Buoyancy modelling with incompressible SPH for laminar and turbulent flows
SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it p...
Saved in:
Published in | International journal for numerical methods in fluids Vol. 78; no. 8; pp. 455 - 474 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
20.07.2015
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. Thek − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations. Several benchmark cases are then proposed including heated Poiseuille flows, differentially heated cavities and a lock‐exchange flow. Good agreement is obtained with a finite volume approach using an open‐source industrial code. |
---|---|
AbstractList | This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi-analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds-averaged Navier-Stokes approach to treat turbulent flows. The k - turbulence model is used, where buoyancy is modelled through an additional term in the k - equations like in mesh-based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock-exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open-source industrial code. This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. Thek - turbulence model is used, where buoyancy is modelled through an additional term in the k - equations. Several benchmark cases are then proposed including heated Poiseuille flows, differentially heated cavities and a lock-exchange flow. Good agreement is obtained with a finite volume approach using an open-source industrial code. Summary This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi-analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds-averaged Navier-Stokes approach to treat turbulent flows. The k - turbulence model is used, where buoyancy is modelled through an additional term in the k - equations like in mesh-based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock-exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open-source industrial code. Copyright © 2015 John Wiley & Sons, Ltd. This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd. This work aims at modelling buoyant, laminar or turbulent flows, using a 2D Incompressible Smoothed Particle Hydrodynamics (ISPH) model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work (Leroy et al., 2014), we extend the unified semi-analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds-Averaged Navier-Stokes approach to treat turbulent flows. The k − turbulence model is used, where buoyancy is modelled through an additional term in the k − equations like in mesh-based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or imposed heat flux (Neumann) wall boundary conditions in ISPH. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock-exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a Finite-Volume (FV) approach using an open-source industrial code. SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd. This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. Thek − ϵ turbulence model is used, where buoyancy is modelled through an additional term in the k − ϵ equations. Several benchmark cases are then proposed including heated Poiseuille flows, differentially heated cavities and a lock‐exchange flow. Good agreement is obtained with a finite volume approach using an open‐source industrial code. |
Author | Joly, A. Violeau, D. Leroy, A. Ferrand, M. |
Author_xml | – sequence: 1 givenname: A. surname: Leroy fullname: Leroy, A. email: Correspondence to: A. Leroy, Saint-Venant Laboratory for Hydraulics, Université Paris-Est, 6 quai Watier, 78400 Chatou, France., agnes.leroy@edf.fr organization: Saint-Venant Laboratory for Hydraulics, Université Paris-Est (joint research unit EDF R&D, Cerema, ENPC), 6 quai Watier, 78400, Chatou, France – sequence: 2 givenname: D. surname: Violeau fullname: Violeau, D. organization: Saint-Venant Laboratory for Hydraulics, Université Paris-Est (joint research unit EDF R&D, Cerema, ENPC), 6 quai Watier, 78400, Chatou, France – sequence: 3 givenname: M. surname: Ferrand fullname: Ferrand, M. organization: MFEE, EDF R&D, 6 quai Watier, 78400, Chatou, France – sequence: 4 givenname: A. surname: Joly fullname: Joly, A. organization: Saint-Venant Laboratory for Hydraulics, Université Paris-Est (joint research unit EDF R&D, Cerema, ENPC), 6 quai Watier, 78400, Chatou, France |
BackLink | https://hal.science/hal-01557023$$DView record in HAL |
BookMark | eNqF0UFvFCEYBmBiauK2NulPIOlFD7P9gGUYjnW13TarNqmmR8IwTEtlYAszrvvvO5utNRqNJxLyfMDLu4_2QgwWoSMCUwJAT1rfTGdA-Qs0ISBFAaxke2gCVJCCgiSv0H7O9wAgacUm6PLdEDc6mA3uYmO9d-EWr11_h10wsVslm7OrvcXXVwvcxoS97lzQCevQ4H5I9eBt6HHr4zq_Ri9b7bM9fFoP0NezD1_mi2L5-fxifrosDGecF7qhGoita9OA4UAY1DPRipaWTBLZWCabWhsjTW3BlGUNFlppiJWN4FRbyQ7Q2925d9qrVXKdThsVtVOL06Xa7gHhXABl38lo3-zsKsWHweZedS6bMacONg5ZETH-0YxWVfl_WsrZaAWwkR7_Qe_jkMIYelRVWXFBYHv3dKdMijkn2yrjet27GPqknVcE1LYxNTamto39esHzwM90f6HFjq6dt5t_OnW2fP-7d7m3P569Tt9UKZjg6ubTuWKXlbiC-Ucl2CN5IbQj |
CODEN | IJNFDW |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_105 crossref_primary_10_1080_00221686_2015_1119209 crossref_primary_10_1016_j_jweia_2023_105529 crossref_primary_10_1016_j_compfluid_2018_10_018 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120758 crossref_primary_10_1016_j_coastaleng_2022_104191 crossref_primary_10_1016_j_compfluid_2018_09_010 crossref_primary_10_1021_acsomega_3c01303 crossref_primary_10_1002_nme_7148 crossref_primary_10_1007_s40722_016_0049_3 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125904 crossref_primary_10_1016_j_camwa_2016_09_008 crossref_primary_10_1115_1_4064562 crossref_primary_10_2208_kaigan_72_I_1213 crossref_primary_10_1016_j_coastaleng_2020_103657 crossref_primary_10_1016_j_apm_2019_09_030 crossref_primary_10_1016_j_cma_2023_116203 crossref_primary_10_1063_1_5047088 crossref_primary_10_1063_1_5130711 crossref_primary_10_1016_j_jcp_2016_12_005 crossref_primary_10_1007_s11012_018_0825_3 crossref_primary_10_1016_j_camwa_2018_02_023 crossref_primary_10_1002_fld_4737 crossref_primary_10_1063_1_5122671 crossref_primary_10_1016_j_advwatres_2017_07_011 crossref_primary_10_1016_j_jcp_2021_110563 crossref_primary_10_1016_j_jfluidstructs_2016_05_012 |
Cites_doi | 10.1016/j.euromechflu.2012.10.004 10.1016/j.ijheatmasstransfer.2009.10.026 10.1007/BF02123482 10.1016/j.ijheatmasstransfer.2011.06.034 10.1088/0034-4885/68/8/R01 10.1080/104077901752379620 10.1201/9781439882573 10.1002/fld.3666 10.1017/S0022112000001221 10.1080/104077901753306601 10.1016/j.jcp.2011.10.027 10.1007/s00466-003-0534-0 10.1016/B978-008044114-6/50014-4 10.1016/j.jcp.2013.12.035 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D 7TG KL. 1XC VOOES |
DOI | 10.1002/fld.4025 |
DatabaseName | Istex CrossRef Aqualine Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database Civil Engineering Abstracts CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1097-0363 |
EndPage | 474 |
ExternalDocumentID | oai_HAL_hal_01557023v1 3708953801 10_1002_fld_4025 FLD4025 ark_67375_WNG_3J87P0CM_7 |
Genre | article |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG AMVHM CITATION 7QH 7SC 7TB 7U5 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D 7TG KL. .Y3 1XC 31~ 6TJ ABEML ACSCC AGHNM AI. ASPBG AVWKF AZFZN FEDTE GBZZK HF~ HVGLF M6O PALCI RIWAO RJQFR SAMSI VH1 VOH VOOES ZY4 ~A~ |
ID | FETCH-LOGICAL-c5355-ad2a01ebbcd0c50130b47f7f263919de39dbacc9cbe0c66b0e0f9c1e9d752ae93 |
IEDL.DBID | DR2 |
ISSN | 0271-2091 |
IngestDate | Thu Jul 10 06:57:51 EDT 2025 Fri Jul 11 07:01:07 EDT 2025 Thu Jul 10 23:42:15 EDT 2025 Fri Jul 25 10:36:13 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Tue Jul 01 02:08:38 EDT 2025 Wed Jan 22 17:09:01 EST 2025 Wed Oct 30 09:49:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | SPH incompressible turbulence boundary conditions buoyancy |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5355-ad2a01ebbcd0c50130b47f7f263919de39dbacc9cbe0c66b0e0f9c1e9d752ae93 |
Notes | ark:/67375/WNG-3J87P0CM-7 istex:7CADEF63DCE3C0553D68548677FD33D85F1BBB0A ArticleID:FLD4025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2213-5251 |
OpenAccessLink | https://hal.science/hal-01557023 |
PQID | 1686857101 |
PQPubID | 996375 |
PageCount | 20 |
ParticipantIDs | hal_primary_oai_HAL_hal_01557023v1 proquest_miscellaneous_1709742886 proquest_miscellaneous_1694974703 proquest_journals_1686857101 crossref_citationtrail_10_1002_fld_4025 crossref_primary_10_1002_fld_4025 wiley_primary_10_1002_fld_4025_FLD4025 istex_primary_ark_67375_WNG_3J87P0CM_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20 July 2015 |
PublicationDateYYYYMMDD | 2015-07-20 |
PublicationDate_xml | – month: 07 year: 2015 text: 20 July 2015 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in fluids |
PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | Ghasemi VA, Firoozabadi B, Mahdinia M. 2D numerical simulation of density currents using the SPH projection method. European Journal of Mechanics - B/Fluids 2013; 38:38-46. Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics 2005; 68:1703-1759. Szewc K, Pozorski J, Tanière A. Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. International Journal of Heat and Mass Transfer 2011; 54(23-24):4807-4816. Archambeau F, Mèchitoua N, Sakiz M. Code_Saturne: a finite volume code for the computation of turbulent incompressible flows - industrial applications. International Journal on Finite Volumes 2004; 1:1-62. Launder BE, Spalding DB. Mathematical Models of Turbulence. Academic Press: London, 1972. Reddy JN, Gartling DK. The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC press: London, 2010. Trias FX, Gorobets A, Soria M, Oliva A. Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 - part I: numerical methods and time-averaged flow. International Journal of Heat and Mass Transfer 2010; 53(4):665-673. Lind SJ, Xu R, Stansby PK, Rogers BD. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics 2012; 231(4):1499-1523. Oliveira PJ, Issa R. An improved PISO algorithm for the computation of buoyancy-driven flows. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology 2001; 40(6):473-493. Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B: Fundamentals 2001; 40(3):199-228. Leroy A, Violeau D, Ferrand M, Kassiotis C. Unified semi-analytical wall boundary conditions applied to 2D incompressible SPH. Journal of Computational Physics 2014; 261:106-129. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 1995; 4:389-396. Ferrand M, Laurence DR, Rogers BD, Violeau D, Kassiotis C. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. International Journal for Numerical Methods in Fluids 2013; 71:446-472. Härtel C, Meiburg E, Necker F. Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. Journal of Fluid Mechanics 2000; 418:189-212. Kulasegaram S, Bonet J, Lewis RW, Profit M. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational Mechanics 2004; 33:316-325. 2000; 418 2004; 33 2010; 53 2012; 231 2013; 38 2000 2010 2013; 71 2011; 54 1972 2014; 261 2004 2014 2002 2013 2004; 1 1995; 4 2001; 40 2005; 68 1999 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_24_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_3_1 e_1_2_8_2_1 Launder BE (e_1_2_8_8_1) 1972 e_1_2_8_5_1 e_1_2_8_4_1 Archambeau F (e_1_2_8_16_1) 2004; 1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 |
References_xml | – reference: Archambeau F, Mèchitoua N, Sakiz M. Code_Saturne: a finite volume code for the computation of turbulent incompressible flows - industrial applications. International Journal on Finite Volumes 2004; 1:1-62. – reference: Reddy JN, Gartling DK. The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC press: London, 2010. – reference: Ferrand M, Laurence DR, Rogers BD, Violeau D, Kassiotis C. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. International Journal for Numerical Methods in Fluids 2013; 71:446-472. – reference: Ghasemi VA, Firoozabadi B, Mahdinia M. 2D numerical simulation of density currents using the SPH projection method. European Journal of Mechanics - B/Fluids 2013; 38:38-46. – reference: Lind SJ, Xu R, Stansby PK, Rogers BD. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics 2012; 231(4):1499-1523. – reference: Kulasegaram S, Bonet J, Lewis RW, Profit M. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational Mechanics 2004; 33:316-325. – reference: Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics 1995; 4:389-396. – reference: Härtel C, Meiburg E, Necker F. Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. Journal of Fluid Mechanics 2000; 418:189-212. – reference: Trias FX, Gorobets A, Soria M, Oliva A. Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 - part I: numerical methods and time-averaged flow. International Journal of Heat and Mass Transfer 2010; 53(4):665-673. – reference: Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics 2005; 68:1703-1759. – reference: Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B: Fundamentals 2001; 40(3):199-228. – reference: Leroy A, Violeau D, Ferrand M, Kassiotis C. Unified semi-analytical wall boundary conditions applied to 2D incompressible SPH. Journal of Computational Physics 2014; 261:106-129. – reference: Szewc K, Pozorski J, Tanière A. Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. International Journal of Heat and Mass Transfer 2011; 54(23-24):4807-4816. – reference: Launder BE, Spalding DB. Mathematical Models of Turbulence. Academic Press: London, 1972. – reference: Oliveira PJ, Issa R. An improved PISO algorithm for the computation of buoyancy-driven flows. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology 2001; 40(6):473-493. – volume: 38 start-page: 38 year: 2013 end-page: 46 article-title: 2D numerical simulation of density currents using the SPH projection method publication-title: European Journal of Mechanics ‐ B/Fluids – volume: 40 start-page: 199 issue: 3 year: 2001 end-page: 228 article-title: A new benchmark quality solution for the buoyancy‐driven cavity by discrete singular convolution publication-title: Numerical Heat Transfer, Part B: Fundamentals – volume: 53 start-page: 665 issue: 4 year: 2010 end-page: 673 article-title: Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 10 – part I: numerical methods and time‐averaged flow publication-title: International Journal of Heat and Mass Transfer – volume: 33 start-page: 316 year: 2004 end-page: 325 article-title: A variational formulation based contact algorithm for rigid boundaries in two‐dimensional SPH applications publication-title: Computational Mechanics – volume: 231 start-page: 1499 issue: 4 year: 2012 end-page: 1523 article-title: Incompressible smoothed particle hydrodynamics for free‐surface flows: a generalised diffusion‐based algorithm for stability and validations for impulsive flows and propagating waves publication-title: Journal of Computational Physics – start-page: 415 year: 2004 end-page: 427 – volume: 1 start-page: 1 year: 2004 end-page: 62 article-title: : a finite volume code for the computation of turbulent incompressible flows – industrial applications publication-title: International Journal on Finite Volumes – volume: 40 start-page: 473 issue: 6 year: 2001 end-page: 493 article-title: An improved PISO algorithm for the computation of buoyancy‐driven flows publication-title: Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology – year: 2004 – year: 1972 – start-page: 157 year: 2002 end-page: 166 – volume: 68 start-page: 1703 year: 2005 end-page: 1759 article-title: Smoothed particle hydrodynamics publication-title: Reports on Progress in Physics – volume: 71 start-page: 446 year: 2013 end-page: 472 article-title: Unified semi‐analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method publication-title: International Journal for Numerical Methods in Fluids – start-page: 216 year: 2014 end-page: 222 – volume: 261 start-page: 106 year: 2014 end-page: 129 article-title: Unified semi‐analytical wall boundary conditions applied to 2D incompressible SPH publication-title: Journal of Computational Physics – volume: 4 start-page: 389 year: 1995 end-page: 396 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Advances in Computational Mathematics – start-page: 1 year: 2000 end-page: 124 – volume: 418 start-page: 189 year: 2000 end-page: 212 article-title: Analysis and direct numerical simulation of the flow at a gravity‐current head. Part 1. Flow topology and front speed for slip and no‐slip boundaries publication-title: Journal of Fluid Mechanics – volume: 54 start-page: 4807 issue: 23–24 year: 2011 end-page: 4816 article-title: Modeling of natural convection with smoothed particle hydrodynamics: non‐Boussinesq formulation publication-title: International Journal of Heat and Mass Transfer – year: 2010 – start-page: 377 year: 2013 end-page: 382 – year: 2013 – year: 1999 – ident: e_1_2_8_6_1 doi: 10.1016/j.euromechflu.2012.10.004 – volume-title: Mathematical Models of Turbulence year: 1972 ident: e_1_2_8_8_1 – ident: e_1_2_8_20_1 doi: 10.1016/j.ijheatmasstransfer.2009.10.026 – ident: e_1_2_8_15_1 doi: 10.1007/BF02123482 – ident: e_1_2_8_5_1 doi: 10.1016/j.ijheatmasstransfer.2011.06.034 – ident: e_1_2_8_10_1 doi: 10.1088/0034-4885/68/8/R01 – ident: e_1_2_8_24_1 – ident: e_1_2_8_14_1 – ident: e_1_2_8_17_1 doi: 10.1080/104077901752379620 – volume: 1 start-page: 1 year: 2004 ident: e_1_2_8_16_1 article-title: Code_Saturne: a finite volume code for the computation of turbulent incompressible flows – industrial applications publication-title: International Journal on Finite Volumes – ident: e_1_2_8_19_1 – ident: e_1_2_8_3_1 doi: 10.1201/9781439882573 – ident: e_1_2_8_22_1 – ident: e_1_2_8_11_1 doi: 10.1002/fld.3666 – ident: e_1_2_8_18_1 doi: 10.1017/S0022112000001221 – ident: e_1_2_8_4_1 doi: 10.1080/104077901753306601 – ident: e_1_2_8_13_1 doi: 10.1016/j.jcp.2011.10.027 – ident: e_1_2_8_23_1 – ident: e_1_2_8_12_1 doi: 10.1007/s00466-003-0534-0 – ident: e_1_2_8_9_1 doi: 10.1016/B978-008044114-6/50014-4 – ident: e_1_2_8_21_1 – ident: e_1_2_8_7_1 – ident: e_1_2_8_2_1 doi: 10.1016/j.jcp.2013.12.035 |
SSID | ssj0009283 |
Score | 2.2552881 |
Snippet | SummaryThis work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate... This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall... Summary This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate... This work aims to model buoyant, laminar or turbulent flows, using a two-dimensional incompressible smoothed particle hydrodynamics model with accurate wall... This work aims at modelling buoyant, laminar or turbulent flows, using a 2D Incompressible Smoothed Particle Hydrodynamics (ISPH) model with accurate wall... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 455 |
SubjectTerms | Boundary conditions Buoyancy Computational fluid dynamics Engineering Sciences Fluid flow Fluids mechanics Hydrodynamics incompressible Laminar Mathematical models Mechanics SPH temperature Turbulence Turbulent flow Walls |
Title | Buoyancy modelling with incompressible SPH for laminar and turbulent flows |
URI | https://api.istex.fr/ark:/67375/WNG-3J87P0CM-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4025 https://www.proquest.com/docview/1686857101 https://www.proquest.com/docview/1694974703 https://www.proquest.com/docview/1709742886 https://hal.science/hal-01557023 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXODQQgGxpSAXITjt1nbiOD62hWW1aqsKqKjEwbIdW0jdZqvuhtev70xebREgxCWR4knkx0zmG3v8mZCXMrGJTpDl0zkIUARcXNRuGFNrdRoYeGRc0T04zCbH6fREnrRZlbgXpuGH6Cfc0DLq_zUauHWL7SvS0DgrRhD84P5yTNVCPPT-ijlKi4aBUygOiqB5xzvLxHb34g1PdPsL5kHewa79fgNsXoestc8Zr5HPXW2bVJPTUbV0I__zFyLH_2vOfbLaQlG60-jOA3IrlOtkrYWltDX6xTq5d42z8CGZ7lbzH_hLpvUhOribneJkLkWah7MmrdbNAv1wNKEAiCloHG75pbYsKLg3V6Gbo3E2_7Z4RI7Hbz_uTYbtgQxDLwGXDG0hLOPBOV8wL3HN06UqqigA5nBdhEQXznqvvQvMZ5ljgUXtedCFksIGnTwmK-W8DE8IVdwpCFVEyC0AsgJCeu6lEj763OcyjQPyuhsc41u2cjw0Y2YanmVhoMMMdtiAbPWS5w1Dx29kXsD49sVIqT3Z2Tf4DDGjAuDylQ_Iq3r4ezF7cYppb0qaT4fvTDLN1RHbOzBqQDY7_TCtxS8Mz_Isl4DX4DtbfTHYKi7A2DLMK5TRKcZvLPmLjGIgIvI8g_rUCvPHVpnx_hu8b_yr4FNyF_CexKlpwTbJyvKiCs8AUy3d89p6LgENxhwn |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6OAAHCgXEQgEXITjt1nHiOBanUljCsruqoFV7QLJsx1GlbrOou-H165nJqy0ChLgkUjyJ_JjJfGOPPxPyTIQmVCGyfFoLAQqHi82V7eeRMSryDDwyruhOpnF6GI2OxfEKednuhan5IboJN7SM6n-NBo4T0jsXrKH5LBtA9CNWyToe6F3FUx8uuKMUrzk4uQxAFVTQMs8yvtO-ecUXrZ5gJuQ6du63K3DzMmitvM5wg3xq61snm5wOyqUduB-_UDn-Z4NukZsNGqW7tfrcJiu-2CQbDTKljd0vNsmNS7SFd8joVTn_jn9lWp2jgxvaKc7nUmR6OKsza-3M04_7KQVMTEHpcNcvNUVGwcPZEj0dzWfzr4u75HD45mAv7TdnMvSdAGjSNxk3LPDWuow5gcueNpK5zDkgnUBlPlSZNc4pZz1zcWyZZ7lygVeZFNx4Fd4ja8W88PcJlYGVEK1wnxjAZBlE9YETkrvcJS4RUd4jL9rR0a4hLMdzM2a6plrmGjpMY4f1yHYn-bkm6fiNzFMY4K4YWbXT3bHGZwgbJWCXL0GPPK_GvxMz56eY-SaFPpq-1eEokftsb6Jlj2y1CqIbo1_oIE7iRABkg-9sd8VgrrgGYwo_L1FGRRjCsfAvMpKBCE-SGOpTacwfW6WH49d4f_Cvgk_ItfRgMtbjd9P3D8l1gH8CZ6o52yJry_PSPwKItbSPK1P6CbmVIEI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJiF4YDBAFAZ4CMFTO8eJ4_hxrJRSuqoCJibxYNmOrUnr0mlt-PrruUvSbEOAEC-JFF8if9zlfmeffybkuYhNrGJk-bQWAhQOFxuU7YbEGJV4Bh4ZV3QPJunwMBkdiaMmqxL3wtT8EO2EG1pG9b9GAz_Lw-4FaWiY5T0IfsQa2UhSlqFG999fUEcpXlNwchmBJqhoRTzL-O7qzSuuaO0YEyE3sG-_XUGblzFr5XQGm-Tzqrp1rslJr1zanvvxC5Pj_7XnNrnVYFG6VyvPHXLNF1tks8GltLH6xRa5eYm08C4ZvSrn3_GfTKtTdHA7O8XZXIo8D6d1Xq2defphOqSAiCmoHO75pabIKfg3W6Kfo2E2_7q4Rw4Hrz_uD7vNiQxdJwCYdE3ODYu8tS5nTuCip01kkIEDzolU7mOVW-OcctYzl6aWeRaUi7zKpeDGq_g-WS_mhX9AqIyshFiF-8wAIsshpo-ckNwFl7lMJKFDXq4GR7uGrhxPzZjpmmiZa-gwjR3WITut5FlN0fEbmWcwvm0xcmoP98YanyFolIBcvkQd8qIa_lbMnJ9g3psU-tPkjY5HmZyy_QMtO2R7pR-6MfmFjtIszQQANvjOTlsMxoorMKbw8xJlVIIBHIv_IiMZiPAsS6E-lcL8sVV6MO7j_eG_Cj4l16f9gR6_nbx7RG4A9hM4Tc3ZNllfnpf-MeCrpX1SGdJPX8ke-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buoyancy+modelling+with+incompressible+SPH+for+laminar+and+turbulent+flows&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Leroy%2C+A&rft.au=Violeau%2C+D&rft.au=Ferrand%2C+M&rft.au=Joly%2C+A&rft.date=2015-07-20&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=78&rft.issue=8&rft.spage=455&rft.epage=474&rft_id=info:doi/10.1002%2Ffld.4025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |