Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering
By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded PLGA microspheres (SIM‐PLGA‐CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug releas...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 103; no. 10; pp. 3250 - 3258 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.10.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded PLGA microspheres (SIM‐PLGA‐CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM‐loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM‐PLGA‐CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit‐8 (CCK‐8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM‐PLGA‐CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA‐CPC scaffolds and SIM‐PLGA‐CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM‐PLGA‐CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM‐PLGA‐CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3250–3258, 2015. |
---|---|
AbstractList | By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. J Biomed Mater Res Part A: 103A: 3250-3258, 2015. By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded PLGA microspheres (SIM‐PLGA‐CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM‐loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM‐PLGA‐CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit‐8 (CCK‐8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM‐PLGA‐CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA‐CPC scaffolds and SIM‐PLGA‐CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM‐PLGA‐CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM‐PLGA‐CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3250–3258, 2015. By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. |
Author | Zhang, Hao-Xuan Pan, Xin Wang, Xia Xiao, Gui-Yong Li, Yu-Hua Nie, Lin Dong, Zhao-Gang Li, Lei Ma, Zhi-Yong |
Author_xml | – sequence: 1 givenname: Hao-Xuan surname: Zhang fullname: Zhang, Hao-Xuan organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China – sequence: 2 givenname: Gui-Yong surname: Xiao fullname: Xiao, Gui-Yong organization: School of Materials Science and Engineering, Shandong University, 250012, Jinan, Shandong, China – sequence: 3 givenname: Xia surname: Wang fullname: Wang, Xia organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China – sequence: 4 givenname: Zhao-Gang surname: Dong fullname: Dong, Zhao-Gang organization: Department of Clinical Laboratory, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China – sequence: 5 givenname: Zhi-Yong surname: Ma fullname: Ma, Zhi-Yong organization: Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China – sequence: 6 givenname: Lei surname: Li fullname: Li, Lei organization: Department of Orthopedics, The People's Hospital of Qihe, Shandong, 251100, Dezhou, China – sequence: 7 givenname: Yu-Hua surname: Li fullname: Li, Yu-Hua email: hoho0605@sohu.comor organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China – sequence: 8 givenname: Xin surname: Pan fullname: Pan, Xin email: hoho0605@sohu.comor organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China – sequence: 9 givenname: Lin surname: Nie fullname: Nie, Lin email: hoho0605@sohu.comor organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25809455$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB-wYo8ssWGTwe_Ey5lCB9DwkgpdWo7tTD0kdoiTwvwRfi9Op3TBqisf-X7nSFf3nIKjEIMD4DlGC4wQeb2ru4VeUM4EfQROMOekYFLwo1kzWVAixTE4TWmXYYE4eQKOCa-QZJyfgD8rH03sej362rd-3EMdLIxpdHHrgks-wdhAo1vjpw721zH113p0cPbE5LNKRjdNbG3Kf2HUPviwhcl3NzqNOTUUbdTWWfhls17CzpthjnCDS7CJA6zzLnD0KU0OurD1wbkhBzwFjxvdJvfs7j0D3y7eXp6_Kzaf1-_Pl5vCcMppYYQ2iFeGcmwlM6TCQiJcE9RwWUtbCSsbxJmVQlYNlQ3NBC5rYzSpK2s1PQOvDrn9EH9OLo2q88m4ttXBxSkpXDJW5tBSPgDFpCyJYOQBKKowl5LO6Mv_0F2chpB3nqmScyx4makXd9RUd86qfvCdHvbq3x0zQA7AL9-6_f0cIzVXROWKKK1uK6I-rD4ub1U2FQeTz-f-fW_Sww8lSlpydfVpra6-fmf8cvNGrehfw8DBog |
CitedBy_id | crossref_primary_10_3390_mps3010001 crossref_primary_10_1002_jbm_b_34311 crossref_primary_10_1186_s13018_020_01931_z crossref_primary_10_3390_app122211623 crossref_primary_10_1016_j_jot_2020_11_009 crossref_primary_10_3389_fbioe_2020_00951 crossref_primary_10_1021_acsbiomaterials_1c00462 crossref_primary_10_3390_ma10040334 crossref_primary_10_1016_j_jiec_2016_10_029 crossref_primary_10_1007_s00774_019_01008_w crossref_primary_10_1007_s10965_021_02562_6 crossref_primary_10_1080_00914037_2019_1566726 crossref_primary_10_1016_j_actbio_2021_03_067 crossref_primary_10_1016_j_bioactmat_2017_10_001 crossref_primary_10_3390_nano10050875 crossref_primary_10_1016_j_joms_2020_12_044 crossref_primary_10_1002_jbm_a_35781 crossref_primary_10_1080_09205063_2020_1811188 crossref_primary_10_1007_s10741_020_09929_9 crossref_primary_10_1016_j_bbrc_2017_11_150 crossref_primary_10_1039_C7RA01503H crossref_primary_10_1186_s13018_019_1450_0 crossref_primary_10_5301_jabfm_5000338 crossref_primary_10_1016_j_msec_2020_110856 crossref_primary_10_15171_apb_2016_047 crossref_primary_10_1007_s11626_017_0141_6 crossref_primary_10_1038_s41598_017_03461_x crossref_primary_10_1016_j_bioactmat_2022_07_025 crossref_primary_10_1016_j_ejps_2021_106053 crossref_primary_10_1038_srep23422 crossref_primary_10_1016_j_mtcomm_2024_109332 crossref_primary_10_1166_mex_2024_2689 crossref_primary_10_1016_j_mtbio_2023_100630 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.35463 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 3258 |
ExternalDocumentID | 3789375491 25809455 JBMA35463 ark_67375_WNG_WQV45TLD_B |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shandong Provincial Natural Science Foundation funderid: ZR2011HQ058 – fundername: Innovation Foundation of Shandong University funderid: 2012ZD027 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c5353-c6ac058c351d94c2816901b20f59b9d86d9f054d9698f39f328117bcca2b8dda3 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 |
IngestDate | Fri Aug 16 06:26:08 EDT 2024 Fri Aug 16 09:19:44 EDT 2024 Fri Oct 25 00:06:33 EDT 2024 Mon Nov 04 11:24:40 EST 2024 Sat Sep 28 07:54:59 EDT 2024 Sat Aug 24 00:54:33 EDT 2024 Wed Oct 30 09:54:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | simvastatin bone defect scaffolds bone tissue engineering bone mesenchymal stem cells |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5353-c6ac058c351d94c2816901b20f59b9d86d9f054d9698f39f328117bcca2b8dda3 |
Notes | Innovation Foundation of Shandong University - No. 2012ZD027 ArticleID:JBMA35463 Shandong Provincial Natural Science Foundation - No. ZR2011HQ058 ark:/67375/WNG-WQV45TLD-B istex:E08F2068E72E52A3FD21B77DFCA817D869AF988C ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25809455 |
PQID | 1707551657 |
PQPubID | 2034572 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1744716979 proquest_miscellaneous_1712772642 proquest_miscellaneous_1708159932 proquest_journals_1707551657 pubmed_primary_25809455 wiley_primary_10_1002_jbm_a_35463_JBMA35463 istex_primary_ark_67375_WNG_WQV45TLD_B |
PublicationCentury | 2000 |
PublicationDate | October 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Xu D, Li F, Zhang M, Zhang J, Liu C, Hu MY, Zhong ZY, Jia LL, Wang DW, Wu J, Liu L, Liu XD. Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes. Acta Pharmacol Sin 2014;35:1215-1225. Tanigo T, Takaoka R, Tabata Y. Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Control Release 2010;143:201-206. Nath SD, Son S, Sadiasa A, Min YK, Lee BT. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. Int J Pharm 2013;443:87-94. Siddiqui AJ, Gustafsson T, Fischer H, Widegren U, Hao X, Mansson-Broberg A, Grinnemo KH, Dellgren G, Sylvén C. Simvastatin enhances myocardial angiogenesis induced by vascular endothelial growth factor gene transfer. J Mol Cell Cardiol 2004;37:1235-1244. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: A review of current technology and applications. J Appl Biomater 1991;2:187-208. Patil P, Patil V, Paradkar A. Formulation of a self-emulsifying system for oral delivery of simvastatin: In vitro and in vivo evaluation. Acta Pharm 2007;57:111-122. Pagkalos J, Cha JM, Kang Y, Heliotis M, Tsiridis E, Mantalaris A. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res 2010;25:2470-2478. Sadiasa A, Kim MS, Lee BT. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering. J Drug Target 2013;21:719-729. Liu C, Wu Z, Sun H. The effect of simvastatin on mRNA expression of transforming growth factor-β1, bone morphogenetic protein-2 and vascular endothelial growth factor in tooth extraction socket. Int J Oral Sci 2009;1:90-98. Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res 1971;5:161-229. Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai S. Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implant Res 2009;20:280-287. Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-e1 cells. Biochem Biophys Res Commun 2001;280:874-877. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4:518-524. Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 2007;22:1037-1045. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21:2347-2359. Simões S, Veiga F, Torres-Labandeira JJ, Ribeiro AC, Concheiro A, Alvarez-Lorenzo C. Poloxamine-cyclodextrin-simvastatin supramolecular systems promote osteoblast differentiation of mesenchymal stem cells. Macromol Biosci 2013;13:723-734. Bao TQ, Hiep NT, Kim YH, Yang HM, Lee BT. Fabrication and characterization of porous poly (lactic-co-glycolic acid)(PLGA) microspheres for use as a drug delivery system. J Mater Sci 2011;46:2510-2517. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413-3431. Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res Part A 2011;98:488-498. Liu G, Shu C, Cui L, Liu W, Cao Y. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Cryobiology 2008;56:209-215. Chen PY, Sun JS, Tsuang YH, Chen MH, Weng PW, Lin FH. Simvastatin promotes osteoblast viability and differentiation via ras/smad/erk/BMP-2 signaling pathway. Nutr Res 2010;30:191-199. Zhou Y, Ni Y, Liu Y, Zeng B, Xu Y, Ge W. The role of simvastatin in the osteogenesis of injectable tissue-engineered bone based on human adipose-derived stromal cells and platelet-rich plasma. Biomaterials 2010;31:5325-5335. Zhang W, Zhang F, Shi H, Tan R, Han S, Ye G, Pan S, Sun F, Liu X. Comparisons of rabbit bone marrow mesenchymal stem cell isolation and culture methods in vitro. PLoS One 2014;9:e88794 Lee GS, Park JH, Shin US, Kim HW. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 2011;7:3178-3186. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C. Incorporation and distribution of strontium in bone. Bone 2001;28:446-453. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci 1999;10:111-120. Moutzouri E, Liberopoulos EN, Tellis CC, Milionis HJ, Tselepis AD, Elisaf MS. Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia. Atherosclerosis 2013;231:8-14. 1991; 2 2010; 31 2009; 20 2013; 21 2001; 280 2000; 21 2010; 143 2008; 56 2013; 443 2011; 98 2001; 28 2007; 57 2011; 7 2010; 25 2013; 13 2006; 27 2004; 37 2005; 4 2014; 35 1999; 10 2011; 46 2013; 231 2014; 9 2007; 22 2009; 1 2010; 30 1971; 5 |
References_xml | – volume: 57 start-page: 111 year: 2007 end-page: 122 article-title: Formulation of a self‐emulsifying system for oral delivery of simvastatin: In vitro and in vivo evaluation publication-title: Acta Pharm – volume: 9 start-page: e88794 year: 2014 article-title: Comparisons of rabbit bone marrow mesenchymal stem cell isolation and culture methods in vitro publication-title: PLoS One – volume: 13 start-page: 723 year: 2013 end-page: 734 article-title: Poloxamine–cyclodextrin–simvastatin supramolecular systems promote osteoblast differentiation of mesenchymal stem cells publication-title: Macromol Biosci – volume: 7 start-page: 3178 year: 2011 end-page: 3186 article-title: Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering publication-title: Acta Biomater – volume: 30 start-page: 191 year: 2010 end-page: 199 article-title: Simvastatin promotes osteoblast viability and differentiation via ras/smad/erk/BMP‐2 signaling pathway publication-title: Nutr Res – volume: 37 start-page: 1235 year: 2004 end-page: 1244 article-title: Simvastatin enhances myocardial angiogenesis induced by vascular endothelial growth factor gene transfer publication-title: J Mol Cell Cardiol – volume: 10 start-page: 111 year: 1999 end-page: 120 article-title: Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo publication-title: J Mater Sci – volume: 2 start-page: 187 year: 1991 end-page: 208 article-title: Bone graft and bone graft substitutes: A review of current technology and applications publication-title: J Appl Biomater – volume: 231 start-page: 8 year: 2013 end-page: 14 article-title: Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia publication-title: Atherosclerosis – volume: 22 start-page: 1037 year: 2007 end-page: 1045 article-title: Accretion of bone quantity and quality in the developing mouse skeleton publication-title: J Bone Miner Res – volume: 1 start-page: 90 year: 2009 end-page: 98 article-title: The effect of simvastatin on mRNA expression of transforming growth factor‐β1, bone morphogenetic protein‐2 and vascular endothelial growth factor in tooth extraction socket publication-title: Int J Oral Sci – volume: 56 start-page: 209 year: 2008 end-page: 215 article-title: Tissue‐engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells publication-title: Cryobiology – volume: 98 start-page: 488 year: 2011 end-page: 498 article-title: Evaluation of the osteoconductivity of α‐tricalcium phosphate, β‐tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect publication-title: J Biomed Mater Res Part A – volume: 20 start-page: 280 year: 2009 end-page: 287 article-title: Effects of the combination with α‐tricalcium phosphate and simvastatin on bone regeneration publication-title: Clin Oral Implant Res – volume: 25 start-page: 2470 year: 2010 end-page: 2478 article-title: Simvastatin induces osteogenic differentiation of murine embryonic stem cells publication-title: J Bone Miner Res – volume: 46 start-page: 2510 year: 2011 end-page: 2517 article-title: Fabrication and characterization of porous poly (lactic‐co‐glycolic acid)(PLGA) microspheres for use as a drug delivery system publication-title: J Mater Sci – volume: 31 start-page: 5325 year: 2010 end-page: 5335 article-title: The role of simvastatin in the osteogenesis of injectable tissue‐engineered bone based on human adipose‐derived stromal cells and platelet‐rich plasma publication-title: Biomaterials – volume: 4 start-page: 518 year: 2005 end-page: 524 article-title: Porous scaffold design for tissue engineering publication-title: Nat Mater – volume: 27 start-page: 3413 year: 2006 end-page: 3431 article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering publication-title: Biomaterials – volume: 21 start-page: 719 year: 2013 end-page: 729 article-title: Poly(lactide‐co‐glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering publication-title: J Drug Target – volume: 143 start-page: 201 year: 2010 end-page: 206 article-title: Sustained release of water‐insoluble simvastatin from biodegradable hydrogel augments bone regeneration publication-title: J Control Release – volume: 280 start-page: 874 year: 2001 end-page: 877 article-title: Simvastatin promotes osteoblast differentiation and mineralization in MC3T3‐e1 cells publication-title: Biochem Biophys Res Commun – volume: 28 start-page: 446 year: 2001 end-page: 453 article-title: Incorporation and distribution of strontium in bone publication-title: Bone – volume: 35 start-page: 1215 year: 2014 end-page: 1225 article-title: Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes publication-title: Acta Pharmacol Sin – volume: 5 start-page: 161 year: 1971 end-page: 229 article-title: Application of porous ceramics for the attachment of load bearing internal orthopedic applications publication-title: J Biomed Mater Res – volume: 443 start-page: 87 year: 2013 end-page: 94 article-title: Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration publication-title: Int J Pharm – volume: 21 start-page: 2347 year: 2000 end-page: 2359 article-title: Biomaterial developments for bone tissue engineering publication-title: Biomaterials |
SSID | ssj0026052 |
Score | 2.3947783 |
Snippet | By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded... By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded... |
SourceID | proquest pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3250 |
SubjectTerms | Animals Biocompatibility Biomedical materials bone defect bone mesenchymal stem cells Bone Substitutes - chemistry bone tissue engineering Bones Calcium phosphate Cells, Cultured Lactic Acid - chemistry Materials Testing Microspheres Morphology Osteogenesis - drug effects Polyglycolic Acid - chemistry Rabbits Scaffolds simvastatin Simvastatin - chemistry Simvastatin - pharmacology Surgical implants Tissue Engineering Tissue Scaffolds - chemistry |
Title | Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering |
URI | https://api.istex.fr/ark:/67375/WNG-WQV45TLD-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.35463 https://www.ncbi.nlm.nih.gov/pubmed/25809455 https://www.proquest.com/docview/1707551657 https://search.proquest.com/docview/1708159932 https://search.proquest.com/docview/1712772642 https://search.proquest.com/docview/1744716979 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQT3AAymdoQUZCXFC2TWwn9nGX0lZVWwFqaW-WP2Ia2k1WdRYBJ34CR34fvwSPE7YFoUpwi2RbceIZ50385g1Cz5gxlOQl6LZaklKmVMq1g2ruleNMOEWjTvfefrF9SHeO2fHAzYFcmF4fYvHDDTwj7tfg4Er7tQvR0A96OlIjAnLuYQfOSAmEro23C_EoAOrxrDNEQCnJRTFk54WWtUtjAyiF9_npbwjzd8Aavzibt_qyqj4KFQLR5HQ07_TIfPlDxvG_H-Y2ujlgUTzujWcZXauaO-jGJYXCu-j7pG4jTb3rWbSfsWoshsSQ9j3skrXHrcNhnU09n-LZSetnJwG9YhgDdLAKe6Oca8-sx8CK7-tRYF9PPyrIZaqbH1-_nbXKVha_3t0a4ykQBD1oHVQeB0CNddtUuIvmgauLqd1Dh5uvDl5up0Mxh9QwwkhqCmXWGTeEZVZQk3M4n8t0vu6Y0MLywgoX4KMVheCOCEdySIHVwcByza1V5D5aasIdHyJsTJlZrVSRlwXNFBWaEycUVWXlSmJpgp7HJZWzXrBDqvNT4K-VTB7tb8mjN-8oO9jdkJMErf5aczm4rpdZGVAUywpWJujpojk4HZykqKZq57EPDzgwYN-r-mR5CF1CfHdVH0pBrqgUCXrQ29xi0jnjIfRmLEEvouUsGnqh6VwGm5FKRpuRO5O9cbx69E-9V9D1AABZT05cRUvd-bx6HEBWp59EX_oJJ6wmkA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgHIAD34VAASMhLijbJraT-LhLaZeyuwK0pb1Z_ojp0m6yarIIOPETOPL7-CV4nDQtCFWCWyTbihPPJG_sN28Qesq0piROQbfVkJAyKcNMWajmntuMcSup1-keT5LhLt3ZZ_vthhvkwjT6EN2GG3iG_16Dg8OG9PqpauhHNe_JHgE994voknN4AqUbNt918lEA1f1pp4uBQhLzpM3Pcy3rZwY7WApv9PPfMObvkNX_c7auI3Ey24Zqcthb1qqnv_4h5Pj_j3MDXWvhKO439nMTXciLW-jqGZHC2-jHYFZ6pnrdEGm_YFkYDLkh5Qf4UM4qXFrsllrPlnO8OCirxYEDsBjGACMsx5WW1pZHpsJAjG9KUuBqNv8kIZ1pVvz89v2olCY3-M1ou4_nwBGsQO4gr7DD1FiVRY5rbyE4P53aHbS79XL6Yhi29RxCzQgjoU6k3mCZJiwynOo4gyO6SMUblnHFTZYYbh2CNDzhmSXckhiyYJWzsVhlxkiyilYKd8d7CGudRkZJmcRpQiNJucqI5ZLKNLcpMTRAz_yaikWj2SHk8SFQ2FIm9ibbYu_te8qmo00xCNDayaKL1nsrEaUOSLEoYWmAnnTNzu_gMEUWebn0fTIHBR38Pa9PFLvoxYV45_WhFBSLUh6gu43RdZOOWeaib8YC9NybTtfQaE3HwtmMkMLbjNgZjPv-6v4_9X6MLg-n45EYvZq8foCuODzIGq7iGlqpj5f5Q4e5avXIO9YvW7cqqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSAgWvEsDBYyE2KBMJ7GdxMsZyrSU6aiglnZn-RG3oZ1k1GQQsOITWPJ9fAm-TpgWhCrBJopkW3n4Xuc499xzEXrGtKYkTkG31ZCQMinDTFmo5p7bjHErqdfp3p4km3t064AddNwcyIVp9SEWP9zAM_x6DQ4-M3btTDT0g5r2ZI-AnPtldMUd-z5K-26hHgVI3Qc73RYoJDFPuvQ817J2brBDpfBCP_0NYv6OWP0nZ3Szratae6VCYJoc9-aN6ukvf-g4_vfT3EI3OjCKB6313EaX8vIOun5OovAu-j4sKs9Tb1oa7WcsS4MhM6Q6hGWyqHFlsZtoXcyneHZU1bMjB18xjAE-WI5rLa2tTkyNgRbfFqTAdTH9KCGZqSh_fP12UkmTG7wz3hjgKTAEaxA7yGvsEDVWVZnjxtsHzs9u7R7aG73afbkZdtUcQs0II6FOpO6zTBMWGU51nEGALlJx3zKuuMkSw63Dj4YnPLOEWxJDDqxyFharzBhJltFS6a64grDWaWSUlEmcJjSSlKuMWC6pTHObEkMD9NxPqZi1ih1Cnh4DgS1lYn-yIfbfvqdsd7wuhgFa_TXnovPdWkSpg1EsSlgaoKeLZud1EEqRZV7NfZ_MAUEHfi_qE8Vu7-I2eBf1oRT0ilIeoPutzS1uOmaZ23szFqAX3nIWDa3SdCyczQgpvM2IreH2wJ89-KfeT9DVnfWRGL-evHmIrjkwyFqi4ipaak7n-SMHuBr12LvVT8jRKVc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocompatibility+and+osteogenesis+of+calcium+phosphate+composite+scaffolds+containing+simvastatin-loaded+PLGA+microspheres+for+bone+tissue+engineering&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Zhang%2C+Hao-Xuan&rft.au=Xiao%2C+Gui-Yong&rft.au=Wang%2C+Xia&rft.au=Dong%2C+Zhao-Gang&rft.date=2015-10-01&rft.eissn=1552-4965&rft.volume=103&rft.issue=10&rft.spage=3250&rft.epage=3258&rft_id=info:doi/10.1002%2Fjbm.a.35463&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |