Imatinib (STI571)-Mediated Changes in Glucose Metabolism in Human Leukemia BCR-ABL-Positive Cells

The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are se...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 10; no. 19; pp. 6661 - 6668
Main Authors GOTTSCHALK, Sven, ANDERSON, Nora, HAINZ, Carsten, ECKHARDT, S. Gail, SERKOVA, Natalie J
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1- 13 C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC 50 , 0.69 ± 0.06 μmol/L) and K562 cells (IC 50 , 0.47 ± 0.04 μmol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1–1.0 μmol/L) decreased glucose uptake from the media by suppressing glycolitic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 μmol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 μmol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state.
AbstractList The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1-13C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC50, 0.69 +/- 0.06 micromol/L) and K562 cells (IC50, 0.47 +/- 0.04 micromol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1-1.0 micromol/L) decreased glucose uptake from the media by suppressing glycolytic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 micromol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 micromol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state.
The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1- 13 C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC 50 , 0.69 ± 0.06 μmol/L) and K562 cells (IC 50 , 0.47 ± 0.04 μmol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1–1.0 μmol/L) decreased glucose uptake from the media by suppressing glycolitic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 μmol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 μmol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state.
Abstract The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1-13C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC50, 0.69 ± 0.06 μmol/L) and K562 cells (IC50, 0.47 ± 0.04 μmol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1–1.0 μmol/L) decreased glucose uptake from the media by suppressing glycolitic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 μmol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 μmol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state.
Author Nora Anderson
Natalie J. Serkova
S. Gail Eckhardt
Sven Gottschalk
Carsten Hainz
Author_xml – sequence: 1
  givenname: Sven
  surname: GOTTSCHALK
  fullname: GOTTSCHALK, Sven
  organization: Department of Biology/Chemistry, University of Bremen, Bremen, Germany
– sequence: 2
  givenname: Nora
  surname: ANDERSON
  fullname: ANDERSON, Nora
  organization: Department of Anesthesiology, Denver, Colorado, United States
– sequence: 3
  givenname: Carsten
  surname: HAINZ
  fullname: HAINZ, Carsten
  organization: Department of Biology/Chemistry, University of Bremen, Bremen, Germany
– sequence: 4
  givenname: S. Gail
  surname: ECKHARDT
  fullname: ECKHARDT, S. Gail
  organization: Division of Medical Oncology, University of Colorado Health Sciences Center, Denver, Colorado, United States
– sequence: 5
  givenname: Natalie J
  surname: SERKOVA
  fullname: SERKOVA, Natalie J
  organization: Department of Biology/Chemistry, University of Bremen, Bremen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16182284$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15475456$$D View this record in MEDLINE/PubMed
BookMark eNpFkFtP3DAQRi1ExWXhJ4DyQlUeQu3El-RxiVpYaVErSp-tiT1hDbmAnbTqv6_T3Wqf_Mk6M_PpnJLDfuiRkAtGbxgTxWdGVZFSnmc3VfUYQ0ppXh6QEyaESvNMisOY_zPH5DSEF0oZZ5QfkWMmuBJcyBMCqw5G17s6-fTjaSUUu04f0DoY0SbVBvpnDInrk7t2MkPA5AFHqIfWhW7-vZ866JM1Tq_YOUhuY5Hl7Tr9PgQ3ul-YVNi24Yx8aKANeL57F-Tn1y9P1X26_na3qpbr1IicjylCU2dNAZjZWhlVN6pkklJDy4KVwti8VCi5BStzaxkIRBRQC5kJqaiVKl-Qj9u9b354nzCMunPBxAbQ4zAFLWXJFacygmILGj-E4LHRb9514P9oRvXsVs_e9OxNR7cx6NltnLvcHZjqDu1-aiczAlc7AIKBtvHQGxf2nGRFlhU8ctdbbuOeN7-dR20iid5jQPBm869HGQtLlv8FRwKQVQ
CitedBy_id crossref_primary_10_3389_fbioe_2022_943906
crossref_primary_10_1186_s12951_015_0083_7
crossref_primary_10_1586_14737159_6_5_717
crossref_primary_10_1186_bcr2729
crossref_primary_10_1073_pnas_1603876113
crossref_primary_10_1021_acs_jproteome_9b00028
crossref_primary_10_1155_2015_390863
crossref_primary_10_1517_17460441_1_6_585
crossref_primary_10_1111_bjh_16074
crossref_primary_10_1158_1535_7163_MCT_09_0039
crossref_primary_10_1016_j_metabol_2009_09_029
crossref_primary_10_1007_s12032_022_01699_8
crossref_primary_10_1073_pnas_0701286104
crossref_primary_10_1155_2015_296167
crossref_primary_10_3390_biom12050662
crossref_primary_10_2165_00129785_200505050_00002
crossref_primary_10_1007_s10863_007_9086_x
crossref_primary_10_1186_2162_3619_2_18
crossref_primary_10_1016_j_pharep_2014_06_010
crossref_primary_10_1016_j_molmet_2021_101410
crossref_primary_10_1089_cbr_2020_3600
crossref_primary_10_1161_CIRCRESAHA_116_305265
crossref_primary_10_1158_0008_5472_CAN_09_2266
crossref_primary_10_1371_journal_pone_0073267
crossref_primary_10_1111_j_1742_4658_2007_05686_x
crossref_primary_10_1016_j_semcdb_2019_05_019
crossref_primary_10_1038_srep28720
crossref_primary_10_3390_ijms20174158
crossref_primary_10_1016_j_bbabio_2010_09_003
crossref_primary_10_1158_0008_5472_CAN_12_1969
crossref_primary_10_1002_med_21325
crossref_primary_10_1007_s11427_010_4041_1
crossref_primary_10_1182_blood_2023019962
crossref_primary_10_1038_onc_2010_67
crossref_primary_10_1016_j_gene_2015_08_009
crossref_primary_10_1111_jcmm_13106
crossref_primary_10_1016_j_blre_2020_100786
crossref_primary_10_1182_blood_2020008551
crossref_primary_10_1038_cdd_2008_48
crossref_primary_10_1002_nbm_2825
crossref_primary_10_3390_hemato4030017
crossref_primary_10_1186_s13046_019_1409_3
crossref_primary_10_1016_j_semcancer_2012_02_009
crossref_primary_10_1007_s12015_021_10308_6
crossref_primary_10_1016_j_jtbi_2018_04_035
crossref_primary_10_1038_sj_onc_1209597
crossref_primary_10_1371_journal_pone_0187584
crossref_primary_10_18632_oncotarget_14294
crossref_primary_10_1158_1078_0432_CCR_08_1059
crossref_primary_10_18632_oncotarget_1420
crossref_primary_10_3389_fphar_2024_1355171
crossref_primary_10_1016_j_ajpath_2013_07_035
crossref_primary_10_3390_cells8020104
crossref_primary_10_1038_sj_bjc_6605457
crossref_primary_10_1371_journal_pcbi_1002018
crossref_primary_10_1089_omi_2020_0144
crossref_primary_10_3390_ijms221910600
crossref_primary_10_1016_j_exphem_2007_03_012
crossref_primary_10_1016_j_molonc_2011_04_001
crossref_primary_10_1371_journal_pone_0021924
crossref_primary_10_3390_ijms140816348
crossref_primary_10_1007_s00432_022_04333_2
crossref_primary_10_1002_cnr2_1139
crossref_primary_10_1038_ncomms1562
crossref_primary_10_3390_biomedicines9121749
crossref_primary_10_1016_j_pharmthera_2021_107827
crossref_primary_10_1111_bph_13422
crossref_primary_10_3390_metabo13030345
crossref_primary_10_18632_oncotarget_16238
crossref_primary_10_1158_0008_5472_CAN_10_0608
crossref_primary_10_1007_s00262_010_0967_1
crossref_primary_10_1016_j_biocel_2007_03_021
crossref_primary_10_1097_HEP_0000000000000005
crossref_primary_10_3390_cancers13143597
crossref_primary_10_1038_nrc3579
crossref_primary_10_1161_CIRCULATIONAHA_113_004136
crossref_primary_10_1200_JCO_2006_06_5318
crossref_primary_10_1016_j_bbamcr_2010_08_011
crossref_primary_10_1007_s12032_021_01551_5
crossref_primary_10_1016_j_cbi_2015_03_028
crossref_primary_10_1002_mnfr_200700470
crossref_primary_10_1016_j_cclet_2023_108332
crossref_primary_10_1016_j_uct_2006_05_007
crossref_primary_10_1016_j_ddstr_2004_11_016
crossref_primary_10_2174_1568009618666180430144441
crossref_primary_10_1007_BF03347451
crossref_primary_10_1002_pros_20727
crossref_primary_10_1021_acs_analchem_5b03040
crossref_primary_10_1111_cas_13442
crossref_primary_10_1007_s00432_009_0590_8
crossref_primary_10_1007_s12288_019_01107_8
crossref_primary_10_1016_j_canlet_2015_11_020
crossref_primary_10_1038_s41416_018_0375_4
crossref_primary_10_2217_bmm_09_15
crossref_primary_10_1124_pharmrev_120_000043
crossref_primary_10_1016_j_bbcan_2020_188442
crossref_primary_10_1101_cshperspect_a035477
crossref_primary_10_1158_0008_5472_CAN_05_3906
crossref_primary_10_3390_polym15193969
crossref_primary_10_1016_j_bbcan_2021_188646
crossref_primary_10_1038_srep32734
crossref_primary_10_1002_cbf_1685
crossref_primary_10_1038_s41388_022_02562_w
crossref_primary_10_1038_s41419_023_05811_2
crossref_primary_10_1038_sj_bjc_6604946
crossref_primary_10_1016_j_semcancer_2017_01_004
crossref_primary_10_1111_cas_13500
crossref_primary_10_1158_1078_0432_CCR_17_2697
crossref_primary_10_1530_JME_18_0058
crossref_primary_10_1007_s12274_018_2032_x
crossref_primary_10_1007_s00204_014_1246_2
crossref_primary_10_14319_ijcto_42_15
crossref_primary_10_1074_jbc_M114_593970
crossref_primary_10_1371_journal_pone_0153226
crossref_primary_10_3389_fonc_2017_00087
crossref_primary_10_3390_cells9020404
crossref_primary_10_3390_md19010030
crossref_primary_10_1016_j_redox_2020_101510
crossref_primary_10_1016_j_pharmthera_2022_108256
crossref_primary_10_1517_13543784_17_10_1533
crossref_primary_10_1016_j_ccr_2012_09_020
crossref_primary_10_1002_hsr2_996
crossref_primary_10_1039_C7LC01301A
crossref_primary_10_18632_oncotarget_7676
crossref_primary_10_1016_j_leukres_2009_01_040
crossref_primary_10_1016_j_oraloncology_2018_05_018
crossref_primary_10_1038_ncomms2759
crossref_primary_10_3389_fonc_2022_1072806
crossref_primary_10_1039_D1TB00218J
crossref_primary_10_1089_omi_2012_0012
crossref_primary_10_1007_s00204_011_0729_7
crossref_primary_10_2165_00003495_200767020_00010
crossref_primary_10_1016_j_bioactmat_2022_08_006
crossref_primary_10_1158_1078_0432_CCR_14_2146
crossref_primary_10_1002_nbm_1658
crossref_primary_10_1038_sj_onc_1208461
crossref_primary_10_3390_cancers12113443
crossref_primary_10_1016_j_bbrc_2014_04_138
crossref_primary_10_1021_acs_jproteome_6b00356
crossref_primary_10_1007_s11306_010_0204_0
crossref_primary_10_1111_j_1476_5381_2009_00345_x
crossref_primary_10_1158_0008_5472_CAN_12_2460
crossref_primary_10_1586_era_13_45
crossref_primary_10_1074_jbc_M114_581124
crossref_primary_10_1097_MCO_0b013e32833a5577
crossref_primary_10_18632_oncotarget_11594
crossref_primary_10_3389_fonc_2016_00135
crossref_primary_10_1016_j_mito_2010_08_002
crossref_primary_10_1371_journal_pone_0025139
crossref_primary_10_1038_s41427_019_0138_6
crossref_primary_10_2217_14622416_7_7_1109
crossref_primary_10_4049_jimmunol_1002805
crossref_primary_10_1007_s10522_014_9534_z
crossref_primary_10_1007_s11596_020_2266_1
crossref_primary_10_1002_mrm_24520
crossref_primary_10_1089_scd_2019_0117
crossref_primary_10_1016_j_ddstr_2005_11_004
crossref_primary_10_1016_j_bcp_2018_03_006
crossref_primary_10_1155_2019_7831952
crossref_primary_10_1007_s00432_013_1579_x
crossref_primary_10_1038_s41375_021_01315_0
crossref_primary_10_1111_j_1582_4934_2008_00464_x
crossref_primary_10_1158_0008_5472_CAN_10_0883
crossref_primary_10_1093_carcin_bgt480
crossref_primary_10_1007_s12013_013_9757_7
crossref_primary_10_1016_j_ccr_2013_02_015
crossref_primary_10_1152_ajpcell_00247_2006
crossref_primary_10_1186_s12943_018_0798_9
crossref_primary_10_1089_biores_2015_0022
crossref_primary_10_1002_nbm_1751
crossref_primary_10_1016_j_leukres_2015_08_007
crossref_primary_10_1002_prca_200900157
crossref_primary_10_1158_1078_0432_CCR_08_3291
crossref_primary_10_1080_01635581_2017_1263751
crossref_primary_10_1155_2015_283145
crossref_primary_10_3390_ijms20133134
crossref_primary_10_1016_j_tiv_2023_105608
crossref_primary_10_1038_onc_2012_70
crossref_primary_10_1186_s40364_024_00594_w
crossref_primary_10_1016_j_bbagen_2019_129507
crossref_primary_10_3389_fonc_2023_1302356
crossref_primary_10_1016_j_leukres_2014_09_016
Cites_doi 10.1056/NEJM200104053441401
10.1056/NEJMoa011573
10.1097/00006676-200201000-00004
10.1016/S0301-4622(97)00024-0
10.1056/NEJMoa022457
10.1096/fj.01-0996com
10.1016/S0145-2126(02)00035-8
10.1056/NEJMe030009
10.1016/S0959-8049(02)80604-9
10.1016/S0140-6736(73)90562-X
10.1038/84683
10.1038/sj.onc.1204704
10.1016/S0167-4889(96)00081-X
10.1038/sj.neo.7900078
10.1002/jcb.10659
10.1007/s002770000167
10.1182/blood.V100.3.1068
10.1038/sj.bjp.0704142
10.1074/jbc.M105796200
10.1182/blood.V90.9.3691
10.1016/S0140-6736(02)07679-1
10.1016/S0024-3205(00)00554-3
10.1002/mrm.1910180115
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright_xml – notice: 2004 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1158/1078-0432.CCR-04-0039
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 6668
ExternalDocumentID 10_1158_1078_0432_CCR_04_0039
15475456
16182284
10_19_6661
Genre Journal Article
GroupedDBID -
08R
29B
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
AAPBV
ABFLS
ABOCM
ACIWK
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H13
H~9
IH2
KQ8
L7B
LSO
MVM
O0-
OHT
OK1
P0W
P2P
RCR
RHF
RHI
RNS
SJN
UDS
VH1
W2D
WOQ
X7M
XFK
XJT
ZA5
ZCG
ZGI
---
.55
.GJ
18M
1CY
2FS
476
4H-
6J9
AAUGY
ACGFO
ACSVP
ADCOW
ADNWM
AFHIN
AFOSN
AI.
BR6
BTFSW
IQODW
J5H
QTD
TR2
W8F
WHG
YKV
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c534t-eafb2f8ae2db7c7bf791600c098195cd397e64dad63dd1a5eee5ab5625670d673
ISSN 1078-0432
IngestDate Thu Oct 24 23:37:14 EDT 2024
Thu Sep 26 15:52:07 EDT 2024
Sat Sep 28 07:46:21 EDT 2024
Sun Oct 29 17:07:42 EDT 2023
Fri Jan 15 19:23:40 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Chromosomal aberration
Antineoplastic agent
Human
Imatinib
Enzyme
Transferases
Leukemia
Enzyme inhibitor
Malignant hemopathy
Glucose
Metabolism
Philadelphia chromosome
Abnormal chromosome C9
Protein kinase
Bcr-abl protein
Abnormal chromosome G22
Abnormal chromosome
Protein-tyrosine kinase
Hybrid gene
Chromosome translocation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-eafb2f8ae2db7c7bf791600c098195cd397e64dad63dd1a5eee5ab5625670d673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/10/19/6661/1953226/zdf01904006661.pdf
PMID 15475456
PQID 66947406
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_66947406
crossref_primary_10_1158_1078_0432_CCR_04_0039
pubmed_primary_15475456
pascalfrancis_primary_16182284
highwire_cancerresearch_10_19_6661
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 2004-10-01
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2004
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061103422809000_B12
2022061103422809000_B13
2022061103422809000_B14
2022061103422809000_B15
2022061103422809000_B16
2022061103422809000_B17
2022061103422809000_B18
2022061103422809000_B19
2022061103422809000_B20
2022061103422809000_B21
2022061103422809000_B22
2022061103422809000_B23
2022061103422809000_B24
2022061103422809000_B25
2022061103422809000_B26
2022061103422809000_B27
2022061103422809000_B28
2022061103422809000_B29
2022061103422809000_B9
2022061103422809000_B7
2022061103422809000_B8
2022061103422809000_B1
2022061103422809000_B2
2022061103422809000_B5
2022061103422809000_B30
2022061103422809000_B6
2022061103422809000_B31
2022061103422809000_B3
2022061103422809000_B10
2022061103422809000_B32
2022061103422809000_B4
2022061103422809000_B11
References_xml – ident: 2022061103422809000_B11
  doi: 10.1056/NEJM200104053441401
– ident: 2022061103422809000_B12
  doi: 10.1056/NEJMoa011573
– ident: 2022061103422809000_B14
  doi: 10.1097/00006676-200201000-00004
– ident: 2022061103422809000_B17
  doi: 10.1016/S0301-4622(97)00024-0
– ident: 2022061103422809000_B26
– ident: 2022061103422809000_B1
  doi: 10.1056/NEJMoa022457
– ident: 2022061103422809000_B24
– ident: 2022061103422809000_B8
– ident: 2022061103422809000_B31
– ident: 2022061103422809000_B30
  doi: 10.1096/fj.01-0996com
– ident: 2022061103422809000_B28
  doi: 10.1016/S0145-2126(02)00035-8
– ident: 2022061103422809000_B2
  doi: 10.1056/NEJMe030009
– ident: 2022061103422809000_B15
  doi: 10.1016/S0959-8049(02)80604-9
– ident: 2022061103422809000_B16
– ident: 2022061103422809000_B3
  doi: 10.1016/S0140-6736(73)90562-X
– ident: 2022061103422809000_B7
  doi: 10.1038/84683
– ident: 2022061103422809000_B10
  doi: 10.1038/sj.onc.1204704
– ident: 2022061103422809000_B19
  doi: 10.1016/S0167-4889(96)00081-X
– ident: 2022061103422809000_B18
  doi: 10.1038/sj.neo.7900078
– ident: 2022061103422809000_B27
  doi: 10.1002/jcb.10659
– ident: 2022061103422809000_B4
  doi: 10.1007/s002770000167
– ident: 2022061103422809000_B22
  doi: 10.1182/blood.V100.3.1068
– ident: 2022061103422809000_B20
  doi: 10.1038/sj.bjp.0704142
– ident: 2022061103422809000_B29
– ident: 2022061103422809000_B23
  doi: 10.1074/jbc.M105796200
– ident: 2022061103422809000_B5
– ident: 2022061103422809000_B9
– ident: 2022061103422809000_B6
  doi: 10.1182/blood.V90.9.3691
– ident: 2022061103422809000_B13
  doi: 10.1016/S0140-6736(02)07679-1
– ident: 2022061103422809000_B21
  doi: 10.1016/S0024-3205(00)00554-3
– ident: 2022061103422809000_B25
  doi: 10.1002/mrm.1910180115
– ident: 2022061103422809000_B32
SSID ssj0014104
Score 2.312613
Snippet The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase...
The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase...
Abstract The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed...
SourceID proquest
crossref
pubmed
pascalfrancis
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 6661
SubjectTerms Antineoplastic agents
Antineoplastic Agents - pharmacology
Apoptosis - drug effects
Benzamides
Biological and medical sciences
Blotting, Western
Carbon Isotopes
Cell Line, Tumor
Cell Proliferation - drug effects
Cell Survival - drug effects
Dose-Response Relationship, Drug
Fusion Proteins, bcr-abl - metabolism
Glucose - metabolism
Glucose - pharmacokinetics
Glutamates - metabolism
Humans
Imatinib Mesylate
K562 Cells
Lactates - metabolism
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology
Magnetic Resonance Spectroscopy
Medical sciences
Nucleotides - metabolism
Pharmacology. Drug treatments
Phospholipids - metabolism
Piperazines - pharmacology
Pyrimidines - pharmacology
Tumors
Title Imatinib (STI571)-Mediated Changes in Glucose Metabolism in Human Leukemia BCR-ABL-Positive Cells
URI http://clincancerres.aacrjournals.org/content/10/19/6661.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15475456
https://search.proquest.com/docview/66947406
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG86YESIB1CVkqZ2Ph6zAG3Z1kldJlW8RI7jShVbNrXpHvj7-MO4s52PTkV8vESpJdup75fz3eV3Z0LehbkT0Fy69sIPqE2zjNlgJ4MyhK1GcE8wJjDf-WTqjc_p1zmbdzo_W6ylTZn1xY-deSX_I1VoA7liluw_SLYeFBrgHuQLV5AwXP9KxhM0N4tlhmbiWTJhPqil0FbJIGhI6qReRXitmOmXsgSpX-DJGNCqD-i7kJvv8nLJe4fxzI4Oj21N5LqRPYzqr9vma1zlUQoEy6pnSgXVIeXRaZKcxePo-EhFVW-aPLNIJTOcTs23onozGEeT6TfDPAHANVyS-GgczT4lapx-b1RRQaoABa2pbmUrJwD-TQtvikIZ6yedtZ9UK2EHq_5SE_eURjEzUIauPlei1txOG6FhSw-DUzZo7enwM9i9X7BAhS7MhH0hVoqW4-gKS9v1uW_tmzWbEc8ccGGbv0PuuqDuUM-O5jXRCIm0VDNf9SQmjwym_rhz4m0LqapajaRdvgYJL_SBK7_3iJRllDwkD4xLY0Uan49IRxaPyb0TQ9p4QngFU-u9BumHGqKWgai1LCwDUauBKLYqiFoVRK3bELUURJ-S8y-fk3hsm5M9bMGGtLQlX2TuIuDSzTNf-NnCBy_FcYQT4mddkYORLD2a89wb5vmAMykl4xn66p7v5J4_fEb2iqtCviBWPnChRXDsT8H7Dnjug5c94FJ6YJ9mXdKvVjO91gVcUuX4siDF5U9x-dM4nsENFsoNu-Rtteapfpmqd0n1C1PEVpccbEmjGdpgoUveVOJJQWHjYvBCXm3W0D2kPpjRXfJcS63py6iPDs3-nwZ_Se43L9orsleuNvI12MZldqCg9wtJV7Kr
link.rule.ids 315,783,787,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imatinib+%28STI571%29-mediated+changes+in+glucose+metabolism+in+human+leukemia+BCR-ABL-positive+cells&rft.jtitle=Clinical+cancer+research&rft.au=GOTTSCHALK%2C+Sven&rft.au=ANDERSON%2C+Nora&rft.au=HAINZ%2C+Carsten&rft.au=ECKHARDT%2C+S.+Gail&rft.date=2004-10-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=10&rft.issue=19&rft.spage=6661&rft.epage=6668&rft_id=info:doi/10.1158%2F1078-0432.ccr-04-0039&rft.externalDBID=n%2Fa&rft.externalDocID=16182284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon