Experimental Confirmation of a Predicted Porous Hydrogen‐Bonded Organic Framework
Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 34; pp. e202303167 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.08.2023
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm−3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.
A hydrogen‐bonded framework that was predicted previously to have 3D porosity and a remarkably low density of 0.37 g cm−3 has been discovered experimentally. The structure of this framework matches the original prediction precisely and it has an accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous hydrogen‐bonded frameworks synthesized to date. |
---|---|
AbstractList | Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm
and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m
g
, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm −3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m 2 g −1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. A hydrogen‐bonded framework that was predicted previously to have 3D porosity and a remarkably low density of 0.37 g cm −3 has been discovered experimentally. The structure of this framework matches the original prediction precisely and it has an accessible surface area of 3,284 m 2 g −1 , as measured by nitrogen adsorption, making it one of the most porous hydrogen‐bonded frameworks synthesized to date. Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm−3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm−3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. A hydrogen‐bonded framework that was predicted previously to have 3D porosity and a remarkably low density of 0.37 g cm−3 has been discovered experimentally. The structure of this framework matches the original prediction precisely and it has an accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous hydrogen‐bonded frameworks synthesized to date. Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm −3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m 2 g −1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm-3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g-1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm-3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g-1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date. |
Author | Wang, Xue Day, Graeme M. Cooper, Andrew I. Fellowes, Thomas Ward, John W. Shields, Caitlin E. Chen, Linjiang Little, Marc A. Clowes, Rob Slater, Anna G. |
AuthorAffiliation | 2 Leverhulme Research Centre for Functional Materials Design University of Liverpool 51 Oxford Street Liverpool L7 3NY UK 4 Computational Systems Chemistry, School of Chemistry University of Southampton B27, East Highfield Campus, University Road Southampton SO17 1BJ UK 3 School of Chemistry and School of Computer Sciences University of Birmingham Edgbaston Birmingham B15 2TT UK 1 Materials Innovation Factory and Department of Chemistry University of Liverpool 51 Oxford Street Liverpool L7 3NY UK |
AuthorAffiliation_xml | – name: 2 Leverhulme Research Centre for Functional Materials Design University of Liverpool 51 Oxford Street Liverpool L7 3NY UK – name: 4 Computational Systems Chemistry, School of Chemistry University of Southampton B27, East Highfield Campus, University Road Southampton SO17 1BJ UK – name: 1 Materials Innovation Factory and Department of Chemistry University of Liverpool 51 Oxford Street Liverpool L7 3NY UK – name: 3 School of Chemistry and School of Computer Sciences University of Birmingham Edgbaston Birmingham B15 2TT UK |
Author_xml | – sequence: 1 givenname: Caitlin E. orcidid: 0000-0001-6335-7507 surname: Shields fullname: Shields, Caitlin E. organization: University of Liverpool – sequence: 2 givenname: Xue surname: Wang fullname: Wang, Xue organization: University of Liverpool – sequence: 3 givenname: Thomas orcidid: 0000-0002-6389-6049 surname: Fellowes fullname: Fellowes, Thomas organization: University of Liverpool – sequence: 4 givenname: Rob surname: Clowes fullname: Clowes, Rob organization: University of Liverpool – sequence: 5 givenname: Linjiang orcidid: 0000-0002-0382-5863 surname: Chen fullname: Chen, Linjiang organization: University of Birmingham Edgbaston – sequence: 6 givenname: Graeme M. orcidid: 0000-0001-8396-2771 surname: Day fullname: Day, Graeme M. organization: University of Southampton B27, East Highfield Campus, University Road – sequence: 7 givenname: Anna G. orcidid: 0000-0002-1435-4331 surname: Slater fullname: Slater, Anna G. email: Anna.Slater@liverpool.ac.uk organization: University of Liverpool – sequence: 8 givenname: John W. orcidid: 0000-0001-7186-6416 surname: Ward fullname: Ward, John W. email: John.Ward@liverpool.ac.uk organization: University of Liverpool – sequence: 9 givenname: Marc A. orcidid: 0000-0002-1994-0591 surname: Little fullname: Little, Marc A. email: malittle@liverpool.ac.uk organization: University of Liverpool – sequence: 10 givenname: Andrew I. orcidid: 0000-0003-0201-1021 surname: Cooper fullname: Cooper, Andrew I. email: aicooper@liverpool.ac.uk organization: University of Liverpool |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37021635$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB-wZYkisWGTwW8nK1RGU1qpaisBa8vxY3BJ7MHJUGbHT-A38ku4ZfqASoiVLd3vHJ1z7z7aSTl5hJ4TPCMY09cmRT-jmDLMiFSP0B4RlNRMKbYDf85YrRpBdtH-OF4C3zRYPkG7TGFKJBN76P3i28qXOPg0mb6a5xRiGcwUc6pyqEx1UbyLdvKuusglr8fqeONKXvr08_uPtzk5GJyXJaSw1VExg7_K5fNT9DiYfvTPbt4D9PFo8WF-XJ-evzuZH57WVjChaimEIwE7S3hopA_CBhgYxrkjphNckUYRIrsgXYd517a-EUJCCdMKJoljB-jN1ne17gbvLHQoptcrqGPKRmcT9d-TFD_pZf6qCW4FlaQBh1c3DiV_Wftx0kMcre97kzyU1VS1inAhsAD05QP0Mq9Lgn6awoYbzDmVQL34M9JdltuFA8C3gC15HIsP2sbp974hYewhmr6-q76-q767K8hmD2S3zv8UtFvBVez95j-0Pjw7WdxrfwGXobZQ |
CitedBy_id | crossref_primary_10_1038_s41586_024_07353_9 crossref_primary_10_1039_D4SC04619F crossref_primary_10_1021_jacsau_5c00077 crossref_primary_10_1039_D3RA08305E crossref_primary_10_1021_acs_cgd_3c01219 crossref_primary_10_1038_s41467_024_47058_1 crossref_primary_10_1002_ceur_202400111 crossref_primary_10_1039_D3CE00752A crossref_primary_10_1016_j_cej_2024_156021 |
Cites_doi | 10.1039/c3ce41232f 10.1021/accountsmr.0c00019 10.1039/C3CS60279F 10.1002/anie.201811263 10.1126/science.278.5337.404 10.1021/jo801643u 10.1038/nmat2321 10.1002/adfm.201909842 10.1039/D1MA01173A 10.1021/cr300014x 10.1038/nature21419 10.1016/j.chempr.2022.06.015 10.1021/acscentsci.2c01196 10.1002/anie.201005301 10.1039/C2CC16986J 10.1126/science.aal1585 10.1039/C7CS00084G 10.1107/S0021889807067908 10.1039/C9CC07802A 10.1038/s41467-021-21091-w 10.1039/C7CC00557A 10.1038/s42004-022-00705-4 10.1021/ja808853q 10.1002/anie.201201174 10.1002/chem.200800668 10.1021/jacs.1c08642 10.1038/nchem.2663 10.1021/acsmaterialslett.1c00013 10.1021/acs.cgd.1c01382 10.1039/C3CS60358J 10.1002/anie.201800354 10.1107/S2052520616003954 10.1002/adma.201704944 10.1021/jacs.0c02406 10.1002/anie.200300636 10.1039/C8FD00031J 10.1039/C8CS00155C 10.1039/C5CE00045A 10.1126/science.aaa8075 10.1002/anie.201610901 10.1002/chem.201201351 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202303167 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | PMC10952618 37021635 10_1002_anie_202303167 ANIE202303167 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Leverhulme Trust funderid: Leverhulme Research Centre for Functional Materials Design – fundername: Royal Society funderid: 201168; Research Professorship – fundername: H2020 European Research Council funderid: 856405 – fundername: Engineering and Physical Sciences Research Council funderid: EP/V026887/1 – fundername: Royal Society grantid: Research Professorship – fundername: Royal Society grantid: 201168 – fundername: H2020 European Research Council grantid: 856405 – fundername: Engineering and Physical Sciences Research Council grantid: EP/V026887/1 – fundername: Leverhulme Trust grantid: Leverhulme Research Centre for Functional Materials Design |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5357-655d1f0dc14f86ef5cfc53a344d1ab547187116bf6db04b99e8556002a95361d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:35:18 EDT 2025 Fri Jul 11 07:04:16 EDT 2025 Sun Jul 13 04:24:50 EDT 2025 Mon Jul 21 05:23:17 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 Tue Jul 01 01:47:09 EDT 2025 Wed Jan 22 16:20:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | Hydrogen-Bonded Organic Frameworks Crystal Engineering Porous Materials Crystal Structure Prediction |
Language | English |
License | Attribution 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5357-655d1f0dc14f86ef5cfc53a344d1ab547187116bf6db04b99e8556002a95361d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8396-2771 0000-0001-7186-6416 0000-0002-1994-0591 0000-0002-6389-6049 0000-0002-0382-5863 0000-0001-6335-7507 0000-0002-1435-4331 0000-0003-0201-1021 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303167 |
PMID | 37021635 |
PQID | 2851804426 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952618 proquest_miscellaneous_2797145505 proquest_journals_2851804426 pubmed_primary_37021635 crossref_citationtrail_10_1002_anie_202303167 crossref_primary_10_1002_anie_202303167 wiley_primary_10_1002_anie_202303167_ANIE202303167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 21, 2023 |
PublicationDateYYYYMMDD | 2023-08-21 |
PublicationDate_xml | – month: 08 year: 2023 text: August 21, 2023 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1997; 278 2015; 17 2021; 3 2020; 142 2017; 46 2019; 58 2008; 14 2008; 7 2012; 18 2016; 72 2020; 56 2015; 348 2009; 131 2022; 22 2021; 143 2017; 355 2017; 9 2014; 43 2012; 51 2017; 53 2013; 15 2009; 74 2012; 112 2021; 12 2020; 1 2022; 3 2020; 30 2022; 5 2022; 8 2018; 211 2019; 48 2017; 56 2011; 50 2018; 30 2008; 41 2012; 48 2003; 423 2017; 543 2018; 57 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 5 start-page: 86 year: 2022 publication-title: Commun. Chem. – volume: 18 start-page: 10082 year: 2012 end-page: 91 publication-title: Chemistry – volume: 46 start-page: 3286 year: 2017 end-page: 3301 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 497 year: 2021 end-page: 503 publication-title: ACS Mater. Lett. – volume: 22 start-page: 1817 year: 2022 end-page: 1823 publication-title: Cryst. Growth Des. – volume: 9 start-page: 17 year: 2017 publication-title: Nat. Chem. – volume: 48 start-page: 1141 year: 2012 end-page: 1143 publication-title: Chem. Commun. – volume: 142 start-page: 7218 year: 2020 end-page: 7224 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 937 year: 2008 end-page: 946 publication-title: Nat. Mater. – volume: 14 start-page: 8830 year: 2008 end-page: 8836 publication-title: Chem. Eur. J. – volume: 348 year: 2015 publication-title: Science – volume: 41 start-page: 466 year: 2008 end-page: 470 publication-title: J. Appl. Crystallogr. – volume: 58 start-page: 1664 year: 2019 end-page: 1669 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 2101 year: 2017 end-page: 2104 publication-title: Angew. Chem. Int. Ed. – volume: 423 start-page: 705 year: 2003 end-page: 714 publication-title: Nature – volume: 278 start-page: 404 year: 1997 end-page: 405 publication-title: Science – volume: 17 start-page: 5154 year: 2015 end-page: 5165 publication-title: CrystEngComm – volume: 51 start-page: 5252 year: 2012 end-page: 5255 publication-title: Angew. Chem. Int. Ed. – volume: 112 start-page: 673 year: 2012 end-page: 4 publication-title: Chem. Rev. – volume: 1 start-page: 77 year: 2020 end-page: 87 publication-title: Acc. Mater. Res. – volume: 74 start-page: 405 year: 2009 end-page: 407 publication-title: J. Org. Chem. – volume: 143 start-page: 20207 year: 2021 end-page: 20215 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 1046 year: 2011 end-page: 1051 publication-title: Angew. Chem. Int. Ed. – volume: 211 start-page: 383 year: 2018 end-page: 399 publication-title: Faraday Discuss. – volume: 53 start-page: 3677 year: 2017 end-page: 3680 publication-title: Chem. Commun. – volume: 543 start-page: 657 year: 2017 end-page: 664 publication-title: Nature – volume: 12 start-page: 817 year: 2021 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 2098 year: 2014 end-page: 2111 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 1362 year: 2019 end-page: 1389 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 1934 year: 2014 end-page: 1947 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 2114 year: 2022 end-page: 2135 publication-title: Chem – volume: 3 start-page: 3680 year: 2022 end-page: 3708 publication-title: Mater. Adv. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 57 start-page: 7691 year: 2018 end-page: 7696 publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 458 year: 2009 end-page: 460 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 9258 year: 2013 end-page: 9264 publication-title: CrystEngComm – volume: 72 start-page: 171 year: 2016 end-page: 179 publication-title: Acta Crystallogr. Sect. B – volume: 8 start-page: 1589 year: 2022 end-page: 1608 publication-title: ACS Cent. Sci. – volume: 355 year: 2017 publication-title: Science – volume: 56 start-page: 66 year: 2020 end-page: 69 publication-title: Chem. Commun. – ident: e_1_2_7_30_1 doi: 10.1039/c3ce41232f – ident: e_1_2_7_16_1 doi: 10.1021/accountsmr.0c00019 – ident: e_1_2_7_12_1 doi: 10.1039/C3CS60279F – ident: e_1_2_7_20_1 doi: 10.1002/anie.201811263 – ident: e_1_2_7_6_1 doi: 10.1126/science.278.5337.404 – ident: e_1_2_7_33_1 doi: 10.1021/jo801643u – ident: e_1_2_7_1_1 doi: 10.1038/nmat2321 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201909842 – ident: e_1_2_7_18_1 doi: 10.1039/D1MA01173A – ident: e_1_2_7_2_1 doi: 10.1021/cr300014x – ident: e_1_2_7_14_1 doi: 10.1038/nature21419 – ident: e_1_2_7_17_1 doi: 10.1016/j.chempr.2022.06.015 – ident: e_1_2_7_19_1 doi: 10.1021/acscentsci.2c01196 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201005301 – ident: e_1_2_7_34_1 doi: 10.1039/C2CC16986J – ident: e_1_2_7_3_1 doi: 10.1126/science.aal1585 – ident: e_1_2_7_13_1 doi: 10.1039/C7CS00084G – ident: e_1_2_7_26_1 doi: 10.1107/S0021889807067908 – ident: e_1_2_7_25_1 doi: 10.1039/C9CC07802A – ident: e_1_2_7_27_1 doi: 10.1038/s41467-021-21091-w – ident: e_1_2_7_36_1 doi: 10.1039/C7CC00557A – ident: e_1_2_7_40_1 doi: 10.1038/s42004-022-00705-4 – ident: e_1_2_7_29_1 doi: 10.1021/ja808853q – ident: e_1_2_7_22_1 doi: 10.1002/anie.201201174 – ident: e_1_2_7_38_1 doi: 10.1002/chem.200800668 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.1c08642 – ident: e_1_2_7_5_1 doi: 10.1038/nchem.2663 – ident: e_1_2_7_31_1 doi: 10.1021/acsmaterialslett.1c00013 – ident: e_1_2_7_32_1 doi: 10.1021/acs.cgd.1c01382 – ident: e_1_2_7_8_1 doi: 10.1039/C3CS60358J – ident: e_1_2_7_24_1 doi: 10.1002/anie.201800354 – ident: e_1_2_7_39_1 doi: 10.1107/S2052520616003954 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201704944 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.0c02406 – ident: e_1_2_7_4_1 doi: 10.1002/anie.200300636 – ident: e_1_2_7_35_1 doi: 10.1039/C8FD00031J – ident: e_1_2_7_41_1 doi: 10.1039/C8CS00155C – ident: e_1_2_7_10_1 doi: 10.1039/C5CE00045A – ident: e_1_2_7_9_1 doi: 10.1126/science.aaa8075 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201610901 – ident: e_1_2_7_11_1 doi: 10.1002/chem.201201351 |
SSID | ssj0028806 |
Score | 2.523442 |
Snippet | Hydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong... Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202303167 |
SubjectTerms | Crystal Engineering Crystal lattices Crystal structure Crystal Structure Prediction Crystals Hydrogen Hydrogen-Bonded Organic Frameworks Lattice energy Organic chemistry Porous Materials Quinoxaline Quinoxalines Structure-function relationships |
Title | Experimental Confirmation of a Predicted Porous Hydrogen‐Bonded Organic Framework |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303167 https://www.ncbi.nlm.nih.gov/pubmed/37021635 https://www.proquest.com/docview/2851804426 https://www.proquest.com/docview/2797145505 https://pubmed.ncbi.nlm.nih.gov/PMC10952618 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXsqFV3kESuVKSJy8jR07yR6raldLJapVaaXeIr8iKlCC9nGAEz-B38gvYSYvdqkQEr0lsq3E45nMF3vmG4A3KtfOS-W5yDPDFUJWjijEc19KdOaUrdtwd74_T2dX6uxaX29k8bf8EMOGG1lG870mAzd2efybNJQysEdU_DumZG78CFPAFqGii4E_SqJytulFScKpCn3P2hjL4-3h217pFtS8HTG5iWQbVzR9CKafRBuB8mm0XtmR-_YHv-NdZvkIHnQ4lZ20ivUYdkL1BPZO-_Jw-_BhslEbgFHi4E2XBsnqkhk2X9AREOJZNq8X9XrJZl_9okZ1_fn9B9UyxoY2D9SxaR8g9hSuppPL0xnvKjRwpxOd8VRrL8rYO6HKPA2ldiU2mEQpL4zV5PgyIVJbpt7Gyo7HIdcEsaShU2Phk2ewW9VVeAEsLbXxxkvnEdQEbW0gnqowdkGmwWU2At6vUOE6-nKqovG5aImXZUGiKgZRRfB26P-lJe74a8-DfsGLzoCXhURtyWOF-CWCo6EZRUznKaYKKLdCZuOs4XnXETxv9WN4VJIheEIwF0G-pTlDB6L13m6pbj429N4CUS_-1-YRyEYz_vH6xcn5u8lw9_J_Br2C-3RNW-VSHMDuarEOrxFrrewh3JNqfthY1S9oZyKq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_imBAkYCcfI2ceIke-BQtbvape2qglbqzcQ_ERVVUu2PUDnxCLwKr8Ij8CTM5I8uFUJC6oFjMk7i2DP2Z4_nG4AXUSqNFZHlQZpkPELIyhGFWG5zgZM5RetW3J37k3h0FL05lscr8K2Nhan5IboNN7KMarwmA6cN6c1frKEUgt2j7N8-RXM35yp33fknXLXNXo93sItfCjEcHG6PeJNYgBsZyoTHUtog960JojyNXS5NjoIsjCIbZFrSeJ0EQazz2Go_0v2-SyUhA5GRszOwIb73GlynNOJE17_ztmOsEmgOdUBTGHLKe9_yRPpic7m-y_PgJXB7-YzmRexcTX7DW_C9bbb6zMvH3mKue-bzb4yS_1W73oabDRRnW7Xt3IEVV9yFte02A949eDe4kP6AUWzkSRPpycqcZexgSl4uhOzsoJyWixkbndtpiRb548tXSteMgjrU1bBhewbuPhxdyT89gNWiLNxDYHEuM5tZYSziNie1dkTF5frGidiZRHvAW5VQpmFop0Qhp6rmlhaKukZ1XePBq678Wc1N8seSG62GqWaMmimB6pn6EUI0D553YmxichllhcN2UyLpJxWVvfRgvVbI7lNhgvgQ8aoH6ZKqdgWIuXxZUpx8qBjMAwT2uHRPPRCVKv6l-mprMh50V4_-5aFnsDY63N9Te-PJ7mO4QffJMyCCDVidTxfuCULLuX5aGTOD91et5T8BcQh99g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCuqLeK3RqiMoPo3NTGaS7IMPpd1l1-qyoIW-jclcsCBJ2W2RvvkT_Cn-Jn-J5-RmlyKC0MfkTJLhXDLfXM53AF6qXFsnleMizwquELJyRCGOuyBxMKds3Ya788M8nR6qd0f6aAN-9rkwLT_EsOBGkdH8rynAT1zY-UMaShnYb6j4d0zJ3N2xygN__g0nbau3s3208CspJ-NPe1Pe1RXgVic646nWToTYWaFCnvqgbUBBkSjlRFFq-l1nQqRlSF0Zq3I08rkmYCAL2usULsH3XoPrtMNIh8ikWgxTPIyGNp8pSTiVve9pImO5s97f9WHwEra9fETzInRuxr7JHbjdgVa223rZXdjw1T24udfXirsPH8cXCgUwyiI87nIiWR1YwRZL2g9CcMsW9bI-W7HpuVvW6Lu_vv-gwsYoaJNCLZv0p8UewOGVqPUhbFZ15R8BS4MuXOGkdYhwvC5LT6RVfmS9TL3Nygh4rz1jOy5zKqnx1bQszNKQts2g7QheD-1PWhaPv7bc7o1humheGYmWzGOFYCaCF4MYVUybK0XlUW9GZqOsIX3XEWy1ths-lWSIpBDZRZCvWXVoQBzf65Lq-EvD9S0QAuMkN49ANg7wj-6b3flsPFw9_p-HnsONxf7EvJ_ND57ALbpNS-hSbMPm6fLMP0UMdlo-a9yeweerjrPfRY073w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Confirmation+of+a+Predicted+Porous+Hydrogen%E2%80%90Bonded+Organic+Framework&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shields%2C+Caitlin+E&rft.au=Wang%2C+Xue&rft.au=Fellowes%2C+Thomas&rft.au=Clowes%2C+Rob&rft.date=2023-08-21&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=34&rft_id=info:doi/10.1002%2Fanie.202303167&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |