LOX-1 rewires glutamine ammonia metabolism to drive liver fibrosis
Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and...
Saved in:
Published in | Molecular metabolism (Germany) Vol. 96; p. 102132 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier GmbH
01.06.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear.
LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis.
We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism–urea cycle to drive the progression of liver fibrosis.
Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.
[Display omitted]
•LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models.•LOX-1 drove the progression of liver fibrosis by promoting the activation of hepatic stellate cells.•LOX-1 reprogrammed glutamine metabolism by mediating GLS isotype swift.•LOX-1 up-regulated GLS1 expression via enhancement of transcriptional regulation of OCT1.•LOX-1 rewired glutamine metabolism and urea cycle to disrupt ammonia homeostasis driving liver fibrosis. |
---|---|
AbstractList | Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear.OBJECTIVELiver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear.LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis.METHODSLOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis.We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis.RESULTSWe found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis.Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.CONCLUSIONSOur findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy. Objective: Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. Methods: LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. Results: We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism–urea cycle to drive the progression of liver fibrosis. Conclusions: Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy. Image 1 • LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models. • LOX-1 drove the progression of liver fibrosis by promoting the activation of hepatic stellate cells. • LOX-1 reprogrammed glutamine metabolism by mediating GLS isotype swift. • LOX-1 up-regulated GLS1 expression via enhancement of transcriptional regulation of OCT1. • LOX-1 rewired glutamine metabolism and urea cycle to disrupt ammonia homeostasis driving liver fibrosis. Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism–urea cycle to drive the progression of liver fibrosis. Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy. [Display omitted] •LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models.•LOX-1 drove the progression of liver fibrosis by promoting the activation of hepatic stellate cells.•LOX-1 reprogrammed glutamine metabolism by mediating GLS isotype swift.•LOX-1 up-regulated GLS1 expression via enhancement of transcriptional regulation of OCT1.•LOX-1 rewired glutamine metabolism and urea cycle to disrupt ammonia homeostasis driving liver fibrosis. Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis. Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy. |
ArticleNumber | 102132 |
Author | Yahya Ali Alshami, Mohammed Abdulaziz Zhou, Shuhan Jiang, Wei Cui, Hanyu Cai, Mingyuan Zhu, Xiaoyun Hu, Changping Fu, Chuankui Huang, Ruihua |
Author_xml | – sequence: 1 givenname: Ruihua surname: Huang fullname: Huang, Ruihua organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 2 givenname: Hanyu surname: Cui fullname: Cui, Hanyu organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 3 givenname: Mohammed Abdulaziz surname: Yahya Ali Alshami fullname: Yahya Ali Alshami, Mohammed Abdulaziz organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 4 givenname: Chuankui surname: Fu fullname: Fu, Chuankui organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 5 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 6 givenname: Mingyuan surname: Cai fullname: Cai, Mingyuan organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 7 givenname: Shuhan surname: Zhou fullname: Zhou, Shuhan organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 8 givenname: Xiaoyun orcidid: 0009-0009-5719-7354 surname: Zhu fullname: Zhu, Xiaoyun email: zhuxiaoyun@csu.edu.cn organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China – sequence: 9 givenname: Changping surname: Hu fullname: Hu, Changping email: huchangping@csu.edu.cn organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40180177$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7If9ByKzdDPXfE4yIEotVgsXulFwFzLJyTXXzKQmc6_035s6tbRumkUSTt73OeS8x-hgShMg9IrgFcGke7tdjSmOMK8opqKWKGH0GTqilNBWSakOHtwP0WkpW1yX6rpOkBfokGOiMJHyCH1cX31vSZPhd8hQmk3czWYMEzRmHNMUTFObmCHFUMZmTo3LYQ9NrFtufBhyKqG8RM-9iQVO784T9O3i09fzL-366vPl-dm6tYLxufUdNrIjWAkvMGdE9t5ATywMsus9dr1QzjgyAONc2X4w9QNEUOz5oDgGw07Q5cJ1yWz1dQ6jyTc6maD_FlLeaJPnYCNooaT3veypdcANyJ45wiSWXHinhMOV9WFhXe-GEZyFac4mPoI-fpnCD71Je00oxryXvBLe3BFy-rWDMusxFAsxmgnSrmhGVMcE7jmr0tcPm913-ZdCFfBFYOtASwZ_LyFY3-att3rJW9_mrZe8q-39YoM69X2ArIsNMFlwNUs717GEpwDv_gPYGKZgTfwJN0_b_wBdHMgs |
Cites_doi | 10.1016/j.cmet.2020.10.026 10.1002/hep.23094 10.1016/j.cmet.2024.10.001 10.1016/j.jcmgh.2019.12.006 10.1186/s12885-023-11601-y 10.1016/j.tem.2015.11.008 10.1038/nri3623 10.1080/21655979.2022.2056814 10.1042/BJ20050845 10.1146/annurev-pathol-011110-130246 10.3945/ajcn.111.015610 10.1016/j.addr.2017.05.007 10.1002/hep.21763 10.1016/j.atherosclerosis.2012.11.007 10.3389/fcvm.2021.736215 10.1053/j.gastro.2017.12.022 10.1038/s41568-018-0054-z 10.1016/j.cmet.2024.07.007 10.1016/j.jhep.2024.06.016 10.1038/s41392-022-01125-5 10.1038/s12276-020-00504-8 10.1111/bph.16156 10.1016/j.jhep.2018.06.023 10.1053/j.gastro.2008.03.003 10.1002/hep.26604 10.1038/s41392-021-00665-6 10.1007/s40265-024-02045-0 10.1172/jci.insight.178453 10.1038/nm1102-1211 10.1038/s41467-018-07895-3 10.1161/CIRCRESAHA.107.149724 10.1016/j.immuni.2019.10.014 10.1161/01.ATV.0000229218.97976.43 10.1111/bph.15272 10.1093/cvr/cvx015 10.1038/labinvest.2009.93 10.1038/nrgastro.2017.38 10.1038/s41419-022-05409-0 10.1016/j.plipres.2021.101109 10.1186/s12950-019-0211-5 10.1038/s41575-022-00688-6 10.1038/s41575-020-00372-7 10.1038/s41423-023-00983-5 10.1038/s41575-023-00807-x 10.1016/j.jacc.2017.04.010 10.1016/j.cmet.2020.01.013 10.1016/j.cmet.2011.12.015 10.1038/nprot.2015.017 10.1016/j.jnutbio.2020.108481 10.1016/j.jhep.2015.11.019 10.1016/j.apsb.2022.03.014 10.1038/s41575-024-00970-9 10.1038/s42255-022-00568-y 10.1016/j.pupt.2017.03.012 10.1016/j.molcel.2021.08.005 10.1002/hep.30890 10.1007/s00109-017-1575-8 10.1016/j.cellsig.2021.110149 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) Copyright © 2025 The Author(s). Published by Elsevier GmbH.. All rights reserved. 2025 The Author(s) 2025 |
Copyright_xml | – notice: 2025 The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier GmbH.. All rights reserved. – notice: 2025 The Author(s) 2025 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.molmet.2025.102132 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2212-8778 |
ExternalDocumentID | oai_doaj_org_article_587ff9792cde4ae793d1370745fd85d0 PMC12004974 40180177 10_1016_j_molmet_2025_102132 S2212877825000390 |
Genre | Journal Article |
GroupedDBID | -IN .1- .FO 0R~ 1P~ 457 4G. 53G 5VS 7-5 AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OB0 OK1 ON- RIG ROL RPM SSZ Z5R 6I. AAFTH AFCTW AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c534t-f60a761085f5043179fae91ceb769f0d958dad1be3448c9ba2211520f4b840ea3 |
IEDL.DBID | M48 |
ISSN | 2212-8778 |
IngestDate | Wed Aug 27 01:15:43 EDT 2025 Thu Aug 21 18:30:50 EDT 2025 Wed Jul 02 05:08:20 EDT 2025 Mon May 12 02:38:37 EDT 2025 Tue Jul 01 04:45:29 EDT 2025 Sat Jun 21 16:55:31 EDT 2025 Tue Aug 26 16:34:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Urea cycle Liver fibrosis LOX-1 GLS |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2025 The Author(s). Published by Elsevier GmbH.. All rights reserved. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-f60a761085f5043179fae91ceb769f0d958dad1be3448c9ba2211520f4b840ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0009-5719-7354 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.molmet.2025.102132 |
PMID | 40180177 |
PQID | 3186350943 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_587ff9792cde4ae793d1370745fd85d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12004974 proquest_miscellaneous_3186350943 pubmed_primary_40180177 crossref_primary_10_1016_j_molmet_2025_102132 elsevier_sciencedirect_doi_10_1016_j_molmet_2025_102132 elsevier_clinicalkey_doi_10_1016_j_molmet_2025_102132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Molecular metabolism (Germany) |
PublicationTitleAlternate | Mol Metab |
PublicationYear | 2025 |
Publisher | Elsevier GmbH Elsevier |
Publisher_xml | – name: Elsevier GmbH – name: Elsevier |
References | Chen, Liu, Liu, Hermonat, Mehta (bib35) 2006; 393 Zhang, Higgins, Tica, Adams, Sun, Kelly (bib58) 2024; 36 Fujita, Nozaki, Wada, Yoneda, Fujimoto, Fujitake (bib51) 2009; 50 Zhang, Su, Liu, Li, Wang, Cheng (bib34) 2023; 23 Friedman (bib6) 2008; 134 Li, Yu, Ou, Ouyang, Tang (bib13) 2021; 83 Simon, Nuñez-García, Fernández-Tussy, Barbier-Torres, Fernandez-Ramos, Gomez-Santos (bib32) 2020; 31 Zhang, Zhang, Lu, Zhou, Lv, Wang (bib25) 2022; 13 De Chiara, Heebøll, Marrone, Montoliu, Hamilton-Dutoit, Ferrandez (bib53) 2018; 69 De Chiara, Thomsen, Habtesion, Jones, Davies, Gracia-Sancho (bib27) 2020; 71 Zhang, Yang, Wang, Huang, Chen, Li (bib19) 2021; 88 Ho, Ho, Jeng, Lai, Chen, Lu (bib20) 2019; 16 Higashi, Friedman, Hoshida (bib12) 2017; 121 Ge, Zhang, Zhu, Huang, Yao, Liu (bib26) 2021; 87 Kisseleva, Brenner (bib1) 2021; 18 Liao, Chen, Liu, Huang, Sun, Bai (bib55) 2024; 36 Li, Tang, Liu, Zhang, Zhang, Lv (bib23) 2021; 8 Yin, Peng, Gu, Liu, Li, Wu (bib42) 2022; 13 Mederacke, Dapito, Affo, Uchinami, Schwabe (bib29) 2015; 10 Duan, Gong, Xu, Zhang, Meng, Han (bib15) 2022; 7 Du, Hyun, Premont, Choi, Michelotti, Swiderska-Syn (bib41) 2018; 154 Akhmedov, Camici, Reiner, Bonetti, Costantino, Holy (bib36) 2017; 113 Puri, Baillie, Wiest, Morshahi, Choudhury, Cheung (bib44) 2007; 46 Zhu, Zhang, Zhao, Xiang, Zou, Andrisani (bib28) 2021; 6 Contento, Wilson, Selvarajah, Plate, Guillotin, Morales (bib57) 2024; 9 Lercher, Bhattacharya, Popa, Caldera, Schlapansky, Baazim (bib37) 2019; 51 Yang, Tsai, Chen, Yang (bib56) 2024; 35 Trivedi, Wang, Friedman (bib10) 2021; 33 Du, Chitneni, Suzuki, Wang, Henao, Hyun (bib31) 2020; 10 Jalan, De Chiara, Balasubramaniyan, Andreola, Khetan, Malago (bib39) 2016; 64 Gallego-Durán, Hadjihambi, Ampuero, Rose, Jalan, Romero-Gomez (bib59) 2024; 21 Steinberg (bib47) 2002; 8 Fan, Liu, Liu, Cui, Yao, Zhang (bib30) 2019; 10 Zou, Gong, Liu, He, Zhu, Li (bib24) 2017; 44 Yang, Li, Liu, Zong, Wei, Shi (bib3) 2023; 20 Kang, Chen (bib22) 2009; 89 Cheng, Geng, Li, Zhong, Wang, Cheng (bib54) 2022; 4 Tomita, Teratani, Suzuki, Shimizu, Sato, Narimatsu (bib14) 2014; 59 Pellicoro, Ramachandran, Iredale, Fallowfield (bib2) 2014; 14 Taru, Szabo, Mehal, Reiberger (bib5) 2024; 81 Hammerich, Tacke (bib4) 2023; 20 Hajaj, Sciacovelli, Frezza, Erez (bib40) 2021; 81 Huang, Mathurin, Cortez-Pinto, Loomba (bib8) 2023; 20 Mehta, Sanada, Hu, Chen, Dandapat, Sugawara (bib16) 2007; 100 Neri Serneri, Coppo, Bandinelli, Paoletti, Toscano, Micalizzi (bib52) 2013; 226 Chistiakov, Melnichenko, Myasoedova, Grechko, Orekhov (bib18) 2017; 95 Luchetti, Crinelli, Nasoni, Benedetti, Palma, Fraternale (bib46) 2021; 178 Yoo, Yu, Sung, Han (bib33) 2020; 52 Tsuchida, Friedman (bib11) 2017; 14 Keam (bib9) 2024; 84 Keshet, Szlosarek, Carracedo, Erez (bib38) 2018; 18 Chen, Liang, Xia, Wang, Li, Shao (bib49) 2023; 180 Musso, Cassader, De Michieli, Saba, Bo, Gambino (bib21) 2011; 94 Yuneva, Fan, Allen, Higashi, Ferrari, Tsukamoto (bib50) 2012; 15 Ioannou (bib43) 2016; 27 Hernandez-Gea, Friedman (bib7) 2011; 6 Pothineni, Karathanasis, Ding, Arulandu, Varughese, Mehta (bib45) 2017; 69 Moore, Freeman (bib17) 2006; 26 Wang, Li, Chen, Yang, Liang, Zhang (bib48) 2022; 12 Li (10.1016/j.molmet.2025.102132_bib23) 2021; 8 Zhang (10.1016/j.molmet.2025.102132_bib25) 2022; 13 Du (10.1016/j.molmet.2025.102132_bib31) 2020; 10 Li (10.1016/j.molmet.2025.102132_bib13) 2021; 83 Yoo (10.1016/j.molmet.2025.102132_bib33) 2020; 52 Higashi (10.1016/j.molmet.2025.102132_bib12) 2017; 121 Steinberg (10.1016/j.molmet.2025.102132_bib47) 2002; 8 Huang (10.1016/j.molmet.2025.102132_bib8) 2023; 20 Simon (10.1016/j.molmet.2025.102132_bib32) 2020; 31 Hammerich (10.1016/j.molmet.2025.102132_bib4) 2023; 20 Jalan (10.1016/j.molmet.2025.102132_bib39) 2016; 64 Trivedi (10.1016/j.molmet.2025.102132_bib10) 2021; 33 Pothineni (10.1016/j.molmet.2025.102132_bib45) 2017; 69 Puri (10.1016/j.molmet.2025.102132_bib44) 2007; 46 Keam (10.1016/j.molmet.2025.102132_bib9) 2024; 84 Yin (10.1016/j.molmet.2025.102132_bib42) 2022; 13 Taru (10.1016/j.molmet.2025.102132_bib5) 2024; 81 Cheng (10.1016/j.molmet.2025.102132_bib54) 2022; 4 Yang (10.1016/j.molmet.2025.102132_bib3) 2023; 20 Zhang (10.1016/j.molmet.2025.102132_bib34) 2023; 23 Chen (10.1016/j.molmet.2025.102132_bib35) 2006; 393 Mehta (10.1016/j.molmet.2025.102132_bib16) 2007; 100 Luchetti (10.1016/j.molmet.2025.102132_bib46) 2021; 178 Zhu (10.1016/j.molmet.2025.102132_bib28) 2021; 6 Chen (10.1016/j.molmet.2025.102132_bib49) 2023; 180 Mederacke (10.1016/j.molmet.2025.102132_bib29) 2015; 10 Keshet (10.1016/j.molmet.2025.102132_bib38) 2018; 18 Akhmedov (10.1016/j.molmet.2025.102132_bib36) 2017; 113 Wang (10.1016/j.molmet.2025.102132_bib48) 2022; 12 Fan (10.1016/j.molmet.2025.102132_bib30) 2019; 10 Zhang (10.1016/j.molmet.2025.102132_bib58) 2024; 36 De Chiara (10.1016/j.molmet.2025.102132_bib53) 2018; 69 Zou (10.1016/j.molmet.2025.102132_bib24) 2017; 44 Ge (10.1016/j.molmet.2025.102132_bib26) 2021; 87 Fujita (10.1016/j.molmet.2025.102132_bib51) 2009; 50 Ho (10.1016/j.molmet.2025.102132_bib20) 2019; 16 Duan (10.1016/j.molmet.2025.102132_bib15) 2022; 7 Ioannou (10.1016/j.molmet.2025.102132_bib43) 2016; 27 Yang (10.1016/j.molmet.2025.102132_bib56) 2024; 35 Chistiakov (10.1016/j.molmet.2025.102132_bib18) 2017; 95 Neri Serneri (10.1016/j.molmet.2025.102132_bib52) 2013; 226 Pellicoro (10.1016/j.molmet.2025.102132_bib2) 2014; 14 Tomita (10.1016/j.molmet.2025.102132_bib14) 2014; 59 De Chiara (10.1016/j.molmet.2025.102132_bib27) 2020; 71 Liao (10.1016/j.molmet.2025.102132_bib55) 2024; 36 Lercher (10.1016/j.molmet.2025.102132_bib37) 2019; 51 Du (10.1016/j.molmet.2025.102132_bib41) 2018; 154 Kisseleva (10.1016/j.molmet.2025.102132_bib1) 2021; 18 Kang (10.1016/j.molmet.2025.102132_bib22) 2009; 89 Gallego-Durán (10.1016/j.molmet.2025.102132_bib59) 2024; 21 Contento (10.1016/j.molmet.2025.102132_bib57) 2024; 9 Hernandez-Gea (10.1016/j.molmet.2025.102132_bib7) 2011; 6 Musso (10.1016/j.molmet.2025.102132_bib21) 2011; 94 Friedman (10.1016/j.molmet.2025.102132_bib6) 2008; 134 Moore (10.1016/j.molmet.2025.102132_bib17) 2006; 26 Zhang (10.1016/j.molmet.2025.102132_bib19) 2021; 88 Hajaj (10.1016/j.molmet.2025.102132_bib40) 2021; 81 Yuneva (10.1016/j.molmet.2025.102132_bib50) 2012; 15 Tsuchida (10.1016/j.molmet.2025.102132_bib11) 2017; 14 |
References_xml | – volume: 36 start-page: 2347 year: 2024 end-page: 2448 ident: bib55 article-title: Amino acid is a major carbon source for hepatic lipogenesis publication-title: Cell Metab – volume: 8 start-page: 736215 year: 2021 ident: bib23 article-title: Lox-1 deletion attenuates myocardial fibrosis in the aged mice, particularly those with hypertension publication-title: Front Cardiovasc Med – volume: 44 start-page: 70 year: 2017 end-page: 77 ident: bib24 article-title: Involvement of epithelial-mesenchymal transition afforded by activation of lox-1/tgf-β1/klf6 signaling pathway in diabetic pulmonary fibrosis publication-title: Pulm Pharmacol Ther – volume: 113 start-page: 498 year: 2017 end-page: 507 ident: bib36 article-title: Endothelial lox-1 activation differentially regulates arterial thrombus formation depending on oxldl levels: role of the oct-1/sirt1 and erk1/2 pathways publication-title: Cardiovasc Res – volume: 83 start-page: 101109 year: 2021 ident: bib13 article-title: Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis publication-title: Prog Lipid Res – volume: 81 start-page: 3749 year: 2021 end-page: 3759 ident: bib40 article-title: The context-specific roles of urea cycle enzymes in tumorigenesis publication-title: Mol Cell – volume: 154 start-page: 1465 year: 2018 end-page: 1479.e1413 ident: bib41 article-title: Hedgehog-yap signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells publication-title: Gastroenterology – volume: 46 start-page: 1081 year: 2007 end-page: 1090 ident: bib44 article-title: A lipidomic analysis of nonalcoholic fatty liver disease publication-title: Hepatology – volume: 51 year: 2019 ident: bib37 article-title: Type i interferon signaling disrupts the hepatic urea cycle and alters systemic metabolism to suppress t cell function publication-title: Immunity – volume: 10 start-page: 305 year: 2015 end-page: 315 ident: bib29 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat Protoc – volume: 10 start-page: 1 year: 2020 end-page: 21 ident: bib31 article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression publication-title: Cell Mol Gastroenterol Hepatol – volume: 21 start-page: 774 year: 2024 end-page: 791 ident: bib59 article-title: Ammonia-induced stress response in liver disease progression and hepatic encephalopathy publication-title: Nat Rev Gastroenterol Hepatol – volume: 31 start-page: 605 year: 2020 end-page: 622 ident: bib32 article-title: Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly publication-title: Cell Metab – volume: 12 start-page: 3618 year: 2022 end-page: 3638 ident: bib48 article-title: Inhibition of asct2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an il-1α/nf-κb feedback pathway to inhibit liver fibrosis publication-title: Acta Pharm Sin B – volume: 35 year: 2024 ident: bib56 article-title: Glutamine metabolism inhibition alleviates kidney fibrosis through the immunometabolic axis publication-title: J Am Soc Nephrol – volume: 13 year: 2022 ident: bib42 article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis publication-title: Cell Death Dis – volume: 226 start-page: 476 year: 2013 end-page: 482 ident: bib52 article-title: Exaggerated myocardial oxldl amount and lox-1 receptor over-expression associated with coronary microvessel inflammation in unstable angina publication-title: Atherosclerosis – volume: 9 year: 2024 ident: bib57 article-title: Pyruvate metabolism dictates fibroblast sensitivity to gls1 inhibition during fibrogenesis publication-title: Jci Insight – volume: 20 start-page: 583 year: 2023 end-page: 599 ident: bib3 article-title: Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment publication-title: Cell Mol Immunol – volume: 8 start-page: 1211 year: 2002 end-page: 1217 ident: bib47 article-title: Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime publication-title: Nat Med – volume: 121 start-page: 27 year: 2017 end-page: 42 ident: bib12 article-title: Hepatic stellate cells as key target in liver fibrosis publication-title: Adv Drug Deliv Rev – volume: 50 start-page: 772 year: 2009 end-page: 780 ident: bib51 article-title: Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis publication-title: Hepatology – volume: 13 start-page: 8926 year: 2022 end-page: 8936 ident: bib25 article-title: Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway publication-title: Bioengineered – volume: 134 start-page: 1655 year: 2008 end-page: 1669 ident: bib6 article-title: Mechanisms of hepatic fibrogenesis publication-title: Gastroenterology – volume: 27 start-page: 84 year: 2016 end-page: 95 ident: bib43 article-title: The role of cholesterol in the pathogenesis of nash publication-title: Trends Endocrinol Metabol – volume: 18 start-page: 151 year: 2021 end-page: 166 ident: bib1 article-title: Molecular and cellular mechanisms of liver fibrosis and its regression publication-title: Nat Rev Gastroenterol Hepatol – volume: 100 start-page: 1634 year: 2007 end-page: 1642 ident: bib16 article-title: Deletion of lox-1 reduces atherogenesis in ldlr knockout mice fed high cholesterol diet publication-title: Circ Res – volume: 10 start-page: 425 year: 2019 ident: bib30 article-title: Ckip-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of oct-1 by regγ publication-title: Nat Commun – volume: 14 start-page: 181 year: 2014 end-page: 194 ident: bib2 article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ publication-title: Nat Rev Immunol – volume: 89 start-page: 1275 year: 2009 end-page: 1290 ident: bib22 article-title: Curcumin eliminates oxidized ldl roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized ldl receptor-1 publication-title: Lab Invest – volume: 36 start-page: 2069 year: 2024 end-page: 2085 ident: bib58 article-title: Hierarchical tricarboxylic acid cycle regulation by hepatocyte arginase 2 links the urea cycle to oxidative metabolism publication-title: Cell Metab – volume: 16 start-page: 7 year: 2019 ident: bib20 article-title: Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease publication-title: J Inflamm – volume: 6 start-page: 319 year: 2021 ident: bib28 article-title: Lix1-like protein drives hepatic stellate cell activation to promote liver fibrosis by regulation of chemokine mrna stability publication-title: Signal Transduct Targeted Ther – volume: 69 start-page: 2759 year: 2017 end-page: 2768 ident: bib45 article-title: Lox-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation publication-title: J Am Coll Cardiol – volume: 6 start-page: 425 year: 2011 end-page: 456 ident: bib7 article-title: Pathogenesis of liver fibrosis publication-title: Annu Rev Pathol – volume: 87 start-page: 110149 year: 2021 ident: bib26 article-title: Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/lox-1 signaling-impelled intercellular communication publication-title: Cell Signal – volume: 180 start-page: 2577 year: 2023 end-page: 2598 ident: bib49 article-title: Emodin promotes hepatic stellate cell senescence and alleviates liver fibrosis via a nuclear receptor (nur77)-mediated epigenetic regulation of glutaminase 1 publication-title: Br J Pharmacol – volume: 59 start-page: 154 year: 2014 end-page: 169 ident: bib14 article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice publication-title: Hepatology – volume: 7 start-page: 265 year: 2022 ident: bib15 article-title: Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics publication-title: Signal Transduct Targeted Ther – volume: 95 start-page: 1153 year: 2017 end-page: 1165 ident: bib18 article-title: Mechanisms of foam cell formation in atherosclerosis publication-title: J Mol Med (Berl) – volume: 178 start-page: 3104 year: 2021 end-page: 3114 ident: bib46 article-title: Ldl receptors, caveolae and cholesterol in endothelial dysfunction: oxldls accomplices or victims? publication-title: Br J Pharmacol – volume: 23 start-page: 1081 year: 2023 ident: bib34 article-title: Kidney-type glutaminase is a biomarker for the diagnosis and prognosis of hepatocellular carcinoma: a prospective study publication-title: BMC Cancer – volume: 15 start-page: 157 year: 2012 end-page: 170 ident: bib50 article-title: The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type publication-title: Cell Metab – volume: 52 start-page: 1496 year: 2020 end-page: 1516 ident: bib33 article-title: Glutamine reliance in cell metabolism publication-title: Exp Mol Med – volume: 393 start-page: 255 year: 2006 end-page: 265 ident: bib35 article-title: Lectin-like oxidized low-density lipoprotein receptor-1 (lox-1) transcriptional regulation by oct-1 in human endothelial cells: implications for atherosclerosis publication-title: Biochem J – volume: 20 start-page: 37 year: 2023 end-page: 49 ident: bib8 article-title: Global epidemiology of alcohol-associated cirrhosis and hcc: trends, projections and risk factors publication-title: Nat Rev Gastroenterol Hepatol – volume: 33 start-page: 242 year: 2021 end-page: 257 ident: bib10 article-title: The power of plasticity-metabolic regulation of hepatic stellate cells publication-title: Cell Metab – volume: 4 start-page: 575 year: 2022 end-page: 588 ident: bib54 article-title: Ammonia stimulates scap/insig dissociation and srebp-1 activation to promote lipogenesis and tumour growth publication-title: Nat Metab – volume: 94 start-page: 1033 year: 2011 end-page: 1042 ident: bib21 article-title: Effect of lectin-like oxidized ldl receptor-1 polymorphism on liver disease, glucose homeostasis, and postprandial lipoprotein metabolism in nonalcoholic steatohepatitis publication-title: Am J Clin Nutr – volume: 81 start-page: 895 year: 2024 end-page: 910 ident: bib5 article-title: Inflammasomes in chronic liver disease: hepatic injury, fibrosis progression and systemic inflammation publication-title: J Hepatol – volume: 88 start-page: 108481 year: 2021 ident: bib19 article-title: N-3 pufas inhibited hepatic er stress induced by feeding of a high-saturated fat diet accompanied by the expression lox-1 publication-title: J Nutr Biochem – volume: 71 start-page: 874 year: 2020 end-page: 892 ident: bib27 article-title: Ammonia scavenging prevents progression of fibrosis in experimental nonalcoholic fatty liver disease publication-title: Hepatology – volume: 20 start-page: 633 year: 2023 end-page: 646 ident: bib4 article-title: Hepatic inflammatory responses in liver fibrosis publication-title: Nat Rev Gastroenterol Hepatol – volume: 69 start-page: 905 year: 2018 end-page: 915 ident: bib53 article-title: Urea cycle dysregulation in non-alcoholic fatty liver disease publication-title: J Hepatol – volume: 14 start-page: 397 year: 2017 end-page: 411 ident: bib11 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat Rev Gastroenterol Hepatol – volume: 26 start-page: 1702 year: 2006 end-page: 1711 ident: bib17 article-title: Scavenger receptors in atherosclerosis: beyond lipid uptake publication-title: Arterioscler Thromb Vasc Biol – volume: 64 start-page: 823 year: 2016 end-page: 833 ident: bib39 article-title: Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension publication-title: J Hepatol – volume: 84 start-page: 729 year: 2024 end-page: 735 ident: bib9 article-title: Resmetirom: first approval publication-title: Drugs – volume: 18 start-page: 634 year: 2018 end-page: 645 ident: bib38 article-title: Rewiring urea cycle metabolism in cancer to support anabolism publication-title: Nat Rev Cancer – volume: 33 start-page: 242 issue: 2 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib10 article-title: The power of plasticity-metabolic regulation of hepatic stellate cells publication-title: Cell Metab doi: 10.1016/j.cmet.2020.10.026 – volume: 50 start-page: 772 issue: 3 year: 2009 ident: 10.1016/j.molmet.2025.102132_bib51 article-title: Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis publication-title: Hepatology doi: 10.1002/hep.23094 – volume: 36 start-page: 2347 issue: 11 year: 2024 ident: 10.1016/j.molmet.2025.102132_bib55 article-title: Amino acid is a major carbon source for hepatic lipogenesis publication-title: Cell Metab doi: 10.1016/j.cmet.2024.10.001 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.molmet.2025.102132_bib31 article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression publication-title: Cell Mol Gastroenterol Hepatol doi: 10.1016/j.jcmgh.2019.12.006 – volume: 23 start-page: 1081 issue: 1 year: 2023 ident: 10.1016/j.molmet.2025.102132_bib34 article-title: Kidney-type glutaminase is a biomarker for the diagnosis and prognosis of hepatocellular carcinoma: a prospective study publication-title: BMC Cancer doi: 10.1186/s12885-023-11601-y – volume: 27 start-page: 84 issue: 2 year: 2016 ident: 10.1016/j.molmet.2025.102132_bib43 article-title: The role of cholesterol in the pathogenesis of nash publication-title: Trends Endocrinol Metabol doi: 10.1016/j.tem.2015.11.008 – volume: 14 start-page: 181 issue: 3 year: 2014 ident: 10.1016/j.molmet.2025.102132_bib2 article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ publication-title: Nat Rev Immunol doi: 10.1038/nri3623 – volume: 13 start-page: 8926 issue: 4 year: 2022 ident: 10.1016/j.molmet.2025.102132_bib25 article-title: Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway publication-title: Bioengineered doi: 10.1080/21655979.2022.2056814 – volume: 393 start-page: 255 issue: Pt 1 year: 2006 ident: 10.1016/j.molmet.2025.102132_bib35 article-title: Lectin-like oxidized low-density lipoprotein receptor-1 (lox-1) transcriptional regulation by oct-1 in human endothelial cells: implications for atherosclerosis publication-title: Biochem J doi: 10.1042/BJ20050845 – volume: 6 start-page: 425 year: 2011 ident: 10.1016/j.molmet.2025.102132_bib7 article-title: Pathogenesis of liver fibrosis publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathol-011110-130246 – volume: 35 issue: 10 year: 2024 ident: 10.1016/j.molmet.2025.102132_bib56 article-title: Glutamine metabolism inhibition alleviates kidney fibrosis through the immunometabolic axis publication-title: J Am Soc Nephrol – volume: 94 start-page: 1033 issue: 4 year: 2011 ident: 10.1016/j.molmet.2025.102132_bib21 article-title: Effect of lectin-like oxidized ldl receptor-1 polymorphism on liver disease, glucose homeostasis, and postprandial lipoprotein metabolism in nonalcoholic steatohepatitis publication-title: Am J Clin Nutr doi: 10.3945/ajcn.111.015610 – volume: 121 start-page: 27 year: 2017 ident: 10.1016/j.molmet.2025.102132_bib12 article-title: Hepatic stellate cells as key target in liver fibrosis publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2017.05.007 – volume: 46 start-page: 1081 issue: 4 year: 2007 ident: 10.1016/j.molmet.2025.102132_bib44 article-title: A lipidomic analysis of nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.21763 – volume: 226 start-page: 476 issue: 2 year: 2013 ident: 10.1016/j.molmet.2025.102132_bib52 article-title: Exaggerated myocardial oxldl amount and lox-1 receptor over-expression associated with coronary microvessel inflammation in unstable angina publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2012.11.007 – volume: 8 start-page: 736215 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib23 article-title: Lox-1 deletion attenuates myocardial fibrosis in the aged mice, particularly those with hypertension publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2021.736215 – volume: 154 start-page: 1465 issue: 5 year: 2018 ident: 10.1016/j.molmet.2025.102132_bib41 article-title: Hedgehog-yap signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.12.022 – volume: 18 start-page: 634 issue: 10 year: 2018 ident: 10.1016/j.molmet.2025.102132_bib38 article-title: Rewiring urea cycle metabolism in cancer to support anabolism publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0054-z – volume: 36 start-page: 2069 issue: 9 year: 2024 ident: 10.1016/j.molmet.2025.102132_bib58 article-title: Hierarchical tricarboxylic acid cycle regulation by hepatocyte arginase 2 links the urea cycle to oxidative metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2024.07.007 – volume: 81 start-page: 895 issue: 5 year: 2024 ident: 10.1016/j.molmet.2025.102132_bib5 article-title: Inflammasomes in chronic liver disease: hepatic injury, fibrosis progression and systemic inflammation publication-title: J Hepatol doi: 10.1016/j.jhep.2024.06.016 – volume: 7 start-page: 265 issue: 1 year: 2022 ident: 10.1016/j.molmet.2025.102132_bib15 article-title: Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics publication-title: Signal Transduct Targeted Ther doi: 10.1038/s41392-022-01125-5 – volume: 52 start-page: 1496 issue: 9 year: 2020 ident: 10.1016/j.molmet.2025.102132_bib33 article-title: Glutamine reliance in cell metabolism publication-title: Exp Mol Med doi: 10.1038/s12276-020-00504-8 – volume: 180 start-page: 2577 issue: 19 year: 2023 ident: 10.1016/j.molmet.2025.102132_bib49 article-title: Emodin promotes hepatic stellate cell senescence and alleviates liver fibrosis via a nuclear receptor (nur77)-mediated epigenetic regulation of glutaminase 1 publication-title: Br J Pharmacol doi: 10.1111/bph.16156 – volume: 69 start-page: 905 issue: 4 year: 2018 ident: 10.1016/j.molmet.2025.102132_bib53 article-title: Urea cycle dysregulation in non-alcoholic fatty liver disease publication-title: J Hepatol doi: 10.1016/j.jhep.2018.06.023 – volume: 134 start-page: 1655 issue: 6 year: 2008 ident: 10.1016/j.molmet.2025.102132_bib6 article-title: Mechanisms of hepatic fibrogenesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.03.003 – volume: 59 start-page: 154 issue: 1 year: 2014 ident: 10.1016/j.molmet.2025.102132_bib14 article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice publication-title: Hepatology doi: 10.1002/hep.26604 – volume: 6 start-page: 319 issue: 1 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib28 article-title: Lix1-like protein drives hepatic stellate cell activation to promote liver fibrosis by regulation of chemokine mrna stability publication-title: Signal Transduct Targeted Ther doi: 10.1038/s41392-021-00665-6 – volume: 84 start-page: 729 issue: 6 year: 2024 ident: 10.1016/j.molmet.2025.102132_bib9 article-title: Resmetirom: first approval publication-title: Drugs doi: 10.1007/s40265-024-02045-0 – volume: 9 issue: 18 year: 2024 ident: 10.1016/j.molmet.2025.102132_bib57 article-title: Pyruvate metabolism dictates fibroblast sensitivity to gls1 inhibition during fibrogenesis publication-title: Jci Insight doi: 10.1172/jci.insight.178453 – volume: 8 start-page: 1211 issue: 11 year: 2002 ident: 10.1016/j.molmet.2025.102132_bib47 article-title: Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime publication-title: Nat Med doi: 10.1038/nm1102-1211 – volume: 10 start-page: 425 issue: 1 year: 2019 ident: 10.1016/j.molmet.2025.102132_bib30 article-title: Ckip-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of oct-1 by regγ publication-title: Nat Commun doi: 10.1038/s41467-018-07895-3 – volume: 100 start-page: 1634 issue: 11 year: 2007 ident: 10.1016/j.molmet.2025.102132_bib16 article-title: Deletion of lox-1 reduces atherogenesis in ldlr knockout mice fed high cholesterol diet publication-title: Circ Res doi: 10.1161/CIRCRESAHA.107.149724 – volume: 51 issue: 6 year: 2019 ident: 10.1016/j.molmet.2025.102132_bib37 article-title: Type i interferon signaling disrupts the hepatic urea cycle and alters systemic metabolism to suppress t cell function publication-title: Immunity doi: 10.1016/j.immuni.2019.10.014 – volume: 26 start-page: 1702 issue: 8 year: 2006 ident: 10.1016/j.molmet.2025.102132_bib17 article-title: Scavenger receptors in atherosclerosis: beyond lipid uptake publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000229218.97976.43 – volume: 178 start-page: 3104 issue: 16 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib46 article-title: Ldl receptors, caveolae and cholesterol in endothelial dysfunction: oxldls accomplices or victims? publication-title: Br J Pharmacol doi: 10.1111/bph.15272 – volume: 113 start-page: 498 issue: 5 year: 2017 ident: 10.1016/j.molmet.2025.102132_bib36 article-title: Endothelial lox-1 activation differentially regulates arterial thrombus formation depending on oxldl levels: role of the oct-1/sirt1 and erk1/2 pathways publication-title: Cardiovasc Res doi: 10.1093/cvr/cvx015 – volume: 89 start-page: 1275 issue: 11 year: 2009 ident: 10.1016/j.molmet.2025.102132_bib22 article-title: Curcumin eliminates oxidized ldl roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized ldl receptor-1 publication-title: Lab Invest doi: 10.1038/labinvest.2009.93 – volume: 14 start-page: 397 issue: 7 year: 2017 ident: 10.1016/j.molmet.2025.102132_bib11 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2017.38 – volume: 13 issue: 11 year: 2022 ident: 10.1016/j.molmet.2025.102132_bib42 article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis publication-title: Cell Death Dis doi: 10.1038/s41419-022-05409-0 – volume: 83 start-page: 101109 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib13 article-title: Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2021.101109 – volume: 16 start-page: 7 year: 2019 ident: 10.1016/j.molmet.2025.102132_bib20 article-title: Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease publication-title: J Inflamm doi: 10.1186/s12950-019-0211-5 – volume: 20 start-page: 37 issue: 1 year: 2023 ident: 10.1016/j.molmet.2025.102132_bib8 article-title: Global epidemiology of alcohol-associated cirrhosis and hcc: trends, projections and risk factors publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-022-00688-6 – volume: 18 start-page: 151 issue: 3 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib1 article-title: Molecular and cellular mechanisms of liver fibrosis and its regression publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-020-00372-7 – volume: 20 start-page: 583 issue: 6 year: 2023 ident: 10.1016/j.molmet.2025.102132_bib3 article-title: Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment publication-title: Cell Mol Immunol doi: 10.1038/s41423-023-00983-5 – volume: 20 start-page: 633 issue: 10 year: 2023 ident: 10.1016/j.molmet.2025.102132_bib4 article-title: Hepatic inflammatory responses in liver fibrosis publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-023-00807-x – volume: 69 start-page: 2759 issue: 22 year: 2017 ident: 10.1016/j.molmet.2025.102132_bib45 article-title: Lox-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2017.04.010 – volume: 31 start-page: 605 issue: 3 year: 2020 ident: 10.1016/j.molmet.2025.102132_bib32 article-title: Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly publication-title: Cell Metab doi: 10.1016/j.cmet.2020.01.013 – volume: 15 start-page: 157 issue: 2 year: 2012 ident: 10.1016/j.molmet.2025.102132_bib50 article-title: The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type publication-title: Cell Metab doi: 10.1016/j.cmet.2011.12.015 – volume: 10 start-page: 305 issue: 2 year: 2015 ident: 10.1016/j.molmet.2025.102132_bib29 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat Protoc doi: 10.1038/nprot.2015.017 – volume: 88 start-page: 108481 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib19 article-title: N-3 pufas inhibited hepatic er stress induced by feeding of a high-saturated fat diet accompanied by the expression lox-1 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2020.108481 – volume: 64 start-page: 823 issue: 4 year: 2016 ident: 10.1016/j.molmet.2025.102132_bib39 article-title: Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension publication-title: J Hepatol doi: 10.1016/j.jhep.2015.11.019 – volume: 12 start-page: 3618 issue: 9 year: 2022 ident: 10.1016/j.molmet.2025.102132_bib48 article-title: Inhibition of asct2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an il-1α/nf-κb feedback pathway to inhibit liver fibrosis publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.03.014 – volume: 21 start-page: 774 issue: 11 year: 2024 ident: 10.1016/j.molmet.2025.102132_bib59 article-title: Ammonia-induced stress response in liver disease progression and hepatic encephalopathy publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-024-00970-9 – volume: 4 start-page: 575 issue: 5 year: 2022 ident: 10.1016/j.molmet.2025.102132_bib54 article-title: Ammonia stimulates scap/insig dissociation and srebp-1 activation to promote lipogenesis and tumour growth publication-title: Nat Metab doi: 10.1038/s42255-022-00568-y – volume: 44 start-page: 70 year: 2017 ident: 10.1016/j.molmet.2025.102132_bib24 article-title: Involvement of epithelial-mesenchymal transition afforded by activation of lox-1/tgf-β1/klf6 signaling pathway in diabetic pulmonary fibrosis publication-title: Pulm Pharmacol Ther doi: 10.1016/j.pupt.2017.03.012 – volume: 81 start-page: 3749 issue: 18 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib40 article-title: The context-specific roles of urea cycle enzymes in tumorigenesis publication-title: Mol Cell doi: 10.1016/j.molcel.2021.08.005 – volume: 71 start-page: 874 issue: 3 year: 2020 ident: 10.1016/j.molmet.2025.102132_bib27 article-title: Ammonia scavenging prevents progression of fibrosis in experimental nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.30890 – volume: 95 start-page: 1153 issue: 11 year: 2017 ident: 10.1016/j.molmet.2025.102132_bib18 article-title: Mechanisms of foam cell formation in atherosclerosis publication-title: J Mol Med (Berl) doi: 10.1007/s00109-017-1575-8 – volume: 87 start-page: 110149 year: 2021 ident: 10.1016/j.molmet.2025.102132_bib26 article-title: Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/lox-1 signaling-impelled intercellular communication publication-title: Cell Signal doi: 10.1016/j.cellsig.2021.110149 |
SSID | ssj0000866651 |
Score | 2.3532612 |
Snippet | Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1)... Image 1 • LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models. • LOX-1 drove the progression of liver... Objective: Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 102132 |
SubjectTerms | Ammonia - metabolism Animals GLS Glutaminase - metabolism Glutamine - metabolism Hepatic Stellate Cells - metabolism Humans Liver - metabolism Liver Cirrhosis - metabolism Liver Cirrhosis - pathology Liver fibrosis LOX-1 Male Mice Original Rats Rats, Sprague-Dawley Scavenger Receptors, Class E - genetics Scavenger Receptors, Class E - metabolism Urea cycle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSitxQbC8AiwyEleLOrbj-MiiXa0Qjwsr9Wb5CUHbdNV0D_x7ZuKmauCwHLimcRvPjGe-ST9_JuQtglToewILso5MhmhY2wrJhOGhiRghHt93fP7SXF7Jj0u1PDjqCzlhRR64GO6danXORps6xCRdgnCKXGgofCrHVsWxW4ead9BMjTm4BViu-LRXbiR0rZDjj_TJWqFgARf1rBaNkv2zkvQ35PyTOXlQii4ekgc7DEnfl2d_RO6l_oQcl1Mlfz0mZ5--Lhmnm4QyxAP9DrHlVgAmqcOY6xyF5wPXX3fDim7XNG4g4dFr5GfQDM3zeuiGJ-Tq4vzbh0u2OyqBBSXkluVm4XSDOwkySpLBKssugbmT143Ji2hUG13kPglox4LxrobGT9WLLD10eMmJp-SoX_fpOaGeZ4AdrY9caWmc8CbUXgcRdRbZN74ibDKavSmKGHaiiv20xcgWjWyLkStyhpbd34t61uMF8LLdedne5eWKqMkvdtoyCkkOvqi748f1ftwOUhSo8A8j30zut7Di8G8U16f17WAhCwJKQ0ZmRZ6VcNhPTqIeGte6Iu0sUGazn3_Sdz9GVW-O-Qq6uxf_w14vyX2cS-G0vSJH281tOgX0tPWvx4XyGxmmF0s priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSpW4IFpeKQUZiau1m9iO42O3oqoQjwNU2pvlZwnqJtVme-DfdyaPFYEDiGMeTpzxeOYb55sxIe8QpELc45kXRWDCB82qigvGde7LgBricL3j0-fy6lp8WMv1AbmYcmGQVjna_sGm99Z6PLMYpbm4q-vF1wKsbqXAw8k-wxTjdi6qPolvvdqvswBkL8t-F0a8n2GDKYOup3ltkPmPpMpCYhmDnBczD9UX8p85qj-B6O98yl8c1OUT8nhElvR86PwxOYjNCTka9pr8-ZSsPn5Zs5xuIxYn7ugNaJzdAMSkFjWxthT6BwpxW3cbumtp2IIZpLfI2qAJQuq2q7tn5Pry_beLKzZuoMC85GLHUrm0qsT8goSFymDuJRthEKJTpU7LoGUVbMhd5BCkee0siAj8-TIJB3FftPw5OWzaJr4k1OUJwEjlQi6V0JY77QunPA8q8eRKlxE2Cc3cDXUyzEQg-2EGIRsUshmEnJEVSnZ_L1a57k-02xszDrORlUpJK134EIWNYEpCzhWAHplCJcMyI3IaFzMlkoLpgwfVf3m52rebKds_tHw7Db-BeYg_V2wT2_vOgG0E7IY8zYy8GNRh_3ECq6TlSmWkminK7OvnV5r6e1_rO0crBjHf6X93-RV5hEcDve2MHO629_E1AKmde9PPlAcRlRpV priority: 102 providerName: Elsevier |
Title | LOX-1 rewires glutamine ammonia metabolism to drive liver fibrosis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2212877825000390 https://dx.doi.org/10.1016/j.molmet.2025.102132 https://www.ncbi.nlm.nih.gov/pubmed/40180177 https://www.proquest.com/docview/3186350943 https://pubmed.ncbi.nlm.nih.gov/PMC12004974 https://doaj.org/article/587ff9792cde4ae793d1370745fd85d0 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_OOwS_iG_rY4ng18i2TZv2g8iteJyepyAu7reQNMlZ2W213QPvv3emj9X6QPFLoY-kzWQev0knMwCPCaSi31PwQkSWi8LmPMtiweM8LFJLHGJoveP0TXq8FK9WyWoPxpqtAwHb37p2VE9q2ayffP1y8QwF_un3WK0Nhe9TZGSUUC4C9LAuwQHaJkmiejoA_k43ZwjXu5qMEepsVAUyG_fT_aGjib3q0vpPzNavsPTn6MofzNXRNbg64Ex22DPGddhz1Q243FeevLgJi9dvVzxkjaNUxS07Q_7TGwScTBNflprh9yF7rMt2w7Y1sw0qRbamGA7m0cGu27K9BcujF--fH_OhnAIvklhsuU_nWqa028BT2jKURK8dTokzMs393OZJZrUNjYvRZStyo5FEaN3nXhj0Ap2Ob8N-VVfuLjATeoQmmbFhIkWuY5MXkZFFbKWPvUlNAHwkmvrcZ81QYzjZJ9UTWRGRVU_kABZE2d2zlPO6u1A3Z2oQIZVk0vtc5lFhndAOFYsNY4kQKPE2S-w8gGScFzVuK0VFiB2Vf3m53LUbYEcPJ_6h5aNx-hVKJf1q0ZWrz1uFmhKRHEVtBnCnZ4fd4ATlTAulDCCbMMpk9NM7Vfmxy_wdkk5DD_Defw71Plyhsz7U7QHsb5tz9xBB1dbM4ODw5N2Hk1m3KIHHl6vFrJOdb7jtIbc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWixBcEG_C00hcrdaxHSdHumLVhe5yYFfqzbJjezdom6ya7oF_z0weFYEDiGtSt854_M036TdjQj4gSYW8p2SlTD2TpS9YngvJRMHLzKOHOHzfcXqWLS_k57VaH5CjsRYGZZUD9veY3qH1cGU2WHN2U1Wzbymgbq4hwqmuwhTy9jvABjSe33CyXuxftABnz7LuGEYcwHDEWELX6bw2KP1HVWWqsI8BF-kkRHWd_CeR6k8m-rug8pcIdfyQPBioJf3Yz_4ROQj1Y3K3P2zyxxOyWH1dM063AbsTt_QSXM5ugGNSi65YWQrzA4-4rtoN3TXUbwEH6TXKNmiEnLppq_YpuTj-dH60ZMMJCqxUQu5YzOZWZ1hgELFTGWy-aAOsQnA6K-LcFyr31nMXBGRpZeEsmAgC-jxKB4lfsOIZOaybOrwg1PEIbCR3nistCytcUaZOl8LrKKLLXELYaDRz0zfKMKOC7LvpjWzQyKY3ckIWaNn9Z7HNdXeh2V6aYZ2NynWMhS7S0gdpA2CJ50ID61HR58rPE6LGdTFjJSlgH3xR9Zcf1_txE2_7h5Hvx-U3sBHx3xVbh-a2NQCOQN5QqJmQ57077B9OYps0rnVC8omjTJ5-eqeurrpm3xxhDJK-l_895Xfk3vL8dGVWJ2dfXpH7eKfXur0mh7vtbXgDrGrn3na75ic9NB10 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LOX-1+rewires+glutamine+ammonia+metabolism+to+drive+liver+fibrosis&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Huang%2C+Ruihua&rft.au=Cui%2C+Hanyu&rft.au=Yahya+Ali+Alshami%2C+Mohammed+Abdulaziz&rft.au=Fu%2C+Chuankui&rft.date=2025-06-01&rft.pub=Elsevier+GmbH&rft.issn=2212-8778&rft.eissn=2212-8778&rft.volume=96&rft_id=info:doi/10.1016%2Fj.molmet.2025.102132&rft.externalDocID=S2212877825000390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon |