LOX-1 rewires glutamine ammonia metabolism to drive liver fibrosis

Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and...

Full description

Saved in:
Bibliographic Details
Published inMolecular metabolism (Germany) Vol. 96; p. 102132
Main Authors Huang, Ruihua, Cui, Hanyu, Yahya Ali Alshami, Mohammed Abdulaziz, Fu, Chuankui, Jiang, Wei, Cai, Mingyuan, Zhou, Shuhan, Zhu, Xiaoyun, Hu, Changping
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.06.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism–urea cycle to drive the progression of liver fibrosis. Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy. [Display omitted] •LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models.•LOX-1 drove the progression of liver fibrosis by promoting the activation of hepatic stellate cells.•LOX-1 reprogrammed glutamine metabolism by mediating GLS isotype swift.•LOX-1 up-regulated GLS1 expression via enhancement of transcriptional regulation of OCT1.•LOX-1 rewired glutamine metabolism and urea cycle to disrupt ammonia homeostasis driving liver fibrosis.
AbstractList Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear.OBJECTIVELiver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear.LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis.METHODSLOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis.We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis.RESULTSWe found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis.Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.CONCLUSIONSOur findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.
Objective: Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. Methods: LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. Results: We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism–urea cycle to drive the progression of liver fibrosis. Conclusions: Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.
Image 1 • LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models. • LOX-1 drove the progression of liver fibrosis by promoting the activation of hepatic stellate cells. • LOX-1 reprogrammed glutamine metabolism by mediating GLS isotype swift. • LOX-1 up-regulated GLS1 expression via enhancement of transcriptional regulation of OCT1. • LOX-1 rewired glutamine metabolism and urea cycle to disrupt ammonia homeostasis driving liver fibrosis.
Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism–urea cycle to drive the progression of liver fibrosis. Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy. [Display omitted] •LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models.•LOX-1 drove the progression of liver fibrosis by promoting the activation of hepatic stellate cells.•LOX-1 reprogrammed glutamine metabolism by mediating GLS isotype swift.•LOX-1 up-regulated GLS1 expression via enhancement of transcriptional regulation of OCT1.•LOX-1 rewired glutamine metabolism and urea cycle to disrupt ammonia homeostasis driving liver fibrosis.
Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear. LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis. We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis. Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.
ArticleNumber 102132
Author Yahya Ali Alshami, Mohammed Abdulaziz
Zhou, Shuhan
Jiang, Wei
Cui, Hanyu
Cai, Mingyuan
Zhu, Xiaoyun
Hu, Changping
Fu, Chuankui
Huang, Ruihua
Author_xml – sequence: 1
  givenname: Ruihua
  surname: Huang
  fullname: Huang, Ruihua
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 2
  givenname: Hanyu
  surname: Cui
  fullname: Cui, Hanyu
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 3
  givenname: Mohammed Abdulaziz
  surname: Yahya Ali Alshami
  fullname: Yahya Ali Alshami, Mohammed Abdulaziz
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 4
  givenname: Chuankui
  surname: Fu
  fullname: Fu, Chuankui
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 5
  givenname: Wei
  surname: Jiang
  fullname: Jiang, Wei
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 6
  givenname: Mingyuan
  surname: Cai
  fullname: Cai, Mingyuan
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 7
  givenname: Shuhan
  surname: Zhou
  fullname: Zhou, Shuhan
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 8
  givenname: Xiaoyun
  orcidid: 0009-0009-5719-7354
  surname: Zhu
  fullname: Zhu, Xiaoyun
  email: zhuxiaoyun@csu.edu.cn
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
– sequence: 9
  givenname: Changping
  surname: Hu
  fullname: Hu, Changping
  email: huchangping@csu.edu.cn
  organization: Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40180177$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7If9ByKzdDPXfE4yIEotVgsXulFwFzLJyTXXzKQmc6_035s6tbRumkUSTt73OeS8x-hgShMg9IrgFcGke7tdjSmOMK8opqKWKGH0GTqilNBWSakOHtwP0WkpW1yX6rpOkBfokGOiMJHyCH1cX31vSZPhd8hQmk3czWYMEzRmHNMUTFObmCHFUMZmTo3LYQ9NrFtufBhyKqG8RM-9iQVO784T9O3i09fzL-366vPl-dm6tYLxufUdNrIjWAkvMGdE9t5ATywMsus9dr1QzjgyAONc2X4w9QNEUOz5oDgGw07Q5cJ1yWz1dQ6jyTc6maD_FlLeaJPnYCNooaT3veypdcANyJ45wiSWXHinhMOV9WFhXe-GEZyFac4mPoI-fpnCD71Je00oxryXvBLe3BFy-rWDMusxFAsxmgnSrmhGVMcE7jmr0tcPm913-ZdCFfBFYOtASwZ_LyFY3-att3rJW9_mrZe8q-39YoM69X2ArIsNMFlwNUs717GEpwDv_gPYGKZgTfwJN0_b_wBdHMgs
Cites_doi 10.1016/j.cmet.2020.10.026
10.1002/hep.23094
10.1016/j.cmet.2024.10.001
10.1016/j.jcmgh.2019.12.006
10.1186/s12885-023-11601-y
10.1016/j.tem.2015.11.008
10.1038/nri3623
10.1080/21655979.2022.2056814
10.1042/BJ20050845
10.1146/annurev-pathol-011110-130246
10.3945/ajcn.111.015610
10.1016/j.addr.2017.05.007
10.1002/hep.21763
10.1016/j.atherosclerosis.2012.11.007
10.3389/fcvm.2021.736215
10.1053/j.gastro.2017.12.022
10.1038/s41568-018-0054-z
10.1016/j.cmet.2024.07.007
10.1016/j.jhep.2024.06.016
10.1038/s41392-022-01125-5
10.1038/s12276-020-00504-8
10.1111/bph.16156
10.1016/j.jhep.2018.06.023
10.1053/j.gastro.2008.03.003
10.1002/hep.26604
10.1038/s41392-021-00665-6
10.1007/s40265-024-02045-0
10.1172/jci.insight.178453
10.1038/nm1102-1211
10.1038/s41467-018-07895-3
10.1161/CIRCRESAHA.107.149724
10.1016/j.immuni.2019.10.014
10.1161/01.ATV.0000229218.97976.43
10.1111/bph.15272
10.1093/cvr/cvx015
10.1038/labinvest.2009.93
10.1038/nrgastro.2017.38
10.1038/s41419-022-05409-0
10.1016/j.plipres.2021.101109
10.1186/s12950-019-0211-5
10.1038/s41575-022-00688-6
10.1038/s41575-020-00372-7
10.1038/s41423-023-00983-5
10.1038/s41575-023-00807-x
10.1016/j.jacc.2017.04.010
10.1016/j.cmet.2020.01.013
10.1016/j.cmet.2011.12.015
10.1038/nprot.2015.017
10.1016/j.jnutbio.2020.108481
10.1016/j.jhep.2015.11.019
10.1016/j.apsb.2022.03.014
10.1038/s41575-024-00970-9
10.1038/s42255-022-00568-y
10.1016/j.pupt.2017.03.012
10.1016/j.molcel.2021.08.005
10.1002/hep.30890
10.1007/s00109-017-1575-8
10.1016/j.cellsig.2021.110149
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier GmbH.. All rights reserved.
2025 The Author(s) 2025
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier GmbH.. All rights reserved.
– notice: 2025 The Author(s) 2025
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.molmet.2025.102132
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2212-8778
ExternalDocumentID oai_doaj_org_article_587ff9792cde4ae793d1370745fd85d0
PMC12004974
40180177
10_1016_j_molmet_2025_102132
S2212877825000390
Genre Journal Article
GroupedDBID -IN
.1-
.FO
0R~
1P~
457
4G.
53G
5VS
7-5
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OB0
OK1
ON-
RIG
ROL
RPM
SSZ
Z5R
6I.
AAFTH
AFCTW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c534t-f60a761085f5043179fae91ceb769f0d958dad1be3448c9ba2211520f4b840ea3
IEDL.DBID M48
ISSN 2212-8778
IngestDate Wed Aug 27 01:15:43 EDT 2025
Thu Aug 21 18:30:50 EDT 2025
Wed Jul 02 05:08:20 EDT 2025
Mon May 12 02:38:37 EDT 2025
Tue Jul 01 04:45:29 EDT 2025
Sat Jun 21 16:55:31 EDT 2025
Tue Aug 26 16:34:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Urea cycle
Liver fibrosis
LOX-1
GLS
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2025 The Author(s). Published by Elsevier GmbH.. All rights reserved.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-f60a761085f5043179fae91ceb769f0d958dad1be3448c9ba2211520f4b840ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0009-5719-7354
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.molmet.2025.102132
PMID 40180177
PQID 3186350943
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_587ff9792cde4ae793d1370745fd85d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12004974
proquest_miscellaneous_3186350943
pubmed_primary_40180177
crossref_primary_10_1016_j_molmet_2025_102132
elsevier_sciencedirect_doi_10_1016_j_molmet_2025_102132
elsevier_clinicalkey_doi_10_1016_j_molmet_2025_102132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular metabolism (Germany)
PublicationTitleAlternate Mol Metab
PublicationYear 2025
Publisher Elsevier GmbH
Elsevier
Publisher_xml – name: Elsevier GmbH
– name: Elsevier
References Chen, Liu, Liu, Hermonat, Mehta (bib35) 2006; 393
Zhang, Higgins, Tica, Adams, Sun, Kelly (bib58) 2024; 36
Fujita, Nozaki, Wada, Yoneda, Fujimoto, Fujitake (bib51) 2009; 50
Zhang, Su, Liu, Li, Wang, Cheng (bib34) 2023; 23
Friedman (bib6) 2008; 134
Li, Yu, Ou, Ouyang, Tang (bib13) 2021; 83
Simon, Nuñez-García, Fernández-Tussy, Barbier-Torres, Fernandez-Ramos, Gomez-Santos (bib32) 2020; 31
Zhang, Zhang, Lu, Zhou, Lv, Wang (bib25) 2022; 13
De Chiara, Heebøll, Marrone, Montoliu, Hamilton-Dutoit, Ferrandez (bib53) 2018; 69
De Chiara, Thomsen, Habtesion, Jones, Davies, Gracia-Sancho (bib27) 2020; 71
Zhang, Yang, Wang, Huang, Chen, Li (bib19) 2021; 88
Ho, Ho, Jeng, Lai, Chen, Lu (bib20) 2019; 16
Higashi, Friedman, Hoshida (bib12) 2017; 121
Ge, Zhang, Zhu, Huang, Yao, Liu (bib26) 2021; 87
Kisseleva, Brenner (bib1) 2021; 18
Liao, Chen, Liu, Huang, Sun, Bai (bib55) 2024; 36
Li, Tang, Liu, Zhang, Zhang, Lv (bib23) 2021; 8
Yin, Peng, Gu, Liu, Li, Wu (bib42) 2022; 13
Mederacke, Dapito, Affo, Uchinami, Schwabe (bib29) 2015; 10
Duan, Gong, Xu, Zhang, Meng, Han (bib15) 2022; 7
Du, Hyun, Premont, Choi, Michelotti, Swiderska-Syn (bib41) 2018; 154
Akhmedov, Camici, Reiner, Bonetti, Costantino, Holy (bib36) 2017; 113
Puri, Baillie, Wiest, Morshahi, Choudhury, Cheung (bib44) 2007; 46
Zhu, Zhang, Zhao, Xiang, Zou, Andrisani (bib28) 2021; 6
Contento, Wilson, Selvarajah, Plate, Guillotin, Morales (bib57) 2024; 9
Lercher, Bhattacharya, Popa, Caldera, Schlapansky, Baazim (bib37) 2019; 51
Yang, Tsai, Chen, Yang (bib56) 2024; 35
Trivedi, Wang, Friedman (bib10) 2021; 33
Du, Chitneni, Suzuki, Wang, Henao, Hyun (bib31) 2020; 10
Jalan, De Chiara, Balasubramaniyan, Andreola, Khetan, Malago (bib39) 2016; 64
Gallego-Durán, Hadjihambi, Ampuero, Rose, Jalan, Romero-Gomez (bib59) 2024; 21
Steinberg (bib47) 2002; 8
Fan, Liu, Liu, Cui, Yao, Zhang (bib30) 2019; 10
Zou, Gong, Liu, He, Zhu, Li (bib24) 2017; 44
Yang, Li, Liu, Zong, Wei, Shi (bib3) 2023; 20
Kang, Chen (bib22) 2009; 89
Cheng, Geng, Li, Zhong, Wang, Cheng (bib54) 2022; 4
Tomita, Teratani, Suzuki, Shimizu, Sato, Narimatsu (bib14) 2014; 59
Pellicoro, Ramachandran, Iredale, Fallowfield (bib2) 2014; 14
Taru, Szabo, Mehal, Reiberger (bib5) 2024; 81
Hammerich, Tacke (bib4) 2023; 20
Hajaj, Sciacovelli, Frezza, Erez (bib40) 2021; 81
Huang, Mathurin, Cortez-Pinto, Loomba (bib8) 2023; 20
Mehta, Sanada, Hu, Chen, Dandapat, Sugawara (bib16) 2007; 100
Neri Serneri, Coppo, Bandinelli, Paoletti, Toscano, Micalizzi (bib52) 2013; 226
Chistiakov, Melnichenko, Myasoedova, Grechko, Orekhov (bib18) 2017; 95
Luchetti, Crinelli, Nasoni, Benedetti, Palma, Fraternale (bib46) 2021; 178
Yoo, Yu, Sung, Han (bib33) 2020; 52
Tsuchida, Friedman (bib11) 2017; 14
Keam (bib9) 2024; 84
Keshet, Szlosarek, Carracedo, Erez (bib38) 2018; 18
Chen, Liang, Xia, Wang, Li, Shao (bib49) 2023; 180
Musso, Cassader, De Michieli, Saba, Bo, Gambino (bib21) 2011; 94
Yuneva, Fan, Allen, Higashi, Ferrari, Tsukamoto (bib50) 2012; 15
Ioannou (bib43) 2016; 27
Hernandez-Gea, Friedman (bib7) 2011; 6
Pothineni, Karathanasis, Ding, Arulandu, Varughese, Mehta (bib45) 2017; 69
Moore, Freeman (bib17) 2006; 26
Wang, Li, Chen, Yang, Liang, Zhang (bib48) 2022; 12
Li (10.1016/j.molmet.2025.102132_bib23) 2021; 8
Zhang (10.1016/j.molmet.2025.102132_bib25) 2022; 13
Du (10.1016/j.molmet.2025.102132_bib31) 2020; 10
Li (10.1016/j.molmet.2025.102132_bib13) 2021; 83
Yoo (10.1016/j.molmet.2025.102132_bib33) 2020; 52
Higashi (10.1016/j.molmet.2025.102132_bib12) 2017; 121
Steinberg (10.1016/j.molmet.2025.102132_bib47) 2002; 8
Huang (10.1016/j.molmet.2025.102132_bib8) 2023; 20
Simon (10.1016/j.molmet.2025.102132_bib32) 2020; 31
Hammerich (10.1016/j.molmet.2025.102132_bib4) 2023; 20
Jalan (10.1016/j.molmet.2025.102132_bib39) 2016; 64
Trivedi (10.1016/j.molmet.2025.102132_bib10) 2021; 33
Pothineni (10.1016/j.molmet.2025.102132_bib45) 2017; 69
Puri (10.1016/j.molmet.2025.102132_bib44) 2007; 46
Keam (10.1016/j.molmet.2025.102132_bib9) 2024; 84
Yin (10.1016/j.molmet.2025.102132_bib42) 2022; 13
Taru (10.1016/j.molmet.2025.102132_bib5) 2024; 81
Cheng (10.1016/j.molmet.2025.102132_bib54) 2022; 4
Yang (10.1016/j.molmet.2025.102132_bib3) 2023; 20
Zhang (10.1016/j.molmet.2025.102132_bib34) 2023; 23
Chen (10.1016/j.molmet.2025.102132_bib35) 2006; 393
Mehta (10.1016/j.molmet.2025.102132_bib16) 2007; 100
Luchetti (10.1016/j.molmet.2025.102132_bib46) 2021; 178
Zhu (10.1016/j.molmet.2025.102132_bib28) 2021; 6
Chen (10.1016/j.molmet.2025.102132_bib49) 2023; 180
Mederacke (10.1016/j.molmet.2025.102132_bib29) 2015; 10
Keshet (10.1016/j.molmet.2025.102132_bib38) 2018; 18
Akhmedov (10.1016/j.molmet.2025.102132_bib36) 2017; 113
Wang (10.1016/j.molmet.2025.102132_bib48) 2022; 12
Fan (10.1016/j.molmet.2025.102132_bib30) 2019; 10
Zhang (10.1016/j.molmet.2025.102132_bib58) 2024; 36
De Chiara (10.1016/j.molmet.2025.102132_bib53) 2018; 69
Zou (10.1016/j.molmet.2025.102132_bib24) 2017; 44
Ge (10.1016/j.molmet.2025.102132_bib26) 2021; 87
Fujita (10.1016/j.molmet.2025.102132_bib51) 2009; 50
Ho (10.1016/j.molmet.2025.102132_bib20) 2019; 16
Duan (10.1016/j.molmet.2025.102132_bib15) 2022; 7
Ioannou (10.1016/j.molmet.2025.102132_bib43) 2016; 27
Yang (10.1016/j.molmet.2025.102132_bib56) 2024; 35
Chistiakov (10.1016/j.molmet.2025.102132_bib18) 2017; 95
Neri Serneri (10.1016/j.molmet.2025.102132_bib52) 2013; 226
Pellicoro (10.1016/j.molmet.2025.102132_bib2) 2014; 14
Tomita (10.1016/j.molmet.2025.102132_bib14) 2014; 59
De Chiara (10.1016/j.molmet.2025.102132_bib27) 2020; 71
Liao (10.1016/j.molmet.2025.102132_bib55) 2024; 36
Lercher (10.1016/j.molmet.2025.102132_bib37) 2019; 51
Du (10.1016/j.molmet.2025.102132_bib41) 2018; 154
Kisseleva (10.1016/j.molmet.2025.102132_bib1) 2021; 18
Kang (10.1016/j.molmet.2025.102132_bib22) 2009; 89
Gallego-Durán (10.1016/j.molmet.2025.102132_bib59) 2024; 21
Contento (10.1016/j.molmet.2025.102132_bib57) 2024; 9
Hernandez-Gea (10.1016/j.molmet.2025.102132_bib7) 2011; 6
Musso (10.1016/j.molmet.2025.102132_bib21) 2011; 94
Friedman (10.1016/j.molmet.2025.102132_bib6) 2008; 134
Moore (10.1016/j.molmet.2025.102132_bib17) 2006; 26
Zhang (10.1016/j.molmet.2025.102132_bib19) 2021; 88
Hajaj (10.1016/j.molmet.2025.102132_bib40) 2021; 81
Yuneva (10.1016/j.molmet.2025.102132_bib50) 2012; 15
Tsuchida (10.1016/j.molmet.2025.102132_bib11) 2017; 14
References_xml – volume: 36
  start-page: 2347
  year: 2024
  end-page: 2448
  ident: bib55
  article-title: Amino acid is a major carbon source for hepatic lipogenesis
  publication-title: Cell Metab
– volume: 8
  start-page: 736215
  year: 2021
  ident: bib23
  article-title: Lox-1 deletion attenuates myocardial fibrosis in the aged mice, particularly those with hypertension
  publication-title: Front Cardiovasc Med
– volume: 44
  start-page: 70
  year: 2017
  end-page: 77
  ident: bib24
  article-title: Involvement of epithelial-mesenchymal transition afforded by activation of lox-1/tgf-β1/klf6 signaling pathway in diabetic pulmonary fibrosis
  publication-title: Pulm Pharmacol Ther
– volume: 113
  start-page: 498
  year: 2017
  end-page: 507
  ident: bib36
  article-title: Endothelial lox-1 activation differentially regulates arterial thrombus formation depending on oxldl levels: role of the oct-1/sirt1 and erk1/2 pathways
  publication-title: Cardiovasc Res
– volume: 83
  start-page: 101109
  year: 2021
  ident: bib13
  article-title: Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis
  publication-title: Prog Lipid Res
– volume: 81
  start-page: 3749
  year: 2021
  end-page: 3759
  ident: bib40
  article-title: The context-specific roles of urea cycle enzymes in tumorigenesis
  publication-title: Mol Cell
– volume: 154
  start-page: 1465
  year: 2018
  end-page: 1479.e1413
  ident: bib41
  article-title: Hedgehog-yap signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells
  publication-title: Gastroenterology
– volume: 46
  start-page: 1081
  year: 2007
  end-page: 1090
  ident: bib44
  article-title: A lipidomic analysis of nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 51
  year: 2019
  ident: bib37
  article-title: Type i interferon signaling disrupts the hepatic urea cycle and alters systemic metabolism to suppress t cell function
  publication-title: Immunity
– volume: 10
  start-page: 305
  year: 2015
  end-page: 315
  ident: bib29
  article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers
  publication-title: Nat Protoc
– volume: 10
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib31
  article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression
  publication-title: Cell Mol Gastroenterol Hepatol
– volume: 21
  start-page: 774
  year: 2024
  end-page: 791
  ident: bib59
  article-title: Ammonia-induced stress response in liver disease progression and hepatic encephalopathy
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 31
  start-page: 605
  year: 2020
  end-page: 622
  ident: bib32
  article-title: Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly
  publication-title: Cell Metab
– volume: 12
  start-page: 3618
  year: 2022
  end-page: 3638
  ident: bib48
  article-title: Inhibition of asct2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an il-1α/nf-κb feedback pathway to inhibit liver fibrosis
  publication-title: Acta Pharm Sin B
– volume: 35
  year: 2024
  ident: bib56
  article-title: Glutamine metabolism inhibition alleviates kidney fibrosis through the immunometabolic axis
  publication-title: J Am Soc Nephrol
– volume: 13
  year: 2022
  ident: bib42
  article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis
  publication-title: Cell Death Dis
– volume: 226
  start-page: 476
  year: 2013
  end-page: 482
  ident: bib52
  article-title: Exaggerated myocardial oxldl amount and lox-1 receptor over-expression associated with coronary microvessel inflammation in unstable angina
  publication-title: Atherosclerosis
– volume: 9
  year: 2024
  ident: bib57
  article-title: Pyruvate metabolism dictates fibroblast sensitivity to gls1 inhibition during fibrogenesis
  publication-title: Jci Insight
– volume: 20
  start-page: 583
  year: 2023
  end-page: 599
  ident: bib3
  article-title: Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment
  publication-title: Cell Mol Immunol
– volume: 8
  start-page: 1211
  year: 2002
  end-page: 1217
  ident: bib47
  article-title: Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime
  publication-title: Nat Med
– volume: 121
  start-page: 27
  year: 2017
  end-page: 42
  ident: bib12
  article-title: Hepatic stellate cells as key target in liver fibrosis
  publication-title: Adv Drug Deliv Rev
– volume: 50
  start-page: 772
  year: 2009
  end-page: 780
  ident: bib51
  article-title: Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis
  publication-title: Hepatology
– volume: 13
  start-page: 8926
  year: 2022
  end-page: 8936
  ident: bib25
  article-title: Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway
  publication-title: Bioengineered
– volume: 134
  start-page: 1655
  year: 2008
  end-page: 1669
  ident: bib6
  article-title: Mechanisms of hepatic fibrogenesis
  publication-title: Gastroenterology
– volume: 27
  start-page: 84
  year: 2016
  end-page: 95
  ident: bib43
  article-title: The role of cholesterol in the pathogenesis of nash
  publication-title: Trends Endocrinol Metabol
– volume: 18
  start-page: 151
  year: 2021
  end-page: 166
  ident: bib1
  article-title: Molecular and cellular mechanisms of liver fibrosis and its regression
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 100
  start-page: 1634
  year: 2007
  end-page: 1642
  ident: bib16
  article-title: Deletion of lox-1 reduces atherogenesis in ldlr knockout mice fed high cholesterol diet
  publication-title: Circ Res
– volume: 10
  start-page: 425
  year: 2019
  ident: bib30
  article-title: Ckip-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of oct-1 by regγ
  publication-title: Nat Commun
– volume: 14
  start-page: 181
  year: 2014
  end-page: 194
  ident: bib2
  article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ
  publication-title: Nat Rev Immunol
– volume: 89
  start-page: 1275
  year: 2009
  end-page: 1290
  ident: bib22
  article-title: Curcumin eliminates oxidized ldl roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized ldl receptor-1
  publication-title: Lab Invest
– volume: 36
  start-page: 2069
  year: 2024
  end-page: 2085
  ident: bib58
  article-title: Hierarchical tricarboxylic acid cycle regulation by hepatocyte arginase 2 links the urea cycle to oxidative metabolism
  publication-title: Cell Metab
– volume: 16
  start-page: 7
  year: 2019
  ident: bib20
  article-title: Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease
  publication-title: J Inflamm
– volume: 6
  start-page: 319
  year: 2021
  ident: bib28
  article-title: Lix1-like protein drives hepatic stellate cell activation to promote liver fibrosis by regulation of chemokine mrna stability
  publication-title: Signal Transduct Targeted Ther
– volume: 69
  start-page: 2759
  year: 2017
  end-page: 2768
  ident: bib45
  article-title: Lox-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation
  publication-title: J Am Coll Cardiol
– volume: 6
  start-page: 425
  year: 2011
  end-page: 456
  ident: bib7
  article-title: Pathogenesis of liver fibrosis
  publication-title: Annu Rev Pathol
– volume: 87
  start-page: 110149
  year: 2021
  ident: bib26
  article-title: Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/lox-1 signaling-impelled intercellular communication
  publication-title: Cell Signal
– volume: 180
  start-page: 2577
  year: 2023
  end-page: 2598
  ident: bib49
  article-title: Emodin promotes hepatic stellate cell senescence and alleviates liver fibrosis via a nuclear receptor (nur77)-mediated epigenetic regulation of glutaminase 1
  publication-title: Br J Pharmacol
– volume: 59
  start-page: 154
  year: 2014
  end-page: 169
  ident: bib14
  article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice
  publication-title: Hepatology
– volume: 7
  start-page: 265
  year: 2022
  ident: bib15
  article-title: Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics
  publication-title: Signal Transduct Targeted Ther
– volume: 95
  start-page: 1153
  year: 2017
  end-page: 1165
  ident: bib18
  article-title: Mechanisms of foam cell formation in atherosclerosis
  publication-title: J Mol Med (Berl)
– volume: 178
  start-page: 3104
  year: 2021
  end-page: 3114
  ident: bib46
  article-title: Ldl receptors, caveolae and cholesterol in endothelial dysfunction: oxldls accomplices or victims?
  publication-title: Br J Pharmacol
– volume: 23
  start-page: 1081
  year: 2023
  ident: bib34
  article-title: Kidney-type glutaminase is a biomarker for the diagnosis and prognosis of hepatocellular carcinoma: a prospective study
  publication-title: BMC Cancer
– volume: 15
  start-page: 157
  year: 2012
  end-page: 170
  ident: bib50
  article-title: The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
  publication-title: Cell Metab
– volume: 52
  start-page: 1496
  year: 2020
  end-page: 1516
  ident: bib33
  article-title: Glutamine reliance in cell metabolism
  publication-title: Exp Mol Med
– volume: 393
  start-page: 255
  year: 2006
  end-page: 265
  ident: bib35
  article-title: Lectin-like oxidized low-density lipoprotein receptor-1 (lox-1) transcriptional regulation by oct-1 in human endothelial cells: implications for atherosclerosis
  publication-title: Biochem J
– volume: 20
  start-page: 37
  year: 2023
  end-page: 49
  ident: bib8
  article-title: Global epidemiology of alcohol-associated cirrhosis and hcc: trends, projections and risk factors
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 33
  start-page: 242
  year: 2021
  end-page: 257
  ident: bib10
  article-title: The power of plasticity-metabolic regulation of hepatic stellate cells
  publication-title: Cell Metab
– volume: 4
  start-page: 575
  year: 2022
  end-page: 588
  ident: bib54
  article-title: Ammonia stimulates scap/insig dissociation and srebp-1 activation to promote lipogenesis and tumour growth
  publication-title: Nat Metab
– volume: 94
  start-page: 1033
  year: 2011
  end-page: 1042
  ident: bib21
  article-title: Effect of lectin-like oxidized ldl receptor-1 polymorphism on liver disease, glucose homeostasis, and postprandial lipoprotein metabolism in nonalcoholic steatohepatitis
  publication-title: Am J Clin Nutr
– volume: 81
  start-page: 895
  year: 2024
  end-page: 910
  ident: bib5
  article-title: Inflammasomes in chronic liver disease: hepatic injury, fibrosis progression and systemic inflammation
  publication-title: J Hepatol
– volume: 88
  start-page: 108481
  year: 2021
  ident: bib19
  article-title: N-3 pufas inhibited hepatic er stress induced by feeding of a high-saturated fat diet accompanied by the expression lox-1
  publication-title: J Nutr Biochem
– volume: 71
  start-page: 874
  year: 2020
  end-page: 892
  ident: bib27
  article-title: Ammonia scavenging prevents progression of fibrosis in experimental nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 20
  start-page: 633
  year: 2023
  end-page: 646
  ident: bib4
  article-title: Hepatic inflammatory responses in liver fibrosis
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 69
  start-page: 905
  year: 2018
  end-page: 915
  ident: bib53
  article-title: Urea cycle dysregulation in non-alcoholic fatty liver disease
  publication-title: J Hepatol
– volume: 14
  start-page: 397
  year: 2017
  end-page: 411
  ident: bib11
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 26
  start-page: 1702
  year: 2006
  end-page: 1711
  ident: bib17
  article-title: Scavenger receptors in atherosclerosis: beyond lipid uptake
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 64
  start-page: 823
  year: 2016
  end-page: 833
  ident: bib39
  article-title: Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension
  publication-title: J Hepatol
– volume: 84
  start-page: 729
  year: 2024
  end-page: 735
  ident: bib9
  article-title: Resmetirom: first approval
  publication-title: Drugs
– volume: 18
  start-page: 634
  year: 2018
  end-page: 645
  ident: bib38
  article-title: Rewiring urea cycle metabolism in cancer to support anabolism
  publication-title: Nat Rev Cancer
– volume: 33
  start-page: 242
  issue: 2
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib10
  article-title: The power of plasticity-metabolic regulation of hepatic stellate cells
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2020.10.026
– volume: 50
  start-page: 772
  issue: 3
  year: 2009
  ident: 10.1016/j.molmet.2025.102132_bib51
  article-title: Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis
  publication-title: Hepatology
  doi: 10.1002/hep.23094
– volume: 36
  start-page: 2347
  issue: 11
  year: 2024
  ident: 10.1016/j.molmet.2025.102132_bib55
  article-title: Amino acid is a major carbon source for hepatic lipogenesis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2024.10.001
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.molmet.2025.102132_bib31
  article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression
  publication-title: Cell Mol Gastroenterol Hepatol
  doi: 10.1016/j.jcmgh.2019.12.006
– volume: 23
  start-page: 1081
  issue: 1
  year: 2023
  ident: 10.1016/j.molmet.2025.102132_bib34
  article-title: Kidney-type glutaminase is a biomarker for the diagnosis and prognosis of hepatocellular carcinoma: a prospective study
  publication-title: BMC Cancer
  doi: 10.1186/s12885-023-11601-y
– volume: 27
  start-page: 84
  issue: 2
  year: 2016
  ident: 10.1016/j.molmet.2025.102132_bib43
  article-title: The role of cholesterol in the pathogenesis of nash
  publication-title: Trends Endocrinol Metabol
  doi: 10.1016/j.tem.2015.11.008
– volume: 14
  start-page: 181
  issue: 3
  year: 2014
  ident: 10.1016/j.molmet.2025.102132_bib2
  article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3623
– volume: 13
  start-page: 8926
  issue: 4
  year: 2022
  ident: 10.1016/j.molmet.2025.102132_bib25
  article-title: Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway
  publication-title: Bioengineered
  doi: 10.1080/21655979.2022.2056814
– volume: 393
  start-page: 255
  issue: Pt 1
  year: 2006
  ident: 10.1016/j.molmet.2025.102132_bib35
  article-title: Lectin-like oxidized low-density lipoprotein receptor-1 (lox-1) transcriptional regulation by oct-1 in human endothelial cells: implications for atherosclerosis
  publication-title: Biochem J
  doi: 10.1042/BJ20050845
– volume: 6
  start-page: 425
  year: 2011
  ident: 10.1016/j.molmet.2025.102132_bib7
  article-title: Pathogenesis of liver fibrosis
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathol-011110-130246
– volume: 35
  issue: 10
  year: 2024
  ident: 10.1016/j.molmet.2025.102132_bib56
  article-title: Glutamine metabolism inhibition alleviates kidney fibrosis through the immunometabolic axis
  publication-title: J Am Soc Nephrol
– volume: 94
  start-page: 1033
  issue: 4
  year: 2011
  ident: 10.1016/j.molmet.2025.102132_bib21
  article-title: Effect of lectin-like oxidized ldl receptor-1 polymorphism on liver disease, glucose homeostasis, and postprandial lipoprotein metabolism in nonalcoholic steatohepatitis
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.111.015610
– volume: 121
  start-page: 27
  year: 2017
  ident: 10.1016/j.molmet.2025.102132_bib12
  article-title: Hepatic stellate cells as key target in liver fibrosis
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2017.05.007
– volume: 46
  start-page: 1081
  issue: 4
  year: 2007
  ident: 10.1016/j.molmet.2025.102132_bib44
  article-title: A lipidomic analysis of nonalcoholic fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.21763
– volume: 226
  start-page: 476
  issue: 2
  year: 2013
  ident: 10.1016/j.molmet.2025.102132_bib52
  article-title: Exaggerated myocardial oxldl amount and lox-1 receptor over-expression associated with coronary microvessel inflammation in unstable angina
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2012.11.007
– volume: 8
  start-page: 736215
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib23
  article-title: Lox-1 deletion attenuates myocardial fibrosis in the aged mice, particularly those with hypertension
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2021.736215
– volume: 154
  start-page: 1465
  issue: 5
  year: 2018
  ident: 10.1016/j.molmet.2025.102132_bib41
  article-title: Hedgehog-yap signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.12.022
– volume: 18
  start-page: 634
  issue: 10
  year: 2018
  ident: 10.1016/j.molmet.2025.102132_bib38
  article-title: Rewiring urea cycle metabolism in cancer to support anabolism
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0054-z
– volume: 36
  start-page: 2069
  issue: 9
  year: 2024
  ident: 10.1016/j.molmet.2025.102132_bib58
  article-title: Hierarchical tricarboxylic acid cycle regulation by hepatocyte arginase 2 links the urea cycle to oxidative metabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2024.07.007
– volume: 81
  start-page: 895
  issue: 5
  year: 2024
  ident: 10.1016/j.molmet.2025.102132_bib5
  article-title: Inflammasomes in chronic liver disease: hepatic injury, fibrosis progression and systemic inflammation
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2024.06.016
– volume: 7
  start-page: 265
  issue: 1
  year: 2022
  ident: 10.1016/j.molmet.2025.102132_bib15
  article-title: Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics
  publication-title: Signal Transduct Targeted Ther
  doi: 10.1038/s41392-022-01125-5
– volume: 52
  start-page: 1496
  issue: 9
  year: 2020
  ident: 10.1016/j.molmet.2025.102132_bib33
  article-title: Glutamine reliance in cell metabolism
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-020-00504-8
– volume: 180
  start-page: 2577
  issue: 19
  year: 2023
  ident: 10.1016/j.molmet.2025.102132_bib49
  article-title: Emodin promotes hepatic stellate cell senescence and alleviates liver fibrosis via a nuclear receptor (nur77)-mediated epigenetic regulation of glutaminase 1
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.16156
– volume: 69
  start-page: 905
  issue: 4
  year: 2018
  ident: 10.1016/j.molmet.2025.102132_bib53
  article-title: Urea cycle dysregulation in non-alcoholic fatty liver disease
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.06.023
– volume: 134
  start-page: 1655
  issue: 6
  year: 2008
  ident: 10.1016/j.molmet.2025.102132_bib6
  article-title: Mechanisms of hepatic fibrogenesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.03.003
– volume: 59
  start-page: 154
  issue: 1
  year: 2014
  ident: 10.1016/j.molmet.2025.102132_bib14
  article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.26604
– volume: 6
  start-page: 319
  issue: 1
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib28
  article-title: Lix1-like protein drives hepatic stellate cell activation to promote liver fibrosis by regulation of chemokine mrna stability
  publication-title: Signal Transduct Targeted Ther
  doi: 10.1038/s41392-021-00665-6
– volume: 84
  start-page: 729
  issue: 6
  year: 2024
  ident: 10.1016/j.molmet.2025.102132_bib9
  article-title: Resmetirom: first approval
  publication-title: Drugs
  doi: 10.1007/s40265-024-02045-0
– volume: 9
  issue: 18
  year: 2024
  ident: 10.1016/j.molmet.2025.102132_bib57
  article-title: Pyruvate metabolism dictates fibroblast sensitivity to gls1 inhibition during fibrogenesis
  publication-title: Jci Insight
  doi: 10.1172/jci.insight.178453
– volume: 8
  start-page: 1211
  issue: 11
  year: 2002
  ident: 10.1016/j.molmet.2025.102132_bib47
  article-title: Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime
  publication-title: Nat Med
  doi: 10.1038/nm1102-1211
– volume: 10
  start-page: 425
  issue: 1
  year: 2019
  ident: 10.1016/j.molmet.2025.102132_bib30
  article-title: Ckip-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of oct-1 by regγ
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07895-3
– volume: 100
  start-page: 1634
  issue: 11
  year: 2007
  ident: 10.1016/j.molmet.2025.102132_bib16
  article-title: Deletion of lox-1 reduces atherogenesis in ldlr knockout mice fed high cholesterol diet
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.107.149724
– volume: 51
  issue: 6
  year: 2019
  ident: 10.1016/j.molmet.2025.102132_bib37
  article-title: Type i interferon signaling disrupts the hepatic urea cycle and alters systemic metabolism to suppress t cell function
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.10.014
– volume: 26
  start-page: 1702
  issue: 8
  year: 2006
  ident: 10.1016/j.molmet.2025.102132_bib17
  article-title: Scavenger receptors in atherosclerosis: beyond lipid uptake
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000229218.97976.43
– volume: 178
  start-page: 3104
  issue: 16
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib46
  article-title: Ldl receptors, caveolae and cholesterol in endothelial dysfunction: oxldls accomplices or victims?
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.15272
– volume: 113
  start-page: 498
  issue: 5
  year: 2017
  ident: 10.1016/j.molmet.2025.102132_bib36
  article-title: Endothelial lox-1 activation differentially regulates arterial thrombus formation depending on oxldl levels: role of the oct-1/sirt1 and erk1/2 pathways
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvx015
– volume: 89
  start-page: 1275
  issue: 11
  year: 2009
  ident: 10.1016/j.molmet.2025.102132_bib22
  article-title: Curcumin eliminates oxidized ldl roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized ldl receptor-1
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2009.93
– volume: 14
  start-page: 397
  issue: 7
  year: 2017
  ident: 10.1016/j.molmet.2025.102132_bib11
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2017.38
– volume: 13
  issue: 11
  year: 2022
  ident: 10.1016/j.molmet.2025.102132_bib42
  article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-022-05409-0
– volume: 83
  start-page: 101109
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib13
  article-title: Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis
  publication-title: Prog Lipid Res
  doi: 10.1016/j.plipres.2021.101109
– volume: 16
  start-page: 7
  year: 2019
  ident: 10.1016/j.molmet.2025.102132_bib20
  article-title: Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease
  publication-title: J Inflamm
  doi: 10.1186/s12950-019-0211-5
– volume: 20
  start-page: 37
  issue: 1
  year: 2023
  ident: 10.1016/j.molmet.2025.102132_bib8
  article-title: Global epidemiology of alcohol-associated cirrhosis and hcc: trends, projections and risk factors
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-022-00688-6
– volume: 18
  start-page: 151
  issue: 3
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib1
  article-title: Molecular and cellular mechanisms of liver fibrosis and its regression
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-020-00372-7
– volume: 20
  start-page: 583
  issue: 6
  year: 2023
  ident: 10.1016/j.molmet.2025.102132_bib3
  article-title: Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-023-00983-5
– volume: 20
  start-page: 633
  issue: 10
  year: 2023
  ident: 10.1016/j.molmet.2025.102132_bib4
  article-title: Hepatic inflammatory responses in liver fibrosis
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-023-00807-x
– volume: 69
  start-page: 2759
  issue: 22
  year: 2017
  ident: 10.1016/j.molmet.2025.102132_bib45
  article-title: Lox-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2017.04.010
– volume: 31
  start-page: 605
  issue: 3
  year: 2020
  ident: 10.1016/j.molmet.2025.102132_bib32
  article-title: Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2020.01.013
– volume: 15
  start-page: 157
  issue: 2
  year: 2012
  ident: 10.1016/j.molmet.2025.102132_bib50
  article-title: The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.12.015
– volume: 10
  start-page: 305
  issue: 2
  year: 2015
  ident: 10.1016/j.molmet.2025.102132_bib29
  article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.017
– volume: 88
  start-page: 108481
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib19
  article-title: N-3 pufas inhibited hepatic er stress induced by feeding of a high-saturated fat diet accompanied by the expression lox-1
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2020.108481
– volume: 64
  start-page: 823
  issue: 4
  year: 2016
  ident: 10.1016/j.molmet.2025.102132_bib39
  article-title: Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2015.11.019
– volume: 12
  start-page: 3618
  issue: 9
  year: 2022
  ident: 10.1016/j.molmet.2025.102132_bib48
  article-title: Inhibition of asct2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an il-1α/nf-κb feedback pathway to inhibit liver fibrosis
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2022.03.014
– volume: 21
  start-page: 774
  issue: 11
  year: 2024
  ident: 10.1016/j.molmet.2025.102132_bib59
  article-title: Ammonia-induced stress response in liver disease progression and hepatic encephalopathy
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-024-00970-9
– volume: 4
  start-page: 575
  issue: 5
  year: 2022
  ident: 10.1016/j.molmet.2025.102132_bib54
  article-title: Ammonia stimulates scap/insig dissociation and srebp-1 activation to promote lipogenesis and tumour growth
  publication-title: Nat Metab
  doi: 10.1038/s42255-022-00568-y
– volume: 44
  start-page: 70
  year: 2017
  ident: 10.1016/j.molmet.2025.102132_bib24
  article-title: Involvement of epithelial-mesenchymal transition afforded by activation of lox-1/tgf-β1/klf6 signaling pathway in diabetic pulmonary fibrosis
  publication-title: Pulm Pharmacol Ther
  doi: 10.1016/j.pupt.2017.03.012
– volume: 81
  start-page: 3749
  issue: 18
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib40
  article-title: The context-specific roles of urea cycle enzymes in tumorigenesis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2021.08.005
– volume: 71
  start-page: 874
  issue: 3
  year: 2020
  ident: 10.1016/j.molmet.2025.102132_bib27
  article-title: Ammonia scavenging prevents progression of fibrosis in experimental nonalcoholic fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.30890
– volume: 95
  start-page: 1153
  issue: 11
  year: 2017
  ident: 10.1016/j.molmet.2025.102132_bib18
  article-title: Mechanisms of foam cell formation in atherosclerosis
  publication-title: J Mol Med (Berl)
  doi: 10.1007/s00109-017-1575-8
– volume: 87
  start-page: 110149
  year: 2021
  ident: 10.1016/j.molmet.2025.102132_bib26
  article-title: Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/lox-1 signaling-impelled intercellular communication
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2021.110149
SSID ssj0000866651
Score 2.3532612
Snippet Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1)...
Image 1 • LOX-1 expression was significantly increased in the livers of liver fibrosis patients and animal models. • LOX-1 drove the progression of liver...
Objective: Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 102132
SubjectTerms Ammonia - metabolism
Animals
GLS
Glutaminase - metabolism
Glutamine - metabolism
Hepatic Stellate Cells - metabolism
Humans
Liver - metabolism
Liver Cirrhosis - metabolism
Liver Cirrhosis - pathology
Liver fibrosis
LOX-1
Male
Mice
Original
Rats
Rats, Sprague-Dawley
Scavenger Receptors, Class E - genetics
Scavenger Receptors, Class E - metabolism
Urea cycle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSitxQbC8AiwyEleLOrbj-MiiXa0Qjwsr9Wb5CUHbdNV0D_x7ZuKmauCwHLimcRvPjGe-ST9_JuQtglToewILso5MhmhY2wrJhOGhiRghHt93fP7SXF7Jj0u1PDjqCzlhRR64GO6danXORps6xCRdgnCKXGgofCrHVsWxW4ead9BMjTm4BViu-LRXbiR0rZDjj_TJWqFgARf1rBaNkv2zkvQ35PyTOXlQii4ekgc7DEnfl2d_RO6l_oQcl1Mlfz0mZ5--Lhmnm4QyxAP9DrHlVgAmqcOY6xyF5wPXX3fDim7XNG4g4dFr5GfQDM3zeuiGJ-Tq4vzbh0u2OyqBBSXkluVm4XSDOwkySpLBKssugbmT143Ji2hUG13kPglox4LxrobGT9WLLD10eMmJp-SoX_fpOaGeZ4AdrY9caWmc8CbUXgcRdRbZN74ibDKavSmKGHaiiv20xcgWjWyLkStyhpbd34t61uMF8LLdedne5eWKqMkvdtoyCkkOvqi748f1ftwOUhSo8A8j30zut7Di8G8U16f17WAhCwJKQ0ZmRZ6VcNhPTqIeGte6Iu0sUGazn3_Sdz9GVW-O-Qq6uxf_w14vyX2cS-G0vSJH281tOgX0tPWvx4XyGxmmF0s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSpW4IFpeKQUZiau1m9iO42O3oqoQjwNU2pvlZwnqJtVme-DfdyaPFYEDiGMeTpzxeOYb55sxIe8QpELc45kXRWDCB82qigvGde7LgBricL3j0-fy6lp8WMv1AbmYcmGQVjna_sGm99Z6PLMYpbm4q-vF1wKsbqXAw8k-wxTjdi6qPolvvdqvswBkL8t-F0a8n2GDKYOup3ltkPmPpMpCYhmDnBczD9UX8p85qj-B6O98yl8c1OUT8nhElvR86PwxOYjNCTka9pr8-ZSsPn5Zs5xuIxYn7ugNaJzdAMSkFjWxthT6BwpxW3cbumtp2IIZpLfI2qAJQuq2q7tn5Pry_beLKzZuoMC85GLHUrm0qsT8goSFymDuJRthEKJTpU7LoGUVbMhd5BCkee0siAj8-TIJB3FftPw5OWzaJr4k1OUJwEjlQi6V0JY77QunPA8q8eRKlxE2Cc3cDXUyzEQg-2EGIRsUshmEnJEVSnZ_L1a57k-02xszDrORlUpJK134EIWNYEpCzhWAHplCJcMyI3IaFzMlkoLpgwfVf3m52rebKds_tHw7Db-BeYg_V2wT2_vOgG0E7IY8zYy8GNRh_3ECq6TlSmWkminK7OvnV5r6e1_rO0crBjHf6X93-RV5hEcDve2MHO629_E1AKmde9PPlAcRlRpV
  priority: 102
  providerName: Elsevier
Title LOX-1 rewires glutamine ammonia metabolism to drive liver fibrosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2212877825000390
https://dx.doi.org/10.1016/j.molmet.2025.102132
https://www.ncbi.nlm.nih.gov/pubmed/40180177
https://www.proquest.com/docview/3186350943
https://pubmed.ncbi.nlm.nih.gov/PMC12004974
https://doaj.org/article/587ff9792cde4ae793d1370745fd85d0
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_OOwS_iG_rY4ng18i2TZv2g8iteJyepyAu7reQNMlZ2W213QPvv3emj9X6QPFLoY-kzWQev0knMwCPCaSi31PwQkSWi8LmPMtiweM8LFJLHGJoveP0TXq8FK9WyWoPxpqtAwHb37p2VE9q2ayffP1y8QwF_un3WK0Nhe9TZGSUUC4C9LAuwQHaJkmiejoA_k43ZwjXu5qMEepsVAUyG_fT_aGjib3q0vpPzNavsPTn6MofzNXRNbg64Ex22DPGddhz1Q243FeevLgJi9dvVzxkjaNUxS07Q_7TGwScTBNflprh9yF7rMt2w7Y1sw0qRbamGA7m0cGu27K9BcujF--fH_OhnAIvklhsuU_nWqa028BT2jKURK8dTokzMs393OZJZrUNjYvRZStyo5FEaN3nXhj0Ap2Ob8N-VVfuLjATeoQmmbFhIkWuY5MXkZFFbKWPvUlNAHwkmvrcZ81QYzjZJ9UTWRGRVU_kABZE2d2zlPO6u1A3Z2oQIZVk0vtc5lFhndAOFYsNY4kQKPE2S-w8gGScFzVuK0VFiB2Vf3m53LUbYEcPJ_6h5aNx-hVKJf1q0ZWrz1uFmhKRHEVtBnCnZ4fd4ATlTAulDCCbMMpk9NM7Vfmxy_wdkk5DD_Defw71Plyhsz7U7QHsb5tz9xBB1dbM4ODw5N2Hk1m3KIHHl6vFrJOdb7jtIbc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWixBcEG_C00hcrdaxHSdHumLVhe5yYFfqzbJjezdom6ya7oF_z0weFYEDiGtSt854_M036TdjQj4gSYW8p2SlTD2TpS9YngvJRMHLzKOHOHzfcXqWLS_k57VaH5CjsRYGZZUD9veY3qH1cGU2WHN2U1Wzbymgbq4hwqmuwhTy9jvABjSe33CyXuxftABnz7LuGEYcwHDEWELX6bw2KP1HVWWqsI8BF-kkRHWd_CeR6k8m-rug8pcIdfyQPBioJf3Yz_4ROQj1Y3K3P2zyxxOyWH1dM063AbsTt_QSXM5ugGNSi65YWQrzA4-4rtoN3TXUbwEH6TXKNmiEnLppq_YpuTj-dH60ZMMJCqxUQu5YzOZWZ1hgELFTGWy-aAOsQnA6K-LcFyr31nMXBGRpZeEsmAgC-jxKB4lfsOIZOaybOrwg1PEIbCR3nistCytcUaZOl8LrKKLLXELYaDRz0zfKMKOC7LvpjWzQyKY3ckIWaNn9Z7HNdXeh2V6aYZ2NynWMhS7S0gdpA2CJ50ID61HR58rPE6LGdTFjJSlgH3xR9Zcf1_txE2_7h5Hvx-U3sBHx3xVbh-a2NQCOQN5QqJmQ57077B9OYps0rnVC8omjTJ5-eqeurrpm3xxhDJK-l_895Xfk3vL8dGVWJ2dfXpH7eKfXur0mh7vtbXgDrGrn3na75ic9NB10
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LOX-1+rewires+glutamine+ammonia+metabolism+to+drive+liver+fibrosis&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Huang%2C+Ruihua&rft.au=Cui%2C+Hanyu&rft.au=Yahya+Ali+Alshami%2C+Mohammed+Abdulaziz&rft.au=Fu%2C+Chuankui&rft.date=2025-06-01&rft.pub=Elsevier+GmbH&rft.issn=2212-8778&rft.eissn=2212-8778&rft.volume=96&rft_id=info:doi/10.1016%2Fj.molmet.2025.102132&rft.externalDocID=S2212877825000390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon