Coordinated regulation of vegetative and reproductive branching in rice
Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of theMicroR...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 50; pp. 15504 - 15509 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.12.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of theMicroRNA 156(miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL)andmiR172/APETALA2(AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction ofSPLsreduces panicle branching, but by distinct mechanisms:miR156andmiR529fine-tune theSPLlevels for optimal panicle size.miR172regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs).SPLs modulate panicle branching by directly regulating themiR172/AP2andPANICLE PHYTOMER2(PAP2)/Rice TFL1/CEN homolog 1(RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement. |
---|---|
AbstractList | Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement.Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement. Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 (miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) and miR172/APETALA2 (AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPLs reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPLs modulate panicle branching by directly regulating the miR172/AP2 and PANICLE PHYTOMER2 (PAP2)/Rice TFL1/CEN homolog 1 (RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement. The patterns of lateral branching, including tillers and inflorescence branches, determine grain yields of many cereals. In this study, we characterized a regulatory network composed of microRNAs and transcription factor that coordinately regulate vegetative (tiller) and reproductive (panicle) branching in rice. The findings hold tremendous promise for application in rice genetic improvement and may also have general implications for understanding branching regulation of grasses. Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of the MicroRNA 156 ( miR156 /) miR529 / SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL ) and miR172 / APETALA2 ( AP2 ) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction of SPL s reduces panicle branching, but by distinct mechanisms: miR156 and miR529 fine-tune the SPL levels for optimal panicle size. miR172 regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs). SPL s modulate panicle branching by directly regulating the miR172 / AP2 and PANICLE PHYTOMER2 ( PAP2 )/ Rice TFL1/CEN homolog 1 ( RCN1 ) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement. Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and constitute a major determinant for grain yield of many cereals. Here we show that a spatiotemporally coordinated gene network consisting of theMicroRNA 156(miR156/)miR529/SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL)andmiR172/APETALA2(AP2) pathways regulates tiller and panicle branching in rice. SPL genes negatively control tillering, but positively regulate inflorescence meristem and spikelet transition. Underproduction or overproduction ofSPLsreduces panicle branching, but by distinct mechanisms:miR156andmiR529fine-tune theSPLlevels for optimal panicle size.miR172regulates spikelet transition by targeting AP2-like genes, which does not affect tillering, and the AP2-like proteins play the roles by interacting with TOPLESS-related proteins (TPRs).SPLs modulate panicle branching by directly regulating themiR172/AP2andPANICLE PHYTOMER2(PAP2)/Rice TFL1/CEN homolog 1(RCN1) pathways and also by integrating other regulators, most of which are not involved in tillering regulation. These findings may also have significant implications for understanding branching regulation of other grasses and for application in rice genetic improvement. |
Author | Yang, Xuefei 王磊 Xiao, Jinghua Jin, Jiye Fu, Debao Sun, Shengyuan Wang, Lei Xu, Caiguo Weng, Xiaoyu 张启发 Li, Xianghua Zhang, Qifa |
Author_xml | – sequence: 1 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 2 fullname: 王磊 – sequence: 3 givenname: Shengyuan surname: Sun fullname: Sun, Shengyuan – sequence: 4 givenname: Jiye surname: Jin fullname: Jin, Jiye – sequence: 5 givenname: Debao surname: Fu fullname: Fu, Debao – sequence: 6 givenname: Xuefei surname: Yang fullname: Yang, Xuefei – sequence: 7 givenname: Xiaoyu surname: Weng fullname: Weng, Xiaoyu – sequence: 8 givenname: Caiguo surname: Xu fullname: Xu, Caiguo – sequence: 9 givenname: Xianghua surname: Li fullname: Li, Xianghua – sequence: 10 givenname: Jinghua surname: Xiao fullname: Xiao, Jinghua – sequence: 11 givenname: Qifa surname: Zhang fullname: Zhang, Qifa – sequence: 12 fullname: 张启发 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26631749$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1PGzEQxS1EVQL0zIlqpV64LNhe2xtfKlVRoZWQeilnyx-zwdHGDvZuJP77epNAKVIvtuz5zdObN6foOMQACF0QfE1w29xsgs7XhFMimSSEHqEZwZLUgkl8jGYY07aeM8pO0GnOK4yx5HP8EZ1QIRrSMjlDd4sYk_NBD-CqBMux14OPoYpdtYUlDOW1hUqHqbhJ0Y1292GSDvbRh2XlQ5W8hXP0odN9hk-H-ww93H7_vfhR3_-6-7n4dl9b3rChBsK5puU02BXDIJ0wwvE5N7Q1rSHGadkQUaDWkk5AZzhnDoBqR6nDsjlDX_e6m9GswVkIQ9K92iS_1ulZRe3Vv5XgH9UybhUT81bgpghcHQRSfBohD2rts4W-1wHimNUUi5REUl7QL-_QVRxTKOMVipMSuqC0UJ_fOnq18pJxAfgesCnmnKBT1g-7lItB3yuC1bRLNe1S_d1l6bt51_ci_f-O6mBlKrzShCpeOjjHrCCXe2SVh5jemGVCiDLzHwKNtis |
CitedBy_id | crossref_primary_10_1111_tpj_16361 crossref_primary_10_1186_s12870_017_1171_7 crossref_primary_10_1016_j_cj_2022_11_005 crossref_primary_10_1111_tpj_15036 crossref_primary_10_1016_j_molp_2021_06_009 crossref_primary_10_1016_j_tplants_2020_05_009 crossref_primary_10_1093_jxb_erad386 crossref_primary_10_1007_s11032_019_1078_0 crossref_primary_10_2139_ssrn_4051185 crossref_primary_10_1016_j_tplants_2016_07_006 crossref_primary_10_1016_j_molp_2021_04_003 crossref_primary_10_1007_s00497_020_00386_w crossref_primary_10_1016_j_plantsci_2022_111433 crossref_primary_10_1038_s41598_018_31870_z crossref_primary_10_1186_s12870_024_05687_0 crossref_primary_10_1016_j_devcel_2023_11_010 crossref_primary_10_3390_ijms22073508 crossref_primary_10_1111_tpj_14062 crossref_primary_10_1007_s00299_017_2192_2 crossref_primary_10_1016_j_envexpbot_2022_104852 crossref_primary_10_1016_j_plaphy_2024_108363 crossref_primary_10_1093_jxb_ery017 crossref_primary_10_1111_pbi_13713 crossref_primary_10_1093_plphys_kiab084 crossref_primary_10_1111_pbi_13799 crossref_primary_10_1007_s11103_017_0683_8 crossref_primary_10_1016_j_cj_2019_09_006 crossref_primary_10_3389_fpls_2022_1010138 crossref_primary_10_1371_journal_pgen_1009292 crossref_primary_10_1016_j_jia_2022_08_016 crossref_primary_10_1038_s41467_019_08479_5 crossref_primary_10_1016_j_plantsci_2020_110516 crossref_primary_10_1016_j_molp_2020_02_009 crossref_primary_10_3389_fgene_2020_00327 crossref_primary_10_1038_s41598_018_26438_w crossref_primary_10_1073_pnas_2011779118 crossref_primary_10_1111_pbr_12602 crossref_primary_10_1111_pce_13987 crossref_primary_10_3389_fpls_2017_00495 crossref_primary_10_1371_journal_pgen_1010157 crossref_primary_10_1007_s13258_018_0688_y crossref_primary_10_1007_s10725_020_00654_9 crossref_primary_10_3390_ijms22105167 crossref_primary_10_3390_plants9091206 crossref_primary_10_1093_aob_mcz025 crossref_primary_10_1016_j_molp_2021_04_013 crossref_primary_10_1186_s13227_017_0065_y crossref_primary_10_1038_s41467_023_43077_6 crossref_primary_10_3390_plants9121695 crossref_primary_10_1038_s41598_018_27664_y crossref_primary_10_1093_pcp_pcy021 crossref_primary_10_3389_fpls_2021_682018 crossref_primary_10_1016_j_jare_2022_01_012 crossref_primary_10_1016_j_envexpbot_2023_105297 crossref_primary_10_1093_plphys_kiac216 crossref_primary_10_1093_plphys_kiac339 crossref_primary_10_1007_s10725_022_00919_5 crossref_primary_10_1007_s11103_020_01097_6 crossref_primary_10_1186_s12864_020_07103_x crossref_primary_10_1016_j_plantsci_2018_03_003 crossref_primary_10_3389_fgene_2022_876198 crossref_primary_10_1111_pbi_13566 crossref_primary_10_1270_jsbbs_19062 crossref_primary_10_1371_journal_pgen_1008191 crossref_primary_10_1016_j_molp_2024_11_015 crossref_primary_10_1093_nsr_nww042 crossref_primary_10_1186_s12575_019_0110_4 crossref_primary_10_1016_j_gene_2018_06_105 crossref_primary_10_1038_s41467_017_00404_y crossref_primary_10_1016_j_tplants_2018_12_001 crossref_primary_10_1080_14620316_2021_1971571 crossref_primary_10_1016_j_plantsci_2022_111531 crossref_primary_10_1038_s42003_018_0234_0 crossref_primary_10_3389_fpls_2022_925688 crossref_primary_10_1016_j_jgg_2024_12_005 crossref_primary_10_1038_nplants_2017_77 crossref_primary_10_1111_tpj_14445 crossref_primary_10_1002_ael2_20047 crossref_primary_10_1016_j_plantsci_2019_02_002 crossref_primary_10_3389_fpls_2021_770363 crossref_primary_10_1038_cr_2017_98 crossref_primary_10_1007_s11104_022_05608_w crossref_primary_10_1126_science_aat7675 crossref_primary_10_1093_plcell_koad257 crossref_primary_10_1111_tpj_15023 crossref_primary_10_1111_tpj_15663 crossref_primary_10_3389_fgene_2021_668940 crossref_primary_10_1007_s11103_020_01071_2 crossref_primary_10_1016_j_jgg_2020_06_007 crossref_primary_10_3835_plantgenome2018_04_0021 crossref_primary_10_1016_j_plantsci_2018_01_021 crossref_primary_10_1186_s12870_020_2291_z crossref_primary_10_1007_s12038_020_00048_z crossref_primary_10_1038_s41598_020_72005_7 crossref_primary_10_1038_s41598_017_05873_1 crossref_primary_10_1111_plb_13303 crossref_primary_10_3390_plants12091879 crossref_primary_10_3390_plants12020411 crossref_primary_10_1038_s41467_019_11830_5 crossref_primary_10_3390_plants11121576 crossref_primary_10_1186_s12284_019_0299_5 crossref_primary_10_1534_genetics_117_300071 crossref_primary_10_1111_pbi_13743 crossref_primary_10_1016_j_cj_2019_06_006 crossref_primary_10_3390_ijms22115550 crossref_primary_10_1038_s41477_021_00852_x crossref_primary_10_3390_ijms22157909 crossref_primary_10_54112_bbasr_v2024i1_65 crossref_primary_10_1016_j_cj_2021_02_004 crossref_primary_10_1007_s11032_019_1076_2 crossref_primary_10_1007_s13562_023_00833_5 crossref_primary_10_1111_nph_14391 crossref_primary_10_1016_j_tplants_2019_06_002 crossref_primary_10_3389_fpls_2022_916067 crossref_primary_10_1038_s41598_017_17460_5 crossref_primary_10_1016_j_ijbiomac_2022_11_239 crossref_primary_10_1073_pnas_1703752114 crossref_primary_10_1126_sciadv_abf0832 crossref_primary_10_1038_s41598_018_25349_0 crossref_primary_10_1101_cshperspect_a034652 crossref_primary_10_3390_ijms22126610 crossref_primary_10_1242_dev_146407 crossref_primary_10_1016_j_molp_2017_09_015 crossref_primary_10_1093_pcp_pcab041 crossref_primary_10_1016_j_tplants_2017_06_004 crossref_primary_10_1093_jxb_erac248 crossref_primary_10_1111_jipb_12634 crossref_primary_10_1111_tpj_15884 crossref_primary_10_3389_fpls_2017_01538 crossref_primary_10_1016_j_jplph_2024_154417 crossref_primary_10_1111_pbr_12928 crossref_primary_10_1111_pbi_12946 crossref_primary_10_1007_s00438_019_01542_2 crossref_primary_10_1007_s00122_020_03554_8 crossref_primary_10_1016_j_molp_2020_09_007 crossref_primary_10_3389_fpls_2020_620282 crossref_primary_10_1186_s12870_018_1504_1 crossref_primary_10_3390_genes10090686 crossref_primary_10_3390_plants14010136 crossref_primary_10_3389_fpls_2021_749919 crossref_primary_10_1016_j_jgg_2019_01_003 crossref_primary_10_3390_ijms222011100 crossref_primary_10_3390_ijms21061971 crossref_primary_10_3390_plants12050982 crossref_primary_10_1007_s00438_023_02005_5 crossref_primary_10_1016_j_plantsci_2020_110728 crossref_primary_10_1038_cr_2017_114 crossref_primary_10_1016_j_envexpbot_2023_105613 crossref_primary_10_1007_s11032_019_1094_0 crossref_primary_10_1038_s41477_023_01383_3 crossref_primary_10_1186_s12284_022_00587_z crossref_primary_10_1016_j_molp_2016_04_008 crossref_primary_10_1016_j_indcrop_2025_120689 crossref_primary_10_1186_s12870_017_1095_2 crossref_primary_10_1186_s12870_019_2059_5 crossref_primary_10_1111_pbi_12956 crossref_primary_10_1111_tpj_14528 crossref_primary_10_1007_s42994_021_00038_1 crossref_primary_10_1111_mpp_70031 crossref_primary_10_1016_j_jia_2022_09_022 crossref_primary_10_1146_annurev_arplant_080720_090632 crossref_primary_10_1093_jxb_ery273 crossref_primary_10_1186_s12870_019_1746_6 crossref_primary_10_1016_j_jgg_2023_03_002 crossref_primary_10_1016_j_xplc_2023_100610 crossref_primary_10_1007_s10142_023_00989_2 crossref_primary_10_1016_j_cj_2021_05_004 crossref_primary_10_1016_j_agrformet_2022_108856 crossref_primary_10_1186_s12284_018_0246_x crossref_primary_10_1007_s11738_024_03667_3 crossref_primary_10_1016_j_cj_2020_05_002 crossref_primary_10_1111_tpj_15188 crossref_primary_10_1186_s12870_016_0969_z crossref_primary_10_3390_ijms20071754 crossref_primary_10_1007_s11103_024_01530_0 crossref_primary_10_1111_pbi_13256 crossref_primary_10_1093_plcell_koac080 crossref_primary_10_3390_genes10080591 crossref_primary_10_1111_jipb_12818 crossref_primary_10_1007_s00299_017_2146_8 crossref_primary_10_1007_s11103_017_0618_4 crossref_primary_10_1073_pnas_2306494120 crossref_primary_10_1093_plphys_kiad209 crossref_primary_10_1016_j_cj_2023_12_008 crossref_primary_10_1002_wrna_1556 crossref_primary_10_1371_journal_pgen_1010698 crossref_primary_10_1093_plphys_kiad201 crossref_primary_10_1016_j_molp_2018_01_007 crossref_primary_10_1038_s41598_018_31919_z |
Cites_doi | 10.1146/annurev-arplant-050213-040104 10.1016/j.cell.2009.06.031 10.1104/pp.110.156711 10.1534/genetics.105.044727 10.1126/science.1123841 10.1038/nature12870 10.1038/ng.2007.20 10.1038/ng.592 10.1038/ng2001 10.1111/j.1365-313X.2005.02610.x 10.1073/pnas.0909097107 10.1111/j.1365-313X.2011.04781.x 10.1146/annurev.arplant.56.032604.144122 10.1073/pnas.1932414100 10.1104/pp.106.084475 10.1126/science.1076920 10.1105/tpc.113.113639 10.1016/j.devcel.2013.02.013 10.1242/dev.00564 10.1073/pnas.1407401112 10.1093/pcp/pcp166 10.1111/j.1365-313X.2011.04872.x 10.1038/ng.143 10.1104/pp.107.111740 10.1007/s00425-011-1532-7 10.1242/dev.051748 10.1111/j.1365-313X.2011.04804.x 10.1038/nature01518 10.1016/j.devcel.2009.06.007 10.1016/B978-0-12-396968-2.00005-1 10.1038/ng2079 10.1016/j.pbi.2013.11.010 10.1038/ng.591 10.1111/j.1365-313X.2009.04100.x 10.1038/nature05504 10.1105/tpc.111.089045 10.1016/j.cell.2009.06.014 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Dec 15, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Dec 15, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1521949112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Regulation of lateral branching in rice |
EISSN | 1091-6490 |
EndPage | 15509 |
ExternalDocumentID | PMC4687603 3902797061 26631749 10_1073_pnas_1521949112 112_50_15504 26466625 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c534t-e155a2e15b0d911e9d6b6d585b27b7b1bda931655a7c1f6efb554dee2ad22d093 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:49:42 EDT 2025 Fri Jul 11 16:14:15 EDT 2025 Mon Jun 30 07:47:27 EDT 2025 Mon Jul 21 06:01:11 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Tue Jul 01 01:53:37 EDT 2025 Wed Nov 11 00:29:29 EST 2020 Fri May 30 12:01:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | Oryza sativa microRNA spikelet lateral branch panicle |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-e155a2e15b0d911e9d6b6d585b27b7b1bda931655a7c1f6efb554dee2ad22d093 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by Qifa Zhang, November 6, 2015 (sent for review August 6, 2015; reviewed by Gynheung An and Yaoguang Liu) Author contributions: L.W. and Q.Z. designed research; L.W., S.S., J.J., D.F., X.Y., X.W., C.X., X.L., and J.X. performed research; L.W. and Q.Z. analyzed data; and L.W. and Q.Z. wrote the paper. Reviewers: G.A., Kyung Hee University; and Y.L., South China Agricultural University. |
OpenAccessLink | https://www.pnas.org/content/pnas/112/50/15504.full.pdf |
PMID | 26631749 |
PQID | 1751219622 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1521949112 pnas_primary_112_50_15504 proquest_miscellaneous_1749991925 crossref_primary_10_1073_pnas_1521949112 jstor_primary_26466625 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4687603 proquest_journals_1751219622 pubmed_primary_26631749 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-15 |
PublicationDateYYYYMMDD | 2015-12-15 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 16763149 - Science. 2006 Jun 9;312(5779):1520-3 20018663 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):490-5 19686687 - Dev Cell. 2009 Aug;17(2):268-78 22158467 - Plant Cell. 2011 Dec;23(12):4185-207 24170127 - Plant Cell. 2013 Oct;25(10):3743-59 16861571 - Plant Physiol. 2006 Sep;142(1):280-93 22136599 - Plant J. 2012 Apr;70(2):327-39 18026103 - Nat Genet. 2007 Dec;39(12):1517-21 22020753 - Planta. 2012 Apr;235(4):713-27 24471834 - Annu Rev Plant Biol. 2014;65:553-78 19703399 - Cell. 2009 Aug 21;138(4):738-49 13130077 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11765-70 16367959 - Plant J. 2006 Jan;45(1):123-32 21910771 - Plant J. 2012 Jan;69(1):168-80 20699296 - Development. 2010 Sep 1;137(17):2849-56 20495564 - Nat Genet. 2010 Jun;42(6):545-9 15862100 - Annu Rev Plant Biol. 2005;56:353-74 23962841 - Curr Top Dev Biol. 2013;105:125-52 16172507 - Genetics. 2006 Jan;172(1):547-55 23537632 - Dev Cell. 2013 Mar 25;24(6):612-22 19703400 - Cell. 2009 Aug 21;138(4):750-9 20495565 - Nat Genet. 2010 Jun;42(6):541-4 24507502 - Curr Opin Plant Biol. 2014 Feb;17:110-5 12835399 - Development. 2003 Aug;130(16):3841-50 18065554 - Plant Physiol. 2008 Feb;146(2):368-76 19933267 - Plant Cell Physiol. 2010 Jan;51(1):47-57 24336200 - Nature. 2013 Dec 19;504(7480):401-5 25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80 20395452 - Plant Physiol. 2010 Jun;153(2):728-40 12424380 - Science. 2002 Nov 8;298(5596):1238-41 17643101 - Nat Genet. 2007 Aug;39(8):1033-7 20003165 - Plant J. 2010 Mar;61(5):752-66 17369828 - Nat Genet. 2007 Apr;39(4):544-9 22003982 - Plant J. 2012 Feb;69(3):445-61 18454147 - Nat Genet. 2008 Jun;40(6):761-7 12687001 - Nature. 2003 Apr 10;422(6932):618-21 17287810 - Nature. 2007 Feb 8;445(7128):652-5 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1146/annurev-arplant-050213-040104 – ident: e_1_3_3_10_2 doi: 10.1016/j.cell.2009.06.031 – ident: e_1_3_3_26_2 doi: 10.1104/pp.110.156711 – ident: e_1_3_3_33_2 doi: 10.1534/genetics.105.044727 – ident: e_1_3_3_34_2 doi: 10.1126/science.1123841 – ident: e_1_3_3_9_2 doi: 10.1038/nature12870 – ident: e_1_3_3_14_2 doi: 10.1038/ng.2007.20 – ident: e_1_3_3_8_2 doi: 10.1038/ng.592 – ident: e_1_3_3_13_2 doi: 10.1038/ng2001 – ident: e_1_3_3_37_2 doi: 10.1111/j.1365-313X.2005.02610.x – ident: e_1_3_3_32_2 doi: 10.1073/pnas.0909097107 – ident: e_1_3_3_30_2 doi: 10.1111/j.1365-313X.2011.04781.x – ident: e_1_3_3_2_2 doi: 10.1146/annurev.arplant.56.032604.144122 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1932414100 – ident: e_1_3_3_15_2 doi: 10.1104/pp.106.084475 – ident: e_1_3_3_21_2 doi: 10.1126/science.1076920 – ident: e_1_3_3_31_2 doi: 10.1105/tpc.113.113639 – ident: e_1_3_3_27_2 doi: 10.1016/j.devcel.2013.02.013 – ident: e_1_3_3_20_2 doi: 10.1242/dev.00564 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.1407401112 – ident: e_1_3_3_25_2 doi: 10.1093/pcp/pcp166 – ident: e_1_3_3_22_2 doi: 10.1111/j.1365-313X.2011.04872.x – ident: e_1_3_3_6_2 doi: 10.1038/ng.143 – ident: e_1_3_3_24_2 doi: 10.1104/pp.107.111740 – ident: e_1_3_3_23_2 doi: 10.1007/s00425-011-1532-7 – ident: e_1_3_3_36_2 doi: 10.1242/dev.051748 – ident: e_1_3_3_16_2 doi: 10.1111/j.1365-313X.2011.04804.x – ident: e_1_3_3_5_2 doi: 10.1038/nature01518 – ident: e_1_3_3_28_2 doi: 10.1016/j.devcel.2009.06.007 – ident: e_1_3_3_12_2 doi: 10.1016/B978-0-12-396968-2.00005-1 – ident: e_1_3_3_19_2 doi: 10.1038/ng2079 – ident: e_1_3_3_1_2 doi: 10.1016/j.pbi.2013.11.010 – ident: e_1_3_3_7_2 doi: 10.1038/ng.591 – ident: e_1_3_3_18_2 doi: 10.1111/j.1365-313X.2009.04100.x – ident: e_1_3_3_29_2 doi: 10.1038/nature05504 – ident: e_1_3_3_17_2 doi: 10.1105/tpc.111.089045 – ident: e_1_3_3_11_2 doi: 10.1016/j.cell.2009.06.014 – reference: 19703400 - Cell. 2009 Aug 21;138(4):750-9 – reference: 22158467 - Plant Cell. 2011 Dec;23(12):4185-207 – reference: 24507502 - Curr Opin Plant Biol. 2014 Feb;17:110-5 – reference: 18065554 - Plant Physiol. 2008 Feb;146(2):368-76 – reference: 12424380 - Science. 2002 Nov 8;298(5596):1238-41 – reference: 17643101 - Nat Genet. 2007 Aug;39(8):1033-7 – reference: 16172507 - Genetics. 2006 Jan;172(1):547-55 – reference: 20018663 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):490-5 – reference: 24170127 - Plant Cell. 2013 Oct;25(10):3743-59 – reference: 24471834 - Annu Rev Plant Biol. 2014;65:553-78 – reference: 24336200 - Nature. 2013 Dec 19;504(7480):401-5 – reference: 25512525 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18775-80 – reference: 18026103 - Nat Genet. 2007 Dec;39(12):1517-21 – reference: 17369828 - Nat Genet. 2007 Apr;39(4):544-9 – reference: 16763149 - Science. 2006 Jun 9;312(5779):1520-3 – reference: 22020753 - Planta. 2012 Apr;235(4):713-27 – reference: 23537632 - Dev Cell. 2013 Mar 25;24(6):612-22 – reference: 19703399 - Cell. 2009 Aug 21;138(4):738-49 – reference: 16861571 - Plant Physiol. 2006 Sep;142(1):280-93 – reference: 17287810 - Nature. 2007 Feb 8;445(7128):652-5 – reference: 16367959 - Plant J. 2006 Jan;45(1):123-32 – reference: 20495564 - Nat Genet. 2010 Jun;42(6):545-9 – reference: 18454147 - Nat Genet. 2008 Jun;40(6):761-7 – reference: 19686687 - Dev Cell. 2009 Aug;17(2):268-78 – reference: 20495565 - Nat Genet. 2010 Jun;42(6):541-4 – reference: 15862100 - Annu Rev Plant Biol. 2005;56:353-74 – reference: 20699296 - Development. 2010 Sep 1;137(17):2849-56 – reference: 20395452 - Plant Physiol. 2010 Jun;153(2):728-40 – reference: 20003165 - Plant J. 2010 Mar;61(5):752-66 – reference: 23962841 - Curr Top Dev Biol. 2013;105:125-52 – reference: 12835399 - Development. 2003 Aug;130(16):3841-50 – reference: 22136599 - Plant J. 2012 Apr;70(2):327-39 – reference: 13130077 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11765-70 – reference: 19933267 - Plant Cell Physiol. 2010 Jan;51(1):47-57 – reference: 21910771 - Plant J. 2012 Jan;69(1):168-80 – reference: 12687001 - Nature. 2003 Apr 10;422(6932):618-21 – reference: 22003982 - Plant J. 2012 Feb;69(3):445-61 |
SSID | ssj0009580 |
Score | 2.587703 |
Snippet | Grasses produce tiller and panicle branching at vegetative and reproductive stages; the branching patterns largely define the diversity of grasses and... The patterns of lateral branching, including tillers and inflorescence branches, determine grain yields of many cereals. In this study, we characterized a... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15504 |
SubjectTerms | Agricultural production Amino Acid Sequence Biological Sciences Cereals Epistasis, Genetic Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Genes, Plant Genetics Grain Grasses Meristem - genetics MicroRNAs - genetics MicroRNAs - metabolism Molecular Sequence Data Oryza - anatomy & histology Oryza - growth & development Oryza - ultrastructure Plant Proteins - chemistry Plant Proteins - metabolism Plant Stems - anatomy & histology Plant Stems - growth & development Plant Stems - ultrastructure Protein Binding Reproduction Rice RNA-protein interactions |
Title | Coordinated regulation of vegetative and reproductive branching in rice |
URI | https://www.jstor.org/stable/26466625 http://www.pnas.org/content/112/50/15504.abstract https://www.ncbi.nlm.nih.gov/pubmed/26631749 https://www.proquest.com/docview/1751219622 https://www.proquest.com/docview/1749991925 https://pubmed.ncbi.nlm.nih.gov/PMC4687603 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwFLRIHIoqB-_DNj5WFW1VQdRDK3Izu_amsVTsqokrtb--M971I1EqARcrssdjZefzeGZ39htCPgeCZ4nEZXWRBb5UQqAfNL5WcaBkLpjkuN_55yQ6uZCn03A6Gv0eVC3VSz3O7jfuK_kfq8I5sCvukv0Hy3ZK4QT8BvvCESwMx7-y8WEFqWNRKowab2xTeRf_3ZrLpo7w1q4OIHVlw-za1KpjL415u5fF1b61AepZ90FbtOUDk3a-8KDffeJcwmLf3z-b9L2Mf7nZ5x-m6Feb7Azr3JSXd3WPxVPXBqy466B1VDsPqKrhZAQLsbDDbsccG-tAIf7wI2lbgHYelvEBlCzRrHOYmCHJja4cfA_2Hy7VAns0sUQmTs3AsNd_GstCkAFhkKU-XWPPbi89IU85JBLY4-J4yga0zN-ClvApFl_XnoZM0e7-lbDFVq4iHS7Ib0pN1itsByHL-Qvy3OUa9MACZ5uMTPmSbLemo3uOcvzLK3I8QBLtkUSrGe2RRAFJdIgk2iGJFiVFJL0mF0ffzw9PfNdiw89CIZe-gfFXHI46yOEfmySPdJRDCql5rGPNdK4SwSIQijM2i8xMQ_iZG8NVznkeJGKHbJVVad4SqrPQmFhkcqa1ZFnWzBwwE-RSawNu3yPjdgTTzPHPYxuUq7Spg4hFiqOZ9qPvkb3uhmtLvfK46E5jkk4OwnzIy3noEa8R7e5nPA1BB6LOI7ut4VL3UoPOGCJg-Cpx0PmpuwwuF9fRVGmqGmVwmgBSI1D_xtp58GCLF4_EKwjoBJDOffVKWcwbWncZQWQSiHeP6nxPnvXv3C7ZWt7U5gOExEv9sUH1A7u7tQ8 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinated+regulation+of+vegetative+and+reproductive+branching+in+rice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Lei&rft.au=Sun%2C+Shengyuan&rft.au=Jin%2C+Jiye&rft.au=Fu%2C+Debao&rft.date=2015-12-15&rft.eissn=1091-6490&rft.volume=112&rft.issue=50&rft.spage=15504&rft_id=info:doi/10.1073%2Fpnas.1521949112&rft_id=info%3Apmid%2F26631749&rft.externalDocID=26631749 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F50.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F50.cover.gif |