Experimental Confirmation of a Predicted Porous Hydrogen‐Bonded Organic Framework

Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 34; pp. e202303167 - n/a
Main Authors Shields, Caitlin E., Wang, Xue, Fellowes, Thomas, Clowes, Rob, Chen, Linjiang, Day, Graeme M., Slater, Anna G., Ward, John W., Little, Marc A., Cooper, Andrew I.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.08.2023
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm−3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. A hydrogen‐bonded framework that was predicted previously to have 3D porosity and a remarkably low density of 0.37 g cm−3 has been discovered experimentally. The structure of this framework matches the original prediction precisely and it has an accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous hydrogen‐bonded frameworks synthesized to date.
AbstractList Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m  g , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.
Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm −3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m 2  g −1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. A hydrogen‐bonded framework that was predicted previously to have 3D porosity and a remarkably low density of 0.37 g cm −3 has been discovered experimentally. The structure of this framework matches the original prediction precisely and it has an accessible surface area of 3,284 m 2  g −1 , as measured by nitrogen adsorption, making it one of the most porous hydrogen‐bonded frameworks synthesized to date.
Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm−3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.
Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm−3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. A hydrogen‐bonded framework that was predicted previously to have 3D porosity and a remarkably low density of 0.37 g cm−3 has been discovered experimentally. The structure of this framework matches the original prediction precisely and it has an accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous hydrogen‐bonded frameworks synthesized to date.
Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm −3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m 2  g −1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.
Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm-3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2  g-1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm-3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2  g-1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.
Author Wang, Xue
Day, Graeme M.
Cooper, Andrew I.
Fellowes, Thomas
Ward, John W.
Shields, Caitlin E.
Chen, Linjiang
Little, Marc A.
Clowes, Rob
Slater, Anna G.
AuthorAffiliation 2 Leverhulme Research Centre for Functional Materials Design University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
4 Computational Systems Chemistry, School of Chemistry University of Southampton B27, East Highfield Campus, University Road Southampton SO17 1BJ UK
3 School of Chemistry and School of Computer Sciences University of Birmingham Edgbaston Birmingham B15 2TT UK
1 Materials Innovation Factory and Department of Chemistry University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
AuthorAffiliation_xml – name: 2 Leverhulme Research Centre for Functional Materials Design University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
– name: 4 Computational Systems Chemistry, School of Chemistry University of Southampton B27, East Highfield Campus, University Road Southampton SO17 1BJ UK
– name: 1 Materials Innovation Factory and Department of Chemistry University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
– name: 3 School of Chemistry and School of Computer Sciences University of Birmingham Edgbaston Birmingham B15 2TT UK
Author_xml – sequence: 1
  givenname: Caitlin E.
  orcidid: 0000-0001-6335-7507
  surname: Shields
  fullname: Shields, Caitlin E.
  organization: University of Liverpool
– sequence: 2
  givenname: Xue
  surname: Wang
  fullname: Wang, Xue
  organization: University of Liverpool
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0002-6389-6049
  surname: Fellowes
  fullname: Fellowes, Thomas
  organization: University of Liverpool
– sequence: 4
  givenname: Rob
  surname: Clowes
  fullname: Clowes, Rob
  organization: University of Liverpool
– sequence: 5
  givenname: Linjiang
  orcidid: 0000-0002-0382-5863
  surname: Chen
  fullname: Chen, Linjiang
  organization: University of Birmingham Edgbaston
– sequence: 6
  givenname: Graeme M.
  orcidid: 0000-0001-8396-2771
  surname: Day
  fullname: Day, Graeme M.
  organization: University of Southampton B27, East Highfield Campus, University Road
– sequence: 7
  givenname: Anna G.
  orcidid: 0000-0002-1435-4331
  surname: Slater
  fullname: Slater, Anna G.
  email: Anna.Slater@liverpool.ac.uk
  organization: University of Liverpool
– sequence: 8
  givenname: John W.
  orcidid: 0000-0001-7186-6416
  surname: Ward
  fullname: Ward, John W.
  email: John.Ward@liverpool.ac.uk
  organization: University of Liverpool
– sequence: 9
  givenname: Marc A.
  orcidid: 0000-0002-1994-0591
  surname: Little
  fullname: Little, Marc A.
  email: malittle@liverpool.ac.uk
  organization: University of Liverpool
– sequence: 10
  givenname: Andrew I.
  orcidid: 0000-0003-0201-1021
  surname: Cooper
  fullname: Cooper, Andrew I.
  email: aicooper@liverpool.ac.uk
  organization: University of Liverpool
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37021635$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB-wZYkisWGTwW8nK1RGU1qpaisBa8vxY3BJ7MHJUGbHT-A38ku4ZfqASoiVLd3vHJ1z7z7aSTl5hJ4TPCMY09cmRT-jmDLMiFSP0B4RlNRMKbYDf85YrRpBdtH-OF4C3zRYPkG7TGFKJBN76P3i28qXOPg0mb6a5xRiGcwUc6pyqEx1UbyLdvKuusglr8fqeONKXvr08_uPtzk5GJyXJaSw1VExg7_K5fNT9DiYfvTPbt4D9PFo8WF-XJ-evzuZH57WVjChaimEIwE7S3hopA_CBhgYxrkjphNckUYRIrsgXYd517a-EUJCCdMKJoljB-jN1ne17gbvLHQoptcrqGPKRmcT9d-TFD_pZf6qCW4FlaQBh1c3DiV_Wftx0kMcre97kzyU1VS1inAhsAD05QP0Mq9Lgn6awoYbzDmVQL34M9JdltuFA8C3gC15HIsP2sbp974hYewhmr6-q76-q767K8hmD2S3zv8UtFvBVez95j-0Pjw7WdxrfwGXobZQ
CitedBy_id crossref_primary_10_1038_s41586_024_07353_9
crossref_primary_10_1039_D4SC04619F
crossref_primary_10_1021_jacsau_5c00077
crossref_primary_10_1039_D3RA08305E
crossref_primary_10_1021_acs_cgd_3c01219
crossref_primary_10_1038_s41467_024_47058_1
crossref_primary_10_1002_ceur_202400111
crossref_primary_10_1039_D3CE00752A
crossref_primary_10_1016_j_cej_2024_156021
Cites_doi 10.1039/c3ce41232f
10.1021/accountsmr.0c00019
10.1039/C3CS60279F
10.1002/anie.201811263
10.1126/science.278.5337.404
10.1021/jo801643u
10.1038/nmat2321
10.1002/adfm.201909842
10.1039/D1MA01173A
10.1021/cr300014x
10.1038/nature21419
10.1016/j.chempr.2022.06.015
10.1021/acscentsci.2c01196
10.1002/anie.201005301
10.1039/C2CC16986J
10.1126/science.aal1585
10.1039/C7CS00084G
10.1107/S0021889807067908
10.1039/C9CC07802A
10.1038/s41467-021-21091-w
10.1039/C7CC00557A
10.1038/s42004-022-00705-4
10.1021/ja808853q
10.1002/anie.201201174
10.1002/chem.200800668
10.1021/jacs.1c08642
10.1038/nchem.2663
10.1021/acsmaterialslett.1c00013
10.1021/acs.cgd.1c01382
10.1039/C3CS60358J
10.1002/anie.201800354
10.1107/S2052520616003954
10.1002/adma.201704944
10.1021/jacs.0c02406
10.1002/anie.200300636
10.1039/C8FD00031J
10.1039/C8CS00155C
10.1039/C5CE00045A
10.1126/science.aaa8075
10.1002/anie.201610901
10.1002/chem.201201351
ContentType Journal Article
Copyright 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202303167
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID PMC10952618
37021635
10_1002_anie_202303167
ANIE202303167
Genre article
Journal Article
GrantInformation_xml – fundername: Leverhulme Trust
  funderid: Leverhulme Research Centre for Functional Materials Design
– fundername: Royal Society
  funderid: 201168; Research Professorship
– fundername: H2020 European Research Council
  funderid: 856405
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/V026887/1
– fundername: Royal Society
  grantid: Research Professorship
– fundername: Royal Society
  grantid: 201168
– fundername: H2020 European Research Council
  grantid: 856405
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V026887/1
– fundername: Leverhulme Trust
  grantid: Leverhulme Research Centre for Functional Materials Design
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5357-655d1f0dc14f86ef5cfc53a344d1ab547187116bf6db04b99e8556002a95361d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 18:35:18 EDT 2025
Fri Jul 11 07:04:16 EDT 2025
Sun Jul 13 04:24:50 EDT 2025
Mon Jul 21 05:23:17 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Tue Jul 01 01:47:09 EDT 2025
Wed Jan 22 16:20:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords Hydrogen-Bonded Organic Frameworks
Crystal Engineering
Porous Materials
Crystal Structure Prediction
Language English
License Attribution
2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5357-655d1f0dc14f86ef5cfc53a344d1ab547187116bf6db04b99e8556002a95361d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8396-2771
0000-0001-7186-6416
0000-0002-1994-0591
0000-0002-6389-6049
0000-0002-0382-5863
0000-0001-6335-7507
0000-0002-1435-4331
0000-0003-0201-1021
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303167
PMID 37021635
PQID 2851804426
PQPubID 946352
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952618
proquest_miscellaneous_2797145505
proquest_journals_2851804426
pubmed_primary_37021635
crossref_citationtrail_10_1002_anie_202303167
crossref_primary_10_1002_anie_202303167
wiley_primary_10_1002_anie_202303167_ANIE202303167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 21, 2023
PublicationDateYYYYMMDD 2023-08-21
PublicationDate_xml – month: 08
  year: 2023
  text: August 21, 2023
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1997; 278
2015; 17
2021; 3
2020; 142
2017; 46
2019; 58
2008; 14
2008; 7
2012; 18
2016; 72
2020; 56
2015; 348
2009; 131
2022; 22
2021; 143
2017; 355
2017; 9
2014; 43
2012; 51
2017; 53
2013; 15
2009; 74
2012; 112
2021; 12
2020; 1
2022; 3
2020; 30
2022; 5
2022; 8
2018; 211
2019; 48
2017; 56
2011; 50
2018; 30
2008; 41
2012; 48
2003; 423
2017; 543
2018; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 5
  start-page: 86
  year: 2022
  publication-title: Commun. Chem.
– volume: 18
  start-page: 10082
  year: 2012
  end-page: 91
  publication-title: Chemistry
– volume: 46
  start-page: 3286
  year: 2017
  end-page: 3301
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 497
  year: 2021
  end-page: 503
  publication-title: ACS Mater. Lett.
– volume: 22
  start-page: 1817
  year: 2022
  end-page: 1823
  publication-title: Cryst. Growth Des.
– volume: 9
  start-page: 17
  year: 2017
  publication-title: Nat. Chem.
– volume: 48
  start-page: 1141
  year: 2012
  end-page: 1143
  publication-title: Chem. Commun.
– volume: 142
  start-page: 7218
  year: 2020
  end-page: 7224
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 937
  year: 2008
  end-page: 946
  publication-title: Nat. Mater.
– volume: 14
  start-page: 8830
  year: 2008
  end-page: 8836
  publication-title: Chem. Eur. J.
– volume: 348
  year: 2015
  publication-title: Science
– volume: 41
  start-page: 466
  year: 2008
  end-page: 470
  publication-title: J. Appl. Crystallogr.
– volume: 58
  start-page: 1664
  year: 2019
  end-page: 1669
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 2101
  year: 2017
  end-page: 2104
  publication-title: Angew. Chem. Int. Ed.
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  publication-title: Nature
– volume: 278
  start-page: 404
  year: 1997
  end-page: 405
  publication-title: Science
– volume: 17
  start-page: 5154
  year: 2015
  end-page: 5165
  publication-title: CrystEngComm
– volume: 51
  start-page: 5252
  year: 2012
  end-page: 5255
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 4
  publication-title: Chem. Rev.
– volume: 1
  start-page: 77
  year: 2020
  end-page: 87
  publication-title: Acc. Mater. Res.
– volume: 74
  start-page: 405
  year: 2009
  end-page: 407
  publication-title: J. Org. Chem.
– volume: 143
  start-page: 20207
  year: 2021
  end-page: 20215
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 1046
  year: 2011
  end-page: 1051
  publication-title: Angew. Chem. Int. Ed.
– volume: 211
  start-page: 383
  year: 2018
  end-page: 399
  publication-title: Faraday Discuss.
– volume: 53
  start-page: 3677
  year: 2017
  end-page: 3680
  publication-title: Chem. Commun.
– volume: 543
  start-page: 657
  year: 2017
  end-page: 664
  publication-title: Nature
– volume: 12
  start-page: 817
  year: 2021
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 2098
  year: 2014
  end-page: 2111
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 1362
  year: 2019
  end-page: 1389
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 1934
  year: 2014
  end-page: 1947
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 2114
  year: 2022
  end-page: 2135
  publication-title: Chem
– volume: 3
  start-page: 3680
  year: 2022
  end-page: 3708
  publication-title: Mater. Adv.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 57
  start-page: 7691
  year: 2018
  end-page: 7696
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 458
  year: 2009
  end-page: 460
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 9258
  year: 2013
  end-page: 9264
  publication-title: CrystEngComm
– volume: 72
  start-page: 171
  year: 2016
  end-page: 179
  publication-title: Acta Crystallogr. Sect. B
– volume: 8
  start-page: 1589
  year: 2022
  end-page: 1608
  publication-title: ACS Cent. Sci.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 56
  start-page: 66
  year: 2020
  end-page: 69
  publication-title: Chem. Commun.
– ident: e_1_2_7_30_1
  doi: 10.1039/c3ce41232f
– ident: e_1_2_7_16_1
  doi: 10.1021/accountsmr.0c00019
– ident: e_1_2_7_12_1
  doi: 10.1039/C3CS60279F
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.201811263
– ident: e_1_2_7_6_1
  doi: 10.1126/science.278.5337.404
– ident: e_1_2_7_33_1
  doi: 10.1021/jo801643u
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat2321
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201909842
– ident: e_1_2_7_18_1
  doi: 10.1039/D1MA01173A
– ident: e_1_2_7_2_1
  doi: 10.1021/cr300014x
– ident: e_1_2_7_14_1
  doi: 10.1038/nature21419
– ident: e_1_2_7_17_1
  doi: 10.1016/j.chempr.2022.06.015
– ident: e_1_2_7_19_1
  doi: 10.1021/acscentsci.2c01196
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201005301
– ident: e_1_2_7_34_1
  doi: 10.1039/C2CC16986J
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_7_13_1
  doi: 10.1039/C7CS00084G
– ident: e_1_2_7_26_1
  doi: 10.1107/S0021889807067908
– ident: e_1_2_7_25_1
  doi: 10.1039/C9CC07802A
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-021-21091-w
– ident: e_1_2_7_36_1
  doi: 10.1039/C7CC00557A
– ident: e_1_2_7_40_1
  doi: 10.1038/s42004-022-00705-4
– ident: e_1_2_7_29_1
  doi: 10.1021/ja808853q
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201201174
– ident: e_1_2_7_38_1
  doi: 10.1002/chem.200800668
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.1c08642
– ident: e_1_2_7_5_1
  doi: 10.1038/nchem.2663
– ident: e_1_2_7_31_1
  doi: 10.1021/acsmaterialslett.1c00013
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.cgd.1c01382
– ident: e_1_2_7_8_1
  doi: 10.1039/C3CS60358J
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201800354
– ident: e_1_2_7_39_1
  doi: 10.1107/S2052520616003954
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201704944
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.0c02406
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.200300636
– ident: e_1_2_7_35_1
  doi: 10.1039/C8FD00031J
– ident: e_1_2_7_41_1
  doi: 10.1039/C8CS00155C
– ident: e_1_2_7_10_1
  doi: 10.1039/C5CE00045A
– ident: e_1_2_7_9_1
  doi: 10.1126/science.aaa8075
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201610901
– ident: e_1_2_7_11_1
  doi: 10.1002/chem.201201351
SSID ssj0028806
Score 2.523442
Snippet Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong...
Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202303167
SubjectTerms Crystal Engineering
Crystal lattices
Crystal structure
Crystal Structure Prediction
Crystals
Hydrogen
Hydrogen-Bonded Organic Frameworks
Lattice energy
Organic chemistry
Porous Materials
Quinoxaline
Quinoxalines
Structure-function relationships
Title Experimental Confirmation of a Predicted Porous Hydrogen‐Bonded Organic Framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303167
https://www.ncbi.nlm.nih.gov/pubmed/37021635
https://www.proquest.com/docview/2851804426
https://www.proquest.com/docview/2797145505
https://pubmed.ncbi.nlm.nih.gov/PMC10952618
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXsqFV3kESuVKSJy8jR07yR6raldLJapVaaXeIr8iKlCC9nGAEz-B38gvYSYvdqkQEr0lsq3E45nMF3vmG4A3KtfOS-W5yDPDFUJWjijEc19KdOaUrdtwd74_T2dX6uxaX29k8bf8EMOGG1lG870mAzd2efybNJQysEdU_DumZG78CFPAFqGii4E_SqJytulFScKpCn3P2hjL4-3h217pFtS8HTG5iWQbVzR9CKafRBuB8mm0XtmR-_YHv-NdZvkIHnQ4lZ20ivUYdkL1BPZO-_Jw-_BhslEbgFHi4E2XBsnqkhk2X9AREOJZNq8X9XrJZl_9okZ1_fn9B9UyxoY2D9SxaR8g9hSuppPL0xnvKjRwpxOd8VRrL8rYO6HKPA2ldiU2mEQpL4zV5PgyIVJbpt7Gyo7HIdcEsaShU2Phk2ewW9VVeAEsLbXxxkvnEdQEbW0gnqowdkGmwWU2At6vUOE6-nKqovG5aImXZUGiKgZRRfB26P-lJe74a8-DfsGLzoCXhURtyWOF-CWCo6EZRUznKaYKKLdCZuOs4XnXETxv9WN4VJIheEIwF0G-pTlDB6L13m6pbj429N4CUS_-1-YRyEYz_vH6xcn5u8lw9_J_Br2C-3RNW-VSHMDuarEOrxFrrewh3JNqfthY1S9oZyKq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_imBAkYCcfI2ceIke-BQtbvape2qglbqzcQ_ERVVUu2PUDnxCLwKr8Ij8CTM5I8uFUJC6oFjMk7i2DP2Z4_nG4AXUSqNFZHlQZpkPELIyhGFWG5zgZM5RetW3J37k3h0FL05lscr8K2Nhan5IboNN7KMarwmA6cN6c1frKEUgt2j7N8-RXM35yp33fknXLXNXo93sItfCjEcHG6PeJNYgBsZyoTHUtog960JojyNXS5NjoIsjCIbZFrSeJ0EQazz2Go_0v2-SyUhA5GRszOwIb73GlynNOJE17_ztmOsEmgOdUBTGHLKe9_yRPpic7m-y_PgJXB7-YzmRexcTX7DW_C9bbb6zMvH3mKue-bzb4yS_1W73oabDRRnW7Xt3IEVV9yFte02A949eDe4kP6AUWzkSRPpycqcZexgSl4uhOzsoJyWixkbndtpiRb548tXSteMgjrU1bBhewbuPhxdyT89gNWiLNxDYHEuM5tZYSziNie1dkTF5frGidiZRHvAW5VQpmFop0Qhp6rmlhaKukZ1XePBq678Wc1N8seSG62GqWaMmimB6pn6EUI0D553YmxichllhcN2UyLpJxWVvfRgvVbI7lNhgvgQ8aoH6ZKqdgWIuXxZUpx8qBjMAwT2uHRPPRCVKv6l-mprMh50V4_-5aFnsDY63N9Te-PJ7mO4QffJMyCCDVidTxfuCULLuX5aGTOD91et5T8BcQh99g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCuqLeK3RqiMoPo3NTGaS7IMPpd1l1-qyoIW-jclcsCBJ2W2RvvkT_Cn-Jn-J5-RmlyKC0MfkTJLhXDLfXM53AF6qXFsnleMizwquELJyRCGOuyBxMKds3Ya788M8nR6qd0f6aAN-9rkwLT_EsOBGkdH8rynAT1zY-UMaShnYb6j4d0zJ3N2xygN__g0nbau3s3208CspJ-NPe1Pe1RXgVic646nWToTYWaFCnvqgbUBBkSjlRFFq-l1nQqRlSF0Zq3I08rkmYCAL2usULsH3XoPrtMNIh8ikWgxTPIyGNp8pSTiVve9pImO5s97f9WHwEra9fETzInRuxr7JHbjdgVa223rZXdjw1T24udfXirsPH8cXCgUwyiI87nIiWR1YwRZL2g9CcMsW9bI-W7HpuVvW6Lu_vv-gwsYoaJNCLZv0p8UewOGVqPUhbFZ15R8BS4MuXOGkdYhwvC5LT6RVfmS9TL3Nygh4rz1jOy5zKqnx1bQszNKQts2g7QheD-1PWhaPv7bc7o1humheGYmWzGOFYCaCF4MYVUybK0XlUW9GZqOsIX3XEWy1ths-lWSIpBDZRZCvWXVoQBzf65Lq-EvD9S0QAuMkN49ANg7wj-6b3flsPFw9_p-HnsONxf7EvJ_ND57ALbpNS-hSbMPm6fLMP0UMdlo-a9yeweerjrPfRY073w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Confirmation+of+a+Predicted+Porous+Hydrogen%E2%80%90Bonded+Organic+Framework&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shields%2C+Caitlin+E&rft.au=Wang%2C+Xue&rft.au=Fellowes%2C+Thomas&rft.au=Clowes%2C+Rob&rft.date=2023-08-21&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=34&rft_id=info:doi/10.1002%2Fanie.202303167&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon