Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics

Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 10; no. 5; pp. e2000953 - n/a
Main Authors Li, Danyang, Xu, Lizhou, Wang, Jing, Gautrot, Julien E.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers. Responsive polymer brushes offer unprecedented control of the coating physico‐chemistry and molecular architecture for the design of nanomaterials for the delivery of therapeutics and their simultaneous imaging and biomonitoring. Polymer brushes with precisely controlled responsive and bioactive properties are attractive candidates for the design of the next generation of nanotheranostic platforms.
AbstractList Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.
Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers. Responsive polymer brushes offer unprecedented control of the coating physico‐chemistry and molecular architecture for the design of nanomaterials for the delivery of therapeutics and their simultaneous imaging and biomonitoring. Polymer brushes with precisely controlled responsive and bioactive properties are attractive candidates for the design of the next generation of nanotheranostic platforms.
Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.
Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.
Author Li, Danyang
Xu, Lizhou
Gautrot, Julien E.
Wang, Jing
AuthorAffiliation 4 Department of Materials Imperial College London London SW7 2AZ UK
5 School of Life Sciences Northwestern Polytechnical University Xi'an 710072 China
2 Institute of Bioengineering Queen Mary University of London Mile End Road London E1 4NS UK
3 School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
1 School of Cancer and Pharmaceutical Sciences King's College London 150 Stamford Street London SE1 9NH UK
AuthorAffiliation_xml – name: 4 Department of Materials Imperial College London London SW7 2AZ UK
– name: 5 School of Life Sciences Northwestern Polytechnical University Xi'an 710072 China
– name: 2 Institute of Bioengineering Queen Mary University of London Mile End Road London E1 4NS UK
– name: 1 School of Cancer and Pharmaceutical Sciences King's College London 150 Stamford Street London SE1 9NH UK
– name: 3 School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
Author_xml – sequence: 1
  givenname: Danyang
  surname: Li
  fullname: Li, Danyang
  email: danyang.li@kcl.ac.uk
  organization: University of London
– sequence: 2
  givenname: Lizhou
  surname: Xu
  fullname: Xu, Lizhou
  organization: Imperial College London
– sequence: 3
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: Julien E.
  orcidid: 0000-0002-1614-2578
  surname: Gautrot
  fullname: Gautrot, Julien E.
  email: j.gautrot@qmul.ac.uk
  organization: University of London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32893474$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9PFDEcxRuDEQSuHs0kXrzs-u1P25NZAcUEkBg9NzNtZ7dkph3aGcz-93ZdWIXEePo27ee9vH7fS7QXYnAIvcIwxwDkXW1X_ZwAAQDF6TN0QLAiMyK42tudGeyj45xvCgOCYyHxC7RPiVSUvWcH6Oqby0MM2d-56jp2696l6mOa8qo6ddkvQ1UHW52V26UPy2oxDJ039eiLompjqq7qEMeVS2Xk0Zt8hJ63dZfd8f08RD8-nX0_OZ9dfP385WRxMTOccjpTDABT29gGmwYzQoFbKySxjXQUwAjZKGtJK4Bzq4xrlJMtKCPalgPHQA_Rh63vMDW9s8aFMdWdHpLv67TWsfb68UvwK72MdxpjJiRVrDi8vXdI8XZyedS9z8Z1XR1cnLImjIEQQnJZ0DdP0Js4pVD-VyjFiZSSbyK9_jvSLsvDrgvAtoBJMefkWm38-HuXJaHvNAa9aVVvWtW7Vots_kT24PxPgdoKfvrOrf9D68Xp-eUf7S91R7UA
CitedBy_id crossref_primary_10_1002_idm2_12210
crossref_primary_10_1016_j_colsurfa_2023_132525
crossref_primary_10_1002_wnan_1861
crossref_primary_10_1016_j_jcis_2022_12_079
crossref_primary_10_1016_j_molliq_2024_126303
crossref_primary_10_1002_pat_6397
crossref_primary_10_2174_1389201023666220617152334
crossref_primary_10_1021_acsmacrolett_4c00476
crossref_primary_10_1021_acs_langmuir_2c02396
crossref_primary_10_1021_acsapm_2c02066
crossref_primary_10_1039_D3SC04052F
crossref_primary_10_1002_admi_202201344
crossref_primary_10_1016_j_cis_2021_102580
crossref_primary_10_1039_D3TB00364G
crossref_primary_10_1016_j_cocis_2022_101590
crossref_primary_10_1021_acs_macromol_2c01341
crossref_primary_10_1021_acsnano_2c00277
crossref_primary_10_1063_5_0122397
crossref_primary_10_1002_marc_202100424
crossref_primary_10_1002_ange_202200166
crossref_primary_10_1016_j_eurpolymj_2021_110593
crossref_primary_10_1039_D1TB02508B
crossref_primary_10_1039_D1RA07374E
crossref_primary_10_1021_jacsau_2c00638
crossref_primary_10_1039_D1TB02605D
crossref_primary_10_3389_fbioe_2021_755727
crossref_primary_10_1007_s13770_024_00699_1
crossref_primary_10_1080_1539445X_2022_2028831
crossref_primary_10_1039_D3SM01040F
crossref_primary_10_1016_j_matdes_2023_112076
crossref_primary_10_1021_acs_macromol_2c01391
crossref_primary_10_1016_j_progpolymsci_2024_101888
crossref_primary_10_1134_S1811238222700114
crossref_primary_10_1021_acsmacrolett_2c00556
crossref_primary_10_1021_acsapm_1c01615
crossref_primary_10_1021_acsmacrolett_2c00114
crossref_primary_10_3390_polym15030644
crossref_primary_10_1021_acs_macromol_3c01292
crossref_primary_10_1039_D1PY01073E
crossref_primary_10_1002_anie_202200166
crossref_primary_10_1016_j_jenvman_2023_117370
crossref_primary_10_1016_j_pmatsci_2024_101248
crossref_primary_10_1080_29963176_2024_2396835
crossref_primary_10_1016_j_polymer_2024_127230
crossref_primary_10_1039_D4SM00772G
crossref_primary_10_1007_s10853_024_10243_0
crossref_primary_10_1039_D1BM01330K
crossref_primary_10_3390_ijms252313175
crossref_primary_10_1016_j_nantod_2023_102010
crossref_primary_10_1021_acsami_4c05139
crossref_primary_10_1038_s41428_024_00908_7
crossref_primary_10_1002_mabi_202200528
crossref_primary_10_1021_acs_jpcb_3c02713
crossref_primary_10_1021_acs_jpcb_1c04451
crossref_primary_10_1039_D3CC01082A
crossref_primary_10_1021_acs_jpcc_1c02015
crossref_primary_10_35848_1347_4065_ad7d96
crossref_primary_10_1016_j_eurpolymj_2024_113546
crossref_primary_10_1002_anie_202219312
crossref_primary_10_1063_5_0076057
crossref_primary_10_1021_acs_langmuir_4c03897
crossref_primary_10_1021_acs_macromol_3c01601
crossref_primary_10_1002_smll_202309040
crossref_primary_10_1021_acsomega_2c06763
crossref_primary_10_1088_1361_6501_ad66f9
crossref_primary_10_1021_acsmacrolett_4c00341
crossref_primary_10_1186_s12951_024_02299_6
crossref_primary_10_1002_ange_202219312
crossref_primary_10_1021_acsapm_4c03266
crossref_primary_10_1021_acsnano_3c00212
crossref_primary_10_1039_D2TC02600G
crossref_primary_10_1021_acs_macromol_2c01134
crossref_primary_10_1039_D2SM00005A
Cites_doi 10.1016/j.memsci.2008.04.053
10.1002/macp.200300070
10.1039/c3tb21149e
10.1002/macp.201500323
10.1039/C7TB00646B
10.1039/c1jm10813a
10.1016/j.colsurfb.2016.07.015
10.3390/mi11030274
10.1080/15583720600945402
10.1039/b925583d
10.3389/fphar.2018.01397
10.1021/la200347u
10.1021/acs.langmuir.7b01395
10.1021/acsmacrolett.6b00099
10.1016/j.biomaterials.2008.12.065
10.1021/acs.macromol.8b01959
10.1016/j.jcis.2018.08.080
10.1016/j.carbon.2010.03.014
10.1002/adma.201803001
10.1021/acsbiomaterials.7b00584
10.1021/jp103982a
10.1021/acsami.6b04664
10.1021/acs.biomac.7b01175
10.1021/acs.langmuir.8b04268
10.1016/S0079-6700(00)00012-5
10.1021/ma0512760
10.1016/j.reactfunctpolym.2012.03.007
10.2463/mrms.mp.2016-0067
10.1021/am507832n
10.1021/ma00078a016
10.1021/acsmacrolett.5b00765
10.1021/cr900045a
10.1021/la102904r
10.1039/C9CC05790K
10.1016/j.colsurfb.2015.06.048
10.1039/C8TB00651B
10.1021/am201736t
10.1039/b419142k
10.1007/s11998-015-9658-3
10.1021/ja0380493
10.2147/IJN.S137245
10.1021/jp801086w
10.1016/j.jconrel.2012.07.045
10.1039/b714635n
10.1002/adma.201001382
10.1021/ma902042x
10.1038/nmat2564
10.1021/ja060649p
10.1039/c4nr00907j
10.1016/j.snb.2005.06.003
10.1021/la701215t
10.1021/bm2017756
10.1016/j.jconrel.2010.03.023
10.1021/acsami.6b00376
10.1021/nn101685q
10.1016/j.eurpolymj.2015.06.032
10.1039/c0nr00932f
10.1039/b920377j
10.1021/am101250x
10.1021/cr0680540
10.1039/b210143m
10.1016/j.micromeso.2018.01.029
10.1021/la104973j
10.1021/ma049694c
10.1021/acs.chemrev.5b00671
10.1016/j.nanoso.2018.03.010
10.1002/adma.200903610
10.1016/S0378-4371(97)00192-1
10.1002/macp.200500268
10.1002/adfm.200600934
10.1517/17425240902980162
10.1021/bc300683y
10.1007/s11051-008-9481-1
10.1021/ja044575y
10.1021/ma0702041
10.1038/nmat2614
10.1016/j.yexmp.2008.12.004
10.1021/acs.biomac.9b00155
10.1021/acs.macromol.8b01019
10.1038/nature05741
10.1038/srep01997
10.1021/ma800894c
10.1016/B978-0-85709-713-2.00005-5
10.1039/c2py20089a
10.1021/acsbiomaterials.7b00204
10.1021/bm400770n
10.1039/C6PY00251J
10.1039/C6QM00135A
10.1002/pola.27186
10.3390/nano9101365
10.1016/j.biomaterials.2020.119979
10.1039/C1CS15237H
10.1021/bm050180a
10.1021/ma070897l
10.1016/j.colsurfa.2011.07.022
10.1021/acs.nanolett.7b04183
10.1103/PhysRevLett.80.4092
10.1039/c2sm25863c
10.1016/j.cis.2004.07.009
10.1021/la063450z
10.1039/C5SM01962A
10.1039/C3PY00880K
10.1021/ja035560n
10.1039/c1jm12744f
10.1098/rsta.2009.0273
10.1038/s41929-017-0003-3
10.1002/elan.201400030
10.1021/acs.biomac.7b01686
10.1039/C7PY00462A
10.1021/ma801557u
10.1002/adfm.201501582
10.1126/science.364652
10.1021/jacs.6b01935
10.2217/nnm.11.19
10.1063/1.1490924
10.1039/b904381k
10.1016/j.biomaterials.2010.02.066
10.1246/cl.130987
10.1021/ma3020195
10.1021/ma2010102
10.1039/C5TB02125A
10.1021/jp500074g
10.1016/j.addr.2012.06.006
10.1002/cphc.201800018
10.1021/acs.macromol.7b00767
10.1016/j.polymer.2016.04.041
10.1039/C6TC01822J
10.1021/cr500252u
10.1021/jp8048026
10.1038/s41598-019-41251-9
10.1002/adfm.201702592
10.1007/s13758-011-0009-3
10.1021/acs.langmuir.5b01739
10.1016/j.actbio.2014.09.004
10.1021/nl073157z
10.1039/C3SC52233D
10.1016/j.progpolymsci.2017.03.004
10.1039/C5RA13245B
10.1021/acsnano.9b07984
10.1021/acs.chemrev.6b00314
10.1002/marc.201400217
10.1016/j.smim.2017.09.011
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley‐VCH GmbH
2020 The Authors. Published by Wiley-VCH GmbH.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley‐VCH GmbH
– notice: 2020 The Authors. Published by Wiley-VCH GmbH.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/adhm.202000953
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID PMC11468394
32893474
10_1002_adhm_202000953
ADHM202000953
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Maplethorpe Foundation
– fundername: University of London
  funderid: RE14728
– fundername: Leverhulme Trust
  funderid: RPG‐2017‐229; 69241
– fundername: European Research Council
  funderid: 772462
GroupedDBID 05W
0R~
1OC
24P
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
OVD
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c5353-940013dbdb1cb142305dd682db8e300c68b9dd2f6055d9ceb9e8f09c6ff505103
IEDL.DBID 24P
ISSN 2192-2640
2192-2659
IngestDate Thu Aug 21 18:35:05 EDT 2025
Fri Jul 11 12:08:21 EDT 2025
Fri Jul 25 11:58:32 EDT 2025
Thu Apr 03 06:54:05 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 03:06:40 EDT 2025
Wed Jan 22 16:30:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords nanotheranostics
biosensing
diagnosis
nanomaterials
drug delivery
polymer brushes
Language English
License Attribution
2020 The Authors. Published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5353-940013dbdb1cb142305dd682db8e300c68b9dd2f6055d9ceb9e8f09c6ff505103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1614-2578
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202000953
PMID 32893474
PQID 2495288850
PQPubID 2032434
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468394
proquest_miscellaneous_2440666858
proquest_journals_2495288850
pubmed_primary_32893474
crossref_citationtrail_10_1002_adhm_202000953
crossref_primary_10_1002_adhm_202000953
wiley_primary_10_1002_adhm_202000953_ADHM202000953
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1993; 26
2013; 3
2013; 1
2009; 86
2006; 39
2016; 146
2008; 108
2008; 37
2014; 26
2020; 14
1998; 80
2020; 11
2012; 13
2004; 205
2004; 33
2010; 22
2009; 11
2018; 6
2018; 9
2010; 20
2017; 70
2018; 4
2019; 20
2018; 1
2015; 135
2010; 114
2004; 37
2018; 30
2008; 112
2010; 4
2010; 9
2007; 17
2019; 9
2010; 31
2007; 446
2005; 113
2010; 39
2019; 35
2016; 98
2011; 3
2011; 6
2014; 43
2006; 114
2016; 4
2018; 19
2017; 50
2016; 5
2018; 18
2015; 69
2016; 7
2010; 48
2006; 46
2016; 217
2005; 6
2014; 35
2008; 41
1978; 202
2005; 15
2009; 109
2012; 45
2018; 16
2016; 8
2011; 386
2012; 41
2012; 164
2017; 8
2017; 1
2004; 126
2017; 3
2009; 42
2019; 55
2013; 24
2015; 31
2010; 146
2002; 117
2008; 8
2020; 244
2017; 117
2012; 72
2014; 5
2013; 14
2017; 33
2017; 34
2011; 21
2016; 116
2014; 52
2011; 27
2003; 125
2007; 23
2014; 6
2006; 128
2012; 64
2014; 118
2015; 12
2018; 264
2015; 5
2015; 3
2000; 25
2017; 27
2010; 368
2015; 11
2009
2008; 321
2015; 7
2014; 114
2015; 25
2009; 30
2012; 3
2021
1997; 240
2017; 16
2017; 12
2019; 533
2005; 206
2011; 44
2009; 8
2009; 6
2015
2016; 138
2017; 18
2018; 51
2007; 40
2012; 7
2012; 4
2012; 8
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_135_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_117_1
Nicolas J. (e_1_2_7_31_1) 2021
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_138_1
References_xml – volume: 205
  start-page: 411
  year: 2004
  publication-title: Macromol. Chem. Phys.
– volume: 40
  start-page: 1789
  year: 2007
  publication-title: Macromolecules
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 5037
  year: 2019
  publication-title: Langmuir
– start-page: 5214
  year: 2009
  publication-title: Chem. Commun.
– volume: 30
  start-page: 2132
  year: 2009
  publication-title: Biomaterials
– volume: 20
  start-page: 2218
  year: 2019
  publication-title: Biomacromolecules
– volume: 3
  start-page: 1997
  year: 2013
  publication-title: Sci. Rep.
– volume: 21
  start-page: 7755
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 19
  start-page: 606
  year: 2018
  publication-title: Biomacromolecules
– volume: 135
  start-page: 652
  year: 2015
  publication-title: Colloids Surf., B
– volume: 25
  start-page: 677
  year: 2000
  publication-title: Prog. Polym. Sci.
– volume: 14
  start-page: 3453
  year: 2013
  publication-title: Biomacromolecules
– volume: 51
  start-page: 9951
  year: 2018
  publication-title: Macromolecules
– volume: 5
  start-page: 55
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 11
  start-page: 274
  year: 2020
  publication-title: Micromachines
– volume: 41
  start-page: 7254
  year: 2008
  publication-title: Macromolecules
– volume: 108
  start-page: 1104
  year: 2008
  publication-title: Chem. Rev.
– volume: 34
  start-page: 25
  year: 2017
  publication-title: Semin. Immunol.
– volume: 112
  start-page: 8438
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 101
  year: 2010
  publication-title: Nat. Mater.
– volume: 126
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1397
  year: 2018
  publication-title: Front. Pharmacol.
– volume: 206
  start-page: 1941
  year: 2005
  publication-title: Macromol. Chem. Phys.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 43
  start-page: 36
  year: 2014
  publication-title: Chem. Lett.
– volume: 3
  start-page: 1724
  year: 2011
  publication-title: Nanoscale
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 98
  start-page: 464
  year: 2016
  publication-title: Polymer
– volume: 26
  start-page: 7214
  year: 1993
  publication-title: Macromolecules
– volume: 37
  start-page: 2512
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 264
  start-page: 151
  year: 2018
  publication-title: Microporous Mesoporous Mater.
– volume: 138
  start-page: 7216
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 4988
  year: 2002
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 143
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 5437
  year: 2009
  publication-title: Chem. Rev.
– volume: 128
  start-page: 5326
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 86
  start-page: 215
  year: 2009
  publication-title: Exp. Mol. Pathol.
– volume: 114
  start-page: 371
  year: 2006
  publication-title: Sens. Actuators, B
– volume: 11
  start-page: 8550
  year: 2015
  publication-title: Soft Matter
– volume: 117
  start-page: 1105
  year: 2017
  publication-title: Chem. Rev.
– volume: 6
  start-page: 613
  year: 2009
  publication-title: Expert Opin. Drug Delivery
– volume: 5
  start-page: 200
  year: 2014
  publication-title: Chem. Sci.
– volume: 7
  start-page: 3107
  year: 2016
  publication-title: Polym. Chem.
– volume: 6
  start-page: 715
  year: 2011
  publication-title: Nanomedicine
– volume: 5
  start-page: 25
  year: 2014
  publication-title: Polym. Chem.
– volume: 16
  start-page: 275
  year: 2017
  publication-title: Magn. Reson. Med. Sci.
– volume: 12
  start-page: 5331
  year: 2017
  publication-title: Int. J. Nanomed.
– volume: 18
  start-page: 4121
  year: 2017
  publication-title: Biomacromolecules
– volume: 446
  start-page: 1066
  year: 2007
  publication-title: Nature
– volume: 114
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 113
  start-page: 43
  year: 2005
  publication-title: Adv. Colloid Interface Sci.
– volume: 7
  start-page: 3618
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 935
  year: 2009
  publication-title: Nat. Mater.
– volume: 17
  start-page: 2307
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 915
  year: 2006
  publication-title: Macromolecules
– volume: 368
  start-page: 1333
  year: 2010
  publication-title: Philos. Trans. R. Soc., A
– volume: 31
  start-page: 5030
  year: 2010
  publication-title: Biomaterials
– volume: 22
  start-page: 4721
  year: 2010
  publication-title: Adv. Mater.
– volume: 7
  start-page: 9
  year: 2012
  publication-title: Biointerphases
– volume: 35
  start-page: 1402
  year: 2014
  publication-title: Macromol. Rapid Commun.
– volume: 44
  start-page: 7385
  year: 2011
  publication-title: Macromolecules
– volume: 3
  start-page: 9285
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 42
  start-page: 9369
  year: 2009
  publication-title: Macromolecules
– volume: 19
  start-page: 1956
  year: 2018
  publication-title: ChemPhysChem
– volume: 6
  start-page: 2427
  year: 2005
  publication-title: Biomacromolecules
– volume: 69
  start-page: 438
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 164
  start-page: 177
  year: 2012
  publication-title: J. Controlled Release
– volume: 45
  start-page: 8970
  year: 2012
  publication-title: Macromolecules
– volume: 146
  start-page: 6
  year: 2010
  publication-title: J. Controlled Release
– volume: 386
  start-page: 131
  year: 2011
  publication-title: Colloids Surf. A
– volume: 64
  start-page: 1394
  year: 2012
  publication-title: Adv. Drug Delivery Rev.
– volume: 48
  start-page: 2347
  year: 2010
  publication-title: Carbon
– volume: 6
  start-page: 6141
  year: 2014
  publication-title: Nanoscale
– volume: 23
  start-page: 7472
  year: 2007
  publication-title: Langmuir
– volume: 72
  start-page: 329
  year: 2012
  publication-title: React. Funct. Polym.
– volume: 27
  start-page: 1251
  year: 2011
  publication-title: Langmuir
– volume: 80
  start-page: 4092
  year: 1998
  publication-title: Phys. Rev. Lett.
– start-page: 1
  year: 2021
– volume: 22
  start-page: 1863
  year: 2010
  publication-title: Adv. Mater.
– volume: 27
  start-page: 4789
  year: 2011
  publication-title: Langmuir
– volume: 52
  start-page: 1807
  year: 2014
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 8
  start-page: 6869
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 463
  year: 2015
  publication-title: J. Coat. Technol. Res.
– volume: 244
  year: 2020
  publication-title: Biomaterials
– volume: 1
  start-page: 73
  year: 2018
  publication-title: Nat. Catal.
– volume: 70
  start-page: 18
  year: 2017
  publication-title: Prog. Polym. Sci.
– volume: 23
  start-page: 5769
  year: 2007
  publication-title: Langmuir
– start-page: 119
  year: 2015
– volume: 240
  start-page: 443
  year: 1997
  publication-title: Phys. A
– volume: 31
  start-page: 8680
  year: 2015
  publication-title: Langmuir
– volume: 27
  start-page: 3095
  year: 2011
  publication-title: Langmuir
– volume: 126
  start-page: 412
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 3271
  year: 2017
  publication-title: Polym. Chem.
– volume: 4
  start-page: 6098
  year: 2010
  publication-title: ACS Nano
– volume: 321
  start-page: 146
  year: 2008
  publication-title: J. Membr. Sci.
– volume: 125
  start-page: 8302
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 397
  year: 2006
  publication-title: J. Macromol. Sci., Part C: Polym. Rev.
– volume: 6
  start-page: 3531
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 1690
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 41
  start-page: 8152
  year: 2008
  publication-title: Macromolecules
– volume: 40
  start-page: 4403
  year: 2007
  publication-title: Macromolecules
– volume: 33
  start-page: 14
  year: 2004
  publication-title: Chem. Soc. Rev.
– volume: 37
  start-page: 4022
  year: 2004
  publication-title: Macromolecules
– volume: 4
  start-page: 6287
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 118
  start-page: 4920
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 483
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 13
  start-page: 857
  year: 2012
  publication-title: Biomacromolecules
– volume: 1
  start-page: 807
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 11
  start-page: 909
  year: 2009
  publication-title: J. Nanopart. Res.
– volume: 18
  start-page: 314
  year: 2018
  publication-title: Nano Lett.
– volume: 15
  start-page: 2089
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 815
  year: 2014
  publication-title: Electroanalysis
– volume: 8
  start-page: 9376
  year: 2012
  publication-title: Soft Matter
– volume: 9
  start-page: 1365
  year: 2019
  publication-title: Nanomaterials
– volume: 33
  start-page: 6838
  year: 2017
  publication-title: Langmuir
– volume: 5
  start-page: 382
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 41
  start-page: 2740
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 3391
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 968
  year: 2013
  publication-title: Bioconjugate Chem.
– volume: 202
  start-page: 1290
  year: 1978
  publication-title: Science
– volume: 9
  start-page: 4712
  year: 2019
  publication-title: Sci. Rep.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 3
  start-page: 1408
  year: 2012
  publication-title: Polym. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 9
  year: 2018
  publication-title: Nano‐Struct. Nano‐Objects
– volume: 50
  start-page: 7433
  year: 2017
  publication-title: Macromolecules
– volume: 533
  start-page: 604
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 289
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 51
  start-page: 6936
  year: 2018
  publication-title: Macromolecules
– volume: 217
  start-page: 664
  year: 2016
  publication-title: Macromol. Chem. Phys.
– volume: 39
  start-page: 2203
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 5916
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 2018
  year: 2018
  publication-title: ACS Biomater. Sci. Eng.
– volume: 146
  start-page: 737
  year: 2016
  publication-title: Colloids Surf., B
– volume: 8
  start-page: 725
  year: 2008
  publication-title: Nano Lett.
– volume: 25
  start-page: 4717
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 381
  year: 2015
  publication-title: Acta Biomater.
– volume: 14
  start-page: 3991
  year: 2020
  publication-title: ACS Nano
– ident: e_1_2_7_102_1
  doi: 10.1016/j.memsci.2008.04.053
– ident: e_1_2_7_85_1
  doi: 10.1002/macp.200300070
– ident: e_1_2_7_118_1
  doi: 10.1039/c3tb21149e
– ident: e_1_2_7_50_1
  doi: 10.1002/macp.201500323
– ident: e_1_2_7_110_1
  doi: 10.1039/C7TB00646B
– ident: e_1_2_7_123_1
  doi: 10.1039/c1jm10813a
– ident: e_1_2_7_13_1
  doi: 10.1016/j.colsurfb.2016.07.015
– ident: e_1_2_7_143_1
  doi: 10.3390/mi11030274
– ident: e_1_2_7_16_1
  doi: 10.1080/15583720600945402
– ident: e_1_2_7_136_1
  doi: 10.1039/b925583d
– ident: e_1_2_7_2_1
  doi: 10.3389/fphar.2018.01397
– ident: e_1_2_7_72_1
  doi: 10.1021/la200347u
– ident: e_1_2_7_75_1
  doi: 10.1021/acs.langmuir.7b01395
– ident: e_1_2_7_41_1
  doi: 10.1021/acsmacrolett.6b00099
– ident: e_1_2_7_66_1
  doi: 10.1016/j.biomaterials.2008.12.065
– ident: e_1_2_7_88_1
  doi: 10.1021/acs.macromol.8b01959
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jcis.2018.08.080
– ident: e_1_2_7_42_1
  doi: 10.1016/j.carbon.2010.03.014
– ident: e_1_2_7_114_1
  doi: 10.1002/adma.201803001
– ident: e_1_2_7_141_1
  doi: 10.1021/acsbiomaterials.7b00584
– ident: e_1_2_7_99_1
  doi: 10.1021/jp103982a
– ident: e_1_2_7_93_1
  doi: 10.1021/acsami.6b04664
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.biomac.7b01175
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.langmuir.8b04268
– ident: e_1_2_7_24_1
  doi: 10.1016/S0079-6700(00)00012-5
– ident: e_1_2_7_58_1
  doi: 10.1021/ma0512760
– ident: e_1_2_7_109_1
  doi: 10.1016/j.reactfunctpolym.2012.03.007
– ident: e_1_2_7_92_1
  doi: 10.2463/mrms.mp.2016-0067
– ident: e_1_2_7_103_1
  doi: 10.1021/am507832n
– ident: e_1_2_7_51_1
  doi: 10.1021/ma00078a016
– ident: e_1_2_7_104_1
  doi: 10.1021/acsmacrolett.5b00765
– ident: e_1_2_7_25_1
  doi: 10.1021/cr900045a
– ident: e_1_2_7_70_1
  doi: 10.1021/la102904r
– start-page: 1
  volume-title: Encyclopedia of Polymeric Nanomaterials
  year: 2021
  ident: e_1_2_7_31_1
– ident: e_1_2_7_94_1
  doi: 10.1039/C9CC05790K
– ident: e_1_2_7_115_1
  doi: 10.1016/j.colsurfb.2015.06.048
– ident: e_1_2_7_106_1
  doi: 10.1039/C8TB00651B
– ident: e_1_2_7_84_1
  doi: 10.1021/am201736t
– ident: e_1_2_7_142_1
  doi: 10.1039/b419142k
– ident: e_1_2_7_6_1
  doi: 10.1007/s11998-015-9658-3
– ident: e_1_2_7_47_1
  doi: 10.1021/ja0380493
– ident: e_1_2_7_126_1
  doi: 10.2147/IJN.S137245
– ident: e_1_2_7_137_1
  doi: 10.1021/jp801086w
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jconrel.2012.07.045
– ident: e_1_2_7_62_1
  doi: 10.1039/b714635n
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201001382
– ident: e_1_2_7_87_1
  doi: 10.1021/ma902042x
– ident: e_1_2_7_116_1
  doi: 10.1038/nmat2564
– ident: e_1_2_7_131_1
  doi: 10.1021/ja060649p
– ident: e_1_2_7_119_1
  doi: 10.1039/c4nr00907j
– ident: e_1_2_7_130_1
  doi: 10.1016/j.snb.2005.06.003
– ident: e_1_2_7_129_1
  doi: 10.1021/la701215t
– ident: e_1_2_7_117_1
  doi: 10.1021/bm2017756
– ident: e_1_2_7_65_1
  doi: 10.1016/j.jconrel.2010.03.023
– ident: e_1_2_7_105_1
  doi: 10.1021/acsami.6b00376
– ident: e_1_2_7_44_1
  doi: 10.1021/nn101685q
– ident: e_1_2_7_80_1
  doi: 10.1016/j.eurpolymj.2015.06.032
– ident: e_1_2_7_97_1
  doi: 10.1039/c0nr00932f
– ident: e_1_2_7_59_1
  doi: 10.1039/b920377j
– ident: e_1_2_7_133_1
  doi: 10.1021/am101250x
– ident: e_1_2_7_32_1
  doi: 10.1021/cr0680540
– ident: e_1_2_7_27_1
  doi: 10.1039/b210143m
– ident: e_1_2_7_107_1
  doi: 10.1016/j.micromeso.2018.01.029
– ident: e_1_2_7_100_1
  doi: 10.1021/la104973j
– ident: e_1_2_7_48_1
  doi: 10.1021/ma049694c
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.chemrev.5b00671
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nanoso.2018.03.010
– ident: e_1_2_7_135_1
  doi: 10.1002/adma.200903610
– ident: e_1_2_7_56_1
  doi: 10.1016/S0378-4371(97)00192-1
– ident: e_1_2_7_43_1
  doi: 10.1002/macp.200500268
– ident: e_1_2_7_89_1
  doi: 10.1002/adfm.200600934
– ident: e_1_2_7_9_1
  doi: 10.1517/17425240902980162
– ident: e_1_2_7_120_1
  doi: 10.1021/bc300683y
– ident: e_1_2_7_79_1
  doi: 10.1007/s11051-008-9481-1
– ident: e_1_2_7_132_1
  doi: 10.1021/ja044575y
– ident: e_1_2_7_29_1
  doi: 10.1021/ma0702041
– ident: e_1_2_7_15_1
  doi: 10.1038/nmat2614
– ident: e_1_2_7_12_1
  doi: 10.1016/j.yexmp.2008.12.004
– ident: e_1_2_7_95_1
  doi: 10.1021/acs.biomac.9b00155
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.macromol.8b01019
– ident: e_1_2_7_140_1
  doi: 10.1038/nature05741
– ident: e_1_2_7_11_1
  doi: 10.1038/srep01997
– ident: e_1_2_7_67_1
  doi: 10.1021/ma800894c
– ident: e_1_2_7_17_1
  doi: 10.1016/B978-0-85709-713-2.00005-5
– ident: e_1_2_7_54_1
  doi: 10.1039/c2py20089a
– ident: e_1_2_7_112_1
  doi: 10.1021/acsbiomaterials.7b00204
– ident: e_1_2_7_45_1
  doi: 10.1021/bm400770n
– ident: e_1_2_7_122_1
  doi: 10.1039/C6PY00251J
– ident: e_1_2_7_78_1
  doi: 10.1039/C6QM00135A
– ident: e_1_2_7_96_1
  doi: 10.1002/pola.27186
– ident: e_1_2_7_4_1
  doi: 10.3390/nano9101365
– ident: e_1_2_7_111_1
  doi: 10.1016/j.biomaterials.2020.119979
– ident: e_1_2_7_21_1
  doi: 10.1039/C1CS15237H
– ident: e_1_2_7_20_1
  doi: 10.1021/bm050180a
– ident: e_1_2_7_52_1
  doi: 10.1021/ma070897l
– ident: e_1_2_7_101_1
  doi: 10.1016/j.colsurfa.2011.07.022
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.nanolett.7b04183
– ident: e_1_2_7_57_1
  doi: 10.1103/PhysRevLett.80.4092
– ident: e_1_2_7_74_1
  doi: 10.1039/c2sm25863c
– ident: e_1_2_7_7_1
  doi: 10.1016/j.cis.2004.07.009
– ident: e_1_2_7_73_1
  doi: 10.1021/la063450z
– ident: e_1_2_7_39_1
  doi: 10.1039/C9CC05790K
– ident: e_1_2_7_69_1
  doi: 10.1039/C5SM01962A
– ident: e_1_2_7_81_1
  doi: 10.1039/C3PY00880K
– ident: e_1_2_7_90_1
  doi: 10.1021/ja035560n
– ident: e_1_2_7_128_1
  doi: 10.1039/c1jm12744f
– ident: e_1_2_7_8_1
  doi: 10.1098/rsta.2009.0273
– ident: e_1_2_7_37_1
  doi: 10.1038/s41929-017-0003-3
– ident: e_1_2_7_138_1
  doi: 10.1002/elan.201400030
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.biomac.7b01686
– ident: e_1_2_7_60_1
  doi: 10.1039/C7PY00462A
– ident: e_1_2_7_134_1
  doi: 10.1021/ma801557u
– ident: e_1_2_7_108_1
  doi: 10.1002/adfm.201501582
– ident: e_1_2_7_91_1
  doi: 10.1126/science.364652
– ident: e_1_2_7_28_1
  doi: 10.1021/jacs.6b01935
– ident: e_1_2_7_46_1
  doi: 10.1021/bm2017756
– ident: e_1_2_7_10_1
  doi: 10.2217/nnm.11.19
– ident: e_1_2_7_77_1
  doi: 10.1063/1.1490924
– ident: e_1_2_7_49_1
  doi: 10.1039/b904381k
– ident: e_1_2_7_34_1
  doi: 10.1016/j.biomaterials.2010.02.066
– ident: e_1_2_7_22_1
  doi: 10.1246/cl.130987
– ident: e_1_2_7_68_1
  doi: 10.1021/ma3020195
– ident: e_1_2_7_82_1
  doi: 10.1021/ma2010102
– ident: e_1_2_7_63_1
  doi: 10.1039/C5TB02125A
– ident: e_1_2_7_127_1
  doi: 10.1021/jp500074g
– ident: e_1_2_7_1_1
  doi: 10.1016/j.addr.2012.06.006
– ident: e_1_2_7_19_1
  doi: 10.1002/cphc.201800018
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.macromol.7b00767
– ident: e_1_2_7_98_1
  doi: 10.1016/j.polymer.2016.04.041
– ident: e_1_2_7_144_1
  doi: 10.1039/C6TC01822J
– ident: e_1_2_7_14_1
  doi: 10.1021/cr500252u
– ident: e_1_2_7_83_1
  doi: 10.1021/jp8048026
– ident: e_1_2_7_125_1
  doi: 10.1038/s41598-019-41251-9
– ident: e_1_2_7_124_1
  doi: 10.1002/adfm.201702592
– ident: e_1_2_7_61_1
  doi: 10.1007/s13758-011-0009-3
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.langmuir.5b01739
– ident: e_1_2_7_121_1
  doi: 10.1016/j.actbio.2014.09.004
– ident: e_1_2_7_145_1
  doi: 10.1021/nl073157z
– ident: e_1_2_7_71_1
  doi: 10.1039/C3SC52233D
– ident: e_1_2_7_64_1
  doi: 10.1016/j.progpolymsci.2017.03.004
– ident: e_1_2_7_86_1
  doi: 10.1039/C5RA13245B
– ident: e_1_2_7_113_1
  doi: 10.1021/acsnano.9b07984
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.chemrev.6b00314
– ident: e_1_2_7_139_1
  doi: 10.1002/marc.201400217
– ident: e_1_2_7_5_1
  doi: 10.1016/j.smim.2017.09.011
SSID ssj0000651681
Score 2.548718
SecondaryResourceType review_article
Snippet Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000953
SubjectTerms Biomarkers
biosensing
Biosensing Techniques
Biosensors
Brushes
diagnosis
drug delivery
External stimuli
Nanomaterials
Nanostructures
Nanotechnology
nanotheranostics
polymer brushes
Polymers
Review
Reviews
Theranostic Nanomedicine
Title Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202000953
https://www.ncbi.nlm.nih.gov/pubmed/32893474
https://www.proquest.com/docview/2495288850
https://www.proquest.com/docview/2440666858
https://pubmed.ncbi.nlm.nih.gov/PMC11468394
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90e9EH8dvqHBEEn4ptknbt43DKEDfED_CtNF9MmJ04J_jfm0u7uiEi-FhyaUsul_vI3e8ATnMpYh2Kjm-45NZBMYFvrXDjG80oM1YDBq7KdTCM-4_8-il6WqjiL_Eh6oAbSoY7r1HAczE9_wYNzdUIK8mpsxLYKjSxvhaT-ii_raMsVsGGsetUaiWTYjpXMEduDOj58iuWNdMPc_Nn1uSiNevU0dUmbFR2JOmWjN-CFV1sw_oCuuAODO-q_NcPTW4n488X_UYsK6cj0nNpGyQvFMGgFPYpIt2Fm2xiLVliz92yOquYOCznXXi8uny46PtV-wRfRixiPrY8D5kSSoQSQz1WspWKE6pEolkQyDgRqVLUWIcmUqnUItWJCVIZGxM5oL09aBSTQh8ASQX6Mdp00ImVLBQ84bpjQuyWHqZSeuDPly6TFbY4trgYZyUqMs1wqbN6qT04q-lfS1SNXylbc05klXRNM-yXTa3rHgUenNTDVi7wsiMv9GSGNBxdsyRKPNgvGVd_ilkvk_EO9yBZYmlNgJjbyyPF88hhb-MmszalnUod9__4_azb6w_qp8P_TDqCNYp5NC7vrQWN97eZPraG0Ltou73ehma3N7i5_wKQewDX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeqvI2FFgkECer9u7aXh84RA1VSpuoQq3Um8m-FKTiVE1L1Z_FP2Rm_SBRhZCQeoy8dqydnd1vxjPfB_B-anTuUl3EXhqJAYpPYkThPvZOcOHxBExCl-t4ko9O5JfT7HQNfnW9MA0_RJ9wI88I-zU5OCWkd_6whk7tjFrJeYAJnX71gbu5xqht8Wl_iCb-wPne5-PdUdwKC8QmE5mISQw8FVZbnRpKguCatzZX3GrlRJKYXOnSWu4R6me2NE6XTvmkNLn3WaCgw-feg_sy5wWJJnB51Kd18ERP8yCNilsBp_qxpKOKTPjO6iuvHoW38O3tMs1l-BzOv70t2GyBKxs0K-0RrLn6MWws0Rk-gcnXtuD2p2NH87ObH-6C4dpZzNgw1ImwaW0ZZcFIGIkNlj6dM4TODDf6ph2sngfy6KdwcifT-gzW63ntXgArNQVOzhcUNRuRaqmkK3xK8uxpaUwEcTd1lWnJzElT46xqaJh5RVNd9VMdwcd-_HlD4_HXkdudJarWnRcVCXRzpVSWRPCuv4yOSF9XprWbX9EYSbGgylQEzxvD9X8lMKwVspARqBWT9gOI5Hv1Sv19Fsi-qWscQSzeyoP1__H61WA4Gve_Xv7PTW_hweh4fFgd7k8OXsFDTkU8oehuG9YvL67ca0Rhl_pNWPcMvt21o_0Gf_Y8TQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qC6IPYv2oq7WmUPFp6W6S3cs--HB4Pa7WHodY6Nt6-eKEuld6rdL_yj_RmeyHd5QiFPq4JNldMpnkN5OZ3wDsTY3OXap7sZdGooHikxhRuI-9E1x4PAGTkOV6PM5HJ_LzaXa6Bn_aXJiaH6JzuJFmhP2aFPzc-v1_pKFTO6NMch5QQlu--shd_0ajbfHxcIASfs_58ODbp1Hc1BWITSYyEVMt8FRYbXVqyAeCS97aXHGrlRNJYnKlC2u5R6Sf2cI4XTjlk8Lk3meBgQ7f-wA26IaRgsi4nHReHTzQ0zxURsWdgFP4WNIyRSZ8f_WXV0_CG_D2ZpTmMnoOx9_wKTxpcCvr1wttE9Zc9QweL7EZPofx1ybe9pdjk_nZ9U93wXDpLGZsEMJE2LSyjJxgVBeJ9ZduzhkiZ4b7fJ0NVs0Dd_QLOLmXaX0J69W8cq-AFZrsJud7ZDQbkWqppOv5lKqzp4UxEcTt1JWm4TKnkhpnZc3CzEua6rKb6gg-dP3PaxaPW3tut5IoG21elFSfmyulsiSC3a4Z9ZAuV6aVm19RH0mmoMpUBFu14LpPCbRqhezJCNSKSLsOxPG92lL9mAWub0oaRwyLQ3mQ_n9-v-wPRsfd0-u7DHoHDyeDYfnlcHz0Bh5xCuEJIXfbsH55ceXeIga71Dth2TP4ft969hdRgjt_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responsive+Polymer+Brush+Design+and+Emerging+Applications+for+Nanotheranostics&rft.jtitle=Advanced+healthcare+materials&rft.au=Li%2C+Danyang&rft.au=Xu%2C+Lizhou&rft.au=Wang%2C+Jing&rft.au=Gautrot%2C+Julien+E.&rft.date=2021-03-01&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=10&rft.issue=5&rft_id=info:doi/10.1002%2Fadhm.202000953&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adhm_202000953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon