Ultraflexible, large-area, physiological temperature sensors for multipoint measurements
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature un...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 47; pp. 14533 - 14538 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.11.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 μm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. |
---|---|
AbstractList | We have successfully fabricated very unique ultraflexible temperature sensors that exhibit changes in resistivity by six orders of magnitude or more for a change in temperature of only 5 °C or less. Our approach offers an ideal solution to measure temperature over a large area with high spatial resolution, high sensitivity of 0.1 °C or less, and fast response time of 100 ms. Indeed, such a large change of resistivity for our sensors can significantly simplify the readout circuitry, which was the key to demonstrate, to our knowledge, the world’s first successful measurement of dynamic change of temperature in the lung during very fast artificial respiration. Furthermore, we have demonstrated real-time multipoint thermal sensing using organic transistor active-matrix circuits.
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 ...m, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 ...C and 50 ...C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 ...C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. (ProQuest: ... denotes formulae/symbols omitted.) We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 μm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. |
Author | Voit, Walter Murakawa, Tomohiro Yang, Kejia Terakawa, Yuki Ware, Taylor Yokota, Tomoyuki Sekino, Masaki Inoue, Yusuke Reeder, Jonathan Mabuchi, Kunihiko Kaltenbrunner, Martin Sekitani, Tsuyoshi Someya, Takao |
Author_xml | – sequence: 1 givenname: Tomoyuki surname: Yokota fullname: Yokota, Tomoyuki organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan – sequence: 2 givenname: Yusuke surname: Inoue fullname: Inoue, Yusuke organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan – sequence: 3 givenname: Yuki surname: Terakawa fullname: Terakawa, Yuki organization: Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan – sequence: 4 givenname: Jonathan surname: Reeder fullname: Reeder, Jonathan organization: Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan – sequence: 5 givenname: Martin surname: Kaltenbrunner fullname: Kaltenbrunner, Martin organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan – sequence: 6 givenname: Taylor surname: Ware fullname: Ware, Taylor organization: Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080-3021 – sequence: 7 givenname: Kejia surname: Yang fullname: Yang, Kejia organization: Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021 – sequence: 8 givenname: Kunihiko surname: Mabuchi fullname: Mabuchi, Kunihiko organization: Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan – sequence: 9 givenname: Tomohiro surname: Murakawa fullname: Murakawa, Tomohiro organization: Department of Cardiothoracic Surgery, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan – sequence: 10 givenname: Masaki surname: Sekino fullname: Sekino, Masaki organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan – sequence: 11 givenname: Walter surname: Voit fullname: Voit, Walter organization: Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080-3021 – sequence: 12 givenname: Tsuyoshi surname: Sekitani fullname: Sekitani, Tsuyoshi organization: The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan – sequence: 13 givenname: Takao surname: Someya fullname: Someya, Takao organization: Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26554008$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7Gt17UoZcOOi0-Y7mU1Bil9QcGPBXcjL3HnNIzMZk4zY_9483mutBVcJnN85OTf3BB1NcQKEXhN8TrBiF_Nk8zkRREiBCaHP0IrgjrSSd_gIrTCmqtWc8mN0kvMWY9wJjV-gYyqF4BjrFfpxE0qyQ4Dffh3grAk2baC1CexZM9_eZR9D3HhnQ1NgnCHZsiRoMkw5ptwMMTXjEoqfo59KM4LNVR5hKvklej7YkOHV4TxFN58-fr_60l5_-_z16sN16wTjpQVnpWOEa-l6oIMW4KTW1BFFWL30Hdf9QPt1v9a8Y_1Qp-NuoFrZrpeCDewUXe5z52U9Qu_q28kGMyc_2nRnovXmX2Xyt2YTfxkuJWeK14D3h4AUfy6Qixl9dhCCnSAu2RDFpFSdpqqi756g27ikqY63ozrcSYVxpd4-bvRQ5f7TKyD2gEsx5wSDcb7Y4uOuoA-GYLNbrtkt1_xdbvVdPPHdR__f0Ryq7IQHmlDDlSFcMFaRN3tkm0tMj8pyKXQF_gCEPL0U |
CitedBy_id | crossref_primary_10_1126_sciadv_aay6094 crossref_primary_10_1021_acs_analchem_0c04701 crossref_primary_10_1002_aelm_202300396 crossref_primary_10_1126_scirobotics_aai9251 crossref_primary_10_1002_adma_202002640 crossref_primary_10_1007_s40843_024_3107_8 crossref_primary_10_1016_j_cclet_2018_07_015 crossref_primary_10_1016_j_cej_2020_125934 crossref_primary_10_1063_1_5088240 crossref_primary_10_1126_sciadv_1601649 crossref_primary_10_1016_j_sna_2018_06_023 crossref_primary_10_1021_acsnano_3c12216 crossref_primary_10_1007_s10854_023_10090_w crossref_primary_10_1063_5_0095157 crossref_primary_10_1039_D2RA03015B crossref_primary_10_1002_aisy_202100253 crossref_primary_10_1016_j_compscitech_2018_05_006 crossref_primary_10_1007_s11432_020_3175_6 crossref_primary_10_1016_j_mattod_2019_12_004 crossref_primary_10_3390_s21030739 crossref_primary_10_1002_sstr_202000088 crossref_primary_10_1038_nmat4904 crossref_primary_10_1021_acsnano_0c01164 crossref_primary_10_1073_pnas_2412423121 crossref_primary_10_1088_1361_665X_aac0b8 crossref_primary_10_1002_adma_201601278 crossref_primary_10_1002_admt_202201391 crossref_primary_10_1002_smll_201906567 crossref_primary_10_1002_adhm_201801033 crossref_primary_10_1016_j_measurement_2020_108348 crossref_primary_10_1038_s41587_019_0079_1 crossref_primary_10_1002_sdtp_14807 crossref_primary_10_1073_pnas_2007395117 crossref_primary_10_1039_C7TC02472J crossref_primary_10_1063_1_5121710 crossref_primary_10_1016_j_snb_2017_11_112 crossref_primary_10_1039_D0RA02815K crossref_primary_10_3390_mi13091419 crossref_primary_10_1002_adem_201900407 crossref_primary_10_1126_sciadv_abm6693 crossref_primary_10_3390_polym16142028 crossref_primary_10_1002_admt_202000014 crossref_primary_10_1021_acsnano_1c07388 crossref_primary_10_1126_sciadv_ade0423 crossref_primary_10_1002_admt_202301444 crossref_primary_10_1038_nmat4671 crossref_primary_10_1177_0278364918772023 crossref_primary_10_1063_1_5034047 crossref_primary_10_1380_vss_64_22 crossref_primary_10_1038_s41467_020_14311_2 crossref_primary_10_1126_sciadv_abf6312 crossref_primary_10_1007_s10973_020_09467_4 crossref_primary_10_1039_C5TB02483H crossref_primary_10_1039_D0TC02160A crossref_primary_10_3390_nano13162339 crossref_primary_10_1021_acs_analchem_7b04751 crossref_primary_10_1038_s41598_019_42027_x crossref_primary_10_1038_s41578_024_00755_1 crossref_primary_10_1002_aelm_202300723 crossref_primary_10_1002_smll_201600858 crossref_primary_10_1016_j_apmt_2025_102665 crossref_primary_10_7567_JJAP_56_070310 crossref_primary_10_1016_j_bios_2021_113461 crossref_primary_10_1016_j_matt_2019_07_016 crossref_primary_10_1002_adma_201605848 crossref_primary_10_1088_2399_7532_aaed58 crossref_primary_10_1002_adma_201600040 crossref_primary_10_1002_advs_201701053 crossref_primary_10_1002_aelm_202200512 crossref_primary_10_1038_s41560_017_0001_3 crossref_primary_10_1007_s11426_016_9014_9 crossref_primary_10_1002_adma_201705024 crossref_primary_10_1002_adsr_202200031 crossref_primary_10_1016_j_sna_2017_08_051 crossref_primary_10_1021_acsnano_8b02162 crossref_primary_10_1021_jacs_3c14044 crossref_primary_10_1002_adfm_202007952 crossref_primary_10_1126_sciadv_aay2840 crossref_primary_10_1016_j_cclet_2023_108569 crossref_primary_10_1021_acsaelm_0c00735 crossref_primary_10_1038_s41467_024_44735_z crossref_primary_10_1088_2752_5724_ad305e crossref_primary_10_1073_pnas_2117962119 crossref_primary_10_3390_app15052269 crossref_primary_10_1002_adhm_201700024 crossref_primary_10_1016_j_ceramint_2023_05_260 crossref_primary_10_35848_1347_4065_ab7bae crossref_primary_10_1039_C8TC02230E crossref_primary_10_1002_admt_202000233 crossref_primary_10_1016_j_sna_2018_05_024 crossref_primary_10_1016_j_sintl_2021_100121 crossref_primary_10_1557_mrs_2017_1 crossref_primary_10_1039_D0TB02451A crossref_primary_10_1002_adfm_202305252 crossref_primary_10_1039_D2CS00207H crossref_primary_10_1021_acsami_4c04021 crossref_primary_10_1002_smm2_1271 crossref_primary_10_1246_cl_180066 crossref_primary_10_1021_acs_macromol_2c02236 crossref_primary_10_1021_acsanm_9b02396 crossref_primary_10_1002_adma_202107902 crossref_primary_10_1002_aenm_201801003 crossref_primary_10_1021_acsmaterialslett_1c00799 crossref_primary_10_1002_aelm_201800605 crossref_primary_10_1002_adfm_201906210 crossref_primary_10_1002_adma_202104634 crossref_primary_10_1039_C8TC04999H crossref_primary_10_1109_JSSC_2017_2740383 crossref_primary_10_1002_adhm_201700495 crossref_primary_10_1002_admt_201800628 crossref_primary_10_1016_j_chempr_2017_10_005 crossref_primary_10_1016_j_mee_2021_111618 crossref_primary_10_1016_j_mser_2017_02_001 crossref_primary_10_1002_smll_201700247 crossref_primary_10_1063_5_0112754 crossref_primary_10_1039_C8CS00814K crossref_primary_10_1002_adhm_202000380 crossref_primary_10_3390_ma16041491 crossref_primary_10_1016_j_jiec_2020_11_021 crossref_primary_10_1016_j_pmatsci_2023_101110 crossref_primary_10_1109_JPROC_2019_2907317 crossref_primary_10_1038_s41467_017_02685_9 crossref_primary_10_1021_acs_nanolett_2c01145 crossref_primary_10_1088_1361_6463_acaf38 crossref_primary_10_1038_nature21004 crossref_primary_10_1002_cnma_201800643 crossref_primary_10_1002_pssr_201900277 crossref_primary_10_1016_j_mattod_2021_08_010 crossref_primary_10_1021_acs_chemrev_9b00437 crossref_primary_10_14326_abe_9_83 crossref_primary_10_1021_acs_analchem_0c02723 crossref_primary_10_1088_1361_6463_ac7988 crossref_primary_10_1002_adfm_202310260 crossref_primary_10_1016_j_compag_2024_109449 crossref_primary_10_1002_aelm_202001084 crossref_primary_10_1021_acsami_8b19051 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_3390_app10113825 crossref_primary_10_1002_aisy_202000108 crossref_primary_10_1016_j_measen_2023_100692 crossref_primary_10_1002_adhm_201601371 crossref_primary_10_3390_mi11020232 crossref_primary_10_1002_adma_202105865 crossref_primary_10_1007_s42114_024_01025_y crossref_primary_10_1016_j_xinn_2024_100673 crossref_primary_10_1002_adma_202406424 crossref_primary_10_1038_s41528_022_00146_y crossref_primary_10_1016_j_nanoen_2017_09_024 crossref_primary_10_1109_RBME_2021_3121480 crossref_primary_10_1002_aisy_202000238 crossref_primary_10_35848_1347_4065_ac8bbb crossref_primary_10_1002_adma_202107479 crossref_primary_10_54738_MI_2022_2702 crossref_primary_10_1016_j_sna_2023_114224 crossref_primary_10_3389_fchem_2021_539678 crossref_primary_10_1002_adhm_201700987 crossref_primary_10_1002_adma_201905527 crossref_primary_10_1515_nf_2021_0019 crossref_primary_10_1021_acssensors_1c00281 crossref_primary_10_1021_acsami_0c07649 crossref_primary_10_1038_nnano_2017_125 crossref_primary_10_3390_polym11101549 crossref_primary_10_1038_s41598_018_22265_1 crossref_primary_10_1002_adma_201903904 crossref_primary_10_3390_bios15010053 crossref_primary_10_1021_acsami_8b20057 crossref_primary_10_1541_ieejjournal_137_89 crossref_primary_10_3390_mi14010121 crossref_primary_10_1016_j_compositesa_2020_106074 crossref_primary_10_1109_JSEN_2020_2969667 crossref_primary_10_1109_JSEN_2024_3355399 crossref_primary_10_1186_s11671_020_03428_4 crossref_primary_10_1007_s11664_021_08740_y crossref_primary_10_3390_s18051400 crossref_primary_10_1002_adsr_202200098 crossref_primary_10_1002_admt_202300189 crossref_primary_10_1002_smll_201901124 crossref_primary_10_1126_sciadv_1601473 crossref_primary_10_7567_JJAP_56_05EB01 crossref_primary_10_1002_cey2_640 crossref_primary_10_1038_s41928_018_0041_0 crossref_primary_10_3390_nano11030576 crossref_primary_10_1038_s41551_018_0287_x crossref_primary_10_1088_1742_6596_1571_1_012001 crossref_primary_10_1039_C8TC05485A crossref_primary_10_7567_JJAP_57_05GB01 crossref_primary_10_1021_acsbiomaterials_9b01659 crossref_primary_10_1109_TNANO_2017_2655882 crossref_primary_10_1002_inf2_12060 crossref_primary_10_1016_j_bios_2024_116787 crossref_primary_10_1109_JSEN_2023_3277800 crossref_primary_10_1007_s11433_018_9239_9 crossref_primary_10_1145_3494996 crossref_primary_10_1016_j_flatc_2018_07_001 crossref_primary_10_1016_j_ijsolstr_2022_111514 crossref_primary_10_1002_aelm_202201333 crossref_primary_10_1021_acsnano_1c08993 crossref_primary_10_1002_adfm_202213560 crossref_primary_10_1016_j_medengphy_2025_104315 crossref_primary_10_3390_mi10060396 crossref_primary_10_1002_adfm_202009602 crossref_primary_10_1063_5_0198346 crossref_primary_10_1016_j_orgel_2020_105818 crossref_primary_10_1016_j_matt_2021_03_010 crossref_primary_10_1016_j_jpowsour_2019_227055 crossref_primary_10_1002_adfm_202204645 crossref_primary_10_1002_ange_201804656 crossref_primary_10_1002_pi_5735 crossref_primary_10_1002_adma_201602736 crossref_primary_10_1007_s40820_024_01345_0 crossref_primary_10_1039_D0TC00702A crossref_primary_10_1038_s41378_021_00271_0 crossref_primary_10_1016_j_compositesa_2022_107269 crossref_primary_10_1038_s41528_024_00311_5 crossref_primary_10_1021_acs_nanolett_0c02519 crossref_primary_10_1002_adfm_202403562 crossref_primary_10_1016_j_device_2023_100148 crossref_primary_10_1038_s41598_022_21007_8 crossref_primary_10_1146_annurev_control_071320_101023 crossref_primary_10_1088_2399_1984_ad36ff crossref_primary_10_1007_s13233_021_9092_6 crossref_primary_10_1021_acsami_8b16139 crossref_primary_10_3390_polym13234169 crossref_primary_10_1002_pssa_201900617 crossref_primary_10_1016_j_cap_2017_11_001 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1155_2021_1589182 crossref_primary_10_1541_ieejjia_7_229 crossref_primary_10_1002_admi_201600709 crossref_primary_10_1002_admt_202201088 crossref_primary_10_1002_adfm_202417961 crossref_primary_10_1063_1_5085013 crossref_primary_10_1038_s41598_022_18321_6 crossref_primary_10_1088_2053_1591_ab706d crossref_primary_10_1109_JSEN_2024_3469991 crossref_primary_10_3390_mi12091091 crossref_primary_10_1038_s41467_021_27885_2 crossref_primary_10_1002_aelm_201800215 crossref_primary_10_1002_admi_202200206 crossref_primary_10_1002_admt_202001168 crossref_primary_10_1002_adsr_202200066 crossref_primary_10_1002_adma_201801072 crossref_primary_10_1002_mame_202100465 crossref_primary_10_1002_smll_202301593 crossref_primary_10_1021_acsaelm_1c00218 crossref_primary_10_1126_scitranslmed_aat8437 crossref_primary_10_1002_adma_201807975 crossref_primary_10_7567_JJAP_56_06GN03 crossref_primary_10_1002_admt_201700183 crossref_primary_10_1002_smll_202205136 crossref_primary_10_1016_j_bios_2018_09_035 crossref_primary_10_1021_acs_chemmater_9b00165 crossref_primary_10_1021_acsami_8b19425 crossref_primary_10_1016_j_polymer_2022_125587 crossref_primary_10_1002_adfm_202411490 crossref_primary_10_1002_admt_201800594 crossref_primary_10_1016_j_cej_2024_158778 crossref_primary_10_1016_j_cej_2021_130091 crossref_primary_10_1109_JETCAS_2016_2613878 crossref_primary_10_1016_j_nanoen_2022_107935 crossref_primary_10_1039_D0DT03762A crossref_primary_10_1002_admt_201700057 crossref_primary_10_1021_acsabm_0c00798 crossref_primary_10_1039_C8RA10467K crossref_primary_10_1109_TIE_2018_2811363 crossref_primary_10_1002_anie_201804656 crossref_primary_10_1002_adfm_202104686 crossref_primary_10_3390_s20030623 crossref_primary_10_3390_s20185188 crossref_primary_10_1002_advs_202202312 crossref_primary_10_1016_j_compositesb_2025_112357 crossref_primary_10_1002_advs_202304140 crossref_primary_10_1016_j_mattod_2019_08_005 crossref_primary_10_7567_JJAP_57_030312 crossref_primary_10_1016_j_sna_2024_115259 crossref_primary_10_1002_adsr_202400147 crossref_primary_10_1021_acsami_0c04359 crossref_primary_10_1039_C9NR04233D crossref_primary_10_1016_j_device_2024_100640 crossref_primary_10_1021_acsami_9b00817 crossref_primary_10_1088_1674_4926_24100003 crossref_primary_10_1002_cnma_201600191 crossref_primary_10_1021_acsmacrolett_8b00291 crossref_primary_10_3390_chemosensors10010012 crossref_primary_10_1021_acsami_0c10229 crossref_primary_10_1016_j_snb_2018_01_141 crossref_primary_10_1002_aisy_202100280 crossref_primary_10_1021_acsami_7b13356 crossref_primary_10_7567_JJAP_55_10TA18 crossref_primary_10_1002_adma_201808033 crossref_primary_10_7567_JJAP_56_010313 crossref_primary_10_1063_5_0059204 crossref_primary_10_5796_electrochemistry_18_6_E2672 crossref_primary_10_1002_adma_201603878 crossref_primary_10_1016_j_mee_2023_112015 |
Cites_doi | 10.4103/0971-6203.48720 10.1038/nature05533 10.1177/0748730403261560 10.1016/0032-3861(64)90200-9 10.1038/nn.2973 10.1016/j.amjsurg.2008.06.015 10.1016/S0014-3057(98)00099-8 10.1073/pnas.0502392102 10.1038/nmat3755 10.1063/1.2222339 10.1039/c2jm33601d 10.1021/ja068429z 10.1126/science.1206157 10.3390/s100403597 10.1080/10915810290169800 10.1038/ncomms1721 10.1016/j.polymer.2005.12.005 10.1152/jappl.1948.1.2.93 10.1088/0268-1242/27/10/105019 10.1038/ncomms2832 10.1002/app.28200 10.1002/pen.760130611 10.1080/00222348608248036 10.1038/ncomms2573 10.1002/adma.201204082 10.1038/ncomms4329 10.1038/ncomms5938 10.1007/BF01129034 10.1109/TBCAS.2014.2314135 10.1002/pen.760180808 10.1038/nature12314 10.1109/JSEN.2006.884167 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Nov 24, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Nov 24, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1515650112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Ultraflexible temperature sensors |
EISSN | 1091-6490 |
EndPage | 14538 |
ExternalDocumentID | PMC4664374 3884363371 26554008 10_1073_pnas_1515650112 112_47_14533 26465853 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 30723481 – fundername: National Science Foundation (NSF) grantid: 2013155309 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c534t-eca6c31486cde2f85ec6882c1713688d948df2dbdb8493df0914cf287a9d653f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:40 EDT 2025 Thu Jul 10 22:29:36 EDT 2025 Mon Jun 30 07:40:33 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Tue Jul 01 01:53:36 EDT 2025 Wed Nov 11 00:29:29 EST 2020 Fri May 30 12:01:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | biomedical devices flexible electronics organic electronics temperature sensor |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-eca6c31486cde2f85ec6882c1713688d948df2dbdb8493df0914cf287a9d653f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: T.Y., Y.I., Y.T., J.R., K.M., T.M., M.S., W.V., T. Sekitani, and T. Someya designed research; T.Y., Y.I., Y.T., J.R., M.K., T.W., and K.Y. performed research; T.Y. contributed new reagents/analytic tools; T.Y., Y.I., Y.T., J.R., T.W., and K.Y. analyzed data; and T.Y., Y.I., J.R., M.K., and T. Someya wrote the paper. 1T.Y. and Y.I. contributed equally to this work. Edited by John A. Rogers, University of Illinois, Urbana, IL, and approved September 28, 2015 (received for review August 7, 2015) |
OpenAccessLink | https://www.pnas.org/content/pnas/112/47/14533.full.pdf |
PMID | 26554008 |
PQID | 1739096700 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1515650112 proquest_miscellaneous_1736679827 crossref_primary_10_1073_pnas_1515650112 pubmed_primary_26554008 jstor_primary_26465853 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4664374 pnas_primary_112_47_14533 proquest_journals_1739096700 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-24 |
PublicationDateYYYYMMDD | 2015-11-24 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Whitehead GS (e_1_3_3_28_2) 1999 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 18887578 - J Appl Physiol. 1948 Aug;1(2):93-122 23673644 - Nat Commun. 2013;4:1859 21836009 - Science. 2011 Aug 12;333(6044):838-43 24569383 - Nat Commun. 2014;5:3329 17279756 - J Am Chem Soc. 2007 Feb 28;129(8):2224-5 12537929 - Int J Toxicol. 2002;21 Suppl 3:1-50 24037122 - Nat Mater. 2013 Oct;12(10):938-44 23233317 - Adv Mater. 2013 Feb 13;25(6):850-5 15038855 - J Biol Rhythms. 2004 Apr;19(2):157-63 18809055 - Am J Surg. 2008 Oct;196(4):523-6 25234839 - Nat Commun. 2014;5:4938 24951707 - IEEE Trans Biomed Circuits Syst. 2014 Dec;8(6):824-33 17301788 - Nature. 2007 Feb 15;445(7129):745-8 23887430 - Nature. 2013 Jul 25;499(7459):458-63 22081157 - Nat Neurosci. 2011 Dec;14(12):1599-605 16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5 22395614 - Nat Commun. 2012;3:723 1489653 - Brain Topogr. 1992 Winter;5(2):77-85 23481383 - Nat Commun. 2013;4:1575 22319314 - Sensors (Basel). 2010;10(4):3597-610 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.4103/0971-6203.48720 – ident: e_1_3_3_25_2 doi: 10.1038/nature05533 – ident: e_1_3_3_29_2 doi: 10.1177/0748730403261560 – ident: e_1_3_3_32_2 doi: 10.1016/0032-3861(64)90200-9 – ident: e_1_3_3_5_2 doi: 10.1038/nn.2973 – ident: e_1_3_3_1_2 doi: 10.1016/j.amjsurg.2008.06.015 – volume-title: Pulmonary Function in Normal Rats. No. TOXDET-99-5 year: 1999 ident: e_1_3_3_28_2 – ident: e_1_3_3_17_2 doi: 10.1016/S0014-3057(98)00099-8 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.0502392102 – ident: e_1_3_3_13_2 doi: 10.1038/nmat3755 – ident: e_1_3_3_19_2 doi: 10.1063/1.2222339 – ident: e_1_3_3_23_2 doi: 10.1039/c2jm33601d – ident: e_1_3_3_26_2 doi: 10.1021/ja068429z – ident: e_1_3_3_4_2 doi: 10.1126/science.1206157 – ident: e_1_3_3_15_2 doi: 10.3390/s100403597 – ident: e_1_3_3_22_2 doi: 10.1080/10915810290169800 – ident: e_1_3_3_27_2 doi: 10.1038/ncomms1721 – ident: e_1_3_3_31_2 doi: 10.1016/j.polymer.2005.12.005 – ident: e_1_3_3_33_2 doi: 10.1152/jappl.1948.1.2.93 – ident: e_1_3_3_12_2 doi: 10.1088/0268-1242/27/10/105019 – ident: e_1_3_3_8_2 doi: 10.1038/ncomms2832 – ident: e_1_3_3_20_2 doi: 10.1002/app.28200 – ident: e_1_3_3_18_2 doi: 10.1002/pen.760130611 – ident: e_1_3_3_21_2 doi: 10.1080/00222348608248036 – ident: e_1_3_3_7_2 doi: 10.1038/ncomms2573 – ident: e_1_3_3_16_2 doi: 10.1002/adma.201204082 – ident: e_1_3_3_6_2 doi: 10.1038/ncomms4329 – ident: e_1_3_3_14_2 doi: 10.1038/ncomms5938 – ident: e_1_3_3_2_2 doi: 10.1007/BF01129034 – ident: e_1_3_3_10_2 doi: 10.1109/TBCAS.2014.2314135 – ident: e_1_3_3_30_2 doi: 10.1002/pen.760180808 – ident: e_1_3_3_9_2 doi: 10.1038/nature12314 – ident: e_1_3_3_11_2 doi: 10.1109/JSEN.2006.884167 – reference: 24569383 - Nat Commun. 2014;5:3329 – reference: 16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5 – reference: 23887430 - Nature. 2013 Jul 25;499(7459):458-63 – reference: 17279756 - J Am Chem Soc. 2007 Feb 28;129(8):2224-5 – reference: 1489653 - Brain Topogr. 1992 Winter;5(2):77-85 – reference: 15038855 - J Biol Rhythms. 2004 Apr;19(2):157-63 – reference: 23481383 - Nat Commun. 2013;4:1575 – reference: 12537929 - Int J Toxicol. 2002;21 Suppl 3:1-50 – reference: 23233317 - Adv Mater. 2013 Feb 13;25(6):850-5 – reference: 24951707 - IEEE Trans Biomed Circuits Syst. 2014 Dec;8(6):824-33 – reference: 21836009 - Science. 2011 Aug 12;333(6044):838-43 – reference: 25234839 - Nat Commun. 2014;5:4938 – reference: 18809055 - Am J Surg. 2008 Oct;196(4):523-6 – reference: 22081157 - Nat Neurosci. 2011 Dec;14(12):1599-605 – reference: 23673644 - Nat Commun. 2013;4:1859 – reference: 22395614 - Nat Commun. 2012;3:723 – reference: 24037122 - Nat Mater. 2013 Oct;12(10):938-44 – reference: 22319314 - Sensors (Basel). 2010;10(4):3597-610 – reference: 17301788 - Nature. 2007 Feb 15;445(7129):745-8 – reference: 18887578 - J Appl Physiol. 1948 Aug;1(2):93-122 |
SSID | ssj0009580 |
Score | 2.6134374 |
Snippet | We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high... We have successfully fabricated very unique ultraflexible temperature sensors that exhibit changes in resistivity by six orders of magnitude or more for a... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14533 |
SubjectTerms | Air Air temperature Animals Body Temperature Fabrication Graphite - chemistry Measurement Physical Sciences Physiology Polymers Polymers - chemistry Rats Sensors Temperature Temperature gradients X-Ray Diffraction |
Title | Ultraflexible, large-area, physiological temperature sensors for multipoint measurements |
URI | https://www.jstor.org/stable/26465853 http://www.pnas.org/content/112/47/14533.abstract https://www.ncbi.nlm.nih.gov/pubmed/26554008 https://www.proquest.com/docview/1739096700 https://www.proquest.com/docview/1736679827 https://pubmed.ncbi.nlm.nih.gov/PMC4664374 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwFGQkDkWpg-1dv44VahWhEirkSOnJWq-9apTURrUtHhf-OrMPv0qQChfL8Y7XlufLeGY98w1Cbx0bBrgo-_VYZBEMcUoacGoRnkVgDmmYyZYsnxb-fEk-rrzVZPJrkLXU1OmM_dxZV_I_WoVjoFdRJfsPmu0mhQOwD_qFLWgYtnfS8XJb34juu9_XqcoK3oq8bouCIyh-yVWLzrgJEirNoDytIHgVXXZEjqFKKSzXRT297hcMq6HXetG95ao2p2DRLiKe9CUp2k5UU2t6segbHF-Wm1L5qHF5Xf5oNusOj0XZyPu-bKpm00Eshtvc0G9UjfTiX_I8Uwhr1_yHaxaOJ4r3VKm0NrPgpVg-UY1CZ_mOY61tdtwBCBU3pza1DvEUhcYfLwGwWqJzcUGrmXDXwAdtpxnRbS8-J2fL8_MkPl3F99B9F-IMmRk6H7I2h4rOQt9ayw0V4Pe3ph-5NSqzVdDlgtCu0OV2Bu7ApYkfoYc6FjFPFLD20SQvHqP9VovmkaYkf_cErUZIOzZ7nB2bI5SZA5SZGmUmoMzsUWYOUfYULc9O4w9zS_fksJiHSW3ljPoMQwztsyx3eejlzIcgjTmBg2Eni0iYcTdLszQkEc44PDnCOITlNMp8D3N8gPaKssifIzO0XWq7zOYYXCTs4pSC9-1iKkq5uR9xA83aR5owTVgv-qZsE5k4EeBEPN6k14GBjroTviqulr-LHkgddXIQF4Av7mEDGVK0O99xExIkEmwGOmw1mWgrAHMGOLIjUexmoDfdMNho8eGNFnnZSBlffO10AwM9U4ofXBgcenDEDRSMINEJCP738UixvpI88KIzBA7Iiztc9yV60P8PD9FefdPkr8CbrtPXEvG_AbNdzUs |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultraflexible%2C+large-area%2C+physiological+temperature+sensors+for+multipoint+measurements&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yokota%2C+Tomoyuki&rft.au=Inoue%2C+Yusuke&rft.au=Terakawa%2C+Yuki&rft.au=Reeder%2C+Jonathan&rft.date=2015-11-24&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=112&rft.issue=47&rft.spage=14533&rft_id=info:doi/10.1073%2Fpnas.1515650112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F47.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F47.cover.gif |