Buoyancy modelling with incompressible SPH for laminar and turbulent flows

SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 78; no. 8; pp. 455 - 474
Main Authors Leroy, A., Violeau, D., Ferrand, M., Joly, A.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 20.07.2015
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd. This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. Thek − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations. Several benchmark cases are then proposed including heated Poiseuille flows, differentially heated cavities and a lock‐exchange flow. Good agreement is obtained with a finite volume approach using an open‐source industrial code.
AbstractList This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi-analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds-averaged Navier-Stokes approach to treat turbulent flows. The k - turbulence model is used, where buoyancy is modelled through an additional term in the k - equations like in mesh-based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock-exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open-source industrial code. This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. Thek - turbulence model is used, where buoyancy is modelled through an additional term in the k - equations. Several benchmark cases are then proposed including heated Poiseuille flows, differentially heated cavities and a lock-exchange flow. Good agreement is obtained with a finite volume approach using an open-source industrial code.
Summary This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi-analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds-averaged Navier-Stokes approach to treat turbulent flows. The k - turbulence model is used, where buoyancy is modelled through an additional term in the k - equations like in mesh-based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock-exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open-source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.
This work aims at modelling buoyant, laminar or turbulent flows, using a 2D Incompressible Smoothed Particle Hydrodynamics (ISPH) model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work (Leroy et al., 2014), we extend the unified semi-analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds-Averaged Navier-Stokes approach to treat turbulent flows. The k − turbulence model is used, where buoyancy is modelled through an additional term in the k − equations like in mesh-based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or imposed heat flux (Neumann) wall boundary conditions in ISPH. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock-exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a Finite-Volume (FV) approach using an open-source industrial code.
SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd. This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. Thek − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations. Several benchmark cases are then proposed including heated Poiseuille flows, differentially heated cavities and a lock‐exchange flow. Good agreement is obtained with a finite volume approach using an open‐source industrial code.
Author Joly, A.
Violeau, D.
Leroy, A.
Ferrand, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Leroy
  fullname: Leroy, A.
  email: Correspondence to: A. Leroy, Saint-Venant Laboratory for Hydraulics, Université Paris-Est, 6 quai Watier, 78400 Chatou, France., agnes.leroy@edf.fr
  organization: Saint-Venant Laboratory for Hydraulics, Université Paris-Est (joint research unit EDF R&D, Cerema, ENPC), 6 quai Watier, 78400, Chatou, France
– sequence: 2
  givenname: D.
  surname: Violeau
  fullname: Violeau, D.
  organization: Saint-Venant Laboratory for Hydraulics, Université Paris-Est (joint research unit EDF R&D, Cerema, ENPC), 6 quai Watier, 78400, Chatou, France
– sequence: 3
  givenname: M.
  surname: Ferrand
  fullname: Ferrand, M.
  organization: MFEE, EDF R&D, 6 quai Watier, 78400, Chatou, France
– sequence: 4
  givenname: A.
  surname: Joly
  fullname: Joly, A.
  organization: Saint-Venant Laboratory for Hydraulics, Université Paris-Est (joint research unit EDF R&D, Cerema, ENPC), 6 quai Watier, 78400, Chatou, France
BackLink https://hal.science/hal-01557023$$DView record in HAL
BookMark eNqF0UFvFCEYBmBiauK2NulPIOlFD7P9gGUYjnW13TarNqmmR8IwTEtlYAszrvvvO5utNRqNJxLyfMDLu4_2QgwWoSMCUwJAT1rfTGdA-Qs0ISBFAaxke2gCVJCCgiSv0H7O9wAgacUm6PLdEDc6mA3uYmO9d-EWr11_h10wsVslm7OrvcXXVwvcxoS97lzQCevQ4H5I9eBt6HHr4zq_Ri9b7bM9fFoP0NezD1_mi2L5-fxifrosDGecF7qhGoita9OA4UAY1DPRipaWTBLZWCabWhsjTW3BlGUNFlppiJWN4FRbyQ7Q2925d9qrVXKdThsVtVOL06Xa7gHhXABl38lo3-zsKsWHweZedS6bMacONg5ZETH-0YxWVfl_WsrZaAWwkR7_Qe_jkMIYelRVWXFBYHv3dKdMijkn2yrjet27GPqknVcE1LYxNTamto39esHzwM90f6HFjq6dt5t_OnW2fP-7d7m3P569Tt9UKZjg6ubTuWKXlbiC-Ucl2CN5IbQj
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_105
crossref_primary_10_1080_00221686_2015_1119209
crossref_primary_10_1016_j_jweia_2023_105529
crossref_primary_10_1016_j_compfluid_2018_10_018
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120758
crossref_primary_10_1016_j_coastaleng_2022_104191
crossref_primary_10_1016_j_compfluid_2018_09_010
crossref_primary_10_1021_acsomega_3c01303
crossref_primary_10_1002_nme_7148
crossref_primary_10_1007_s40722_016_0049_3
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125904
crossref_primary_10_1016_j_camwa_2016_09_008
crossref_primary_10_1115_1_4064562
crossref_primary_10_2208_kaigan_72_I_1213
crossref_primary_10_1016_j_coastaleng_2020_103657
crossref_primary_10_1016_j_apm_2019_09_030
crossref_primary_10_1016_j_cma_2023_116203
crossref_primary_10_1063_1_5047088
crossref_primary_10_1063_1_5130711
crossref_primary_10_1016_j_jcp_2016_12_005
crossref_primary_10_1007_s11012_018_0825_3
crossref_primary_10_1016_j_camwa_2018_02_023
crossref_primary_10_1002_fld_4737
crossref_primary_10_1063_1_5122671
crossref_primary_10_1016_j_advwatres_2017_07_011
crossref_primary_10_1016_j_jcp_2021_110563
crossref_primary_10_1016_j_jfluidstructs_2016_05_012
Cites_doi 10.1016/j.euromechflu.2012.10.004
10.1016/j.ijheatmasstransfer.2009.10.026
10.1007/BF02123482
10.1016/j.ijheatmasstransfer.2011.06.034
10.1088/0034-4885/68/8/R01
10.1080/104077901752379620
10.1201/9781439882573
10.1002/fld.3666
10.1017/S0022112000001221
10.1080/104077901753306601
10.1016/j.jcp.2011.10.027
10.1007/s00466-003-0534-0
10.1016/B978-008044114-6/50014-4
10.1016/j.jcp.2013.12.035
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
7TG
KL.
1XC
VOOES
DOI 10.1002/fld.4025
DatabaseName Istex
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
Civil Engineering Abstracts
CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 474
ExternalDocumentID oai_HAL_hal_01557023v1
3708953801
10_1002_fld_4025
FLD4025
ark_67375_WNG_3J87P0CM_7
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
AMVHM
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
7TG
KL.
.Y3
1XC
31~
6TJ
ABEML
ACSCC
AGHNM
AI.
ASPBG
AVWKF
AZFZN
FEDTE
GBZZK
HF~
HVGLF
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
VOOES
ZY4
~A~
ID FETCH-LOGICAL-c5355-ad2a01ebbcd0c50130b47f7f263919de39dbacc9cbe0c66b0e0f9c1e9d752ae93
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Thu Jul 10 06:57:51 EDT 2025
Fri Jul 11 07:01:07 EDT 2025
Thu Jul 10 23:42:15 EDT 2025
Fri Jul 25 10:36:13 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Tue Jul 01 02:08:38 EDT 2025
Wed Jan 22 17:09:01 EST 2025
Wed Oct 30 09:49:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords SPH
incompressible
turbulence
boundary conditions
buoyancy
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5355-ad2a01ebbcd0c50130b47f7f263919de39dbacc9cbe0c66b0e0f9c1e9d752ae93
Notes ark:/67375/WNG-3J87P0CM-7
istex:7CADEF63DCE3C0553D68548677FD33D85F1BBB0A
ArticleID:FLD4025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2213-5251
OpenAccessLink https://hal.science/hal-01557023
PQID 1686857101
PQPubID 996375
PageCount 20
ParticipantIDs hal_primary_oai_HAL_hal_01557023v1
proquest_miscellaneous_1709742886
proquest_miscellaneous_1694974703
proquest_journals_1686857101
crossref_citationtrail_10_1002_fld_4025
crossref_primary_10_1002_fld_4025
wiley_primary_10_1002_fld_4025_FLD4025
istex_primary_ark_67375_WNG_3J87P0CM_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 July 2015
PublicationDateYYYYMMDD 2015-07-20
PublicationDate_xml – month: 07
  year: 2015
  text: 20 July 2015
  day: 20
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References Ghasemi VA, Firoozabadi B, Mahdinia M. 2D numerical simulation of density currents using the SPH projection method. European Journal of Mechanics - B/Fluids 2013; 38:38-46.
Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics 2005; 68:1703-1759.
Szewc K, Pozorski J, Tanière A. Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. International Journal of Heat and Mass Transfer 2011; 54(23-24):4807-4816.
Archambeau F, Mèchitoua N, Sakiz M. Code_Saturne: a finite volume code for the computation of turbulent incompressible flows - industrial applications. International Journal on Finite Volumes 2004; 1:1-62.
Launder BE, Spalding DB. Mathematical Models of Turbulence. Academic Press: London, 1972.
Reddy JN, Gartling DK. The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC press: London, 2010.
Trias FX, Gorobets A, Soria M, Oliva A. Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 - part I: numerical methods and time-averaged flow. International Journal of Heat and Mass Transfer 2010; 53(4):665-673.
Lind SJ, Xu R, Stansby PK, Rogers BD. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics 2012; 231(4):1499-1523.
Oliveira PJ, Issa R. An improved PISO algorithm for the computation of buoyancy-driven flows. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology 2001; 40(6):473-493.
Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B: Fundamentals 2001; 40(3):199-228.
Leroy A, Violeau D, Ferrand M, Kassiotis C. Unified semi-analytical wall boundary conditions applied to 2D incompressible SPH. Journal of Computational Physics 2014; 261:106-129.
Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 1995; 4:389-396.
Ferrand M, Laurence DR, Rogers BD, Violeau D, Kassiotis C. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. International Journal for Numerical Methods in Fluids 2013; 71:446-472.
Härtel C, Meiburg E, Necker F. Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. Journal of Fluid Mechanics 2000; 418:189-212.
Kulasegaram S, Bonet J, Lewis RW, Profit M. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational Mechanics 2004; 33:316-325.
2000; 418
2004; 33
2010; 53
2012; 231
2013; 38
2000
2010
2013; 71
2011; 54
1972
2014; 261
2004
2014
2002
2013
2004; 1
1995; 4
2001; 40
2005; 68
1999
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_24_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_3_1
e_1_2_8_2_1
Launder BE (e_1_2_8_8_1) 1972
e_1_2_8_5_1
e_1_2_8_4_1
Archambeau F (e_1_2_8_16_1) 2004; 1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
References_xml – reference: Archambeau F, Mèchitoua N, Sakiz M. Code_Saturne: a finite volume code for the computation of turbulent incompressible flows - industrial applications. International Journal on Finite Volumes 2004; 1:1-62.
– reference: Reddy JN, Gartling DK. The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC press: London, 2010.
– reference: Ferrand M, Laurence DR, Rogers BD, Violeau D, Kassiotis C. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. International Journal for Numerical Methods in Fluids 2013; 71:446-472.
– reference: Ghasemi VA, Firoozabadi B, Mahdinia M. 2D numerical simulation of density currents using the SPH projection method. European Journal of Mechanics - B/Fluids 2013; 38:38-46.
– reference: Lind SJ, Xu R, Stansby PK, Rogers BD. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics 2012; 231(4):1499-1523.
– reference: Kulasegaram S, Bonet J, Lewis RW, Profit M. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational Mechanics 2004; 33:316-325.
– reference: Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 1995; 4:389-396.
– reference: Härtel C, Meiburg E, Necker F. Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. Journal of Fluid Mechanics 2000; 418:189-212.
– reference: Trias FX, Gorobets A, Soria M, Oliva A. Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 - part I: numerical methods and time-averaged flow. International Journal of Heat and Mass Transfer 2010; 53(4):665-673.
– reference: Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics 2005; 68:1703-1759.
– reference: Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B: Fundamentals 2001; 40(3):199-228.
– reference: Leroy A, Violeau D, Ferrand M, Kassiotis C. Unified semi-analytical wall boundary conditions applied to 2D incompressible SPH. Journal of Computational Physics 2014; 261:106-129.
– reference: Szewc K, Pozorski J, Tanière A. Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. International Journal of Heat and Mass Transfer 2011; 54(23-24):4807-4816.
– reference: Launder BE, Spalding DB. Mathematical Models of Turbulence. Academic Press: London, 1972.
– reference: Oliveira PJ, Issa R. An improved PISO algorithm for the computation of buoyancy-driven flows. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology 2001; 40(6):473-493.
– volume: 38
  start-page: 38
  year: 2013
  end-page: 46
  article-title: 2D numerical simulation of density currents using the SPH projection method
  publication-title: European Journal of Mechanics ‐ B/Fluids
– volume: 40
  start-page: 199
  issue: 3
  year: 2001
  end-page: 228
  article-title: A new benchmark quality solution for the buoyancy‐driven cavity by discrete singular convolution
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– volume: 53
  start-page: 665
  issue: 4
  year: 2010
  end-page: 673
  article-title: Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10 – part I: numerical methods and time‐averaged flow
  publication-title: International Journal of Heat and Mass Transfer
– volume: 33
  start-page: 316
  year: 2004
  end-page: 325
  article-title: A variational formulation based contact algorithm for rigid boundaries in two‐dimensional SPH applications
  publication-title: Computational Mechanics
– volume: 231
  start-page: 1499
  issue: 4
  year: 2012
  end-page: 1523
  article-title: Incompressible smoothed particle hydrodynamics for free‐surface flows: a generalised diffusion‐based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: Journal of Computational Physics
– start-page: 415
  year: 2004
  end-page: 427
– volume: 1
  start-page: 1
  year: 2004
  end-page: 62
  article-title: : a finite volume code for the computation of turbulent incompressible flows – industrial applications
  publication-title: International Journal on Finite Volumes
– volume: 40
  start-page: 473
  issue: 6
  year: 2001
  end-page: 493
  article-title: An improved PISO algorithm for the computation of buoyancy‐driven flows
  publication-title: Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology
– year: 2004
– year: 1972
– start-page: 157
  year: 2002
  end-page: 166
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  article-title: Smoothed particle hydrodynamics
  publication-title: Reports on Progress in Physics
– volume: 71
  start-page: 446
  year: 2013
  end-page: 472
  article-title: Unified semi‐analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: International Journal for Numerical Methods in Fluids
– start-page: 216
  year: 2014
  end-page: 222
– volume: 261
  start-page: 106
  year: 2014
  end-page: 129
  article-title: Unified semi‐analytical wall boundary conditions applied to 2D incompressible SPH
  publication-title: Journal of Computational Physics
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Advances in Computational Mathematics
– start-page: 1
  year: 2000
  end-page: 124
– volume: 418
  start-page: 189
  year: 2000
  end-page: 212
  article-title: Analysis and direct numerical simulation of the flow at a gravity‐current head. Part 1. Flow topology and front speed for slip and no‐slip boundaries
  publication-title: Journal of Fluid Mechanics
– volume: 54
  start-page: 4807
  issue: 23–24
  year: 2011
  end-page: 4816
  article-title: Modeling of natural convection with smoothed particle hydrodynamics: non‐Boussinesq formulation
  publication-title: International Journal of Heat and Mass Transfer
– year: 2010
– start-page: 377
  year: 2013
  end-page: 382
– year: 2013
– year: 1999
– ident: e_1_2_8_6_1
  doi: 10.1016/j.euromechflu.2012.10.004
– volume-title: Mathematical Models of Turbulence
  year: 1972
  ident: e_1_2_8_8_1
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ijheatmasstransfer.2009.10.026
– ident: e_1_2_8_15_1
  doi: 10.1007/BF02123482
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ijheatmasstransfer.2011.06.034
– ident: e_1_2_8_10_1
  doi: 10.1088/0034-4885/68/8/R01
– ident: e_1_2_8_24_1
– ident: e_1_2_8_14_1
– ident: e_1_2_8_17_1
  doi: 10.1080/104077901752379620
– volume: 1
  start-page: 1
  year: 2004
  ident: e_1_2_8_16_1
  article-title: Code_Saturne: a finite volume code for the computation of turbulent incompressible flows – industrial applications
  publication-title: International Journal on Finite Volumes
– ident: e_1_2_8_19_1
– ident: e_1_2_8_3_1
  doi: 10.1201/9781439882573
– ident: e_1_2_8_22_1
– ident: e_1_2_8_11_1
  doi: 10.1002/fld.3666
– ident: e_1_2_8_18_1
  doi: 10.1017/S0022112000001221
– ident: e_1_2_8_4_1
  doi: 10.1080/104077901753306601
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jcp.2011.10.027
– ident: e_1_2_8_23_1
– ident: e_1_2_8_12_1
  doi: 10.1007/s00466-003-0534-0
– ident: e_1_2_8_9_1
  doi: 10.1016/B978-008044114-6/50014-4
– ident: e_1_2_8_21_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jcp.2013.12.035
SSID ssj0009283
Score 2.2552881
Snippet SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate...
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall...
Summary This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate...
This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall...
This work aims at modelling buoyant, laminar or turbulent flows, using a 2D Incompressible Smoothed Particle Hydrodynamics (ISPH) model with accurate wall...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 455
SubjectTerms Boundary conditions
Buoyancy
Computational fluid dynamics
Engineering Sciences
Fluid flow
Fluids mechanics
Hydrodynamics
incompressible
Laminar
Mathematical models
Mechanics
SPH
temperature
Turbulence
Turbulent flow
Walls
Title Buoyancy modelling with incompressible SPH for laminar and turbulent flows
URI https://api.istex.fr/ark:/67375/WNG-3J87P0CM-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4025
https://www.proquest.com/docview/1686857101
https://www.proquest.com/docview/1694974703
https://www.proquest.com/docview/1709742886
https://hal.science/hal-01557023
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXODQQgGxpSAXITjt1nbiOD62hWW1aqsKqKjEwbIdW0jdZqvuhtev70xebREgxCWR4knkx0zmG3v8mZCXMrGJTpDl0zkIUARcXNRuGFNrdRoYeGRc0T04zCbH6fREnrRZlbgXpuGH6Cfc0DLq_zUauHWL7SvS0DgrRhD84P5yTNVCPPT-ijlKi4aBUygOiqB5xzvLxHb34g1PdPsL5kHewa79fgNsXoestc8Zr5HPXW2bVJPTUbV0I__zFyLH_2vOfbLaQlG60-jOA3IrlOtkrYWltDX6xTq5d42z8CGZ7lbzH_hLpvUhOribneJkLkWah7MmrdbNAv1wNKEAiCloHG75pbYsKLg3V6Gbo3E2_7Z4RI7Hbz_uTYbtgQxDLwGXDG0hLOPBOV8wL3HN06UqqigA5nBdhEQXznqvvQvMZ5ljgUXtedCFksIGnTwmK-W8DE8IVdwpCFVEyC0AsgJCeu6lEj763OcyjQPyuhsc41u2cjw0Y2YanmVhoMMMdtiAbPWS5w1Dx29kXsD49sVIqT3Z2Tf4DDGjAuDylQ_Iq3r4ezF7cYppb0qaT4fvTDLN1RHbOzBqQDY7_TCtxS8Mz_Isl4DX4DtbfTHYKi7A2DLMK5TRKcZvLPmLjGIgIvI8g_rUCvPHVpnx_hu8b_yr4FNyF_CexKlpwTbJyvKiCs8AUy3d89p6LgENxhwn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6OAAHCgXEQgEXITjt1nHiOBanUljCsruqoFV7QLJsx1GlbrOou-H165nJqy0ChLgkUjyJ_JjJfGOPPxPyTIQmVCGyfFoLAQqHi82V7eeRMSryDDwyruhOpnF6GI2OxfEKednuhan5IboJN7SM6n-NBo4T0jsXrKH5LBtA9CNWyToe6F3FUx8uuKMUrzk4uQxAFVTQMs8yvtO-ecUXrZ5gJuQ6du63K3DzMmitvM5wg3xq61snm5wOyqUduB-_UDn-Z4NukZsNGqW7tfrcJiu-2CQbDTKljd0vNsmNS7SFd8joVTn_jn9lWp2jgxvaKc7nUmR6OKsza-3M04_7KQVMTEHpcNcvNUVGwcPZEj0dzWfzr4u75HD45mAv7TdnMvSdAGjSNxk3LPDWuow5gcueNpK5zDkgnUBlPlSZNc4pZz1zcWyZZ7lygVeZFNx4Fd4ja8W88PcJlYGVEK1wnxjAZBlE9YETkrvcJS4RUd4jL9rR0a4hLMdzM2a6plrmGjpMY4f1yHYn-bkm6fiNzFMY4K4YWbXT3bHGZwgbJWCXL0GPPK_GvxMz56eY-SaFPpq-1eEokftsb6Jlj2y1CqIbo1_oIE7iRABkg-9sd8VgrrgGYwo_L1FGRRjCsfAvMpKBCE-SGOpTacwfW6WH49d4f_Cvgk_ItfRgMtbjd9P3D8l1gH8CZ6o52yJry_PSPwKItbSPK1P6CbmVIEI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJiF4YDBAFAZ4CMFTO8eJ4_hxrJRSuqoCJibxYNmOrUnr0mlt-PrruUvSbEOAEC-JFF8if9zlfmeffybkuYhNrGJk-bQWAhQOFxuU7YbEGJV4Bh4ZV3QPJunwMBkdiaMmqxL3wtT8EO2EG1pG9b9GAz_Lw-4FaWiY5T0IfsQa2UhSlqFG999fUEcpXlNwchmBJqhoRTzL-O7qzSuuaO0YEyE3sG-_XUGblzFr5XQGm-Tzqrp1rslJr1zanvvxC5Pj_7XnNrnVYFG6VyvPHXLNF1tks8GltLH6xRa5eYm08C4ZvSrn3_GfTKtTdHA7O8XZXIo8D6d1Xq2defphOqSAiCmoHO75pabIKfg3W6Kfo2E2_7q4Rw4Hrz_uD7vNiQxdJwCYdE3ODYu8tS5nTuCip01kkIEDzolU7mOVW-OcctYzl6aWeRaUi7zKpeDGq_g-WS_mhX9AqIyshFiF-8wAIsshpo-ckNwFl7lMJKFDXq4GR7uGrhxPzZjpmmiZa-gwjR3WITut5FlN0fEbmWcwvm0xcmoP98YanyFolIBcvkQd8qIa_lbMnJ9g3psU-tPkjY5HmZyy_QMtO2R7pR-6MfmFjtIszQQANvjOTlsMxoorMKbw8xJlVIIBHIv_IiMZiPAsS6E-lcL8sVV6MO7j_eG_Cj4l16f9gR6_nbx7RG4A9hM4Tc3ZNllfnpf-MeCrpX1SGdJPX8ke-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buoyancy+modelling+with+incompressible+SPH+for+laminar+and+turbulent+flows&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Leroy%2C+A&rft.au=Violeau%2C+D&rft.au=Ferrand%2C+M&rft.au=Joly%2C+A&rft.date=2015-07-20&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=78&rft.issue=8&rft.spage=455&rft.epage=474&rft_id=info:doi/10.1002%2Ffld.4025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon