Coordinated regulation of vegetative and reproductive branching in rice

Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of theMicroR...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 50; pp. 15504 - 15509
Main Authors Wang, Lei, 王磊, Sun, Shengyuan, Jin, Jiye, Fu, Debao, Yang, Xuefei, Weng, Xiaoyu, Xu, Caiguo, Li, Xianghua, Xiao, Jinghua, Zhang, Qifa, 张启发
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.12.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of theMicroRNA 156(miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL)andmiR172/APETALA2(AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction ofSPLsreduces panicle branching, but by distinct mechanisms:miR156andmiR529fine-tune theSPLlevels for optimal panicle size.miR172regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs).SPLs modulate panicle branching by directly regulating themiR172/AP2andPANICLE PHYTOMER2(PAP2)/Rice TFL1/CEN homolog 1(RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.
AbstractList Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.
Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.
The patterns of lateral branching, including tillers and inflorescence branches, determine grain yields of many cereals. In this study, we characterized a regulatory network composed of microRNAs and transcription factor that coordinately regulate vegetative (tiller) and reproductive (panicle) branching in rice. The findings hold tremendous promise for application in rice genetic improvement and may also have general implications for understanding branching regulation of grasses. Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 ( miR156 /) miR529 / SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL ) and miR172 / APETALA2 ( AP2 ) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPL s reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPL s modulate panicle branching by directly regulating the miR172 / AP2 and PANICLE PHYTOMER2 ( PAP2 )/ Rice TFL1/CEN homolog 1 ( RCN1 ) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.
Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of theMicroRNA 156(miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL)andmiR172/APETALA2(AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction ofSPLsreduces panicle branching, but by distinct mechanisms:miR156andmiR529fine-tune theSPLlevels for optimal panicle size.miR172regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs).SPLs modulate panicle branching by directly regulating themiR172/AP2andPANICLE PHYTOMER2(PAP2)/Rice TFL1/CEN homolog 1(RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.
Author Yang, Xuefei
王磊
Xiao, Jinghua
Jin, Jiye
Fu, Debao
Sun, Shengyuan
Wang, Lei
Xu, Caiguo
Weng, Xiaoyu
张启发
Li, Xianghua
Zhang, Qifa
Author_xml – sequence: 1
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 2
  fullname: 王磊
– sequence: 3
  givenname: Shengyuan
  surname: Sun
  fullname: Sun, Shengyuan
– sequence: 4
  givenname: Jiye
  surname: Jin
  fullname: Jin, Jiye
– sequence: 5
  givenname: Debao
  surname: Fu
  fullname: Fu, Debao
– sequence: 6
  givenname: Xuefei
  surname: Yang
  fullname: Yang, Xuefei
– sequence: 7
  givenname: Xiaoyu
  surname: Weng
  fullname: Weng, Xiaoyu
– sequence: 8
  givenname: Caiguo
  surname: Xu
  fullname: Xu, Caiguo
– sequence: 9
  givenname: Xianghua
  surname: Li
  fullname: Li, Xianghua
– sequence: 10
  givenname: Jinghua
  surname: Xiao
  fullname: Xiao, Jinghua
– sequence: 11
  givenname: Qifa
  surname: Zhang
  fullname: Zhang, Qifa
– sequence: 12
  fullname: 张启发
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26631749$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1PGzEQxS1EVQL0zIlqpV64LNhe2xtfKlVRoZWQeilnyx-zwdHGDvZuJP77epNAKVIvtuz5zdObN6foOMQACF0QfE1w29xsgs7XhFMimSSEHqEZwZLUgkl8jGYY07aeM8pO0GnOK4yx5HP8EZ1QIRrSMjlDd4sYk_NBD-CqBMux14OPoYpdtYUlDOW1hUqHqbhJ0Y1292GSDvbRh2XlQ5W8hXP0odN9hk-H-ww93H7_vfhR3_-6-7n4dl9b3rChBsK5puU02BXDIJ0wwvE5N7Q1rSHGadkQUaDWkk5AZzhnDoBqR6nDsjlDX_e6m9GswVkIQ9K92iS_1ulZRe3Vv5XgH9UybhUT81bgpghcHQRSfBohD2rts4W-1wHimNUUi5REUl7QL-_QVRxTKOMVipMSuqC0UJ_fOnq18pJxAfgesCnmnKBT1g-7lItB3yuC1bRLNe1S_d1l6bt51_ci_f-O6mBlKrzShCpeOjjHrCCXe2SVh5jemGVCiDLzHwKNtis
CitedBy_id crossref_primary_10_1111_tpj_16361
crossref_primary_10_1186_s12870_017_1171_7
crossref_primary_10_1016_j_cj_2022_11_005
crossref_primary_10_1111_tpj_15036
crossref_primary_10_1016_j_molp_2021_06_009
crossref_primary_10_1016_j_tplants_2020_05_009
crossref_primary_10_1093_jxb_erad386
crossref_primary_10_1007_s11032_019_1078_0
crossref_primary_10_2139_ssrn_4051185
crossref_primary_10_1016_j_tplants_2016_07_006
crossref_primary_10_1016_j_molp_2021_04_003
crossref_primary_10_1007_s00497_020_00386_w
crossref_primary_10_1016_j_plantsci_2022_111433
crossref_primary_10_1038_s41598_018_31870_z
crossref_primary_10_1186_s12870_024_05687_0
crossref_primary_10_1016_j_devcel_2023_11_010
crossref_primary_10_3390_ijms22073508
crossref_primary_10_1111_tpj_14062
crossref_primary_10_1007_s00299_017_2192_2
crossref_primary_10_1016_j_envexpbot_2022_104852
crossref_primary_10_1016_j_plaphy_2024_108363
crossref_primary_10_1093_jxb_ery017
crossref_primary_10_1111_pbi_13713
crossref_primary_10_1093_plphys_kiab084
crossref_primary_10_1111_pbi_13799
crossref_primary_10_1007_s11103_017_0683_8
crossref_primary_10_1016_j_cj_2019_09_006
crossref_primary_10_3389_fpls_2022_1010138
crossref_primary_10_1371_journal_pgen_1009292
crossref_primary_10_1016_j_jia_2022_08_016
crossref_primary_10_1038_s41467_019_08479_5
crossref_primary_10_1016_j_plantsci_2020_110516
crossref_primary_10_1016_j_molp_2020_02_009
crossref_primary_10_3389_fgene_2020_00327
crossref_primary_10_1038_s41598_018_26438_w
crossref_primary_10_1073_pnas_2011779118
crossref_primary_10_1111_pbr_12602
crossref_primary_10_1111_pce_13987
crossref_primary_10_3389_fpls_2017_00495
crossref_primary_10_1371_journal_pgen_1010157
crossref_primary_10_1007_s13258_018_0688_y
crossref_primary_10_1007_s10725_020_00654_9
crossref_primary_10_3390_ijms22105167
crossref_primary_10_3390_plants9091206
crossref_primary_10_1093_aob_mcz025
crossref_primary_10_1016_j_molp_2021_04_013
crossref_primary_10_1186_s13227_017_0065_y
crossref_primary_10_1038_s41467_023_43077_6
crossref_primary_10_3390_plants9121695
crossref_primary_10_1038_s41598_018_27664_y
crossref_primary_10_1093_pcp_pcy021
crossref_primary_10_3389_fpls_2021_682018
crossref_primary_10_1016_j_jare_2022_01_012
crossref_primary_10_1016_j_envexpbot_2023_105297
crossref_primary_10_1093_plphys_kiac216
crossref_primary_10_1093_plphys_kiac339
crossref_primary_10_1007_s10725_022_00919_5
crossref_primary_10_1007_s11103_020_01097_6
crossref_primary_10_1186_s12864_020_07103_x
crossref_primary_10_1016_j_plantsci_2018_03_003
crossref_primary_10_3389_fgene_2022_876198
crossref_primary_10_1111_pbi_13566
crossref_primary_10_1270_jsbbs_19062
crossref_primary_10_1371_journal_pgen_1008191
crossref_primary_10_1016_j_molp_2024_11_015
crossref_primary_10_1093_nsr_nww042
crossref_primary_10_1186_s12575_019_0110_4
crossref_primary_10_1016_j_gene_2018_06_105
crossref_primary_10_1038_s41467_017_00404_y
crossref_primary_10_1016_j_tplants_2018_12_001
crossref_primary_10_1080_14620316_2021_1971571
crossref_primary_10_1016_j_plantsci_2022_111531
crossref_primary_10_1038_s42003_018_0234_0
crossref_primary_10_3389_fpls_2022_925688
crossref_primary_10_1016_j_jgg_2024_12_005
crossref_primary_10_1038_nplants_2017_77
crossref_primary_10_1111_tpj_14445
crossref_primary_10_1002_ael2_20047
crossref_primary_10_1016_j_plantsci_2019_02_002
crossref_primary_10_3389_fpls_2021_770363
crossref_primary_10_1038_cr_2017_98
crossref_primary_10_1007_s11104_022_05608_w
crossref_primary_10_1126_science_aat7675
crossref_primary_10_1093_plcell_koad257
crossref_primary_10_1111_tpj_15023
crossref_primary_10_1111_tpj_15663
crossref_primary_10_3389_fgene_2021_668940
crossref_primary_10_1007_s11103_020_01071_2
crossref_primary_10_1016_j_jgg_2020_06_007
crossref_primary_10_3835_plantgenome2018_04_0021
crossref_primary_10_1016_j_plantsci_2018_01_021
crossref_primary_10_1186_s12870_020_2291_z
crossref_primary_10_1007_s12038_020_00048_z
crossref_primary_10_1038_s41598_020_72005_7
crossref_primary_10_1038_s41598_017_05873_1
crossref_primary_10_1111_plb_13303
crossref_primary_10_3390_plants12091879
crossref_primary_10_3390_plants12020411
crossref_primary_10_1038_s41467_019_11830_5
crossref_primary_10_3390_plants11121576
crossref_primary_10_1186_s12284_019_0299_5
crossref_primary_10_1534_genetics_117_300071
crossref_primary_10_1111_pbi_13743
crossref_primary_10_1016_j_cj_2019_06_006
crossref_primary_10_3390_ijms22115550
crossref_primary_10_1038_s41477_021_00852_x
crossref_primary_10_3390_ijms22157909
crossref_primary_10_54112_bbasr_v2024i1_65
crossref_primary_10_1016_j_cj_2021_02_004
crossref_primary_10_1007_s11032_019_1076_2
crossref_primary_10_1007_s13562_023_00833_5
crossref_primary_10_1111_nph_14391
crossref_primary_10_1016_j_tplants_2019_06_002
crossref_primary_10_3389_fpls_2022_916067
crossref_primary_10_1038_s41598_017_17460_5
crossref_primary_10_1016_j_ijbiomac_2022_11_239
crossref_primary_10_1073_pnas_1703752114
crossref_primary_10_1126_sciadv_abf0832
crossref_primary_10_1038_s41598_018_25349_0
crossref_primary_10_1101_cshperspect_a034652
crossref_primary_10_3390_ijms22126610
crossref_primary_10_1242_dev_146407
crossref_primary_10_1016_j_molp_2017_09_015
crossref_primary_10_1093_pcp_pcab041
crossref_primary_10_1016_j_tplants_2017_06_004
crossref_primary_10_1093_jxb_erac248
crossref_primary_10_1111_jipb_12634
crossref_primary_10_1111_tpj_15884
crossref_primary_10_3389_fpls_2017_01538
crossref_primary_10_1016_j_jplph_2024_154417
crossref_primary_10_1111_pbr_12928
crossref_primary_10_1111_pbi_12946
crossref_primary_10_1007_s00438_019_01542_2
crossref_primary_10_1007_s00122_020_03554_8
crossref_primary_10_1016_j_molp_2020_09_007
crossref_primary_10_3389_fpls_2020_620282
crossref_primary_10_1186_s12870_018_1504_1
crossref_primary_10_3390_genes10090686
crossref_primary_10_3390_plants14010136
crossref_primary_10_3389_fpls_2021_749919
crossref_primary_10_1016_j_jgg_2019_01_003
crossref_primary_10_3390_ijms222011100
crossref_primary_10_3390_ijms21061971
crossref_primary_10_3390_plants12050982
crossref_primary_10_1007_s00438_023_02005_5
crossref_primary_10_1016_j_plantsci_2020_110728
crossref_primary_10_1038_cr_2017_114
crossref_primary_10_1016_j_envexpbot_2023_105613
crossref_primary_10_1007_s11032_019_1094_0
crossref_primary_10_1038_s41477_023_01383_3
crossref_primary_10_1186_s12284_022_00587_z
crossref_primary_10_1016_j_molp_2016_04_008
crossref_primary_10_1016_j_indcrop_2025_120689
crossref_primary_10_1186_s12870_017_1095_2
crossref_primary_10_1186_s12870_019_2059_5
crossref_primary_10_1111_pbi_12956
crossref_primary_10_1111_tpj_14528
crossref_primary_10_1007_s42994_021_00038_1
crossref_primary_10_1111_mpp_70031
crossref_primary_10_1016_j_jia_2022_09_022
crossref_primary_10_1146_annurev_arplant_080720_090632
crossref_primary_10_1093_jxb_ery273
crossref_primary_10_1186_s12870_019_1746_6
crossref_primary_10_1016_j_jgg_2023_03_002
crossref_primary_10_1016_j_xplc_2023_100610
crossref_primary_10_1007_s10142_023_00989_2
crossref_primary_10_1016_j_cj_2021_05_004
crossref_primary_10_1016_j_agrformet_2022_108856
crossref_primary_10_1186_s12284_018_0246_x
crossref_primary_10_1007_s11738_024_03667_3
crossref_primary_10_1016_j_cj_2020_05_002
crossref_primary_10_1111_tpj_15188
crossref_primary_10_1186_s12870_016_0969_z
crossref_primary_10_3390_ijms20071754
crossref_primary_10_1007_s11103_024_01530_0
crossref_primary_10_1111_pbi_13256
crossref_primary_10_1093_plcell_koac080
crossref_primary_10_3390_genes10080591
crossref_primary_10_1111_jipb_12818
crossref_primary_10_1007_s00299_017_2146_8
crossref_primary_10_1007_s11103_017_0618_4
crossref_primary_10_1073_pnas_2306494120
crossref_primary_10_1093_plphys_kiad209
crossref_primary_10_1016_j_cj_2023_12_008
crossref_primary_10_1002_wrna_1556
crossref_primary_10_1371_journal_pgen_1010698
crossref_primary_10_1093_plphys_kiad201
crossref_primary_10_1016_j_molp_2018_01_007
crossref_primary_10_1038_s41598_018_31919_z
Cites_doi 10.1146/annurev-arplant-050213-040104
10.1016/j.cell.2009.06.031
10.1104/pp.110.156711
10.1534/genetics.105.044727
10.1126/science.1123841
10.1038/nature12870
10.1038/ng.2007.20
10.1038/ng.592
10.1038/ng2001
10.1111/j.1365-313X.2005.02610.x
10.1073/pnas.0909097107
10.1111/j.1365-313X.2011.04781.x
10.1146/annurev.arplant.56.032604.144122
10.1073/pnas.1932414100
10.1104/pp.106.084475
10.1126/science.1076920
10.1105/tpc.113.113639
10.1016/j.devcel.2013.02.013
10.1242/dev.00564
10.1073/pnas.1407401112
10.1093/pcp/pcp166
10.1111/j.1365-313X.2011.04872.x
10.1038/ng.143
10.1104/pp.107.111740
10.1007/s00425-011-1532-7
10.1242/dev.051748
10.1111/j.1365-313X.2011.04804.x
10.1038/nature01518
10.1016/j.devcel.2009.06.007
10.1016/B978-0-12-396968-2.00005-1
10.1038/ng2079
10.1016/j.pbi.2013.11.010
10.1038/ng.591
10.1111/j.1365-313X.2009.04100.x
10.1038/nature05504
10.1105/tpc.111.089045
10.1016/j.cell.2009.06.014
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Dec 15, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Dec 15, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1521949112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Regulation of lateral branching in rice
EISSN 1091-6490
EndPage 15509
ExternalDocumentID PMC4687603
3902797061
26631749
10_1073_pnas_1521949112
112_50_15504
26466625
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c534t-e155a2e15b0d911e9d6b6d585b27b7b1bda931655a7c1f6efb554dee2ad22d093
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:49:42 EDT 2025
Fri Jul 11 16:14:15 EDT 2025
Mon Jun 30 07:47:27 EDT 2025
Mon Jul 21 06:01:11 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Tue Jul 01 01:53:37 EDT 2025
Wed Nov 11 00:29:29 EST 2020
Fri May 30 12:01:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords Oryza sativa
microRNA
spikelet
lateral branch
panicle
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-e155a2e15b0d911e9d6b6d585b27b7b1bda931655a7c1f6efb554dee2ad22d093
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Contributed by Qifa Zhang, November 6, 2015 (sent for review August 6, 2015; reviewed by Gynheung An and Yaoguang Liu)
Author contributions: L.W. and Q.Z. designed research; L.W., S.S., J.J., D.F., X.Y., X.W., C.X., X.L., and J.X. performed research; L.W. and Q.Z. analyzed data; and L.W. and Q.Z. wrote the paper.
Reviewers: G.A., Kyung Hee University; and Y.L., South China Agricultural University.
OpenAccessLink https://www.pnas.org/content/pnas/112/50/15504.full.pdf
PMID 26631749
PQID 1751219622
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1521949112
pnas_primary_112_50_15504
proquest_miscellaneous_1749991925
crossref_primary_10_1073_pnas_1521949112
jstor_primary_26466625
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4687603
proquest_journals_1751219622
pubmed_primary_26631749
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-15
PublicationDateYYYYMMDD 2015-12-15
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
16763149 - Science. 2006 Jun 9;312(5779):1520-3
20018663 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):490-5
19686687 - Dev Cell. 2009 Aug;17(2):268-78
22158467 - Plant Cell. 2011 Dec;23(12):4185-207
24170127 - Plant Cell. 2013 Oct;25(10):3743-59
16861571 - Plant Physiol. 2006 Sep;142(1):280-93
22136599 - Plant J. 2012 Apr;70(2):327-39
18026103 - Nat Genet. 2007 Dec;39(12):1517-21
22020753 - Planta. 2012 Apr;235(4):713-27
24471834 - Annu Rev Plant Biol. 2014;65:553-78
19703399 - Cell. 2009 Aug 21;138(4):738-49
13130077 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11765-70
16367959 - Plant J. 2006 Jan;45(1):123-32
21910771 - Plant J. 2012 Jan;69(1):168-80
20699296 - Development. 2010 Sep 1;137(17):2849-56
20495564 - Nat Genet. 2010 Jun;42(6):545-9
15862100 - Annu Rev Plant Biol. 2005;56:353-74
23962841 - Curr Top Dev Biol. 2013;105:125-52
16172507 - Genetics. 2006 Jan;172(1):547-55
23537632 - Dev Cell. 2013 Mar 25;24(6):612-22
19703400 - Cell. 2009 Aug 21;138(4):750-9
20495565 - Nat Genet. 2010 Jun;42(6):541-4
24507502 - Curr Opin Plant Biol. 2014 Feb;17:110-5
12835399 - Development. 2003 Aug;130(16):3841-50
18065554 - Plant Physiol. 2008 Feb;146(2):368-76
19933267 - Plant Cell Physiol. 2010 Jan;51(1):47-57
24336200 - Nature. 2013 Dec 19;504(7480):401-5
25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80
20395452 - Plant Physiol. 2010 Jun;153(2):728-40
12424380 - Science. 2002 Nov 8;298(5596):1238-41
17643101 - Nat Genet. 2007 Aug;39(8):1033-7
20003165 - Plant J. 2010 Mar;61(5):752-66
17369828 - Nat Genet. 2007 Apr;39(4):544-9
22003982 - Plant J. 2012 Feb;69(3):445-61
18454147 - Nat Genet. 2008 Jun;40(6):761-7
12687001 - Nature. 2003 Apr 10;422(6932):618-21
17287810 - Nature. 2007 Feb 8;445(7128):652-5
References_xml – ident: e_1_3_3_3_2
  doi: 10.1146/annurev-arplant-050213-040104
– ident: e_1_3_3_10_2
  doi: 10.1016/j.cell.2009.06.031
– ident: e_1_3_3_26_2
  doi: 10.1104/pp.110.156711
– ident: e_1_3_3_33_2
  doi: 10.1534/genetics.105.044727
– ident: e_1_3_3_34_2
  doi: 10.1126/science.1123841
– ident: e_1_3_3_9_2
  doi: 10.1038/nature12870
– ident: e_1_3_3_14_2
  doi: 10.1038/ng.2007.20
– ident: e_1_3_3_8_2
  doi: 10.1038/ng.592
– ident: e_1_3_3_13_2
  doi: 10.1038/ng2001
– ident: e_1_3_3_37_2
  doi: 10.1111/j.1365-313X.2005.02610.x
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.0909097107
– ident: e_1_3_3_30_2
  doi: 10.1111/j.1365-313X.2011.04781.x
– ident: e_1_3_3_2_2
  doi: 10.1146/annurev.arplant.56.032604.144122
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1932414100
– ident: e_1_3_3_15_2
  doi: 10.1104/pp.106.084475
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1076920
– ident: e_1_3_3_31_2
  doi: 10.1105/tpc.113.113639
– ident: e_1_3_3_27_2
  doi: 10.1016/j.devcel.2013.02.013
– ident: e_1_3_3_20_2
  doi: 10.1242/dev.00564
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.1407401112
– ident: e_1_3_3_25_2
  doi: 10.1093/pcp/pcp166
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1365-313X.2011.04872.x
– ident: e_1_3_3_6_2
  doi: 10.1038/ng.143
– ident: e_1_3_3_24_2
  doi: 10.1104/pp.107.111740
– ident: e_1_3_3_23_2
  doi: 10.1007/s00425-011-1532-7
– ident: e_1_3_3_36_2
  doi: 10.1242/dev.051748
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1365-313X.2011.04804.x
– ident: e_1_3_3_5_2
  doi: 10.1038/nature01518
– ident: e_1_3_3_28_2
  doi: 10.1016/j.devcel.2009.06.007
– ident: e_1_3_3_12_2
  doi: 10.1016/B978-0-12-396968-2.00005-1
– ident: e_1_3_3_19_2
  doi: 10.1038/ng2079
– ident: e_1_3_3_1_2
  doi: 10.1016/j.pbi.2013.11.010
– ident: e_1_3_3_7_2
  doi: 10.1038/ng.591
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1365-313X.2009.04100.x
– ident: e_1_3_3_29_2
  doi: 10.1038/nature05504
– ident: e_1_3_3_17_2
  doi: 10.1105/tpc.111.089045
– ident: e_1_3_3_11_2
  doi: 10.1016/j.cell.2009.06.014
– reference: 19703400 - Cell. 2009 Aug 21;138(4):750-9
– reference: 22158467 - Plant Cell. 2011 Dec;23(12):4185-207
– reference: 24507502 - Curr Opin Plant Biol. 2014 Feb;17:110-5
– reference: 18065554 - Plant Physiol. 2008 Feb;146(2):368-76
– reference: 12424380 - Science. 2002 Nov 8;298(5596):1238-41
– reference: 17643101 - Nat Genet. 2007 Aug;39(8):1033-7
– reference: 16172507 - Genetics. 2006 Jan;172(1):547-55
– reference: 20018663 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):490-5
– reference: 24170127 - Plant Cell. 2013 Oct;25(10):3743-59
– reference: 24471834 - Annu Rev Plant Biol. 2014;65:553-78
– reference: 24336200 - Nature. 2013 Dec 19;504(7480):401-5
– reference: 25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80
– reference: 18026103 - Nat Genet. 2007 Dec;39(12):1517-21
– reference: 17369828 - Nat Genet. 2007 Apr;39(4):544-9
– reference: 16763149 - Science. 2006 Jun 9;312(5779):1520-3
– reference: 22020753 - Planta. 2012 Apr;235(4):713-27
– reference: 23537632 - Dev Cell. 2013 Mar 25;24(6):612-22
– reference: 19703399 - Cell. 2009 Aug 21;138(4):738-49
– reference: 16861571 - Plant Physiol. 2006 Sep;142(1):280-93
– reference: 17287810 - Nature. 2007 Feb 8;445(7128):652-5
– reference: 16367959 - Plant J. 2006 Jan;45(1):123-32
– reference: 20495564 - Nat Genet. 2010 Jun;42(6):545-9
– reference: 18454147 - Nat Genet. 2008 Jun;40(6):761-7
– reference: 19686687 - Dev Cell. 2009 Aug;17(2):268-78
– reference: 20495565 - Nat Genet. 2010 Jun;42(6):541-4
– reference: 15862100 - Annu Rev Plant Biol. 2005;56:353-74
– reference: 20699296 - Development. 2010 Sep 1;137(17):2849-56
– reference: 20395452 - Plant Physiol. 2010 Jun;153(2):728-40
– reference: 20003165 - Plant J. 2010 Mar;61(5):752-66
– reference: 23962841 - Curr Top Dev Biol. 2013;105:125-52
– reference: 12835399 - Development. 2003 Aug;130(16):3841-50
– reference: 22136599 - Plant J. 2012 Apr;70(2):327-39
– reference: 13130077 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11765-70
– reference: 19933267 - Plant Cell Physiol. 2010 Jan;51(1):47-57
– reference: 21910771 - Plant J. 2012 Jan;69(1):168-80
– reference: 12687001 - Nature. 2003 Apr 10;422(6932):618-21
– reference: 22003982 - Plant J. 2012 Feb;69(3):445-61
SSID ssj0009580
Score 2.587703
Snippet Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and...
The patterns of lateral branching, including tillers and inflorescence branches, determine grain yields of many cereals. In this study, we characterized a...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15504
SubjectTerms Agricultural production
Amino Acid Sequence
Biological Sciences
Cereals
Epistasis, Genetic
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genes, Plant
Genetics
Grain
Grasses
Meristem - genetics
MicroRNAs - genetics
MicroRNAs - metabolism
Molecular Sequence Data
Oryza - anatomy & histology
Oryza - growth & development
Oryza - ultrastructure
Plant Proteins - chemistry
Plant Proteins - metabolism
Plant Stems - anatomy & histology
Plant Stems - growth & development
Plant Stems - ultrastructure
Protein Binding
Reproduction
Rice
RNA-protein interactions
Title Coordinated regulation of vegetative and reproductive branching in rice
URI https://www.jstor.org/stable/26466625
http://www.pnas.org/content/112/50/15504.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26631749
https://www.proquest.com/docview/1751219622
https://www.proquest.com/docview/1749991925
https://pubmed.ncbi.nlm.nih.gov/PMC4687603
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwFLRIHIoqB-_DNj5WFW1VQdRDK3Izu_amsVTsqokrtb--M971I1EqARcrssdjZefzeGZ39htCPgeCZ4nEZXWRBb5UQqAfNL5WcaBkLpjkuN_55yQ6uZCn03A6Gv0eVC3VSz3O7jfuK_kfq8I5sCvukv0Hy3ZK4QT8BvvCESwMx7-y8WEFqWNRKowab2xTeRf_3ZrLpo7w1q4OIHVlw-za1KpjL415u5fF1b61AepZ90FbtOUDk3a-8KDffeJcwmLf3z-b9L2Mf7nZ5x-m6Feb7Azr3JSXd3WPxVPXBqy466B1VDsPqKrhZAQLsbDDbsccG-tAIf7wI2lbgHYelvEBlCzRrHOYmCHJja4cfA_2Hy7VAns0sUQmTs3AsNd_GstCkAFhkKU-XWPPbi89IU85JBLY4-J4yga0zN-ClvApFl_XnoZM0e7-lbDFVq4iHS7Ib0pN1itsByHL-Qvy3OUa9MACZ5uMTPmSbLemo3uOcvzLK3I8QBLtkUSrGe2RRAFJdIgk2iGJFiVFJL0mF0ffzw9PfNdiw89CIZe-gfFXHI46yOEfmySPdJRDCql5rGPNdK4SwSIQijM2i8xMQ_iZG8NVznkeJGKHbJVVad4SqrPQmFhkcqa1ZFnWzBwwE-RSawNu3yPjdgTTzPHPYxuUq7Spg4hFiqOZ9qPvkb3uhmtLvfK46E5jkk4OwnzIy3noEa8R7e5nPA1BB6LOI7ut4VL3UoPOGCJg-Cpx0PmpuwwuF9fRVGmqGmVwmgBSI1D_xtp58GCLF4_EKwjoBJDOffVKWcwbWncZQWQSiHeP6nxPnvXv3C7ZWt7U5gOExEv9sUH1A7u7tQ8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinated+regulation+of+vegetative+and+reproductive+branching+in+rice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Lei&rft.au=Sun%2C+Shengyuan&rft.au=Jin%2C+Jiye&rft.au=Fu%2C+Debao&rft.date=2015-12-15&rft.eissn=1091-6490&rft.volume=112&rft.issue=50&rft.spage=15504&rft_id=info:doi/10.1073%2Fpnas.1521949112&rft_id=info%3Apmid%2F26631749&rft.externalDocID=26631749
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F50.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F50.cover.gif