Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature un...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 47; pp. 14533 - 14538
Main Authors Yokota, Tomoyuki, Inoue, Yusuke, Terakawa, Yuki, Reeder, Jonathan, Kaltenbrunner, Martin, Ware, Taylor, Yang, Kejia, Mabuchi, Kunihiko, Murakawa, Tomohiro, Sekino, Masaki, Voit, Walter, Sekitani, Tsuyoshi, Someya, Takao
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.11.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 μm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
AbstractList We have successfully fabricated very unique ultraflexible temperature sensors that exhibit changes in resistivity by six orders of magnitude or more for a change in temperature of only 5 °C or less. Our approach offers an ideal solution to measure temperature over a large area with high spatial resolution, high sensitivity of 0.1 °C or less, and fast response time of 100 ms. Indeed, such a large change of resistivity for our sensors can significantly simplify the readout circuitry, which was the key to demonstrate, to our knowledge, the world’s first successful measurement of dynamic change of temperature in the lung during very fast artificial respiration. Furthermore, we have demonstrated real-time multipoint thermal sensing using organic transistor active-matrix circuits. We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 ...m, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 ...C and 50 ...C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 ...C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. (ProQuest: ... denotes formulae/symbols omitted.)
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 μm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
Author Voit, Walter
Murakawa, Tomohiro
Yang, Kejia
Terakawa, Yuki
Ware, Taylor
Yokota, Tomoyuki
Sekino, Masaki
Inoue, Yusuke
Reeder, Jonathan
Mabuchi, Kunihiko
Kaltenbrunner, Martin
Sekitani, Tsuyoshi
Someya, Takao
Author_xml – sequence: 1
  givenname: Tomoyuki
  surname: Yokota
  fullname: Yokota, Tomoyuki
  organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 2
  givenname: Yusuke
  surname: Inoue
  fullname: Inoue, Yusuke
  organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 3
  givenname: Yuki
  surname: Terakawa
  fullname: Terakawa, Yuki
  organization: Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 4
  givenname: Jonathan
  surname: Reeder
  fullname: Reeder, Jonathan
  organization: Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 5
  givenname: Martin
  surname: Kaltenbrunner
  fullname: Kaltenbrunner, Martin
  organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 6
  givenname: Taylor
  surname: Ware
  fullname: Ware, Taylor
  organization: Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080-3021
– sequence: 7
  givenname: Kejia
  surname: Yang
  fullname: Yang, Kejia
  organization: Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021
– sequence: 8
  givenname: Kunihiko
  surname: Mabuchi
  fullname: Mabuchi, Kunihiko
  organization: Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 9
  givenname: Tomohiro
  surname: Murakawa
  fullname: Murakawa, Tomohiro
  organization: Department of Cardiothoracic Surgery, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan
– sequence: 10
  givenname: Masaki
  surname: Sekino
  fullname: Sekino, Masaki
  organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 11
  givenname: Walter
  surname: Voit
  fullname: Voit, Walter
  organization: Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080-3021
– sequence: 12
  givenname: Tsuyoshi
  surname: Sekitani
  fullname: Sekitani, Tsuyoshi
  organization: The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
– sequence: 13
  givenname: Takao
  surname: Someya
  fullname: Someya, Takao
  organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26554008$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7Gt17UoZcOOi0-Y7mU1Bil9QcGPBXcjL3HnNIzMZk4zY_9483mutBVcJnN85OTf3BB1NcQKEXhN8TrBiF_Nk8zkRREiBCaHP0IrgjrSSd_gIrTCmqtWc8mN0kvMWY9wJjV-gYyqF4BjrFfpxE0qyQ4Dffh3grAk2baC1CexZM9_eZR9D3HhnQ1NgnCHZsiRoMkw5ptwMMTXjEoqfo59KM4LNVR5hKvklej7YkOHV4TxFN58-fr_60l5_-_z16sN16wTjpQVnpWOEa-l6oIMW4KTW1BFFWL30Hdf9QPt1v9a8Y_1Qp-NuoFrZrpeCDewUXe5z52U9Qu_q28kGMyc_2nRnovXmX2Xyt2YTfxkuJWeK14D3h4AUfy6Qixl9dhCCnSAu2RDFpFSdpqqi756g27ikqY63ozrcSYVxpd4-bvRQ5f7TKyD2gEsx5wSDcb7Y4uOuoA-GYLNbrtkt1_xdbvVdPPHdR__f0Ryq7IQHmlDDlSFcMFaRN3tkm0tMj8pyKXQF_gCEPL0U
CitedBy_id crossref_primary_10_1126_sciadv_aay6094
crossref_primary_10_1021_acs_analchem_0c04701
crossref_primary_10_1002_aelm_202300396
crossref_primary_10_1126_scirobotics_aai9251
crossref_primary_10_1002_adma_202002640
crossref_primary_10_1007_s40843_024_3107_8
crossref_primary_10_1016_j_cclet_2018_07_015
crossref_primary_10_1016_j_cej_2020_125934
crossref_primary_10_1063_1_5088240
crossref_primary_10_1126_sciadv_1601649
crossref_primary_10_1016_j_sna_2018_06_023
crossref_primary_10_1021_acsnano_3c12216
crossref_primary_10_1007_s10854_023_10090_w
crossref_primary_10_1063_5_0095157
crossref_primary_10_1039_D2RA03015B
crossref_primary_10_1002_aisy_202100253
crossref_primary_10_1016_j_compscitech_2018_05_006
crossref_primary_10_1007_s11432_020_3175_6
crossref_primary_10_1016_j_mattod_2019_12_004
crossref_primary_10_3390_s21030739
crossref_primary_10_1002_sstr_202000088
crossref_primary_10_1038_nmat4904
crossref_primary_10_1021_acsnano_0c01164
crossref_primary_10_1073_pnas_2412423121
crossref_primary_10_1088_1361_665X_aac0b8
crossref_primary_10_1002_adma_201601278
crossref_primary_10_1002_admt_202201391
crossref_primary_10_1002_smll_201906567
crossref_primary_10_1002_adhm_201801033
crossref_primary_10_1016_j_measurement_2020_108348
crossref_primary_10_1038_s41587_019_0079_1
crossref_primary_10_1002_sdtp_14807
crossref_primary_10_1073_pnas_2007395117
crossref_primary_10_1039_C7TC02472J
crossref_primary_10_1063_1_5121710
crossref_primary_10_1016_j_snb_2017_11_112
crossref_primary_10_1039_D0RA02815K
crossref_primary_10_3390_mi13091419
crossref_primary_10_1002_adem_201900407
crossref_primary_10_1126_sciadv_abm6693
crossref_primary_10_3390_polym16142028
crossref_primary_10_1002_admt_202000014
crossref_primary_10_1021_acsnano_1c07388
crossref_primary_10_1126_sciadv_ade0423
crossref_primary_10_1002_admt_202301444
crossref_primary_10_1038_nmat4671
crossref_primary_10_1177_0278364918772023
crossref_primary_10_1063_1_5034047
crossref_primary_10_1380_vss_64_22
crossref_primary_10_1038_s41467_020_14311_2
crossref_primary_10_1126_sciadv_abf6312
crossref_primary_10_1007_s10973_020_09467_4
crossref_primary_10_1039_C5TB02483H
crossref_primary_10_1039_D0TC02160A
crossref_primary_10_3390_nano13162339
crossref_primary_10_1021_acs_analchem_7b04751
crossref_primary_10_1038_s41598_019_42027_x
crossref_primary_10_1038_s41578_024_00755_1
crossref_primary_10_1002_aelm_202300723
crossref_primary_10_1002_smll_201600858
crossref_primary_10_1016_j_apmt_2025_102665
crossref_primary_10_7567_JJAP_56_070310
crossref_primary_10_1016_j_bios_2021_113461
crossref_primary_10_1016_j_matt_2019_07_016
crossref_primary_10_1002_adma_201605848
crossref_primary_10_1088_2399_7532_aaed58
crossref_primary_10_1002_adma_201600040
crossref_primary_10_1002_advs_201701053
crossref_primary_10_1002_aelm_202200512
crossref_primary_10_1038_s41560_017_0001_3
crossref_primary_10_1007_s11426_016_9014_9
crossref_primary_10_1002_adma_201705024
crossref_primary_10_1002_adsr_202200031
crossref_primary_10_1016_j_sna_2017_08_051
crossref_primary_10_1021_acsnano_8b02162
crossref_primary_10_1021_jacs_3c14044
crossref_primary_10_1002_adfm_202007952
crossref_primary_10_1126_sciadv_aay2840
crossref_primary_10_1016_j_cclet_2023_108569
crossref_primary_10_1021_acsaelm_0c00735
crossref_primary_10_1038_s41467_024_44735_z
crossref_primary_10_1088_2752_5724_ad305e
crossref_primary_10_1073_pnas_2117962119
crossref_primary_10_3390_app15052269
crossref_primary_10_1002_adhm_201700024
crossref_primary_10_1016_j_ceramint_2023_05_260
crossref_primary_10_35848_1347_4065_ab7bae
crossref_primary_10_1039_C8TC02230E
crossref_primary_10_1002_admt_202000233
crossref_primary_10_1016_j_sna_2018_05_024
crossref_primary_10_1016_j_sintl_2021_100121
crossref_primary_10_1557_mrs_2017_1
crossref_primary_10_1039_D0TB02451A
crossref_primary_10_1002_adfm_202305252
crossref_primary_10_1039_D2CS00207H
crossref_primary_10_1021_acsami_4c04021
crossref_primary_10_1002_smm2_1271
crossref_primary_10_1246_cl_180066
crossref_primary_10_1021_acs_macromol_2c02236
crossref_primary_10_1021_acsanm_9b02396
crossref_primary_10_1002_adma_202107902
crossref_primary_10_1002_aenm_201801003
crossref_primary_10_1021_acsmaterialslett_1c00799
crossref_primary_10_1002_aelm_201800605
crossref_primary_10_1002_adfm_201906210
crossref_primary_10_1002_adma_202104634
crossref_primary_10_1039_C8TC04999H
crossref_primary_10_1109_JSSC_2017_2740383
crossref_primary_10_1002_adhm_201700495
crossref_primary_10_1002_admt_201800628
crossref_primary_10_1016_j_chempr_2017_10_005
crossref_primary_10_1016_j_mee_2021_111618
crossref_primary_10_1016_j_mser_2017_02_001
crossref_primary_10_1002_smll_201700247
crossref_primary_10_1063_5_0112754
crossref_primary_10_1039_C8CS00814K
crossref_primary_10_1002_adhm_202000380
crossref_primary_10_3390_ma16041491
crossref_primary_10_1016_j_jiec_2020_11_021
crossref_primary_10_1016_j_pmatsci_2023_101110
crossref_primary_10_1109_JPROC_2019_2907317
crossref_primary_10_1038_s41467_017_02685_9
crossref_primary_10_1021_acs_nanolett_2c01145
crossref_primary_10_1088_1361_6463_acaf38
crossref_primary_10_1038_nature21004
crossref_primary_10_1002_cnma_201800643
crossref_primary_10_1002_pssr_201900277
crossref_primary_10_1016_j_mattod_2021_08_010
crossref_primary_10_1021_acs_chemrev_9b00437
crossref_primary_10_14326_abe_9_83
crossref_primary_10_1021_acs_analchem_0c02723
crossref_primary_10_1088_1361_6463_ac7988
crossref_primary_10_1002_adfm_202310260
crossref_primary_10_1016_j_compag_2024_109449
crossref_primary_10_1002_aelm_202001084
crossref_primary_10_1021_acsami_8b19051
crossref_primary_10_1021_acs_chemrev_8b00573
crossref_primary_10_3390_app10113825
crossref_primary_10_1002_aisy_202000108
crossref_primary_10_1016_j_measen_2023_100692
crossref_primary_10_1002_adhm_201601371
crossref_primary_10_3390_mi11020232
crossref_primary_10_1002_adma_202105865
crossref_primary_10_1007_s42114_024_01025_y
crossref_primary_10_1016_j_xinn_2024_100673
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1038_s41528_022_00146_y
crossref_primary_10_1016_j_nanoen_2017_09_024
crossref_primary_10_1109_RBME_2021_3121480
crossref_primary_10_1002_aisy_202000238
crossref_primary_10_35848_1347_4065_ac8bbb
crossref_primary_10_1002_adma_202107479
crossref_primary_10_54738_MI_2022_2702
crossref_primary_10_1016_j_sna_2023_114224
crossref_primary_10_3389_fchem_2021_539678
crossref_primary_10_1002_adhm_201700987
crossref_primary_10_1002_adma_201905527
crossref_primary_10_1515_nf_2021_0019
crossref_primary_10_1021_acssensors_1c00281
crossref_primary_10_1021_acsami_0c07649
crossref_primary_10_1038_nnano_2017_125
crossref_primary_10_3390_polym11101549
crossref_primary_10_1038_s41598_018_22265_1
crossref_primary_10_1002_adma_201903904
crossref_primary_10_3390_bios15010053
crossref_primary_10_1021_acsami_8b20057
crossref_primary_10_1541_ieejjournal_137_89
crossref_primary_10_3390_mi14010121
crossref_primary_10_1016_j_compositesa_2020_106074
crossref_primary_10_1109_JSEN_2020_2969667
crossref_primary_10_1109_JSEN_2024_3355399
crossref_primary_10_1186_s11671_020_03428_4
crossref_primary_10_1007_s11664_021_08740_y
crossref_primary_10_3390_s18051400
crossref_primary_10_1002_adsr_202200098
crossref_primary_10_1002_admt_202300189
crossref_primary_10_1002_smll_201901124
crossref_primary_10_1126_sciadv_1601473
crossref_primary_10_7567_JJAP_56_05EB01
crossref_primary_10_1002_cey2_640
crossref_primary_10_1038_s41928_018_0041_0
crossref_primary_10_3390_nano11030576
crossref_primary_10_1038_s41551_018_0287_x
crossref_primary_10_1088_1742_6596_1571_1_012001
crossref_primary_10_1039_C8TC05485A
crossref_primary_10_7567_JJAP_57_05GB01
crossref_primary_10_1021_acsbiomaterials_9b01659
crossref_primary_10_1109_TNANO_2017_2655882
crossref_primary_10_1002_inf2_12060
crossref_primary_10_1016_j_bios_2024_116787
crossref_primary_10_1109_JSEN_2023_3277800
crossref_primary_10_1007_s11433_018_9239_9
crossref_primary_10_1145_3494996
crossref_primary_10_1016_j_flatc_2018_07_001
crossref_primary_10_1016_j_ijsolstr_2022_111514
crossref_primary_10_1002_aelm_202201333
crossref_primary_10_1021_acsnano_1c08993
crossref_primary_10_1002_adfm_202213560
crossref_primary_10_1016_j_medengphy_2025_104315
crossref_primary_10_3390_mi10060396
crossref_primary_10_1002_adfm_202009602
crossref_primary_10_1063_5_0198346
crossref_primary_10_1016_j_orgel_2020_105818
crossref_primary_10_1016_j_matt_2021_03_010
crossref_primary_10_1016_j_jpowsour_2019_227055
crossref_primary_10_1002_adfm_202204645
crossref_primary_10_1002_ange_201804656
crossref_primary_10_1002_pi_5735
crossref_primary_10_1002_adma_201602736
crossref_primary_10_1007_s40820_024_01345_0
crossref_primary_10_1039_D0TC00702A
crossref_primary_10_1038_s41378_021_00271_0
crossref_primary_10_1016_j_compositesa_2022_107269
crossref_primary_10_1038_s41528_024_00311_5
crossref_primary_10_1021_acs_nanolett_0c02519
crossref_primary_10_1002_adfm_202403562
crossref_primary_10_1016_j_device_2023_100148
crossref_primary_10_1038_s41598_022_21007_8
crossref_primary_10_1146_annurev_control_071320_101023
crossref_primary_10_1088_2399_1984_ad36ff
crossref_primary_10_1007_s13233_021_9092_6
crossref_primary_10_1021_acsami_8b16139
crossref_primary_10_3390_polym13234169
crossref_primary_10_1002_pssa_201900617
crossref_primary_10_1016_j_cap_2017_11_001
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1155_2021_1589182
crossref_primary_10_1541_ieejjia_7_229
crossref_primary_10_1002_admi_201600709
crossref_primary_10_1002_admt_202201088
crossref_primary_10_1002_adfm_202417961
crossref_primary_10_1063_1_5085013
crossref_primary_10_1038_s41598_022_18321_6
crossref_primary_10_1088_2053_1591_ab706d
crossref_primary_10_1109_JSEN_2024_3469991
crossref_primary_10_3390_mi12091091
crossref_primary_10_1038_s41467_021_27885_2
crossref_primary_10_1002_aelm_201800215
crossref_primary_10_1002_admi_202200206
crossref_primary_10_1002_admt_202001168
crossref_primary_10_1002_adsr_202200066
crossref_primary_10_1002_adma_201801072
crossref_primary_10_1002_mame_202100465
crossref_primary_10_1002_smll_202301593
crossref_primary_10_1021_acsaelm_1c00218
crossref_primary_10_1126_scitranslmed_aat8437
crossref_primary_10_1002_adma_201807975
crossref_primary_10_7567_JJAP_56_06GN03
crossref_primary_10_1002_admt_201700183
crossref_primary_10_1002_smll_202205136
crossref_primary_10_1016_j_bios_2018_09_035
crossref_primary_10_1021_acs_chemmater_9b00165
crossref_primary_10_1021_acsami_8b19425
crossref_primary_10_1016_j_polymer_2022_125587
crossref_primary_10_1002_adfm_202411490
crossref_primary_10_1002_admt_201800594
crossref_primary_10_1016_j_cej_2024_158778
crossref_primary_10_1016_j_cej_2021_130091
crossref_primary_10_1109_JETCAS_2016_2613878
crossref_primary_10_1016_j_nanoen_2022_107935
crossref_primary_10_1039_D0DT03762A
crossref_primary_10_1002_admt_201700057
crossref_primary_10_1021_acsabm_0c00798
crossref_primary_10_1039_C8RA10467K
crossref_primary_10_1109_TIE_2018_2811363
crossref_primary_10_1002_anie_201804656
crossref_primary_10_1002_adfm_202104686
crossref_primary_10_3390_s20030623
crossref_primary_10_3390_s20185188
crossref_primary_10_1002_advs_202202312
crossref_primary_10_1016_j_compositesb_2025_112357
crossref_primary_10_1002_advs_202304140
crossref_primary_10_1016_j_mattod_2019_08_005
crossref_primary_10_7567_JJAP_57_030312
crossref_primary_10_1016_j_sna_2024_115259
crossref_primary_10_1002_adsr_202400147
crossref_primary_10_1021_acsami_0c04359
crossref_primary_10_1039_C9NR04233D
crossref_primary_10_1016_j_device_2024_100640
crossref_primary_10_1021_acsami_9b00817
crossref_primary_10_1088_1674_4926_24100003
crossref_primary_10_1002_cnma_201600191
crossref_primary_10_1021_acsmacrolett_8b00291
crossref_primary_10_3390_chemosensors10010012
crossref_primary_10_1021_acsami_0c10229
crossref_primary_10_1016_j_snb_2018_01_141
crossref_primary_10_1002_aisy_202100280
crossref_primary_10_1021_acsami_7b13356
crossref_primary_10_7567_JJAP_55_10TA18
crossref_primary_10_1002_adma_201808033
crossref_primary_10_7567_JJAP_56_010313
crossref_primary_10_1063_5_0059204
crossref_primary_10_5796_electrochemistry_18_6_E2672
crossref_primary_10_1002_adma_201603878
crossref_primary_10_1016_j_mee_2023_112015
Cites_doi 10.4103/0971-6203.48720
10.1038/nature05533
10.1177/0748730403261560
10.1016/0032-3861(64)90200-9
10.1038/nn.2973
10.1016/j.amjsurg.2008.06.015
10.1016/S0014-3057(98)00099-8
10.1073/pnas.0502392102
10.1038/nmat3755
10.1063/1.2222339
10.1039/c2jm33601d
10.1021/ja068429z
10.1126/science.1206157
10.3390/s100403597
10.1080/10915810290169800
10.1038/ncomms1721
10.1016/j.polymer.2005.12.005
10.1152/jappl.1948.1.2.93
10.1088/0268-1242/27/10/105019
10.1038/ncomms2832
10.1002/app.28200
10.1002/pen.760130611
10.1080/00222348608248036
10.1038/ncomms2573
10.1002/adma.201204082
10.1038/ncomms4329
10.1038/ncomms5938
10.1007/BF01129034
10.1109/TBCAS.2014.2314135
10.1002/pen.760180808
10.1038/nature12314
10.1109/JSEN.2006.884167
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Nov 24, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Nov 24, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1515650112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Ultraflexible temperature sensors
EISSN 1091-6490
EndPage 14538
ExternalDocumentID PMC4664374
3884363371
26554008
10_1073_pnas_1515650112
112_47_14533
26465853
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 30723481
– fundername: National Science Foundation (NSF)
  grantid: 2013155309
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c534t-eca6c31486cde2f85ec6882c1713688d948df2dbdb8493df0914cf287a9d653f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:29:40 EDT 2025
Thu Jul 10 22:29:36 EDT 2025
Mon Jun 30 07:40:33 EDT 2025
Thu Apr 03 07:06:46 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Tue Jul 01 01:53:36 EDT 2025
Wed Nov 11 00:29:29 EST 2020
Fri May 30 12:01:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords biomedical devices
flexible electronics
organic electronics
temperature sensor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-eca6c31486cde2f85ec6882c1713688d948df2dbdb8493df0914cf287a9d653f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: T.Y., Y.I., Y.T., J.R., K.M., T.M., M.S., W.V., T. Sekitani, and T. Someya designed research; T.Y., Y.I., Y.T., J.R., M.K., T.W., and K.Y. performed research; T.Y. contributed new reagents/analytic tools; T.Y., Y.I., Y.T., J.R., T.W., and K.Y. analyzed data; and T.Y., Y.I., J.R., M.K., and T. Someya wrote the paper.
1T.Y. and Y.I. contributed equally to this work.
Edited by John A. Rogers, University of Illinois, Urbana, IL, and approved September 28, 2015 (received for review August 7, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/112/47/14533.full.pdf
PMID 26554008
PQID 1739096700
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1515650112
proquest_miscellaneous_1736679827
crossref_primary_10_1073_pnas_1515650112
pubmed_primary_26554008
jstor_primary_26465853
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4664374
pnas_primary_112_47_14533
proquest_journals_1739096700
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-24
PublicationDateYYYYMMDD 2015-11-24
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Whitehead GS (e_1_3_3_28_2) 1999
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
18887578 - J Appl Physiol. 1948 Aug;1(2):93-122
23673644 - Nat Commun. 2013;4:1859
21836009 - Science. 2011 Aug 12;333(6044):838-43
24569383 - Nat Commun. 2014;5:3329
17279756 - J Am Chem Soc. 2007 Feb 28;129(8):2224-5
12537929 - Int J Toxicol. 2002;21 Suppl 3:1-50
24037122 - Nat Mater. 2013 Oct;12(10):938-44
23233317 - Adv Mater. 2013 Feb 13;25(6):850-5
15038855 - J Biol Rhythms. 2004 Apr;19(2):157-63
18809055 - Am J Surg. 2008 Oct;196(4):523-6
25234839 - Nat Commun. 2014;5:4938
24951707 - IEEE Trans Biomed Circuits Syst. 2014 Dec;8(6):824-33
17301788 - Nature. 2007 Feb 15;445(7129):745-8
23887430 - Nature. 2013 Jul 25;499(7459):458-63
22081157 - Nat Neurosci. 2011 Dec;14(12):1599-605
16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5
22395614 - Nat Commun. 2012;3:723
1489653 - Brain Topogr. 1992 Winter;5(2):77-85
23481383 - Nat Commun. 2013;4:1575
22319314 - Sensors (Basel). 2010;10(4):3597-610
References_xml – ident: e_1_3_3_3_2
  doi: 10.4103/0971-6203.48720
– ident: e_1_3_3_25_2
  doi: 10.1038/nature05533
– ident: e_1_3_3_29_2
  doi: 10.1177/0748730403261560
– ident: e_1_3_3_32_2
  doi: 10.1016/0032-3861(64)90200-9
– ident: e_1_3_3_5_2
  doi: 10.1038/nn.2973
– ident: e_1_3_3_1_2
  doi: 10.1016/j.amjsurg.2008.06.015
– volume-title: Pulmonary Function in Normal Rats. No. TOXDET-99-5
  year: 1999
  ident: e_1_3_3_28_2
– ident: e_1_3_3_17_2
  doi: 10.1016/S0014-3057(98)00099-8
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.0502392102
– ident: e_1_3_3_13_2
  doi: 10.1038/nmat3755
– ident: e_1_3_3_19_2
  doi: 10.1063/1.2222339
– ident: e_1_3_3_23_2
  doi: 10.1039/c2jm33601d
– ident: e_1_3_3_26_2
  doi: 10.1021/ja068429z
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1206157
– ident: e_1_3_3_15_2
  doi: 10.3390/s100403597
– ident: e_1_3_3_22_2
  doi: 10.1080/10915810290169800
– ident: e_1_3_3_27_2
  doi: 10.1038/ncomms1721
– ident: e_1_3_3_31_2
  doi: 10.1016/j.polymer.2005.12.005
– ident: e_1_3_3_33_2
  doi: 10.1152/jappl.1948.1.2.93
– ident: e_1_3_3_12_2
  doi: 10.1088/0268-1242/27/10/105019
– ident: e_1_3_3_8_2
  doi: 10.1038/ncomms2832
– ident: e_1_3_3_20_2
  doi: 10.1002/app.28200
– ident: e_1_3_3_18_2
  doi: 10.1002/pen.760130611
– ident: e_1_3_3_21_2
  doi: 10.1080/00222348608248036
– ident: e_1_3_3_7_2
  doi: 10.1038/ncomms2573
– ident: e_1_3_3_16_2
  doi: 10.1002/adma.201204082
– ident: e_1_3_3_6_2
  doi: 10.1038/ncomms4329
– ident: e_1_3_3_14_2
  doi: 10.1038/ncomms5938
– ident: e_1_3_3_2_2
  doi: 10.1007/BF01129034
– ident: e_1_3_3_10_2
  doi: 10.1109/TBCAS.2014.2314135
– ident: e_1_3_3_30_2
  doi: 10.1002/pen.760180808
– ident: e_1_3_3_9_2
  doi: 10.1038/nature12314
– ident: e_1_3_3_11_2
  doi: 10.1109/JSEN.2006.884167
– reference: 24569383 - Nat Commun. 2014;5:3329
– reference: 16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5
– reference: 23887430 - Nature. 2013 Jul 25;499(7459):458-63
– reference: 17279756 - J Am Chem Soc. 2007 Feb 28;129(8):2224-5
– reference: 1489653 - Brain Topogr. 1992 Winter;5(2):77-85
– reference: 15038855 - J Biol Rhythms. 2004 Apr;19(2):157-63
– reference: 23481383 - Nat Commun. 2013;4:1575
– reference: 12537929 - Int J Toxicol. 2002;21 Suppl 3:1-50
– reference: 23233317 - Adv Mater. 2013 Feb 13;25(6):850-5
– reference: 24951707 - IEEE Trans Biomed Circuits Syst. 2014 Dec;8(6):824-33
– reference: 21836009 - Science. 2011 Aug 12;333(6044):838-43
– reference: 25234839 - Nat Commun. 2014;5:4938
– reference: 18809055 - Am J Surg. 2008 Oct;196(4):523-6
– reference: 22081157 - Nat Neurosci. 2011 Dec;14(12):1599-605
– reference: 23673644 - Nat Commun. 2013;4:1859
– reference: 22395614 - Nat Commun. 2012;3:723
– reference: 24037122 - Nat Mater. 2013 Oct;12(10):938-44
– reference: 22319314 - Sensors (Basel). 2010;10(4):3597-610
– reference: 17301788 - Nature. 2007 Feb 15;445(7129):745-8
– reference: 18887578 - J Appl Physiol. 1948 Aug;1(2):93-122
SSID ssj0009580
Score 2.6134374
Snippet We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high...
We have successfully fabricated very unique ultraflexible temperature sensors that exhibit changes in resistivity by six orders of magnitude or more for a...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14533
SubjectTerms Air
Air temperature
Animals
Body Temperature
Fabrication
Graphite - chemistry
Measurement
Physical Sciences
Physiology
Polymers
Polymers - chemistry
Rats
Sensors
Temperature
Temperature gradients
X-Ray Diffraction
Title Ultraflexible, large-area, physiological temperature sensors for multipoint measurements
URI https://www.jstor.org/stable/26465853
http://www.pnas.org/content/112/47/14533.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26554008
https://www.proquest.com/docview/1739096700
https://www.proquest.com/docview/1736679827
https://pubmed.ncbi.nlm.nih.gov/PMC4664374
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwFGQkDkWpg-1dv44VahWhEirkSOnJWq-9apTURrUtHhf-OrMPv0qQChfL8Y7XlufLeGY98w1Cbx0bBrgo-_VYZBEMcUoacGoRnkVgDmmYyZYsnxb-fEk-rrzVZPJrkLXU1OmM_dxZV_I_WoVjoFdRJfsPmu0mhQOwD_qFLWgYtnfS8XJb34juu9_XqcoK3oq8bouCIyh-yVWLzrgJEirNoDytIHgVXXZEjqFKKSzXRT297hcMq6HXetG95ao2p2DRLiKe9CUp2k5UU2t6segbHF-Wm1L5qHF5Xf5oNusOj0XZyPu-bKpm00Eshtvc0G9UjfTiX_I8Uwhr1_yHaxaOJ4r3VKm0NrPgpVg-UY1CZ_mOY61tdtwBCBU3pza1DvEUhcYfLwGwWqJzcUGrmXDXwAdtpxnRbS8-J2fL8_MkPl3F99B9F-IMmRk6H7I2h4rOQt9ayw0V4Pe3ph-5NSqzVdDlgtCu0OV2Bu7ApYkfoYc6FjFPFLD20SQvHqP9VovmkaYkf_cErUZIOzZ7nB2bI5SZA5SZGmUmoMzsUWYOUfYULc9O4w9zS_fksJiHSW3ljPoMQwztsyx3eejlzIcgjTmBg2Eni0iYcTdLszQkEc44PDnCOITlNMp8D3N8gPaKssifIzO0XWq7zOYYXCTs4pSC9-1iKkq5uR9xA83aR5owTVgv-qZsE5k4EeBEPN6k14GBjroTviqulr-LHkgddXIQF4Av7mEDGVK0O99xExIkEmwGOmw1mWgrAHMGOLIjUexmoDfdMNho8eGNFnnZSBlffO10AwM9U4ofXBgcenDEDRSMINEJCP738UixvpI88KIzBA7Iiztc9yV60P8PD9FefdPkr8CbrtPXEvG_AbNdzUs
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultraflexible%2C+large-area%2C+physiological+temperature+sensors+for+multipoint+measurements&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yokota%2C+Tomoyuki&rft.au=Inoue%2C+Yusuke&rft.au=Terakawa%2C+Yuki&rft.au=Reeder%2C+Jonathan&rft.date=2015-11-24&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=112&rft.issue=47&rft.spage=14533&rft_id=info:doi/10.1073%2Fpnas.1515650112&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F47.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F47.cover.gif