Imatinib (STI571)-Mediated Changes in Glucose Metabolism in Human Leukemia BCR-ABL-Positive Cells
The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are se...
Saved in:
Published in | Clinical cancer research Vol. 10; no. 19; pp. 6661 - 6668 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.10.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein,
a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose
metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1
and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic
resonance spectroscopy on cell acid extracts was performed to evaluate [1- 13 C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced
a concentration-dependent inhibition of cell proliferation in CML-T1 (IC 50 , 0.69 ± 0.06 μmol/L) and K562 cells (IC 50 , 0.47 ± 0.04 μmol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive
cells, the relevant therapeutic concentrations of imatinib (0.1–1.0 μmol/L) decreased glucose uptake from the media by suppressing
glycolitic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 μmol/L, 147% for
K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside
triphosphate/nucleoside diphosphate at 0.25 μmol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations.
Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells
by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy
state. |
---|---|
AbstractList | The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1-13C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC50, 0.69 +/- 0.06 micromol/L) and K562 cells (IC50, 0.47 +/- 0.04 micromol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1-1.0 micromol/L) decreased glucose uptake from the media by suppressing glycolytic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 micromol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 micromol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state. The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1- 13 C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC 50 , 0.69 ± 0.06 μmol/L) and K562 cells (IC 50 , 0.47 ± 0.04 μmol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1–1.0 μmol/L) decreased glucose uptake from the media by suppressing glycolitic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 μmol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 μmol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state. Abstract The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1-13C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC50, 0.69 ± 0.06 μmol/L) and K562 cells (IC50, 0.47 ± 0.04 μmol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1–1.0 μmol/L) decreased glucose uptake from the media by suppressing glycolitic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 μmol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 μmol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state. |
Author | Nora Anderson Natalie J. Serkova S. Gail Eckhardt Sven Gottschalk Carsten Hainz |
Author_xml | – sequence: 1 givenname: Sven surname: GOTTSCHALK fullname: GOTTSCHALK, Sven organization: Department of Biology/Chemistry, University of Bremen, Bremen, Germany – sequence: 2 givenname: Nora surname: ANDERSON fullname: ANDERSON, Nora organization: Department of Anesthesiology, Denver, Colorado, United States – sequence: 3 givenname: Carsten surname: HAINZ fullname: HAINZ, Carsten organization: Department of Biology/Chemistry, University of Bremen, Bremen, Germany – sequence: 4 givenname: S. Gail surname: ECKHARDT fullname: ECKHARDT, S. Gail organization: Division of Medical Oncology, University of Colorado Health Sciences Center, Denver, Colorado, United States – sequence: 5 givenname: Natalie J surname: SERKOVA fullname: SERKOVA, Natalie J organization: Department of Biology/Chemistry, University of Bremen, Bremen, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16182284$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15475456$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkFtP3DAQRi1ExWXhJ4DyQlUeQu3El-RxiVpYaVErSp-tiT1hDbmAnbTqv6_T3Wqf_Mk6M_PpnJLDfuiRkAtGbxgTxWdGVZFSnmc3VfUYQ0ppXh6QEyaESvNMisOY_zPH5DSEF0oZZ5QfkWMmuBJcyBMCqw5G17s6-fTjaSUUu04f0DoY0SbVBvpnDInrk7t2MkPA5AFHqIfWhW7-vZ866JM1Tq_YOUhuY5Hl7Tr9PgQ3ul-YVNi24Yx8aKANeL57F-Tn1y9P1X26_na3qpbr1IicjylCU2dNAZjZWhlVN6pkklJDy4KVwti8VCi5BStzaxkIRBRQC5kJqaiVKl-Qj9u9b354nzCMunPBxAbQ4zAFLWXJFacygmILGj-E4LHRb9514P9oRvXsVs_e9OxNR7cx6NltnLvcHZjqDu1-aiczAlc7AIKBtvHQGxf2nGRFlhU8ctdbbuOeN7-dR20iid5jQPBm869HGQtLlv8FRwKQVQ |
CitedBy_id | crossref_primary_10_3389_fbioe_2022_943906 crossref_primary_10_1186_s12951_015_0083_7 crossref_primary_10_1586_14737159_6_5_717 crossref_primary_10_1186_bcr2729 crossref_primary_10_1073_pnas_1603876113 crossref_primary_10_1021_acs_jproteome_9b00028 crossref_primary_10_1155_2015_390863 crossref_primary_10_1517_17460441_1_6_585 crossref_primary_10_1111_bjh_16074 crossref_primary_10_1158_1535_7163_MCT_09_0039 crossref_primary_10_1016_j_metabol_2009_09_029 crossref_primary_10_1007_s12032_022_01699_8 crossref_primary_10_1073_pnas_0701286104 crossref_primary_10_1155_2015_296167 crossref_primary_10_3390_biom12050662 crossref_primary_10_2165_00129785_200505050_00002 crossref_primary_10_1007_s10863_007_9086_x crossref_primary_10_1186_2162_3619_2_18 crossref_primary_10_1016_j_pharep_2014_06_010 crossref_primary_10_1016_j_molmet_2021_101410 crossref_primary_10_1089_cbr_2020_3600 crossref_primary_10_1161_CIRCRESAHA_116_305265 crossref_primary_10_1158_0008_5472_CAN_09_2266 crossref_primary_10_1371_journal_pone_0073267 crossref_primary_10_1111_j_1742_4658_2007_05686_x crossref_primary_10_1016_j_semcdb_2019_05_019 crossref_primary_10_1038_srep28720 crossref_primary_10_3390_ijms20174158 crossref_primary_10_1016_j_bbabio_2010_09_003 crossref_primary_10_1158_0008_5472_CAN_12_1969 crossref_primary_10_1002_med_21325 crossref_primary_10_1007_s11427_010_4041_1 crossref_primary_10_1182_blood_2023019962 crossref_primary_10_1038_onc_2010_67 crossref_primary_10_1016_j_gene_2015_08_009 crossref_primary_10_1111_jcmm_13106 crossref_primary_10_1016_j_blre_2020_100786 crossref_primary_10_1182_blood_2020008551 crossref_primary_10_1038_cdd_2008_48 crossref_primary_10_1002_nbm_2825 crossref_primary_10_3390_hemato4030017 crossref_primary_10_1186_s13046_019_1409_3 crossref_primary_10_1016_j_semcancer_2012_02_009 crossref_primary_10_1007_s12015_021_10308_6 crossref_primary_10_1016_j_jtbi_2018_04_035 crossref_primary_10_1038_sj_onc_1209597 crossref_primary_10_1371_journal_pone_0187584 crossref_primary_10_18632_oncotarget_14294 crossref_primary_10_1158_1078_0432_CCR_08_1059 crossref_primary_10_18632_oncotarget_1420 crossref_primary_10_3389_fphar_2024_1355171 crossref_primary_10_1016_j_ajpath_2013_07_035 crossref_primary_10_3390_cells8020104 crossref_primary_10_1038_sj_bjc_6605457 crossref_primary_10_1371_journal_pcbi_1002018 crossref_primary_10_1089_omi_2020_0144 crossref_primary_10_3390_ijms221910600 crossref_primary_10_1016_j_exphem_2007_03_012 crossref_primary_10_1016_j_molonc_2011_04_001 crossref_primary_10_1371_journal_pone_0021924 crossref_primary_10_3390_ijms140816348 crossref_primary_10_1007_s00432_022_04333_2 crossref_primary_10_1002_cnr2_1139 crossref_primary_10_1038_ncomms1562 crossref_primary_10_3390_biomedicines9121749 crossref_primary_10_1016_j_pharmthera_2021_107827 crossref_primary_10_1111_bph_13422 crossref_primary_10_3390_metabo13030345 crossref_primary_10_18632_oncotarget_16238 crossref_primary_10_1158_0008_5472_CAN_10_0608 crossref_primary_10_1007_s00262_010_0967_1 crossref_primary_10_1016_j_biocel_2007_03_021 crossref_primary_10_1097_HEP_0000000000000005 crossref_primary_10_3390_cancers13143597 crossref_primary_10_1038_nrc3579 crossref_primary_10_1161_CIRCULATIONAHA_113_004136 crossref_primary_10_1200_JCO_2006_06_5318 crossref_primary_10_1016_j_bbamcr_2010_08_011 crossref_primary_10_1007_s12032_021_01551_5 crossref_primary_10_1016_j_cbi_2015_03_028 crossref_primary_10_1002_mnfr_200700470 crossref_primary_10_1016_j_cclet_2023_108332 crossref_primary_10_1016_j_uct_2006_05_007 crossref_primary_10_1016_j_ddstr_2004_11_016 crossref_primary_10_2174_1568009618666180430144441 crossref_primary_10_1007_BF03347451 crossref_primary_10_1002_pros_20727 crossref_primary_10_1021_acs_analchem_5b03040 crossref_primary_10_1111_cas_13442 crossref_primary_10_1007_s00432_009_0590_8 crossref_primary_10_1007_s12288_019_01107_8 crossref_primary_10_1016_j_canlet_2015_11_020 crossref_primary_10_1038_s41416_018_0375_4 crossref_primary_10_2217_bmm_09_15 crossref_primary_10_1124_pharmrev_120_000043 crossref_primary_10_1016_j_bbcan_2020_188442 crossref_primary_10_1101_cshperspect_a035477 crossref_primary_10_1158_0008_5472_CAN_05_3906 crossref_primary_10_3390_polym15193969 crossref_primary_10_1016_j_bbcan_2021_188646 crossref_primary_10_1038_srep32734 crossref_primary_10_1002_cbf_1685 crossref_primary_10_1038_s41388_022_02562_w crossref_primary_10_1038_s41419_023_05811_2 crossref_primary_10_1038_sj_bjc_6604946 crossref_primary_10_1016_j_semcancer_2017_01_004 crossref_primary_10_1111_cas_13500 crossref_primary_10_1158_1078_0432_CCR_17_2697 crossref_primary_10_1530_JME_18_0058 crossref_primary_10_1007_s12274_018_2032_x crossref_primary_10_1007_s00204_014_1246_2 crossref_primary_10_14319_ijcto_42_15 crossref_primary_10_1074_jbc_M114_593970 crossref_primary_10_1371_journal_pone_0153226 crossref_primary_10_3389_fonc_2017_00087 crossref_primary_10_3390_cells9020404 crossref_primary_10_3390_md19010030 crossref_primary_10_1016_j_redox_2020_101510 crossref_primary_10_1016_j_pharmthera_2022_108256 crossref_primary_10_1517_13543784_17_10_1533 crossref_primary_10_1016_j_ccr_2012_09_020 crossref_primary_10_1002_hsr2_996 crossref_primary_10_1039_C7LC01301A crossref_primary_10_18632_oncotarget_7676 crossref_primary_10_1016_j_leukres_2009_01_040 crossref_primary_10_1016_j_oraloncology_2018_05_018 crossref_primary_10_1038_ncomms2759 crossref_primary_10_3389_fonc_2022_1072806 crossref_primary_10_1039_D1TB00218J crossref_primary_10_1089_omi_2012_0012 crossref_primary_10_1007_s00204_011_0729_7 crossref_primary_10_2165_00003495_200767020_00010 crossref_primary_10_1016_j_bioactmat_2022_08_006 crossref_primary_10_1158_1078_0432_CCR_14_2146 crossref_primary_10_1002_nbm_1658 crossref_primary_10_1038_sj_onc_1208461 crossref_primary_10_3390_cancers12113443 crossref_primary_10_1016_j_bbrc_2014_04_138 crossref_primary_10_1021_acs_jproteome_6b00356 crossref_primary_10_1007_s11306_010_0204_0 crossref_primary_10_1111_j_1476_5381_2009_00345_x crossref_primary_10_1158_0008_5472_CAN_12_2460 crossref_primary_10_1586_era_13_45 crossref_primary_10_1074_jbc_M114_581124 crossref_primary_10_1097_MCO_0b013e32833a5577 crossref_primary_10_18632_oncotarget_11594 crossref_primary_10_3389_fonc_2016_00135 crossref_primary_10_1016_j_mito_2010_08_002 crossref_primary_10_1371_journal_pone_0025139 crossref_primary_10_1038_s41427_019_0138_6 crossref_primary_10_2217_14622416_7_7_1109 crossref_primary_10_4049_jimmunol_1002805 crossref_primary_10_1007_s10522_014_9534_z crossref_primary_10_1007_s11596_020_2266_1 crossref_primary_10_1002_mrm_24520 crossref_primary_10_1089_scd_2019_0117 crossref_primary_10_1016_j_ddstr_2005_11_004 crossref_primary_10_1016_j_bcp_2018_03_006 crossref_primary_10_1155_2019_7831952 crossref_primary_10_1007_s00432_013_1579_x crossref_primary_10_1038_s41375_021_01315_0 crossref_primary_10_1111_j_1582_4934_2008_00464_x crossref_primary_10_1158_0008_5472_CAN_10_0883 crossref_primary_10_1093_carcin_bgt480 crossref_primary_10_1007_s12013_013_9757_7 crossref_primary_10_1016_j_ccr_2013_02_015 crossref_primary_10_1152_ajpcell_00247_2006 crossref_primary_10_1186_s12943_018_0798_9 crossref_primary_10_1089_biores_2015_0022 crossref_primary_10_1002_nbm_1751 crossref_primary_10_1016_j_leukres_2015_08_007 crossref_primary_10_1002_prca_200900157 crossref_primary_10_1158_1078_0432_CCR_08_3291 crossref_primary_10_1080_01635581_2017_1263751 crossref_primary_10_1155_2015_283145 crossref_primary_10_3390_ijms20133134 crossref_primary_10_1016_j_tiv_2023_105608 crossref_primary_10_1038_onc_2012_70 crossref_primary_10_1186_s40364_024_00594_w crossref_primary_10_1016_j_bbagen_2019_129507 crossref_primary_10_3389_fonc_2023_1302356 crossref_primary_10_1016_j_leukres_2014_09_016 |
Cites_doi | 10.1056/NEJM200104053441401 10.1056/NEJMoa011573 10.1097/00006676-200201000-00004 10.1016/S0301-4622(97)00024-0 10.1056/NEJMoa022457 10.1096/fj.01-0996com 10.1016/S0145-2126(02)00035-8 10.1056/NEJMe030009 10.1016/S0959-8049(02)80604-9 10.1016/S0140-6736(73)90562-X 10.1038/84683 10.1038/sj.onc.1204704 10.1016/S0167-4889(96)00081-X 10.1038/sj.neo.7900078 10.1002/jcb.10659 10.1007/s002770000167 10.1182/blood.V100.3.1068 10.1038/sj.bjp.0704142 10.1074/jbc.M105796200 10.1182/blood.V90.9.3691 10.1016/S0140-6736(02)07679-1 10.1016/S0024-3205(00)00554-3 10.1002/mrm.1910180115 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS |
Copyright_xml | – notice: 2004 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1158/1078-0432.CCR-04-0039 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 6668 |
ExternalDocumentID | 10_1158_1078_0432_CCR_04_0039 15475456 16182284 10_19_6661 |
Genre | Journal Article |
GroupedDBID | - 08R 29B 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS AAPBV ABFLS ABOCM ACIWK ACPRK ADACO ADBBV ADBIT AENEX AETEA AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FH7 FRP GJ GX1 H13 H~9 IH2 KQ8 L7B LSO MVM O0- OHT OK1 P0W P2P RCR RHF RHI RNS SJN UDS VH1 W2D WOQ X7M XFK XJT ZA5 ZCG ZGI --- .55 .GJ 18M 1CY 2FS 476 4H- 6J9 AAUGY ACGFO ACSVP ADCOW ADNWM AFHIN AFOSN AI. BR6 BTFSW IQODW J5H QTD TR2 W8F WHG YKV CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c534t-eafb2f8ae2db7c7bf791600c098195cd397e64dad63dd1a5eee5ab5625670d673 |
ISSN | 1078-0432 |
IngestDate | Thu Oct 24 23:37:14 EDT 2024 Thu Sep 26 15:52:07 EDT 2024 Sat Sep 28 07:46:21 EDT 2024 Sun Oct 29 17:07:42 EDT 2023 Fri Jan 15 19:23:40 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Chromosomal aberration Antineoplastic agent Human Imatinib Enzyme Transferases Leukemia Enzyme inhibitor Malignant hemopathy Glucose Metabolism Philadelphia chromosome Abnormal chromosome C9 Protein kinase Bcr-abl protein Abnormal chromosome G22 Abnormal chromosome Protein-tyrosine kinase Hybrid gene Chromosome translocation |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-eafb2f8ae2db7c7bf791600c098195cd397e64dad63dd1a5eee5ab5625670d673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aacrjournals.org/clincancerres/article-pdf/10/19/6661/1953226/zdf01904006661.pdf |
PMID | 15475456 |
PQID | 66947406 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_66947406 crossref_primary_10_1158_1078_0432_CCR_04_0039 pubmed_primary_15475456 pascalfrancis_primary_16182284 highwire_cancerresearch_10_19_6661 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 2004-10-01 |
PublicationDateYYYYMMDD | 2004-10-01 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2004 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061103422809000_B12 2022061103422809000_B13 2022061103422809000_B14 2022061103422809000_B15 2022061103422809000_B16 2022061103422809000_B17 2022061103422809000_B18 2022061103422809000_B19 2022061103422809000_B20 2022061103422809000_B21 2022061103422809000_B22 2022061103422809000_B23 2022061103422809000_B24 2022061103422809000_B25 2022061103422809000_B26 2022061103422809000_B27 2022061103422809000_B28 2022061103422809000_B29 2022061103422809000_B9 2022061103422809000_B7 2022061103422809000_B8 2022061103422809000_B1 2022061103422809000_B2 2022061103422809000_B5 2022061103422809000_B30 2022061103422809000_B6 2022061103422809000_B31 2022061103422809000_B3 2022061103422809000_B10 2022061103422809000_B32 2022061103422809000_B4 2022061103422809000_B11 |
References_xml | – ident: 2022061103422809000_B11 doi: 10.1056/NEJM200104053441401 – ident: 2022061103422809000_B12 doi: 10.1056/NEJMoa011573 – ident: 2022061103422809000_B14 doi: 10.1097/00006676-200201000-00004 – ident: 2022061103422809000_B17 doi: 10.1016/S0301-4622(97)00024-0 – ident: 2022061103422809000_B26 – ident: 2022061103422809000_B1 doi: 10.1056/NEJMoa022457 – ident: 2022061103422809000_B24 – ident: 2022061103422809000_B8 – ident: 2022061103422809000_B31 – ident: 2022061103422809000_B30 doi: 10.1096/fj.01-0996com – ident: 2022061103422809000_B28 doi: 10.1016/S0145-2126(02)00035-8 – ident: 2022061103422809000_B2 doi: 10.1056/NEJMe030009 – ident: 2022061103422809000_B15 doi: 10.1016/S0959-8049(02)80604-9 – ident: 2022061103422809000_B16 – ident: 2022061103422809000_B3 doi: 10.1016/S0140-6736(73)90562-X – ident: 2022061103422809000_B7 doi: 10.1038/84683 – ident: 2022061103422809000_B10 doi: 10.1038/sj.onc.1204704 – ident: 2022061103422809000_B19 doi: 10.1016/S0167-4889(96)00081-X – ident: 2022061103422809000_B18 doi: 10.1038/sj.neo.7900078 – ident: 2022061103422809000_B27 doi: 10.1002/jcb.10659 – ident: 2022061103422809000_B4 doi: 10.1007/s002770000167 – ident: 2022061103422809000_B22 doi: 10.1182/blood.V100.3.1068 – ident: 2022061103422809000_B20 doi: 10.1038/sj.bjp.0704142 – ident: 2022061103422809000_B29 – ident: 2022061103422809000_B23 doi: 10.1074/jbc.M105796200 – ident: 2022061103422809000_B5 – ident: 2022061103422809000_B9 – ident: 2022061103422809000_B6 doi: 10.1182/blood.V90.9.3691 – ident: 2022061103422809000_B13 doi: 10.1016/S0140-6736(02)07679-1 – ident: 2022061103422809000_B21 doi: 10.1016/S0024-3205(00)00554-3 – ident: 2022061103422809000_B25 doi: 10.1002/mrm.1910180115 – ident: 2022061103422809000_B32 |
SSID | ssj0014104 |
Score | 2.312613 |
Snippet | The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein,
a widely expressed tyrosine kinase... The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase... Abstract The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed... |
SourceID | proquest crossref pubmed pascalfrancis highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6661 |
SubjectTerms | Antineoplastic agents Antineoplastic Agents - pharmacology Apoptosis - drug effects Benzamides Biological and medical sciences Blotting, Western Carbon Isotopes Cell Line, Tumor Cell Proliferation - drug effects Cell Survival - drug effects Dose-Response Relationship, Drug Fusion Proteins, bcr-abl - metabolism Glucose - metabolism Glucose - pharmacokinetics Glutamates - metabolism Humans Imatinib Mesylate K562 Cells Lactates - metabolism Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology Magnetic Resonance Spectroscopy Medical sciences Nucleotides - metabolism Pharmacology. Drug treatments Phospholipids - metabolism Piperazines - pharmacology Pyrimidines - pharmacology Tumors |
Title | Imatinib (STI571)-Mediated Changes in Glucose Metabolism in Human Leukemia BCR-ABL-Positive Cells |
URI | http://clincancerres.aacrjournals.org/content/10/19/6661.abstract https://www.ncbi.nlm.nih.gov/pubmed/15475456 https://search.proquest.com/docview/66947406 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG86YESIB1CVkqZ2Ph6zAG3Z1kldJlW8RI7jShVbNrXpHvj7-MO4s52PTkV8vESpJdup75fz3eV3Z0LehbkT0Fy69sIPqE2zjNlgJ4MyhK1GcE8wJjDf-WTqjc_p1zmbdzo_W6ylTZn1xY-deSX_I1VoA7liluw_SLYeFBrgHuQLV5AwXP9KxhM0N4tlhmbiWTJhPqil0FbJIGhI6qReRXitmOmXsgSpX-DJGNCqD-i7kJvv8nLJe4fxzI4Oj21N5LqRPYzqr9vma1zlUQoEy6pnSgXVIeXRaZKcxePo-EhFVW-aPLNIJTOcTs23onozGEeT6TfDPAHANVyS-GgczT4lapx-b1RRQaoABa2pbmUrJwD-TQtvikIZ6yedtZ9UK2EHq_5SE_eURjEzUIauPlei1txOG6FhSw-DUzZo7enwM9i9X7BAhS7MhH0hVoqW4-gKS9v1uW_tmzWbEc8ccGGbv0PuuqDuUM-O5jXRCIm0VDNf9SQmjwym_rhz4m0LqapajaRdvgYJL_SBK7_3iJRllDwkD4xLY0Uan49IRxaPyb0TQ9p4QngFU-u9BumHGqKWgai1LCwDUauBKLYqiFoVRK3bELUURJ-S8y-fk3hsm5M9bMGGtLQlX2TuIuDSzTNf-NnCBy_FcYQT4mddkYORLD2a89wb5vmAMykl4xn66p7v5J4_fEb2iqtCviBWPnChRXDsT8H7Dnjug5c94FJ6YJ9mXdKvVjO91gVcUuX4siDF5U9x-dM4nsENFsoNu-Rtteapfpmqd0n1C1PEVpccbEmjGdpgoUveVOJJQWHjYvBCXm3W0D2kPpjRXfJcS63py6iPDs3-nwZ_Se43L9orsleuNvI12MZldqCg9wtJV7Kr |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imatinib+%28STI571%29-mediated+changes+in+glucose+metabolism+in+human+leukemia+BCR-ABL-positive+cells&rft.jtitle=Clinical+cancer+research&rft.au=GOTTSCHALK%2C+Sven&rft.au=ANDERSON%2C+Nora&rft.au=HAINZ%2C+Carsten&rft.au=ECKHARDT%2C+S.+Gail&rft.date=2004-10-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=10&rft.issue=19&rft.spage=6661&rft.epage=6668&rft_id=info:doi/10.1158%2F1078-0432.ccr-04-0039&rft.externalDBID=n%2Fa&rft.externalDocID=16182284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |