Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering

By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded PLGA microspheres (SIM‐PLGA‐CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug releas...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 103; no. 10; pp. 3250 - 3258
Main Authors Zhang, Hao-Xuan, Xiao, Gui-Yong, Wang, Xia, Dong, Zhao-Gang, Ma, Zhi-Yong, Li, Lei, Li, Yu-Hua, Pan, Xin, Nie, Lin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded PLGA microspheres (SIM‐PLGA‐CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM‐loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM‐PLGA‐CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit‐8 (CCK‐8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM‐PLGA‐CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA‐CPC scaffolds and SIM‐PLGA‐CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM‐PLGA‐CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM‐PLGA‐CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3250–3258, 2015.
AbstractList By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. J Biomed Mater Res Part A: 103A: 3250-3258, 2015.
By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded PLGA microspheres (SIM‐PLGA‐CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM‐loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM‐PLGA‐CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit‐8 (CCK‐8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM‐PLGA‐CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA‐CPC scaffolds and SIM‐PLGA‐CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM‐PLGA‐CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM‐PLGA‐CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3250–3258, 2015.
By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.
Author Zhang, Hao-Xuan
Pan, Xin
Wang, Xia
Xiao, Gui-Yong
Li, Yu-Hua
Nie, Lin
Dong, Zhao-Gang
Li, Lei
Ma, Zhi-Yong
Author_xml – sequence: 1
  givenname: Hao-Xuan
  surname: Zhang
  fullname: Zhang, Hao-Xuan
  organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China
– sequence: 2
  givenname: Gui-Yong
  surname: Xiao
  fullname: Xiao, Gui-Yong
  organization: School of Materials Science and Engineering, Shandong University, 250012, Jinan, Shandong, China
– sequence: 3
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China
– sequence: 4
  givenname: Zhao-Gang
  surname: Dong
  fullname: Dong, Zhao-Gang
  organization: Department of Clinical Laboratory, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China
– sequence: 5
  givenname: Zhi-Yong
  surname: Ma
  fullname: Ma, Zhi-Yong
  organization: Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China
– sequence: 6
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Department of Orthopedics, The People's Hospital of Qihe, Shandong, 251100, Dezhou, China
– sequence: 7
  givenname: Yu-Hua
  surname: Li
  fullname: Li, Yu-Hua
  email: hoho0605@sohu.comor
  organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China
– sequence: 8
  givenname: Xin
  surname: Pan
  fullname: Pan, Xin
  email: hoho0605@sohu.comor
  organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China
– sequence: 9
  givenname: Lin
  surname: Nie
  fullname: Nie, Lin
  email: hoho0605@sohu.comor
  organization: Department of Orthopedics, Shandong University Qilu Hospital, Shandong, 250012, Jinan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25809455$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-wYo8ssWGTwe_Ey5lCB9DwkgpdWo7tTD0kdoiTwvwRfi9Op3TBqisf-X7nSFf3nIKjEIMD4DlGC4wQeb2ru4VeUM4EfQROMOekYFLwo1kzWVAixTE4TWmXYYE4eQKOCa-QZJyfgD8rH03sej362rd-3EMdLIxpdHHrgks-wdhAo1vjpw721zH113p0cPbE5LNKRjdNbG3Kf2HUPviwhcl3NzqNOTUUbdTWWfhls17CzpthjnCDS7CJA6zzLnD0KU0OurD1wbkhBzwFjxvdJvfs7j0D3y7eXp6_Kzaf1-_Pl5vCcMppYYQ2iFeGcmwlM6TCQiJcE9RwWUtbCSsbxJmVQlYNlQ3NBC5rYzSpK2s1PQOvDrn9EH9OLo2q88m4ttXBxSkpXDJW5tBSPgDFpCyJYOQBKKowl5LO6Mv_0F2chpB3nqmScyx4makXd9RUd86qfvCdHvbq3x0zQA7AL9-6_f0cIzVXROWKKK1uK6I-rD4ub1U2FQeTz-f-fW_Sww8lSlpydfVpra6-fmf8cvNGrehfw8DBog
CitedBy_id crossref_primary_10_3390_mps3010001
crossref_primary_10_1002_jbm_b_34311
crossref_primary_10_1186_s13018_020_01931_z
crossref_primary_10_3390_app122211623
crossref_primary_10_1016_j_jot_2020_11_009
crossref_primary_10_3389_fbioe_2020_00951
crossref_primary_10_1021_acsbiomaterials_1c00462
crossref_primary_10_3390_ma10040334
crossref_primary_10_1016_j_jiec_2016_10_029
crossref_primary_10_1007_s00774_019_01008_w
crossref_primary_10_1007_s10965_021_02562_6
crossref_primary_10_1080_00914037_2019_1566726
crossref_primary_10_1016_j_actbio_2021_03_067
crossref_primary_10_1016_j_bioactmat_2017_10_001
crossref_primary_10_3390_nano10050875
crossref_primary_10_1016_j_joms_2020_12_044
crossref_primary_10_1002_jbm_a_35781
crossref_primary_10_1080_09205063_2020_1811188
crossref_primary_10_1007_s10741_020_09929_9
crossref_primary_10_1016_j_bbrc_2017_11_150
crossref_primary_10_1039_C7RA01503H
crossref_primary_10_1186_s13018_019_1450_0
crossref_primary_10_5301_jabfm_5000338
crossref_primary_10_1016_j_msec_2020_110856
crossref_primary_10_15171_apb_2016_047
crossref_primary_10_1007_s11626_017_0141_6
crossref_primary_10_1038_s41598_017_03461_x
crossref_primary_10_1016_j_bioactmat_2022_07_025
crossref_primary_10_1016_j_ejps_2021_106053
crossref_primary_10_1038_srep23422
crossref_primary_10_1016_j_mtcomm_2024_109332
crossref_primary_10_1166_mex_2024_2689
crossref_primary_10_1016_j_mtbio_2023_100630
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.35463
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

Materials Research Database
MEDLINE - Academic
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 3258
ExternalDocumentID 3789375491
25809455
JBMA35463
ark_67375_WNG_WQV45TLD_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shandong Provincial Natural Science Foundation
  funderid: ZR2011HQ058
– fundername: Innovation Foundation of Shandong University
  funderid: 2012ZD027
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c5353-c6ac058c351d94c2816901b20f59b9d86d9f054d9698f39f328117bcca2b8dda3
IEDL.DBID DR2
ISSN 1549-3296
IngestDate Fri Aug 16 06:26:08 EDT 2024
Fri Aug 16 09:19:44 EDT 2024
Fri Oct 25 00:06:33 EDT 2024
Mon Nov 04 11:24:40 EST 2024
Sat Sep 28 07:54:59 EDT 2024
Sat Aug 24 00:54:33 EDT 2024
Wed Oct 30 09:54:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords simvastatin
bone defect
scaffolds
bone tissue engineering
bone mesenchymal stem cells
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5353-c6ac058c351d94c2816901b20f59b9d86d9f054d9698f39f328117bcca2b8dda3
Notes Innovation Foundation of Shandong University - No. 2012ZD027
ArticleID:JBMA35463
Shandong Provincial Natural Science Foundation - No. ZR2011HQ058
ark:/67375/WNG-WQV45TLD-B
istex:E08F2068E72E52A3FD21B77DFCA817D869AF988C
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25809455
PQID 1707551657
PQPubID 2034572
PageCount 9
ParticipantIDs proquest_miscellaneous_1744716979
proquest_miscellaneous_1712772642
proquest_miscellaneous_1708159932
proquest_journals_1707551657
pubmed_primary_25809455
wiley_primary_10_1002_jbm_a_35463_JBMA35463
istex_primary_ark_67375_WNG_WQV45TLD_B
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Xu D, Li F, Zhang M, Zhang J, Liu C, Hu MY, Zhong ZY, Jia LL, Wang DW, Wu J, Liu L, Liu XD. Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes. Acta Pharmacol Sin 2014;35:1215-1225.
Tanigo T, Takaoka R, Tabata Y. Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Control Release 2010;143:201-206.
Nath SD, Son S, Sadiasa A, Min YK, Lee BT. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. Int J Pharm 2013;443:87-94.
Siddiqui AJ, Gustafsson T, Fischer H, Widegren U, Hao X, Mansson-Broberg A, Grinnemo KH, Dellgren G, Sylvén C. Simvastatin enhances myocardial angiogenesis induced by vascular endothelial growth factor gene transfer. J Mol Cell Cardiol 2004;37:1235-1244.
Damien CJ, Parsons JR. Bone graft and bone graft substitutes: A review of current technology and applications. J Appl Biomater 1991;2:187-208.
Patil P, Patil V, Paradkar A. Formulation of a self-emulsifying system for oral delivery of simvastatin: In vitro and in vivo evaluation. Acta Pharm 2007;57:111-122.
Pagkalos J, Cha JM, Kang Y, Heliotis M, Tsiridis E, Mantalaris A. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res 2010;25:2470-2478.
Sadiasa A, Kim MS, Lee BT. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering. J Drug Target 2013;21:719-729.
Liu C, Wu Z, Sun H. The effect of simvastatin on mRNA expression of transforming growth factor-β1, bone morphogenetic protein-2 and vascular endothelial growth factor in tooth extraction socket. Int J Oral Sci 2009;1:90-98.
Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res 1971;5:161-229.
Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai S. Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implant Res 2009;20:280-287.
Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-e1 cells. Biochem Biophys Res Commun 2001;280:874-877.
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4:518-524.
Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 2007;22:1037-1045.
Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21:2347-2359.
Simões S, Veiga F, Torres-Labandeira JJ, Ribeiro AC, Concheiro A, Alvarez-Lorenzo C. Poloxamine-cyclodextrin-simvastatin supramolecular systems promote osteoblast differentiation of mesenchymal stem cells. Macromol Biosci 2013;13:723-734.
Bao TQ, Hiep NT, Kim YH, Yang HM, Lee BT. Fabrication and characterization of porous poly (lactic-co-glycolic acid)(PLGA) microspheres for use as a drug delivery system. J Mater Sci 2011;46:2510-2517.
Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413-3431.
Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res Part A 2011;98:488-498.
Liu G, Shu C, Cui L, Liu W, Cao Y. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Cryobiology 2008;56:209-215.
Chen PY, Sun JS, Tsuang YH, Chen MH, Weng PW, Lin FH. Simvastatin promotes osteoblast viability and differentiation via ras/smad/erk/BMP-2 signaling pathway. Nutr Res 2010;30:191-199.
Zhou Y, Ni Y, Liu Y, Zeng B, Xu Y, Ge W. The role of simvastatin in the osteogenesis of injectable tissue-engineered bone based on human adipose-derived stromal cells and platelet-rich plasma. Biomaterials 2010;31:5325-5335.
Zhang W, Zhang F, Shi H, Tan R, Han S, Ye G, Pan S, Sun F, Liu X. Comparisons of rabbit bone marrow mesenchymal stem cell isolation and culture methods in vitro. PLoS One 2014;9:e88794
Lee GS, Park JH, Shin US, Kim HW. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 2011;7:3178-3186.
Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C. Incorporation and distribution of strontium in bone. Bone 2001;28:446-453.
Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci 1999;10:111-120.
Moutzouri E, Liberopoulos EN, Tellis CC, Milionis HJ, Tselepis AD, Elisaf MS. Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia. Atherosclerosis 2013;231:8-14.
1991; 2
2010; 31
2009; 20
2013; 21
2001; 280
2000; 21
2010; 143
2008; 56
2013; 443
2011; 98
2001; 28
2007; 57
2011; 7
2010; 25
2013; 13
2006; 27
2004; 37
2005; 4
2014; 35
1999; 10
2011; 46
2013; 231
2014; 9
2007; 22
2009; 1
2010; 30
1971; 5
References_xml – volume: 57
  start-page: 111
  year: 2007
  end-page: 122
  article-title: Formulation of a self‐emulsifying system for oral delivery of simvastatin: In vitro and in vivo evaluation
  publication-title: Acta Pharm
– volume: 9
  start-page: e88794
  year: 2014
  article-title: Comparisons of rabbit bone marrow mesenchymal stem cell isolation and culture methods in vitro
  publication-title: PLoS One
– volume: 13
  start-page: 723
  year: 2013
  end-page: 734
  article-title: Poloxamine–cyclodextrin–simvastatin supramolecular systems promote osteoblast differentiation of mesenchymal stem cells
  publication-title: Macromol Biosci
– volume: 7
  start-page: 3178
  year: 2011
  end-page: 3186
  article-title: Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering
  publication-title: Acta Biomater
– volume: 30
  start-page: 191
  year: 2010
  end-page: 199
  article-title: Simvastatin promotes osteoblast viability and differentiation via ras/smad/erk/BMP‐2 signaling pathway
  publication-title: Nutr Res
– volume: 37
  start-page: 1235
  year: 2004
  end-page: 1244
  article-title: Simvastatin enhances myocardial angiogenesis induced by vascular endothelial growth factor gene transfer
  publication-title: J Mol Cell Cardiol
– volume: 10
  start-page: 111
  year: 1999
  end-page: 120
  article-title: Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo
  publication-title: J Mater Sci
– volume: 2
  start-page: 187
  year: 1991
  end-page: 208
  article-title: Bone graft and bone graft substitutes: A review of current technology and applications
  publication-title: J Appl Biomater
– volume: 231
  start-page: 8
  year: 2013
  end-page: 14
  article-title: Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia
  publication-title: Atherosclerosis
– volume: 22
  start-page: 1037
  year: 2007
  end-page: 1045
  article-title: Accretion of bone quantity and quality in the developing mouse skeleton
  publication-title: J Bone Miner Res
– volume: 1
  start-page: 90
  year: 2009
  end-page: 98
  article-title: The effect of simvastatin on mRNA expression of transforming growth factor‐β1, bone morphogenetic protein‐2 and vascular endothelial growth factor in tooth extraction socket
  publication-title: Int J Oral Sci
– volume: 56
  start-page: 209
  year: 2008
  end-page: 215
  article-title: Tissue‐engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells
  publication-title: Cryobiology
– volume: 98
  start-page: 488
  year: 2011
  end-page: 498
  article-title: Evaluation of the osteoconductivity of α‐tricalcium phosphate, β‐tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect
  publication-title: J Biomed Mater Res Part A
– volume: 20
  start-page: 280
  year: 2009
  end-page: 287
  article-title: Effects of the combination with α‐tricalcium phosphate and simvastatin on bone regeneration
  publication-title: Clin Oral Implant Res
– volume: 25
  start-page: 2470
  year: 2010
  end-page: 2478
  article-title: Simvastatin induces osteogenic differentiation of murine embryonic stem cells
  publication-title: J Bone Miner Res
– volume: 46
  start-page: 2510
  year: 2011
  end-page: 2517
  article-title: Fabrication and characterization of porous poly (lactic‐co‐glycolic acid)(PLGA) microspheres for use as a drug delivery system
  publication-title: J Mater Sci
– volume: 31
  start-page: 5325
  year: 2010
  end-page: 5335
  article-title: The role of simvastatin in the osteogenesis of injectable tissue‐engineered bone based on human adipose‐derived stromal cells and platelet‐rich plasma
  publication-title: Biomaterials
– volume: 4
  start-page: 518
  year: 2005
  end-page: 524
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat Mater
– volume: 27
  start-page: 3413
  year: 2006
  end-page: 3431
  article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
– volume: 21
  start-page: 719
  year: 2013
  end-page: 729
  article-title: Poly(lactide‐co‐glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering
  publication-title: J Drug Target
– volume: 143
  start-page: 201
  year: 2010
  end-page: 206
  article-title: Sustained release of water‐insoluble simvastatin from biodegradable hydrogel augments bone regeneration
  publication-title: J Control Release
– volume: 280
  start-page: 874
  year: 2001
  end-page: 877
  article-title: Simvastatin promotes osteoblast differentiation and mineralization in MC3T3‐e1 cells
  publication-title: Biochem Biophys Res Commun
– volume: 28
  start-page: 446
  year: 2001
  end-page: 453
  article-title: Incorporation and distribution of strontium in bone
  publication-title: Bone
– volume: 35
  start-page: 1215
  year: 2014
  end-page: 1225
  article-title: Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes
  publication-title: Acta Pharmacol Sin
– volume: 5
  start-page: 161
  year: 1971
  end-page: 229
  article-title: Application of porous ceramics for the attachment of load bearing internal orthopedic applications
  publication-title: J Biomed Mater Res
– volume: 443
  start-page: 87
  year: 2013
  end-page: 94
  article-title: Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration
  publication-title: Int J Pharm
– volume: 21
  start-page: 2347
  year: 2000
  end-page: 2359
  article-title: Biomaterial developments for bone tissue engineering
  publication-title: Biomaterials
SSID ssj0026052
Score 2.3947783
Snippet By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin‐loaded...
By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3250
SubjectTerms Animals
Biocompatibility
Biomedical materials
bone defect
bone mesenchymal stem cells
Bone Substitutes - chemistry
bone tissue engineering
Bones
Calcium phosphate
Cells, Cultured
Lactic Acid - chemistry
Materials Testing
Microspheres
Morphology
Osteogenesis - drug effects
Polyglycolic Acid - chemistry
Rabbits
Scaffolds
simvastatin
Simvastatin - chemistry
Simvastatin - pharmacology
Surgical implants
Tissue Engineering
Tissue Scaffolds - chemistry
Title Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering
URI https://api.istex.fr/ark:/67375/WNG-WQV45TLD-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.35463
https://www.ncbi.nlm.nih.gov/pubmed/25809455
https://www.proquest.com/docview/1707551657
https://search.proquest.com/docview/1708159932
https://search.proquest.com/docview/1712772642
https://search.proquest.com/docview/1744716979
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQT3AAymdoQUZCXFC2TWwn9nGX0lZVWwFqaW-WP2Ia2k1WdRYBJ34CR34fvwSPE7YFoUpwi2RbceIZ50385g1Cz5gxlOQl6LZaklKmVMq1g2ruleNMOEWjTvfefrF9SHeO2fHAzYFcmF4fYvHDDTwj7tfg4Er7tQvR0A96OlIjAnLuYQfOSAmEro23C_EoAOrxrDNEQCnJRTFk54WWtUtjAyiF9_npbwjzd8Aavzibt_qyqj4KFQLR5HQ07_TIfPlDxvG_H-Y2ujlgUTzujWcZXauaO-jGJYXCu-j7pG4jTb3rWbSfsWoshsSQ9j3skrXHrcNhnU09n-LZSetnJwG9YhgDdLAKe6Oca8-sx8CK7-tRYF9PPyrIZaqbH1-_nbXKVha_3t0a4ykQBD1oHVQeB0CNddtUuIvmgauLqd1Dh5uvDl5up0Mxh9QwwkhqCmXWGTeEZVZQk3M4n8t0vu6Y0MLywgoX4KMVheCOCEdySIHVwcByza1V5D5aasIdHyJsTJlZrVSRlwXNFBWaEycUVWXlSmJpgp7HJZWzXrBDqvNT4K-VTB7tb8mjN-8oO9jdkJMErf5aczm4rpdZGVAUywpWJujpojk4HZykqKZq57EPDzgwYN-r-mR5CF1CfHdVH0pBrqgUCXrQ29xi0jnjIfRmLEEvouUsGnqh6VwGm5FKRpuRO5O9cbx69E-9V9D1AABZT05cRUvd-bx6HEBWp59EX_oJJ6wmkA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgHIAD34VAASMhLijbJraT-LhLaZeyuwK0pb1Z_ojp0m6yarIIOPETOPL7-CV4nDQtCFWCWyTbihPPJG_sN28Qesq0piROQbfVkJAyKcNMWajmntuMcSup1-keT5LhLt3ZZ_vthhvkwjT6EN2GG3iG_16Dg8OG9PqpauhHNe_JHgE994voknN4AqUbNt918lEA1f1pp4uBQhLzpM3Pcy3rZwY7WApv9PPfMObvkNX_c7auI3Ey24Zqcthb1qqnv_4h5Pj_j3MDXWvhKO439nMTXciLW-jqGZHC2-jHYFZ6pnrdEGm_YFkYDLkh5Qf4UM4qXFrsllrPlnO8OCirxYEDsBjGACMsx5WW1pZHpsJAjG9KUuBqNv8kIZ1pVvz89v2olCY3-M1ou4_nwBGsQO4gr7DD1FiVRY5rbyE4P53aHbS79XL6Yhi29RxCzQgjoU6k3mCZJiwynOo4gyO6SMUblnHFTZYYbh2CNDzhmSXckhiyYJWzsVhlxkiyilYKd8d7CGudRkZJmcRpQiNJucqI5ZLKNLcpMTRAz_yaikWj2SHk8SFQ2FIm9ibbYu_te8qmo00xCNDayaKL1nsrEaUOSLEoYWmAnnTNzu_gMEUWebn0fTIHBR38Pa9PFLvoxYV45_WhFBSLUh6gu43RdZOOWeaib8YC9NybTtfQaE3HwtmMkMLbjNgZjPv-6v4_9X6MLg-n45EYvZq8foCuODzIGq7iGlqpj5f5Q4e5avXIO9YvW7cqqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSAgWvEsDBYyE2KBMJ7GdxMsZyrSU6aiglnZn-RG3oZ1k1GQQsOITWPJ9fAm-TpgWhCrBJopkW3n4Xuc499xzEXrGtKYkTkG31ZCQMinDTFmo5p7bjHErqdfp3p4km3t064AddNwcyIVp9SEWP9zAM_x6DQ4-M3btTDT0g5r2ZI-AnPtldMUd-z5K-26hHgVI3Qc73RYoJDFPuvQ817J2brBDpfBCP_0NYv6OWP0nZ3Szratae6VCYJoc9-aN6ukvf-g4_vfT3EI3OjCKB6313EaX8vIOun5OovAu-j4sKs9Tb1oa7WcsS4MhM6Q6hGWyqHFlsZtoXcyneHZU1bMjB18xjAE-WI5rLa2tTkyNgRbfFqTAdTH9KCGZqSh_fP12UkmTG7wz3hjgKTAEaxA7yGvsEDVWVZnjxtsHzs9u7R7aG73afbkZdtUcQs0II6FOpO6zTBMWGU51nEGALlJx3zKuuMkSw63Dj4YnPLOEWxJDDqxyFharzBhJltFS6a64grDWaWSUlEmcJjSSlKuMWC6pTHObEkMD9NxPqZi1ih1Cnh4DgS1lYn-yIfbfvqdsd7wuhgFa_TXnovPdWkSpg1EsSlgaoKeLZud1EEqRZV7NfZ_MAUEHfi_qE8Vu7-I2eBf1oRT0ilIeoPutzS1uOmaZ23szFqAX3nIWDa3SdCyczQgpvM2IreH2wJ89-KfeT9DVnfWRGL-evHmIrjkwyFqi4ipaak7n-SMHuBr12LvVT8jRKVc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocompatibility+and+osteogenesis+of+calcium+phosphate+composite+scaffolds+containing+simvastatin-loaded+PLGA+microspheres+for+bone+tissue+engineering&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Zhang%2C+Hao-Xuan&rft.au=Xiao%2C+Gui-Yong&rft.au=Wang%2C+Xia&rft.au=Dong%2C+Zhao-Gang&rft.date=2015-10-01&rft.eissn=1552-4965&rft.volume=103&rft.issue=10&rft.spage=3250&rft.epage=3258&rft_id=info:doi/10.1002%2Fjbm.a.35463&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon