016 publication-title: JOM – volume: 47 start-page: 2609 year: 2018 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 4707 year: 2013 publication-title: Acta Biomater. – volume: 2 start-page: 6337 year: 2014 publication-title: J. Mater. Chem. A – volume: 179 start-page: 333 year: 2018 publication-title: Carbohydr. Polym. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 6 start-page: 9418 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 791 year: 2014 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 12 start-page: 4583 year: 2018 publication-title: ACS Nano – volume: 18 start-page: 1482 year: 2017 publication-title: Biomacromolecules – volume: 18 start-page: 3835 year: 2016 publication-title: Green Chem. – volume: 99 start-page: 147 year: 2016 publication-title: Polymer – volume: 8 start-page: 5 year: 2001 publication-title: Cellulose – volume: 13 start-page: 346 year: 2015 publication-title: Nano Energy – volume: 15 start-page: 3827 year: 2014 publication-title: Biomacromolecules – volume: 53 start-page: 8880 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 14 start-page: 1160 year: 2013 publication-title: Biomacromolecules – volume: 7 start-page: 8092 year: 2019 publication-title: J. Mater. Chem. A – volume: 33 start-page: 1583 year: 2017 publication-title: Langmuir – volume: 14 start-page: 170 year: 1992 publication-title: Int. J. Biol. Macromol. – volume: 32 start-page: 442 year: 2016 publication-title: Langmuir – volume: 15 start-page: 618 year: 2014 publication-title: Biomacromolecules – volume: 25 start-page: 7675 year: 2009 publication-title: Langmuir – volume: 157 start-page: 1434 year: 2017 publication-title: Carbohydr. Polym. – volume: 2 start-page: 32 year: 2012 publication-title: J. Sci. Technol. For. Prod. Processes – volume: 25 start-page: 2175 year: 2015 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 918 year: 2012 publication-title: Biomacromolecules – volume: 229 start-page: 103 year: 2018 publication-title: Mater. Lett. – volume: 174 start-page: 318 year: 2017 publication-title: Carbohydr. Polym. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 19 start-page: 1276 year: 2018 publication-title: Biomacromolecules – volume: 1 start-page: 5279 year: 2018 publication-title: ACS Appl. Nano Mater. – volume: 54 start-page: 4304 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 3110 year: 2014 publication-title: J. Mater. Chem. A – volume: 124 start-page: 411 year: 2019 publication-title: Int. J. Biol. Macromol. – volume: 3 start-page: 46 year: 2019 publication-title: Colloids Interfaces – volume: 18 start-page: 959 year: 2017 publication-title: Sci. Technol. Adv. Mater. – volume: 13 start-page: 850 year: 2012 publication-title: Biomacromolecules – volume: 109 start-page: 367 year: 2018 publication-title: Eur. Polym. J. – volume: 7 start-page: 3959 year: 2015 publication-title: Nanoscale – volume: 12 start-page: 5141 year: 2018 publication-title: ACS Nano – volume: 24 start-page: 784 year: 2008 publication-title: Langmuir – volume: 40 start-page: 3941 year: 2011 publication-title: Chem. Soc. Rev. – volume: 107 year: 2014 publication-title: Europhys. Lett. – volume: 1 start-page: 63 year: 2013 publication-title: J. Mater. Chem. A – volume: 11 start-page: 712 year: 2019 publication-title: Polymers. – volume: 52 start-page: 5317 year: 2019 publication-title: Macromolecules – volume: 6 start-page: 7259 year: 2015 publication-title: Nat. Commun. – volume: 11 start-page: 5167 year: 2017 publication-title: ACS Nano – volume: 48 start-page: 8844 year: 2015 publication-title: Macromolecules – volume: 136 start-page: 4788 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 8508 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 6378 year: 2018 publication-title: ACS Nano – volume: 17 start-page: 1439 year: 2017 publication-title: Nano Lett. – volume: 10 start-page: 277 year: 2015 publication-title: Nat. Nanotechnol. – volume: 28 start-page: 3406 year: 2016 publication-title: Chem. Mater. – volume: 22 start-page: 2983 year: 2015 publication-title: Cellulose – volume: 62 start-page: 174 year: 2016 publication-title: J. Wood Sci. – volume: 43 start-page: 1519 year: 2014 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 185 year: 2016 publication-title: ACS Macro Lett. – volume: 4 start-page: 3274 year: 2012 publication-title: Nanoscale – volume: 7 start-page: 3263 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 7564 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 2235 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 26 start-page: 2323 year: 2014 publication-title: Adv. Mater. – volume: 51 start-page: 218 year: 2016 publication-title: J. Mater. Sci. – volume: 7 start-page: 6287 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 17 start-page: 649 year: 2016 publication-title: Biomacromolecules – volume: 26 start-page: 7585 year: 2019 publication-title: Cellulose – volume: 28 start-page: 5181 year: 2016 publication-title: Adv. Mater. – volume: 14 start-page: 503 year: 2013 publication-title: Biomacromolecules – volume: 51 start-page: 627 year: 1949 publication-title: Ann. N. Y. Acad. Sci. – volume: 25 start-page: 4232 year: 1992 publication-title: Macromolecules – volume: 28 start-page: 7652 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 572 year: 2017 publication-title: Materials – volume: 30 start-page: 6395 year: 1997 publication-title: Macromolecules – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 56 start-page: 8 year: 2017 publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 510 year: 2019 publication-title: Nat. Commun. – volume: 49 year: 2013 publication-title: Chem. Commun. – volume: 22 start-page: 4899 year: 2006 publication-title: Langmuir – volume: 218 start-page: 103 year: 2019 publication-title: Carbohydr. Polym. – volume: 59 start-page: 302 year: 2014 publication-title: Eur. Polym. J. – volume: 2 start-page: 29 year: 2017 publication-title: Curr. Opin. Biomed. Eng. – volume: 13 start-page: 9 year: 2014 publication-title: Tappi J. – volume: 1 year: 2017 publication-title: Small Methods – volume: 29 start-page: 4609 year: 2017 publication-title: Chem. Mater. – volume: 2 start-page: 1016 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 27 start-page: 6104 year: 2015 publication-title: Adv. Mater. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 23 start-page: 3751 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 2485 year: 2007 publication-title: Biomacromolecules – volume: 9 start-page: 1142 year: 2019 publication-title: Nanomaterials – volume: 7 start-page: 7436 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 2353 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 32 year: 2016 publication-title: Langmuir – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 7 start-page: 6612 year: 2015 publication-title: Nanoscale – volume: 18 start-page: 1293 year: 2017 publication-title: Biomacromolecules – volume: 115 start-page: 629 year: 2017 publication-title: Carbon – volume: 8 start-page: 2467 year: 2014 publication-title: ACS Nano – volume: 7 year: 2015 publication-title: Nanoscale – volume: 28 start-page: 1765 year: 2016 publication-title: Adv. Mater. – volume: 18 start-page: 1803 year: 2017 publication-title: Biomacromolecules – volume: 50 start-page: 5438 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 19 start-page: 1599 year: 2012 publication-title: Cellulose – ident: e_1_2_7_171_1 doi: 10.1039/c1sm06179h – ident: e_1_2_7_223_1 doi: 10.1002/adfm.201602103 – ident: e_1_2_7_228_1 doi: 10.1002/adma.201100580 – ident: e_1_2_7_277_1 doi: 10.1002/admi.201600289 – ident: e_1_2_7_201_1 doi: 10.1016/j.carbon.2017.01.054 – ident: e_1_2_7_264_1 doi: 10.1021/acsmacrolett.5b00919 – ident: e_1_2_7_164_1 doi: 10.1039/C7CS00790F – start-page: 191 volume-title: Handbook of Polymer Nanocomposites. Processing, Performance and Application year: 2015 ident: e_1_2_7_226_1 doi: 10.1007/978-3-642-45232-1_61 – ident: e_1_2_7_278_1 doi: 10.1002/adma.201801934 – ident: e_1_2_7_125_1 doi: 10.1021/bm501629g – ident: e_1_2_7_258_1 doi: 10.1002/anie.201710951 – ident: e_1_2_7_148_1 doi: 10.1021/bm400075f – ident: e_1_2_7_48_1 doi: 10.1021/ma9711452 – ident: e_1_2_7_38_1 doi: 10.1038/srep30695 – ident: e_1_2_7_69_1 doi: 10.1021/ma00042a032 – ident: e_1_2_7_265_1 doi: 10.1021/la5017577 – ident: e_1_2_7_273_1 doi: 10.1021/acs.biomac.6b00145 – ident: e_1_2_7_56_1 doi: 10.1021/bm501161v – ident: e_1_2_7_165_1 doi: 10.1016/j.nanoen.2017.06.043 – ident: e_1_2_7_13_1 doi: 10.1021/acsapm.9b00981 – ident: e_1_2_7_29_1 doi: 10.1038/ncomms8564 – ident: e_1_2_7_130_1 doi: 10.1002/anie.201709014 – ident: e_1_2_7_11_1 doi: 10.1016/j.mattod.2018.02.001 – ident: e_1_2_7_101_1 doi: 10.1021/acsnano.5b05074 – ident: e_1_2_7_221_1 doi: 10.1021/acssuschemeng.9b03640 – ident: e_1_2_7_131_1 doi: 10.1002/adfm.201904472 – ident: e_1_2_7_157_1 doi: 10.1016/j.cej.2019.123101 – ident: e_1_2_7_272_1 doi: 10.1002/adma.201704285 – ident: e_1_2_7_116_1 doi: 10.1002/adma.201304966 – ident: e_1_2_7_152_1 doi: 10.1021/acs.jpcc.6b07289 – ident: e_1_2_7_166_1 doi: 10.1039/C9TA00596J – ident: e_1_2_7_209_1 doi: 10.1002/anie.201305137 – ident: e_1_2_7_247_1 doi: 10.1016/j.ijbiomac.2018.11.214 – ident: e_1_2_7_123_1 doi: 10.1002/adma.201701469 – ident: e_1_2_7_133_1 doi: 10.1016/j.mser.2018.01.002 – ident: e_1_2_7_6_1 doi: 10.32964/TJ13.5.9 – ident: e_1_2_7_51_1 doi: 10.1039/C8MH00586A – ident: e_1_2_7_85_1 doi: 10.1021/ma201649f – ident: e_1_2_7_145_1 doi: 10.1021/acsami.9b15153 – ident: e_1_2_7_3_1 doi: 10.1039/c0cs00108b – ident: e_1_2_7_172_1 doi: 10.1002/ange.201405123 – ident: e_1_2_7_220_1 doi: 10.1021/acs.langmuir.6b03084 – ident: e_1_2_7_57_1 doi: 10.1016/j.polymer.2012.12.035 – ident: e_1_2_7_243_1 doi: 10.1021/acsmacrolett.9b00692 – ident: e_1_2_7_250_1 doi: 10.1021/acsami.9b16458 – ident: e_1_2_7_149_1 doi: 10.1021/acs.nanolett.6b04405 – ident: e_1_2_7_179_1 doi: 10.1021/acssuschemeng.7b01608 – ident: e_1_2_7_121_1 doi: 10.1023/A:1016624330458 – start-page: 79 volume-title: Handbook of Green Materials year: 2012 ident: e_1_2_7_34_1 – ident: e_1_2_7_18_1 doi: 10.32964/TJ13.6.57 – ident: e_1_2_7_40_1 doi: 10.1007/s10853-015-9409-y – ident: e_1_2_7_17_1 doi: 10.1016/j.eurpolymj.2014.07.025 – ident: e_1_2_7_92_1 doi: 10.1007/s10570-012-9733-1 – ident: e_1_2_7_269_1 doi: 10.1002/adma.201405873 – ident: e_1_2_7_58_1 doi: 10.1021/bm101510r – ident: e_1_2_7_114_1 doi: 10.1039/C4CC07596J – volume: 7 year: 2017 ident: e_1_2_7_211_1 publication-title: Sci. Rep. – ident: e_1_2_7_33_1 doi: 10.1021/la900323n – ident: e_1_2_7_99_1 doi: 10.1021/am506786t – ident: e_1_2_7_35_1 doi: 10.1016/j.colsurfa.2008.04.042 – ident: e_1_2_7_96_1 doi: 10.1021/acsnano.8b00512 – ident: e_1_2_7_187_1 doi: 10.1021/acsami.5b01679 – ident: e_1_2_7_21_1 doi: 10.1021/am500359f – ident: e_1_2_7_255_1 doi: 10.1039/C7NR08966J – ident: e_1_2_7_118_1 doi: 10.1080/02678299408036525 – ident: e_1_2_7_198_1 doi: 10.1039/c3ra42321b – ident: e_1_2_7_252_1 doi: 10.22203/eCM.v019a19 – ident: e_1_2_7_254_1 doi: 10.1007/s10570-018-2142-3 – ident: e_1_2_7_31_1 doi: 10.1021/la702481v – ident: e_1_2_7_260_1 doi: 10.1021/ja501642p – ident: e_1_2_7_88_1 doi: 10.1021/acs.langmuir.6b00690 – ident: e_1_2_7_12_1 doi: 10.1039/C6CS00895J – ident: e_1_2_7_54_1 doi: 10.1016/j.actbio.2012.08.050 – ident: e_1_2_7_151_1 doi: 10.1021/acsami.9b03731 – ident: e_1_2_7_15_1 doi: 10.1002/app.41719 – ident: e_1_2_7_122_1 doi: 10.1021/acs.langmuir.6b01827 – ident: e_1_2_7_52_1 doi: 10.1021/acs.macromol.9b00863 – ident: e_1_2_7_240_1 doi: 10.1016/j.eurpolymj.2018.10.006 – ident: e_1_2_7_169_1 doi: 10.1021/bm5017173 – ident: e_1_2_7_23_1 doi: 10.1039/C6GC00687F – ident: e_1_2_7_8_1 doi: 10.1007/s11837-016-2018-7 – ident: e_1_2_7_97_1 doi: 10.1021/bm501355x – ident: e_1_2_7_191_1 doi: 10.1016/j.carbon.2018.02.033 – ident: e_1_2_7_66_1 doi: 10.1021/acsnano.8b02366 – ident: e_1_2_7_141_1 doi: 10.1021/bm101315y – ident: e_1_2_7_189_1 doi: 10.1021/acssuschemeng.8b05085 – ident: e_1_2_7_212_1 doi: 10.1016/j.matlet.2018.06.101 – ident: e_1_2_7_224_1 doi: 10.1002/adma.201601351 – ident: e_1_2_7_106_1 doi: 10.1021/acs.biomac.7b00026 – ident: e_1_2_7_178_1 doi: 10.1007/s10570-017-1377-8 – ident: e_1_2_7_271_1 doi: 10.1039/C7MH01139C – ident: e_1_2_7_268_1 doi: 10.1021/la200971f – ident: e_1_2_7_95_1 doi: 10.1021/acs.langmuir.7b03920 – ident: e_1_2_7_219_1 doi: 10.1016/j.carbpol.2019.04.059 – ident: e_1_2_7_104_1 doi: 10.1002/adfm.201808518 – ident: e_1_2_7_112_1 doi: 10.1002/adfm.201404304 – ident: e_1_2_7_276_1 doi: 10.1002/admi.201600233 – ident: e_1_2_7_227_1 doi: 10.7569/JRM.2016.634112 – ident: e_1_2_7_213_1 doi: 10.3390/colloids3020046 – ident: e_1_2_7_257_1 doi: 10.1002/adfm.201904127 – ident: e_1_2_7_234_1 doi: 10.1016/j.compscitech.2017.07.011 – ident: e_1_2_7_140_1 doi: 10.3390/app8122463 – ident: e_1_2_7_263_1 doi: 10.1016/j.biomaterials.2015.09.033 – ident: e_1_2_7_90_1 doi: 10.1039/c2nr30260h – ident: e_1_2_7_186_1 doi: 10.1038/nnano.2014.248 – ident: e_1_2_7_202_1 doi: 10.1039/C2TA00386D – ident: e_1_2_7_246_1 doi: 10.1021/bm401656a – ident: e_1_2_7_162_1 doi: 10.1002/adma.201902977 – ident: e_1_2_7_173_1 doi: 10.1039/c001939a – ident: e_1_2_7_174_1 doi: 10.1021/bm301755u – ident: e_1_2_7_44_1 doi: 10.1021/bm1001203 – ident: e_1_2_7_46_1 doi: 10.1038/am.2013.69 – ident: e_1_2_7_147_1 doi: 10.1021/la302077a – ident: e_1_2_7_215_1 doi: 10.1021/acsami.6b13528 – ident: e_1_2_7_108_1 doi: 10.1002/adfm.201301737 – ident: e_1_2_7_65_1 doi: 10.1016/j.cobme.2017.06.002 – ident: e_1_2_7_216_1 doi: 10.1007/s10570-018-2090-y – ident: e_1_2_7_77_1 doi: 10.1021/mz300234a – ident: e_1_2_7_7_1 doi: 10.1089/ind.2014.0024 – ident: e_1_2_7_207_1 doi: 10.1016/j.carbpol.2017.09.084 – ident: e_1_2_7_245_1 doi: 10.1021/bm201828g – ident: e_1_2_7_2_1 doi: 10.1002/adma.201703779 – ident: e_1_2_7_119_1 doi: 10.1021/acs.macromol.5b02201 – ident: e_1_2_7_64_1 doi: 10.1021/acsnano.8b01084 – ident: e_1_2_7_73_1 doi: 10.1002/polb.21479 – ident: e_1_2_7_136_1 doi: 10.1021/acs.chemrev.7b00627 – ident: e_1_2_7_244_1 doi: 10.1021/acsami.7b13466 – ident: e_1_2_7_167_1 doi: 10.1021/acsami.8b15439 – ident: e_1_2_7_100_1 doi: 10.1039/C5NR00660K – ident: e_1_2_7_82_1 doi: 10.1021/acsbiomaterials.9b00522 – ident: e_1_2_7_113_1 doi: 10.1002/anie.201407141 – ident: e_1_2_7_203_1 doi: 10.1039/C4NR07402E – ident: e_1_2_7_70_1 doi: 10.1021/am501808h – ident: e_1_2_7_76_1 doi: 10.1021/ma401788c – ident: e_1_2_7_79_1 doi: 10.1021/bm300746r – ident: e_1_2_7_175_1 doi: 10.3390/nano9081142 – year: 2019 ident: e_1_2_7_256_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_251_1 doi: 10.1002/jor.22802 – ident: e_1_2_7_154_1 doi: 10.1039/C9NR01602C – ident: e_1_2_7_163_1 doi: 10.1021/acsnano.8b00997 – ident: e_1_2_7_10_1 doi: 10.2217/nnm.12.211 – ident: e_1_2_7_84_1 doi: 10.1002/adma.201704477 – ident: e_1_2_7_204_1 doi: 10.1039/c2jm30688c – ident: e_1_2_7_176_1 doi: 10.1016/j.compscitech.2011.07.003 – ident: e_1_2_7_74_1 doi: 10.1021/am501808h – ident: e_1_2_7_26_1 doi: 10.1021/bm400219u – ident: e_1_2_7_124_1 doi: 10.1002/adma.201606208 – ident: e_1_2_7_217_1 doi: 10.1007/s10570-016-1132-6 – ident: e_1_2_7_49_1 doi: 10.1021/ma970503y – ident: e_1_2_7_86_1 doi: 10.1016/S0141-8130(05)80008-X – ident: e_1_2_7_98_1 doi: 10.1002/adfm.201800032 – ident: e_1_2_7_142_1 doi: 10.1038/426611a – ident: e_1_2_7_235_1 doi: 10.1016/j.matdes.2017.09.054 – ident: e_1_2_7_161_1 doi: 10.1002/adma.201706705 – ident: e_1_2_7_24_1 doi: 10.1002/smll.201001715 – ident: e_1_2_7_231_1 doi: 10.1021/acsami.5b03091 – ident: e_1_2_7_200_1 doi: 10.1039/c3nr05929d – ident: e_1_2_7_45_1 doi: 10.1007/s10570-015-0722-z – ident: e_1_2_7_107_1 doi: 10.1002/adfm.201804531 – ident: e_1_2_7_182_1 doi: 10.1021/acs.biomac.6b00304 – ident: e_1_2_7_261_1 doi: 10.1039/C9TA03950C – ident: e_1_2_7_30_1 doi: 10.1021/bm061215p – ident: e_1_2_7_68_1 doi: 10.1021/acs.biomac.8b00100 – ident: e_1_2_7_153_1 doi: 10.1002/anie.201803076 – ident: e_1_2_7_27_1 doi: 10.1021/la001070m – ident: e_1_2_7_194_1 doi: 10.1021/am400171y – ident: e_1_2_7_126_1 doi: 10.1021/la0475728 – ident: e_1_2_7_270_1 doi: 10.1126/sciadv.aao6804 – ident: e_1_2_7_135_1 doi: 10.1021/acs.chemmater.7b00531 – ident: e_1_2_7_208_1 doi: 10.1021/acsami.8b09735 – ident: e_1_2_7_249_1 doi: 10.3390/ma10060572 – ident: e_1_2_7_150_1 doi: 10.1002/aenm.201702615 – ident: e_1_2_7_229_1 doi: 10.1002/smll.201801937 – ident: e_1_2_7_183_1 doi: 10.1038/srep20434 – ident: e_1_2_7_237_1 doi: 10.1021/acsanm.8b01268 – ident: e_1_2_7_225_1 doi: 10.1002/adma.201504784 – ident: e_1_2_7_134_1 doi: 10.1021/acsanm.9b00640 – ident: e_1_2_7_275_1 doi: 10.1002/advs.201802190 – ident: e_1_2_7_146_1 doi: 10.1002/smtd.201700222 – ident: e_1_2_7_80_1 doi: 10.1021/acs.nanolett.7b03600 – ident: e_1_2_7_39_1 doi: 10.1021/acs.iecr.6b04010 – ident: e_1_2_7_111_1 doi: 10.1039/C5NR02520F – ident: e_1_2_7_137_1 doi: 10.1039/C5TA03089G – ident: e_1_2_7_267_1 doi: 10.1080/14686996.2017.1401423 – ident: e_1_2_7_72_1 doi: 10.1209/0295-5075/107/28006 – ident: e_1_2_7_214_1 doi: 10.1021/cm502873c – ident: e_1_2_7_4_1 doi: 10.1021/cr900339w – ident: e_1_2_7_25_1 doi: 10.1021/bm0703970 – ident: e_1_2_7_102_1 doi: 10.1021/acsami.6b00410 – ident: e_1_2_7_9_1 doi: 10.1021/bm500524s – ident: e_1_2_7_160_1 doi: 10.1016/j.nanoen.2015.02.015 – ident: e_1_2_7_71_1 doi: 10.1021/la0600402 – ident: e_1_2_7_210_1 doi: 10.1038/ncomms8259 – ident: e_1_2_7_155_1 doi: 10.1021/nn4060368 – ident: e_1_2_7_170_1 doi: 10.1007/s10971-017-4451-7 – ident: e_1_2_7_41_1 doi: 10.1021/bm201764y – ident: e_1_2_7_138_1 doi: 10.1039/C4TA00743C – ident: e_1_2_7_67_1 doi: 10.1002/adfm.201604619 – ident: e_1_2_7_188_1 doi: 10.1021/am507999s – ident: e_1_2_7_59_1 doi: 10.1038/s41598-017-17713-3 – ident: e_1_2_7_206_1 doi: 10.1021/acsami.6b13577 – ident: e_1_2_7_232_1 doi: 10.3390/polym9090392 – ident: e_1_2_7_190_1 doi: 10.3390/polym11040712 – ident: e_1_2_7_94_1 doi: 10.1021/acsnano.6b03355 – ident: e_1_2_7_199_1 doi: 10.1039/c3ra42050g – ident: e_1_2_7_222_1 doi: 10.1002/adma.201502284 – ident: e_1_2_7_78_1 doi: 10.1007/s00339-007-3882-3 – ident: e_1_2_7_55_1 doi: 10.1021/bm100684k – ident: e_1_2_7_83_1 doi: 10.1111/j.1749-6632.1949.tb27296.x – ident: e_1_2_7_158_1 doi: 10.1021/acsnano.7b02359 – ident: e_1_2_7_159_1 doi: 10.1021/acsami.7b08214 – ident: e_1_2_7_196_1 doi: 10.1002/adma.201004134 – ident: e_1_2_7_1_1 doi: 10.1021/acsnano.8b04379 – ident: e_1_2_7_60_1 doi: 10.1016/j.compositesa.2017.10.019 – ident: e_1_2_7_177_1 doi: 10.1021/cm5004164 – ident: e_1_2_7_20_1 doi: 10.1021/bm049300p – ident: e_1_2_7_37_1 doi: 10.1039/C6RA06574K – ident: e_1_2_7_36_1 doi: 10.1021/acs.cgd.6b00707 – ident: e_1_2_7_242_1 doi: 10.1021/acs.biomac.7b00059 – ident: e_1_2_7_181_1 doi: 10.1021/acsmacrolett.7b00087 – ident: e_1_2_7_139_1 doi: 10.1021/acssuschemeng.7b03439 – ident: e_1_2_7_144_1 doi: 10.1039/c3ta12591b – ident: e_1_2_7_117_1 doi: 10.1038/s41467-019-08351-6 – ident: e_1_2_7_230_1 doi: 10.1021/acs.biomac.8b00023 – ident: e_1_2_7_87_1 doi: 10.1021/acs.langmuir.5b00924 – ident: e_1_2_7_185_1 doi: 10.1021/acsnano.8b01747 – ident: e_1_2_7_89_1 doi: 10.1002/smll.201802060 – ident: e_1_2_7_47_1 doi: 10.1021/ar400243m – ident: e_1_2_7_238_1 doi: 10.1021/acssuschemeng.8b06713 – ident: e_1_2_7_91_1 doi: 10.1021/ma902383k – ident: e_1_2_7_110_1 doi: 10.1021/mz400464d – ident: e_1_2_7_143_1 doi: 10.1021/acsnano.9b03305 – ident: e_1_2_7_19_1 doi: 10.1002/polb.23490 – ident: e_1_2_7_61_1 doi: 10.1007/s10086-015-1533-4 – ident: e_1_2_7_253_1 doi: 10.1021/acs.biomac.5b00188 – ident: e_1_2_7_195_1 doi: 10.1039/c2jm33975g – ident: e_1_2_7_236_1 doi: 10.1021/acs.biomac.7b00256 – ident: e_1_2_7_5_1 doi: 10.1002/anie.201001273 – ident: e_1_2_7_115_1 doi: 10.1002/anie.201410411 – ident: e_1_2_7_14_1 doi: 10.3183/NPPRJ-2014-29-01-p105-118 – ident: e_1_2_7_193_1 doi: 10.1039/C3TA14642A – ident: e_1_2_7_62_1 doi: 10.1021/acsami.8b08153 – ident: e_1_2_7_197_1 doi: 10.1002/adma.201300256 – ident: e_1_2_7_184_1 doi: 10.1021/acsnano.6b05808 – ident: e_1_2_7_168_1 doi: 10.1007/s10570-019-02642-3 – ident: e_1_2_7_93_1 doi: 10.1039/c3cc47337f – ident: e_1_2_7_16_1 doi: 10.1039/C3CS60204D – ident: e_1_2_7_180_1 doi: 10.1002/smll.201805363 – ident: e_1_2_7_53_1 doi: 10.1021/am507726t – ident: e_1_2_7_32_1 doi: 10.1016/j.carbpol.2017.06.032 – ident: e_1_2_7_192_1 doi: 10.1021/acs.chemmater.6b00792 – ident: e_1_2_7_120_1 doi: 10.1021/la9610462 – ident: e_1_2_7_274_1 doi: 10.1002/adma.201600427 – ident: e_1_2_7_103_1 doi: 10.1002/smll.201702084 – ident: e_1_2_7_50_1 doi: 10.1021/acsami.8b04985 – ident: e_1_2_7_63_1 doi: 10.1038/ncomms5018 – ident: e_1_2_7_75_1 doi: 10.1021/acs.langmuir.5b04008 – ident: e_1_2_7_205_1 doi: 10.1007/s10570-015-0745-5 – ident: e_1_2_7_266_1 doi: 10.1021/acssuschemeng.9b06291 – ident: e_1_2_7_262_1 doi: 10.1021/acsami.8b16232 – ident: e_1_2_7_28_1 doi: 10.1021/acs.langmuir.6b03765 – ident: e_1_2_7_81_1 doi: 10.1021/acs.biomac.5b01598 – ident: e_1_2_7_218_1 doi: 10.1007/s10853-018-2235-2 – ident: e_1_2_7_156_1 doi: 10.1016/j.carbpol.2016.11.023 – ident: e_1_2_7_239_1 doi: 10.1021/acssuschemeng.8b06081 – ident: e_1_2_7_128_1 doi: 10.1002/adma.201505555 – volume: 2 start-page: 32 year: 2012 ident: e_1_2_7_43_1 publication-title: J. Sci. Technol. For. Prod. Processes – ident: e_1_2_7_127_1 doi: 10.1002/adhm.201700927 – ident: e_1_2_7_22_1 doi: 10.1021/acssuschemeng.6b00126 – ident: e_1_2_7_42_1 doi: 10.1016/j.polymer.2016.07.004 – ident: e_1_2_7_109_1 doi: 10.1002/anie.201402214 – ident: e_1_2_7_259_1 doi: 10.1002/adma.201402699 – ident: e_1_2_7_129_1 doi: 10.1038/nmat4089 – ident: e_1_2_7_241_1 doi: 10.1021/acsami.6b11578 – ident: e_1_2_7_233_1 doi: 10.1039/C5RA24539G – ident: e_1_2_7_105_1 doi: 10.1016/j.ijbiomac.2019.08.055 – ident: e_1_2_7_248_1 doi: 10.1016/j.carbpol.2016.02.015 – ident: e_1_2_7_132_1 doi: 10.1039/C7TA02807E |
SSID | ssj0009606 |
Score | 2.6838238 |
SecondaryResourceType | review_article |
Snippet | It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000657 |
SubjectTerms | Anisotropy Biomimetic materials biopolymer aerogels Cellulose cellulose nanocrystals cellulose nanofibrils Functional materials Material properties Materials science Nanocrystals Porous materials Progress Report Progress Reports Rheological properties self‐assembly Silk Strategic materials structured biomaterials Surface charge |
Title | Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottom‐Up Fabrication |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000657 https://www.ncbi.nlm.nih.gov/pubmed/32267033 https://www.proquest.com/docview/2550641397 https://www.proquest.com/docview/2387656509 https://pubmed.ncbi.nlm.nih.gov/PMC11468739 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMct6AkOPMprS6mMhMQpbWLHjsNt27KqkBZVwEq9RXbsqBFLstrNHtpTPwIS37CfhBknm-5SVUhwjGLn4cyM_3FmfiHkHUfoiTAmsJg7GEttA8OVCUxodBg5KW2EtcPjz_JkEn86E2drVfwtH6JfcEPP8PEaHVybxcENNFRbzw3ypSYCy8kjLhGef_zlhh-F8tzD9rgIUhmrFbUxZAeb3TdnpVtS83bG5LqS9VPR6DHRq5toM1C-7y8bs59f_sF3_J-7fEIedTqVDlvDekruuWqbPFyjFz4jsxHMie1SIh3rpjVlivUqFGJ2jZ8EltN64T7QSVNOy0voRL96XO1y7q6vfp3id4B5c0H7hLzzcragZUUP66apf1xf_ZzM6Eibebeu-JxMRh-_HZ0E3Q8cglxwkQQpM0mhoyJUhqkoNKA9bVJYxZ1FYap4ZKUUTOgizEVqC40BxjBpQFS4JE75C7JV1ZV7RahjzJkilXmUWNB8BbxmpakIrVUiYaHjAxKsHmCWd3Rz_MnGNGu5zCzDkcz6kRyQ9337Wcv1uLPl7soess6_Fxm8iIGWQ_U8IG_73eCZOLa6cvUS2nCYaQQSCgfkZWs-_akgjEqItXDZasOw-gZI_d7cU5Xnnv6NZeQq4XBQ5g3nL5efDY_Hw35r5186vSYPGGby-CTlXbIFluLegBRrzB65z-LTPe90vwEw8y9e |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZtcmh7KEn6t03SKlDoycSWLFnObZN02bbZEGgWejPSSiaGrb3seg_tKY9Q6BvmSTIje50soRR6NJJsodHMfBrPfCLkA0fSE2FMYDF3MJbaBoYrE5jQ6DByUtoIa4dH53I4jr98F6tsQqyFafghuoAbaoa316jgGJA-vGMN1dYTB_laE5E8JpsxgHPM6mPxxR3vrvTXa-LvviCVsVrxNobscH38ul96ADYf5kzex7LeGQ22yPMWRdJ-I_Zt8siVO-TZPW7BF2Q2AI_VBProSNfNRqNYTULBolYYsF9Oq4U7ouO6mBa_YBD95slkl3N3c_3nAqP08_on7dLlrorZghYlPa7quvpxc_17PKMDbeZt1O8lGQ8-XZ4Mg_Z6hWAiuEiClJkk11EeKsNUFBpAhjbJreLOImxUPLJSCiZ0Hk5EanON6m-YNODyXRKn_BXZKKvSvSHUMeZMnspJlFhAZDkcgtJUhNYqkbDQ8R4JVoubTVrucbwCY5o1rMksQ2FknTB65GPXf9awbvy1595KVlmrfYsMjkmAtBDb9shB1wx6g2urS1ctoQ8HPyCQP7BHXjei7T4FRk6CJYRpqzWhdx2Qk3u9pSyuPDc3FnmrhMNLmd8f_5h-1j8d9bunt_8z6D15MrwcnWVnn8-_7pKnDHNufDrxHtmAXeP2ATTV5p1Xi1vQMhDU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOvB8LBYyExCltYsdOwm2hROWxVQWs1Ftkx44asSTRbvZAT_0JSPzD_hJmnGy6S4WQ4Bh5nNjOzPizPfOZkBccSU-E1p7B2MFQKuNpHmtP-1r5gZXSBJg7PDmQ-9Pw_ZE4Wsvi7_ghhg03tAznr9HAG1PsnpOGKuN4g1yqiYgukyuhBDiBsOjTOYEU4nPHtseFl8gwXtE2-mx3s_7mtHQBa14MmVyHsm4uSm8StepFF4LydWfZ6p385DeCx__p5i1yoweqdNxp1m1yyVZ3yPU1-sK7pElhUuz2EulEtZ0uU0xYoeC0azwTWM7qhX1Fp205K0-gEv3s-GqXc3t2-vMQDwLm7Xc6ROQdl82ClhV9Xbdt_e3s9Me0oanS835j8R6Zpm-_vNn3-hscvFxwEXkJ01GhgsKPNYsDXwP4NFFhYm4NItOYB0ZKwYQq_FwkplDoYTSTGlCFjcKE3ydbVV3Zh4RaxqwuEpkHkQHQV8A6K0mEb0wsIuZbPiLe6gdmeU9vjrdszLKOmJllOJLZMJIj8nKQbzpijz9Kbq_0IesNfJHBSgzAHMLnEXk-FINp4tiqytZLkOEw1QikKByRB536DJ8CPyrB2UKz4w3FGgSQ9nuzpCqPHf035pHHEYeXMqc4f2l-Nt6bjIenR_9S6Rm5eriXZh_fHXx4TK4xjOpxAcvbZAuUxj4BWNbqp87yfgExjDFV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Materials+from+Nanocellulose%3A+Utilizing+Structure-Property+Relationships+in+Bottom-Up+Fabrication&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=De+France%2C+Kevin&rft.au=Zeng%2C+Zhihui&rft.au=Wu%2C+Tingting&rft.au=Nystr%C3%B6m%2C+Gustav&rft.date=2021-07-01&rft.eissn=1521-4095&rft.volume=33&rft.issue=28&rft.spage=e2000657&rft_id=info:doi/10.1002%2Fadma.202000657&rft_id=info%3Apmid%2F32267033&rft.externalDocID=32267033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |