Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics
Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the...
Saved in:
Published in | Advanced healthcare materials Vol. 10; no. 5; pp. e2000953 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.
Responsive polymer brushes offer unprecedented control of the coating physico‐chemistry and molecular architecture for the design of nanomaterials for the delivery of therapeutics and their simultaneous imaging and biomonitoring. Polymer brushes with precisely controlled responsive and bioactive properties are attractive candidates for the design of the next generation of nanotheranostic platforms. |
---|---|
AbstractList | Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers. Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio−nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers. Responsive polymer brushes offer unprecedented control of the coating physico‐chemistry and molecular architecture for the design of nanomaterials for the delivery of therapeutics and their simultaneous imaging and biomonitoring. Polymer brushes with precisely controlled responsive and bioactive properties are attractive candidates for the design of the next generation of nanotheranostic platforms. Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers. Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers. |
Author | Li, Danyang Xu, Lizhou Gautrot, Julien E. Wang, Jing |
AuthorAffiliation | 4 Department of Materials Imperial College London London SW7 2AZ UK 5 School of Life Sciences Northwestern Polytechnical University Xi'an 710072 China 2 Institute of Bioengineering Queen Mary University of London Mile End Road London E1 4NS UK 3 School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK 1 School of Cancer and Pharmaceutical Sciences King's College London 150 Stamford Street London SE1 9NH UK |
AuthorAffiliation_xml | – name: 4 Department of Materials Imperial College London London SW7 2AZ UK – name: 5 School of Life Sciences Northwestern Polytechnical University Xi'an 710072 China – name: 2 Institute of Bioengineering Queen Mary University of London Mile End Road London E1 4NS UK – name: 1 School of Cancer and Pharmaceutical Sciences King's College London 150 Stamford Street London SE1 9NH UK – name: 3 School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK |
Author_xml | – sequence: 1 givenname: Danyang surname: Li fullname: Li, Danyang email: danyang.li@kcl.ac.uk organization: University of London – sequence: 2 givenname: Lizhou surname: Xu fullname: Xu, Lizhou organization: Imperial College London – sequence: 3 givenname: Jing surname: Wang fullname: Wang, Jing organization: Northwestern Polytechnical University – sequence: 4 givenname: Julien E. orcidid: 0000-0002-1614-2578 surname: Gautrot fullname: Gautrot, Julien E. email: j.gautrot@qmul.ac.uk organization: University of London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32893474$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9PFDEcxRuDEQSuHs0kXrzs-u1P25NZAcUEkBg9NzNtZ7dkph3aGcz-93ZdWIXEePo27ee9vH7fS7QXYnAIvcIwxwDkXW1X_ZwAAQDF6TN0QLAiMyK42tudGeyj45xvCgOCYyHxC7RPiVSUvWcH6Oqby0MM2d-56jp2696l6mOa8qo6ddkvQ1UHW52V26UPy2oxDJ039eiLompjqq7qEMeVS2Xk0Zt8hJ63dZfd8f08RD8-nX0_OZ9dfP385WRxMTOccjpTDABT29gGmwYzQoFbKySxjXQUwAjZKGtJK4Bzq4xrlJMtKCPalgPHQA_Rh63vMDW9s8aFMdWdHpLv67TWsfb68UvwK72MdxpjJiRVrDi8vXdI8XZyedS9z8Z1XR1cnLImjIEQQnJZ0DdP0Js4pVD-VyjFiZSSbyK9_jvSLsvDrgvAtoBJMefkWm38-HuXJaHvNAa9aVVvWtW7Vots_kT24PxPgdoKfvrOrf9D68Xp-eUf7S91R7UA |
CitedBy_id | crossref_primary_10_1002_idm2_12210 crossref_primary_10_1016_j_colsurfa_2023_132525 crossref_primary_10_1002_wnan_1861 crossref_primary_10_1016_j_jcis_2022_12_079 crossref_primary_10_1016_j_molliq_2024_126303 crossref_primary_10_1002_pat_6397 crossref_primary_10_2174_1389201023666220617152334 crossref_primary_10_1021_acsmacrolett_4c00476 crossref_primary_10_1021_acs_langmuir_2c02396 crossref_primary_10_1021_acsapm_2c02066 crossref_primary_10_1039_D3SC04052F crossref_primary_10_1002_admi_202201344 crossref_primary_10_1016_j_cis_2021_102580 crossref_primary_10_1039_D3TB00364G crossref_primary_10_1016_j_cocis_2022_101590 crossref_primary_10_1021_acs_macromol_2c01341 crossref_primary_10_1021_acsnano_2c00277 crossref_primary_10_1063_5_0122397 crossref_primary_10_1002_marc_202100424 crossref_primary_10_1002_ange_202200166 crossref_primary_10_1016_j_eurpolymj_2021_110593 crossref_primary_10_1039_D1TB02508B crossref_primary_10_1039_D1RA07374E crossref_primary_10_1021_jacsau_2c00638 crossref_primary_10_1039_D1TB02605D crossref_primary_10_3389_fbioe_2021_755727 crossref_primary_10_1007_s13770_024_00699_1 crossref_primary_10_1080_1539445X_2022_2028831 crossref_primary_10_1039_D3SM01040F crossref_primary_10_1016_j_matdes_2023_112076 crossref_primary_10_1021_acs_macromol_2c01391 crossref_primary_10_1016_j_progpolymsci_2024_101888 crossref_primary_10_1134_S1811238222700114 crossref_primary_10_1021_acsmacrolett_2c00556 crossref_primary_10_1021_acsapm_1c01615 crossref_primary_10_1021_acsmacrolett_2c00114 crossref_primary_10_3390_polym15030644 crossref_primary_10_1021_acs_macromol_3c01292 crossref_primary_10_1039_D1PY01073E crossref_primary_10_1002_anie_202200166 crossref_primary_10_1016_j_jenvman_2023_117370 crossref_primary_10_1016_j_pmatsci_2024_101248 crossref_primary_10_1080_29963176_2024_2396835 crossref_primary_10_1016_j_polymer_2024_127230 crossref_primary_10_1039_D4SM00772G crossref_primary_10_1007_s10853_024_10243_0 crossref_primary_10_1039_D1BM01330K crossref_primary_10_3390_ijms252313175 crossref_primary_10_1016_j_nantod_2023_102010 crossref_primary_10_1021_acsami_4c05139 crossref_primary_10_1038_s41428_024_00908_7 crossref_primary_10_1002_mabi_202200528 crossref_primary_10_1021_acs_jpcb_3c02713 crossref_primary_10_1021_acs_jpcb_1c04451 crossref_primary_10_1039_D3CC01082A crossref_primary_10_1021_acs_jpcc_1c02015 crossref_primary_10_35848_1347_4065_ad7d96 crossref_primary_10_1016_j_eurpolymj_2024_113546 crossref_primary_10_1002_anie_202219312 crossref_primary_10_1063_5_0076057 crossref_primary_10_1021_acs_langmuir_4c03897 crossref_primary_10_1021_acs_macromol_3c01601 crossref_primary_10_1002_smll_202309040 crossref_primary_10_1021_acsomega_2c06763 crossref_primary_10_1088_1361_6501_ad66f9 crossref_primary_10_1021_acsmacrolett_4c00341 crossref_primary_10_1186_s12951_024_02299_6 crossref_primary_10_1002_ange_202219312 crossref_primary_10_1021_acsapm_4c03266 crossref_primary_10_1021_acsnano_3c00212 crossref_primary_10_1039_D2TC02600G crossref_primary_10_1021_acs_macromol_2c01134 crossref_primary_10_1039_D2SM00005A |
Cites_doi | 10.1016/j.memsci.2008.04.053 10.1002/macp.200300070 10.1039/c3tb21149e 10.1002/macp.201500323 10.1039/C7TB00646B 10.1039/c1jm10813a 10.1016/j.colsurfb.2016.07.015 10.3390/mi11030274 10.1080/15583720600945402 10.1039/b925583d 10.3389/fphar.2018.01397 10.1021/la200347u 10.1021/acs.langmuir.7b01395 10.1021/acsmacrolett.6b00099 10.1016/j.biomaterials.2008.12.065 10.1021/acs.macromol.8b01959 10.1016/j.jcis.2018.08.080 10.1016/j.carbon.2010.03.014 10.1002/adma.201803001 10.1021/acsbiomaterials.7b00584 10.1021/jp103982a 10.1021/acsami.6b04664 10.1021/acs.biomac.7b01175 10.1021/acs.langmuir.8b04268 10.1016/S0079-6700(00)00012-5 10.1021/ma0512760 10.1016/j.reactfunctpolym.2012.03.007 10.2463/mrms.mp.2016-0067 10.1021/am507832n 10.1021/ma00078a016 10.1021/acsmacrolett.5b00765 10.1021/cr900045a 10.1021/la102904r 10.1039/C9CC05790K 10.1016/j.colsurfb.2015.06.048 10.1039/C8TB00651B 10.1021/am201736t 10.1039/b419142k 10.1007/s11998-015-9658-3 10.1021/ja0380493 10.2147/IJN.S137245 10.1021/jp801086w 10.1016/j.jconrel.2012.07.045 10.1039/b714635n 10.1002/adma.201001382 10.1021/ma902042x 10.1038/nmat2564 10.1021/ja060649p 10.1039/c4nr00907j 10.1016/j.snb.2005.06.003 10.1021/la701215t 10.1021/bm2017756 10.1016/j.jconrel.2010.03.023 10.1021/acsami.6b00376 10.1021/nn101685q 10.1016/j.eurpolymj.2015.06.032 10.1039/c0nr00932f 10.1039/b920377j 10.1021/am101250x 10.1021/cr0680540 10.1039/b210143m 10.1016/j.micromeso.2018.01.029 10.1021/la104973j 10.1021/ma049694c 10.1021/acs.chemrev.5b00671 10.1016/j.nanoso.2018.03.010 10.1002/adma.200903610 10.1016/S0378-4371(97)00192-1 10.1002/macp.200500268 10.1002/adfm.200600934 10.1517/17425240902980162 10.1021/bc300683y 10.1007/s11051-008-9481-1 10.1021/ja044575y 10.1021/ma0702041 10.1038/nmat2614 10.1016/j.yexmp.2008.12.004 10.1021/acs.biomac.9b00155 10.1021/acs.macromol.8b01019 10.1038/nature05741 10.1038/srep01997 10.1021/ma800894c 10.1016/B978-0-85709-713-2.00005-5 10.1039/c2py20089a 10.1021/acsbiomaterials.7b00204 10.1021/bm400770n 10.1039/C6PY00251J 10.1039/C6QM00135A 10.1002/pola.27186 10.3390/nano9101365 10.1016/j.biomaterials.2020.119979 10.1039/C1CS15237H 10.1021/bm050180a 10.1021/ma070897l 10.1016/j.colsurfa.2011.07.022 10.1021/acs.nanolett.7b04183 10.1103/PhysRevLett.80.4092 10.1039/c2sm25863c 10.1016/j.cis.2004.07.009 10.1021/la063450z 10.1039/C5SM01962A 10.1039/C3PY00880K 10.1021/ja035560n 10.1039/c1jm12744f 10.1098/rsta.2009.0273 10.1038/s41929-017-0003-3 10.1002/elan.201400030 10.1021/acs.biomac.7b01686 10.1039/C7PY00462A 10.1021/ma801557u 10.1002/adfm.201501582 10.1126/science.364652 10.1021/jacs.6b01935 10.2217/nnm.11.19 10.1063/1.1490924 10.1039/b904381k 10.1016/j.biomaterials.2010.02.066 10.1246/cl.130987 10.1021/ma3020195 10.1021/ma2010102 10.1039/C5TB02125A 10.1021/jp500074g 10.1016/j.addr.2012.06.006 10.1002/cphc.201800018 10.1021/acs.macromol.7b00767 10.1016/j.polymer.2016.04.041 10.1039/C6TC01822J 10.1021/cr500252u 10.1021/jp8048026 10.1038/s41598-019-41251-9 10.1002/adfm.201702592 10.1007/s13758-011-0009-3 10.1021/acs.langmuir.5b01739 10.1016/j.actbio.2014.09.004 10.1021/nl073157z 10.1039/C3SC52233D 10.1016/j.progpolymsci.2017.03.004 10.1039/C5RA13245B 10.1021/acsnano.9b07984 10.1021/acs.chemrev.6b00314 10.1002/marc.201400217 10.1016/j.smim.2017.09.011 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by Wiley‐VCH GmbH 2020 The Authors. Published by Wiley-VCH GmbH. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by Wiley‐VCH GmbH – notice: 2020 The Authors. Published by Wiley-VCH GmbH. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 5PM |
DOI | 10.1002/adhm.202000953 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | PMC11468394 32893474 10_1002_adhm_202000953 ADHM202000953 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Maplethorpe Foundation – fundername: University of London funderid: RE14728 – fundername: Leverhulme Trust funderid: RPG‐2017‐229; 69241 – fundername: European Research Council funderid: 772462 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- P2W PQQKQ ROL SUPJJ SV3 WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN C45 CITATION EJD GODZA OVD TEORI CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c5353-940013dbdb1cb142305dd682db8e300c68b9dd2f6055d9ceb9e8f09c6ff505103 |
IEDL.DBID | 24P |
ISSN | 2192-2640 2192-2659 |
IngestDate | Thu Aug 21 18:35:05 EDT 2025 Fri Jul 11 12:08:21 EDT 2025 Fri Jul 25 11:58:32 EDT 2025 Thu Apr 03 06:54:05 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 03:06:40 EDT 2025 Wed Jan 22 16:30:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | nanotheranostics biosensing diagnosis nanomaterials drug delivery polymer brushes |
Language | English |
License | Attribution 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5353-940013dbdb1cb142305dd682db8e300c68b9dd2f6055d9ceb9e8f09c6ff505103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1614-2578 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202000953 |
PMID | 32893474 |
PQID | 2495288850 |
PQPubID | 2032434 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468394 proquest_miscellaneous_2440666858 proquest_journals_2495288850 pubmed_primary_32893474 crossref_citationtrail_10_1002_adhm_202000953 crossref_primary_10_1002_adhm_202000953 wiley_primary_10_1002_adhm_202000953_ADHM202000953 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1993; 26 2013; 3 2013; 1 2009; 86 2006; 39 2016; 146 2008; 108 2008; 37 2014; 26 2020; 14 1998; 80 2020; 11 2012; 13 2004; 205 2004; 33 2010; 22 2009; 11 2018; 6 2018; 9 2010; 20 2017; 70 2018; 4 2019; 20 2018; 1 2015; 135 2010; 114 2004; 37 2018; 30 2008; 112 2010; 4 2010; 9 2007; 17 2019; 9 2010; 31 2007; 446 2005; 113 2010; 39 2019; 35 2016; 98 2011; 3 2011; 6 2014; 43 2006; 114 2016; 4 2018; 19 2017; 50 2016; 5 2018; 18 2015; 69 2016; 7 2010; 48 2006; 46 2016; 217 2005; 6 2014; 35 2008; 41 1978; 202 2005; 15 2009; 109 2012; 45 2018; 16 2016; 8 2011; 386 2012; 41 2012; 164 2017; 8 2017; 1 2004; 126 2017; 3 2009; 42 2019; 55 2013; 24 2015; 31 2010; 146 2002; 117 2008; 8 2020; 244 2017; 117 2012; 72 2014; 5 2013; 14 2017; 33 2017; 34 2011; 21 2016; 116 2014; 52 2011; 27 2003; 125 2007; 23 2014; 6 2006; 128 2012; 64 2014; 118 2015; 12 2018; 264 2015; 5 2015; 3 2000; 25 2017; 27 2010; 368 2015; 11 2009 2008; 321 2015; 7 2014; 114 2015; 25 2009; 30 2012; 3 2021 1997; 240 2017; 16 2017; 12 2019; 533 2005; 206 2011; 44 2009; 8 2009; 6 2015 2016; 138 2017; 18 2018; 51 2007; 40 2012; 7 2012; 4 2012; 8 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_117_1 Nicolas J. (e_1_2_7_31_1) 2021 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 205 start-page: 411 year: 2004 publication-title: Macromol. Chem. Phys. – volume: 40 start-page: 1789 year: 2007 publication-title: Macromolecules – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 35 start-page: 5037 year: 2019 publication-title: Langmuir – start-page: 5214 year: 2009 publication-title: Chem. Commun. – volume: 30 start-page: 2132 year: 2009 publication-title: Biomaterials – volume: 20 start-page: 2218 year: 2019 publication-title: Biomacromolecules – volume: 3 start-page: 1997 year: 2013 publication-title: Sci. Rep. – volume: 21 start-page: 7755 year: 2011 publication-title: J. Mater. Chem. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 19 start-page: 606 year: 2018 publication-title: Biomacromolecules – volume: 135 start-page: 652 year: 2015 publication-title: Colloids Surf., B – volume: 25 start-page: 677 year: 2000 publication-title: Prog. Polym. Sci. – volume: 14 start-page: 3453 year: 2013 publication-title: Biomacromolecules – volume: 51 start-page: 9951 year: 2018 publication-title: Macromolecules – volume: 5 start-page: 55 year: 2016 publication-title: ACS Macro Lett. – volume: 11 start-page: 274 year: 2020 publication-title: Micromachines – volume: 41 start-page: 7254 year: 2008 publication-title: Macromolecules – volume: 108 start-page: 1104 year: 2008 publication-title: Chem. Rev. – volume: 34 start-page: 25 year: 2017 publication-title: Semin. Immunol. – volume: 112 start-page: 8438 year: 2008 publication-title: J. Phys. Chem. C – volume: 9 start-page: 101 year: 2010 publication-title: Nat. Mater. – volume: 126 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1397 year: 2018 publication-title: Front. Pharmacol. – volume: 206 start-page: 1941 year: 2005 publication-title: Macromol. Chem. Phys. – volume: 112 year: 2008 publication-title: J. Phys. Chem. B – volume: 43 start-page: 36 year: 2014 publication-title: Chem. Lett. – volume: 3 start-page: 1724 year: 2011 publication-title: Nanoscale – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 98 start-page: 464 year: 2016 publication-title: Polymer – volume: 26 start-page: 7214 year: 1993 publication-title: Macromolecules – volume: 37 start-page: 2512 year: 2008 publication-title: Chem. Soc. Rev. – volume: 264 start-page: 151 year: 2018 publication-title: Microporous Mesoporous Mater. – volume: 138 start-page: 7216 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 4988 year: 2002 publication-title: J. Chem. Phys. – volume: 3 start-page: 143 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 5437 year: 2009 publication-title: Chem. Rev. – volume: 128 start-page: 5326 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 86 start-page: 215 year: 2009 publication-title: Exp. Mol. Pathol. – volume: 114 start-page: 371 year: 2006 publication-title: Sens. Actuators, B – volume: 11 start-page: 8550 year: 2015 publication-title: Soft Matter – volume: 117 start-page: 1105 year: 2017 publication-title: Chem. Rev. – volume: 6 start-page: 613 year: 2009 publication-title: Expert Opin. Drug Delivery – volume: 5 start-page: 200 year: 2014 publication-title: Chem. Sci. – volume: 7 start-page: 3107 year: 2016 publication-title: Polym. Chem. – volume: 6 start-page: 715 year: 2011 publication-title: Nanomedicine – volume: 5 start-page: 25 year: 2014 publication-title: Polym. Chem. – volume: 16 start-page: 275 year: 2017 publication-title: Magn. Reson. Med. Sci. – volume: 12 start-page: 5331 year: 2017 publication-title: Int. J. Nanomed. – volume: 18 start-page: 4121 year: 2017 publication-title: Biomacromolecules – volume: 446 start-page: 1066 year: 2007 publication-title: Nature – volume: 114 year: 2010 publication-title: J. Phys. Chem. C – volume: 113 start-page: 43 year: 2005 publication-title: Adv. Colloid Interface Sci. – volume: 7 start-page: 3618 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 935 year: 2009 publication-title: Nat. Mater. – volume: 17 start-page: 2307 year: 2007 publication-title: Adv. Funct. Mater. – volume: 39 start-page: 915 year: 2006 publication-title: Macromolecules – volume: 368 start-page: 1333 year: 2010 publication-title: Philos. Trans. R. Soc., A – volume: 31 start-page: 5030 year: 2010 publication-title: Biomaterials – volume: 22 start-page: 4721 year: 2010 publication-title: Adv. Mater. – volume: 7 start-page: 9 year: 2012 publication-title: Biointerphases – volume: 35 start-page: 1402 year: 2014 publication-title: Macromol. Rapid Commun. – volume: 44 start-page: 7385 year: 2011 publication-title: Macromolecules – volume: 3 start-page: 9285 year: 2015 publication-title: J. Mater. Chem. B – volume: 42 start-page: 9369 year: 2009 publication-title: Macromolecules – volume: 19 start-page: 1956 year: 2018 publication-title: ChemPhysChem – volume: 6 start-page: 2427 year: 2005 publication-title: Biomacromolecules – volume: 69 start-page: 438 year: 2015 publication-title: Eur. Polym. J. – volume: 164 start-page: 177 year: 2012 publication-title: J. Controlled Release – volume: 45 start-page: 8970 year: 2012 publication-title: Macromolecules – volume: 146 start-page: 6 year: 2010 publication-title: J. Controlled Release – volume: 386 start-page: 131 year: 2011 publication-title: Colloids Surf. A – volume: 64 start-page: 1394 year: 2012 publication-title: Adv. Drug Delivery Rev. – volume: 48 start-page: 2347 year: 2010 publication-title: Carbon – volume: 6 start-page: 6141 year: 2014 publication-title: Nanoscale – volume: 23 start-page: 7472 year: 2007 publication-title: Langmuir – volume: 72 start-page: 329 year: 2012 publication-title: React. Funct. Polym. – volume: 27 start-page: 1251 year: 2011 publication-title: Langmuir – volume: 80 start-page: 4092 year: 1998 publication-title: Phys. Rev. Lett. – start-page: 1 year: 2021 – volume: 22 start-page: 1863 year: 2010 publication-title: Adv. Mater. – volume: 27 start-page: 4789 year: 2011 publication-title: Langmuir – volume: 52 start-page: 1807 year: 2014 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 8 start-page: 6869 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 463 year: 2015 publication-title: J. Coat. Technol. Res. – volume: 244 year: 2020 publication-title: Biomaterials – volume: 1 start-page: 73 year: 2018 publication-title: Nat. Catal. – volume: 70 start-page: 18 year: 2017 publication-title: Prog. Polym. Sci. – volume: 23 start-page: 5769 year: 2007 publication-title: Langmuir – start-page: 119 year: 2015 – volume: 240 start-page: 443 year: 1997 publication-title: Phys. A – volume: 31 start-page: 8680 year: 2015 publication-title: Langmuir – volume: 27 start-page: 3095 year: 2011 publication-title: Langmuir – volume: 126 start-page: 412 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3271 year: 2017 publication-title: Polym. Chem. – volume: 4 start-page: 6098 year: 2010 publication-title: ACS Nano – volume: 321 start-page: 146 year: 2008 publication-title: J. Membr. Sci. – volume: 125 start-page: 8302 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 397 year: 2006 publication-title: J. Macromol. Sci., Part C: Polym. Rev. – volume: 6 start-page: 3531 year: 2018 publication-title: J. Mater. Chem. B – volume: 3 start-page: 1690 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 41 start-page: 8152 year: 2008 publication-title: Macromolecules – volume: 40 start-page: 4403 year: 2007 publication-title: Macromolecules – volume: 33 start-page: 14 year: 2004 publication-title: Chem. Soc. Rev. – volume: 37 start-page: 4022 year: 2004 publication-title: Macromolecules – volume: 4 start-page: 6287 year: 2016 publication-title: J. Mater. Chem. C – volume: 118 start-page: 4920 year: 2014 publication-title: J. Phys. Chem. B – volume: 4 start-page: 483 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 13 start-page: 857 year: 2012 publication-title: Biomacromolecules – volume: 1 start-page: 807 year: 2017 publication-title: Mater. Chem. Front. – volume: 11 start-page: 909 year: 2009 publication-title: J. Nanopart. Res. – volume: 18 start-page: 314 year: 2018 publication-title: Nano Lett. – volume: 15 start-page: 2089 year: 2005 publication-title: J. Mater. Chem. – volume: 26 start-page: 815 year: 2014 publication-title: Electroanalysis – volume: 8 start-page: 9376 year: 2012 publication-title: Soft Matter – volume: 9 start-page: 1365 year: 2019 publication-title: Nanomaterials – volume: 33 start-page: 6838 year: 2017 publication-title: Langmuir – volume: 5 start-page: 382 year: 2016 publication-title: ACS Macro Lett. – volume: 41 start-page: 2740 year: 2012 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 3391 year: 2010 publication-title: J. Mater. Chem. – volume: 24 start-page: 968 year: 2013 publication-title: Bioconjugate Chem. – volume: 202 start-page: 1290 year: 1978 publication-title: Science – volume: 9 start-page: 4712 year: 2019 publication-title: Sci. Rep. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 3 start-page: 1408 year: 2012 publication-title: Polym. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 9 year: 2018 publication-title: Nano‐Struct. Nano‐Objects – volume: 50 start-page: 7433 year: 2017 publication-title: Macromolecules – volume: 533 start-page: 604 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 289 year: 2018 publication-title: J. Mater. Chem. B – volume: 51 start-page: 6936 year: 2018 publication-title: Macromolecules – volume: 217 start-page: 664 year: 2016 publication-title: Macromol. Chem. Phys. – volume: 39 start-page: 2203 year: 2010 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 5916 year: 2013 publication-title: J. Mater. Chem. B – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 4 start-page: 2018 year: 2018 publication-title: ACS Biomater. Sci. Eng. – volume: 146 start-page: 737 year: 2016 publication-title: Colloids Surf., B – volume: 8 start-page: 725 year: 2008 publication-title: Nano Lett. – volume: 25 start-page: 4717 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 381 year: 2015 publication-title: Acta Biomater. – volume: 14 start-page: 3991 year: 2020 publication-title: ACS Nano – ident: e_1_2_7_102_1 doi: 10.1016/j.memsci.2008.04.053 – ident: e_1_2_7_85_1 doi: 10.1002/macp.200300070 – ident: e_1_2_7_118_1 doi: 10.1039/c3tb21149e – ident: e_1_2_7_50_1 doi: 10.1002/macp.201500323 – ident: e_1_2_7_110_1 doi: 10.1039/C7TB00646B – ident: e_1_2_7_123_1 doi: 10.1039/c1jm10813a – ident: e_1_2_7_13_1 doi: 10.1016/j.colsurfb.2016.07.015 – ident: e_1_2_7_143_1 doi: 10.3390/mi11030274 – ident: e_1_2_7_16_1 doi: 10.1080/15583720600945402 – ident: e_1_2_7_136_1 doi: 10.1039/b925583d – ident: e_1_2_7_2_1 doi: 10.3389/fphar.2018.01397 – ident: e_1_2_7_72_1 doi: 10.1021/la200347u – ident: e_1_2_7_75_1 doi: 10.1021/acs.langmuir.7b01395 – ident: e_1_2_7_41_1 doi: 10.1021/acsmacrolett.6b00099 – ident: e_1_2_7_66_1 doi: 10.1016/j.biomaterials.2008.12.065 – ident: e_1_2_7_88_1 doi: 10.1021/acs.macromol.8b01959 – ident: e_1_2_7_35_1 doi: 10.1016/j.jcis.2018.08.080 – ident: e_1_2_7_42_1 doi: 10.1016/j.carbon.2010.03.014 – ident: e_1_2_7_114_1 doi: 10.1002/adma.201803001 – ident: e_1_2_7_141_1 doi: 10.1021/acsbiomaterials.7b00584 – ident: e_1_2_7_99_1 doi: 10.1021/jp103982a – ident: e_1_2_7_93_1 doi: 10.1021/acsami.6b04664 – ident: e_1_2_7_36_1 doi: 10.1021/acs.biomac.7b01175 – ident: e_1_2_7_76_1 doi: 10.1021/acs.langmuir.8b04268 – ident: e_1_2_7_24_1 doi: 10.1016/S0079-6700(00)00012-5 – ident: e_1_2_7_58_1 doi: 10.1021/ma0512760 – ident: e_1_2_7_109_1 doi: 10.1016/j.reactfunctpolym.2012.03.007 – ident: e_1_2_7_92_1 doi: 10.2463/mrms.mp.2016-0067 – ident: e_1_2_7_103_1 doi: 10.1021/am507832n – ident: e_1_2_7_51_1 doi: 10.1021/ma00078a016 – ident: e_1_2_7_104_1 doi: 10.1021/acsmacrolett.5b00765 – ident: e_1_2_7_25_1 doi: 10.1021/cr900045a – ident: e_1_2_7_70_1 doi: 10.1021/la102904r – start-page: 1 volume-title: Encyclopedia of Polymeric Nanomaterials year: 2021 ident: e_1_2_7_31_1 – ident: e_1_2_7_94_1 doi: 10.1039/C9CC05790K – ident: e_1_2_7_115_1 doi: 10.1016/j.colsurfb.2015.06.048 – ident: e_1_2_7_106_1 doi: 10.1039/C8TB00651B – ident: e_1_2_7_84_1 doi: 10.1021/am201736t – ident: e_1_2_7_142_1 doi: 10.1039/b419142k – ident: e_1_2_7_6_1 doi: 10.1007/s11998-015-9658-3 – ident: e_1_2_7_47_1 doi: 10.1021/ja0380493 – ident: e_1_2_7_126_1 doi: 10.2147/IJN.S137245 – ident: e_1_2_7_137_1 doi: 10.1021/jp801086w – ident: e_1_2_7_3_1 doi: 10.1016/j.jconrel.2012.07.045 – ident: e_1_2_7_62_1 doi: 10.1039/b714635n – ident: e_1_2_7_53_1 doi: 10.1002/adma.201001382 – ident: e_1_2_7_87_1 doi: 10.1021/ma902042x – ident: e_1_2_7_116_1 doi: 10.1038/nmat2564 – ident: e_1_2_7_131_1 doi: 10.1021/ja060649p – ident: e_1_2_7_119_1 doi: 10.1039/c4nr00907j – ident: e_1_2_7_130_1 doi: 10.1016/j.snb.2005.06.003 – ident: e_1_2_7_129_1 doi: 10.1021/la701215t – ident: e_1_2_7_117_1 doi: 10.1021/bm2017756 – ident: e_1_2_7_65_1 doi: 10.1016/j.jconrel.2010.03.023 – ident: e_1_2_7_105_1 doi: 10.1021/acsami.6b00376 – ident: e_1_2_7_44_1 doi: 10.1021/nn101685q – ident: e_1_2_7_80_1 doi: 10.1016/j.eurpolymj.2015.06.032 – ident: e_1_2_7_97_1 doi: 10.1039/c0nr00932f – ident: e_1_2_7_59_1 doi: 10.1039/b920377j – ident: e_1_2_7_133_1 doi: 10.1021/am101250x – ident: e_1_2_7_32_1 doi: 10.1021/cr0680540 – ident: e_1_2_7_27_1 doi: 10.1039/b210143m – ident: e_1_2_7_107_1 doi: 10.1016/j.micromeso.2018.01.029 – ident: e_1_2_7_100_1 doi: 10.1021/la104973j – ident: e_1_2_7_48_1 doi: 10.1021/ma049694c – ident: e_1_2_7_33_1 doi: 10.1021/acs.chemrev.5b00671 – ident: e_1_2_7_55_1 doi: 10.1016/j.nanoso.2018.03.010 – ident: e_1_2_7_135_1 doi: 10.1002/adma.200903610 – ident: e_1_2_7_56_1 doi: 10.1016/S0378-4371(97)00192-1 – ident: e_1_2_7_43_1 doi: 10.1002/macp.200500268 – ident: e_1_2_7_89_1 doi: 10.1002/adfm.200600934 – ident: e_1_2_7_9_1 doi: 10.1517/17425240902980162 – ident: e_1_2_7_120_1 doi: 10.1021/bc300683y – ident: e_1_2_7_79_1 doi: 10.1007/s11051-008-9481-1 – ident: e_1_2_7_132_1 doi: 10.1021/ja044575y – ident: e_1_2_7_29_1 doi: 10.1021/ma0702041 – ident: e_1_2_7_15_1 doi: 10.1038/nmat2614 – ident: e_1_2_7_12_1 doi: 10.1016/j.yexmp.2008.12.004 – ident: e_1_2_7_95_1 doi: 10.1021/acs.biomac.9b00155 – ident: e_1_2_7_38_1 doi: 10.1021/acs.macromol.8b01019 – ident: e_1_2_7_140_1 doi: 10.1038/nature05741 – ident: e_1_2_7_11_1 doi: 10.1038/srep01997 – ident: e_1_2_7_67_1 doi: 10.1021/ma800894c – ident: e_1_2_7_17_1 doi: 10.1016/B978-0-85709-713-2.00005-5 – ident: e_1_2_7_54_1 doi: 10.1039/c2py20089a – ident: e_1_2_7_112_1 doi: 10.1021/acsbiomaterials.7b00204 – ident: e_1_2_7_45_1 doi: 10.1021/bm400770n – ident: e_1_2_7_122_1 doi: 10.1039/C6PY00251J – ident: e_1_2_7_78_1 doi: 10.1039/C6QM00135A – ident: e_1_2_7_96_1 doi: 10.1002/pola.27186 – ident: e_1_2_7_4_1 doi: 10.3390/nano9101365 – ident: e_1_2_7_111_1 doi: 10.1016/j.biomaterials.2020.119979 – ident: e_1_2_7_21_1 doi: 10.1039/C1CS15237H – ident: e_1_2_7_20_1 doi: 10.1021/bm050180a – ident: e_1_2_7_52_1 doi: 10.1021/ma070897l – ident: e_1_2_7_101_1 doi: 10.1016/j.colsurfa.2011.07.022 – ident: e_1_2_7_40_1 doi: 10.1021/acs.nanolett.7b04183 – ident: e_1_2_7_57_1 doi: 10.1103/PhysRevLett.80.4092 – ident: e_1_2_7_74_1 doi: 10.1039/c2sm25863c – ident: e_1_2_7_7_1 doi: 10.1016/j.cis.2004.07.009 – ident: e_1_2_7_73_1 doi: 10.1021/la063450z – ident: e_1_2_7_39_1 doi: 10.1039/C9CC05790K – ident: e_1_2_7_69_1 doi: 10.1039/C5SM01962A – ident: e_1_2_7_81_1 doi: 10.1039/C3PY00880K – ident: e_1_2_7_90_1 doi: 10.1021/ja035560n – ident: e_1_2_7_128_1 doi: 10.1039/c1jm12744f – ident: e_1_2_7_8_1 doi: 10.1098/rsta.2009.0273 – ident: e_1_2_7_37_1 doi: 10.1038/s41929-017-0003-3 – ident: e_1_2_7_138_1 doi: 10.1002/elan.201400030 – ident: e_1_2_7_18_1 doi: 10.1021/acs.biomac.7b01686 – ident: e_1_2_7_60_1 doi: 10.1039/C7PY00462A – ident: e_1_2_7_134_1 doi: 10.1021/ma801557u – ident: e_1_2_7_108_1 doi: 10.1002/adfm.201501582 – ident: e_1_2_7_91_1 doi: 10.1126/science.364652 – ident: e_1_2_7_28_1 doi: 10.1021/jacs.6b01935 – ident: e_1_2_7_46_1 doi: 10.1021/bm2017756 – ident: e_1_2_7_10_1 doi: 10.2217/nnm.11.19 – ident: e_1_2_7_77_1 doi: 10.1063/1.1490924 – ident: e_1_2_7_49_1 doi: 10.1039/b904381k – ident: e_1_2_7_34_1 doi: 10.1016/j.biomaterials.2010.02.066 – ident: e_1_2_7_22_1 doi: 10.1246/cl.130987 – ident: e_1_2_7_68_1 doi: 10.1021/ma3020195 – ident: e_1_2_7_82_1 doi: 10.1021/ma2010102 – ident: e_1_2_7_63_1 doi: 10.1039/C5TB02125A – ident: e_1_2_7_127_1 doi: 10.1021/jp500074g – ident: e_1_2_7_1_1 doi: 10.1016/j.addr.2012.06.006 – ident: e_1_2_7_19_1 doi: 10.1002/cphc.201800018 – ident: e_1_2_7_30_1 doi: 10.1021/acs.macromol.7b00767 – ident: e_1_2_7_98_1 doi: 10.1016/j.polymer.2016.04.041 – ident: e_1_2_7_144_1 doi: 10.1039/C6TC01822J – ident: e_1_2_7_14_1 doi: 10.1021/cr500252u – ident: e_1_2_7_83_1 doi: 10.1021/jp8048026 – ident: e_1_2_7_125_1 doi: 10.1038/s41598-019-41251-9 – ident: e_1_2_7_124_1 doi: 10.1002/adfm.201702592 – ident: e_1_2_7_61_1 doi: 10.1007/s13758-011-0009-3 – ident: e_1_2_7_23_1 doi: 10.1021/acs.langmuir.5b01739 – ident: e_1_2_7_121_1 doi: 10.1016/j.actbio.2014.09.004 – ident: e_1_2_7_145_1 doi: 10.1021/nl073157z – ident: e_1_2_7_71_1 doi: 10.1039/C3SC52233D – ident: e_1_2_7_64_1 doi: 10.1016/j.progpolymsci.2017.03.004 – ident: e_1_2_7_86_1 doi: 10.1039/C5RA13245B – ident: e_1_2_7_113_1 doi: 10.1021/acsnano.9b07984 – ident: e_1_2_7_26_1 doi: 10.1021/acs.chemrev.6b00314 – ident: e_1_2_7_139_1 doi: 10.1002/marc.201400217 – ident: e_1_2_7_5_1 doi: 10.1016/j.smim.2017.09.011 |
SSID | ssj0000651681 |
Score | 2.548718 |
SecondaryResourceType | review_article |
Snippet | Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000953 |
SubjectTerms | Biomarkers biosensing Biosensing Techniques Biosensors Brushes diagnosis drug delivery External stimuli Nanomaterials Nanostructures Nanotechnology nanotheranostics polymer brushes Polymers Review Reviews Theranostic Nanomedicine |
Title | Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202000953 https://www.ncbi.nlm.nih.gov/pubmed/32893474 https://www.proquest.com/docview/2495288850 https://www.proquest.com/docview/2440666858 https://pubmed.ncbi.nlm.nih.gov/PMC11468394 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90e9EH8dvqHBEEn4ptknbt43DKEDfED_CtNF9MmJ04J_jfm0u7uiEi-FhyaUsul_vI3e8ATnMpYh2Kjm-45NZBMYFvrXDjG80oM1YDBq7KdTCM-4_8-il6WqjiL_Eh6oAbSoY7r1HAczE9_wYNzdUIK8mpsxLYKjSxvhaT-ii_raMsVsGGsetUaiWTYjpXMEduDOj58iuWNdMPc_Nn1uSiNevU0dUmbFR2JOmWjN-CFV1sw_oCuuAODO-q_NcPTW4n488X_UYsK6cj0nNpGyQvFMGgFPYpIt2Fm2xiLVliz92yOquYOCznXXi8uny46PtV-wRfRixiPrY8D5kSSoQSQz1WspWKE6pEolkQyDgRqVLUWIcmUqnUItWJCVIZGxM5oL09aBSTQh8ASQX6Mdp00ImVLBQ84bpjQuyWHqZSeuDPly6TFbY4trgYZyUqMs1wqbN6qT04q-lfS1SNXylbc05klXRNM-yXTa3rHgUenNTDVi7wsiMv9GSGNBxdsyRKPNgvGVd_ilkvk_EO9yBZYmlNgJjbyyPF88hhb-MmszalnUod9__4_azb6w_qp8P_TDqCNYp5NC7vrQWN97eZPraG0Ltou73ehma3N7i5_wKQewDX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeqvI2FFgkECer9u7aXh84RA1VSpuoQq3Um8m-FKTiVE1L1Z_FP2Rm_SBRhZCQeoy8dqydnd1vxjPfB_B-anTuUl3EXhqJAYpPYkThPvZOcOHxBExCl-t4ko9O5JfT7HQNfnW9MA0_RJ9wI88I-zU5OCWkd_6whk7tjFrJeYAJnX71gbu5xqht8Wl_iCb-wPne5-PdUdwKC8QmE5mISQw8FVZbnRpKguCatzZX3GrlRJKYXOnSWu4R6me2NE6XTvmkNLn3WaCgw-feg_sy5wWJJnB51Kd18ERP8yCNilsBp_qxpKOKTPjO6iuvHoW38O3tMs1l-BzOv70t2GyBKxs0K-0RrLn6MWws0Rk-gcnXtuD2p2NH87ObH-6C4dpZzNgw1ImwaW0ZZcFIGIkNlj6dM4TODDf6ph2sngfy6KdwcifT-gzW63ntXgArNQVOzhcUNRuRaqmkK3xK8uxpaUwEcTd1lWnJzElT46xqaJh5RVNd9VMdwcd-_HlD4_HXkdudJarWnRcVCXRzpVSWRPCuv4yOSF9XprWbX9EYSbGgylQEzxvD9X8lMKwVspARqBWT9gOI5Hv1Sv19Fsi-qWscQSzeyoP1__H61WA4Gve_Xv7PTW_hweh4fFgd7k8OXsFDTkU8oehuG9YvL67ca0Rhl_pNWPcMvt21o_0Gf_Y8TQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qC6IPYv2oq7WmUPFp6W6S3cs--HB4Pa7WHodY6Nt6-eKEuld6rdL_yj_RmeyHd5QiFPq4JNldMpnkN5OZ3wDsTY3OXap7sZdGooHikxhRuI-9E1x4PAGTkOV6PM5HJ_LzaXa6Bn_aXJiaH6JzuJFmhP2aFPzc-v1_pKFTO6NMch5QQlu--shd_0ajbfHxcIASfs_58ODbp1Hc1BWITSYyEVMt8FRYbXVqyAeCS97aXHGrlRNJYnKlC2u5R6Sf2cI4XTjlk8Lk3meBgQ7f-wA26IaRgsi4nHReHTzQ0zxURsWdgFP4WNIyRSZ8f_WXV0_CG_D2ZpTmMnoOx9_wKTxpcCvr1wttE9Zc9QweL7EZPofx1ybe9pdjk_nZ9U93wXDpLGZsEMJE2LSyjJxgVBeJ9ZduzhkiZ4b7fJ0NVs0Dd_QLOLmXaX0J69W8cq-AFZrsJud7ZDQbkWqppOv5lKqzp4UxEcTt1JWm4TKnkhpnZc3CzEua6rKb6gg-dP3PaxaPW3tut5IoG21elFSfmyulsiSC3a4Z9ZAuV6aVm19RH0mmoMpUBFu14LpPCbRqhezJCNSKSLsOxPG92lL9mAWub0oaRwyLQ3mQ_n9-v-wPRsfd0-u7DHoHDyeDYfnlcHz0Bh5xCuEJIXfbsH55ceXeIga71Dth2TP4ft969hdRgjt_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responsive+Polymer+Brush+Design+and+Emerging+Applications+for+Nanotheranostics&rft.jtitle=Advanced+healthcare+materials&rft.au=Li%2C+Danyang&rft.au=Xu%2C+Lizhou&rft.au=Wang%2C+Jing&rft.au=Gautrot%2C+Julien+E.&rft.date=2021-03-01&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=10&rft.issue=5&rft_id=info:doi/10.1002%2Fadhm.202000953&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adhm_202000953 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |