Dually fibronectin/CD44-mediated nanoparticles targeted disrupt the Golgi apparatus and inhibit the hedgehog signaling in activated hepatic stellate cells to alleviate liver fibrosis
Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a prom...
Saved in:
Published in | Biomaterials Vol. 301; p. 122232 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.10.2023
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA–CS–RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects. |
---|---|
AbstractList | Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA–CS–RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects. Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl -induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl -induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects. Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects. |
ArticleNumber | 122232 |
Author | Zhang, Ting Mo, Li Li, Yanping Liu, Qinhui Xiong, Yimin Tang, Qin Jia, Qingyi He, Jinhan Xia, Yan Zhang, Jinhang Chen, Wenfei Xu, Ying Huang, Yuan |
Author_xml | – sequence: 1 givenname: Yanping surname: Li fullname: Li, Yanping organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 2 givenname: Ting surname: Zhang fullname: Zhang, Ting organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 3 givenname: Jinhang surname: Zhang fullname: Zhang, Jinhang organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 4 givenname: Qinhui surname: Liu fullname: Liu, Qinhui organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 5 givenname: Qingyi surname: Jia fullname: Jia, Qingyi organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 6 givenname: Wenfei surname: Chen fullname: Chen, Wenfei organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 7 givenname: Qin surname: Tang fullname: Tang, Qin organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 8 givenname: Yimin surname: Xiong fullname: Xiong, Yimin organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 9 givenname: Yan surname: Xia fullname: Xia, Yan organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 10 givenname: Ying surname: Xu fullname: Xu, Ying organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 11 givenname: Li surname: Mo fullname: Mo, Li organization: Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China – sequence: 12 givenname: Yuan orcidid: 0000-0003-3410-8602 surname: Huang fullname: Huang, Yuan organization: Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan Province, China – sequence: 13 givenname: Jinhan orcidid: 0000-0001-6487-4696 surname: He fullname: He, Jinhan email: jinhanhe@scu.edu.cn organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China |
BackLink | https://cir.nii.ac.jp/crid/1870020692545983744$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/37418856$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsFu1DAUjFAR3RZ-AVmIA5dsHcfJJpyAXShIlbjA2XLsl-xbsk6wnZX2x_g-XkgroZ56iRV7PDNvxlfJhRscJMmbjK8znpU3h3WDw1FH8Kj7sBZc5OtMCJGLZ8kqqzZVWtS8uEhWPJMirctMXCZXIRw4_XMpXiSX-UZmVVWUq-TPbtJ9f2YtNp5UTER3s91JmR7BIklY5rQbRu0jmh4Ci9p3MG9bDH4aI4t7YLdD3yHTI8F0nALTzjJ0e2xwOd-D7WA_dCxg53SPrqNjpkns9E9iD6MmfhYi9D3tMEMraQ2MvMFp9sF6PIFfbAYML5PnLc0Or-7X6-Tnl88_tl_Tu--337Yf71JT5DKm1koDVraFrQotoJEcKMEqq-rMGMuzvOVtCbIBLjaFbdum4G1TltpuSl4YSvQ6ebfwjn74PUGI6ohhdqcdDFNQosoLsZG5qAn6-h46NRSeGj0etT-rh6wJ8GEBGBoheGiVwUhzDy56jb3KuJrrVQf1f71qrlct9RLF-0cUDypPuvx2uewQSXr-0mPhXPCyFoUs6oqsSoLtFhhQricEr4JBcJQjenofyg74NLVPj2gMFY9G97_g_FSSv_aj7i0 |
CitedBy_id | crossref_primary_10_1002_adfm_202404658 crossref_primary_10_1021_acs_chemmater_3c02474 crossref_primary_10_1016_j_jconrel_2024_10_012 crossref_primary_10_1002_advs_202410416 crossref_primary_10_1016_j_jconrel_2024_02_022 crossref_primary_10_1021_acs_nanolett_4c04820 crossref_primary_10_1002_mnfr_202400649 crossref_primary_10_1016_j_actbio_2025_01_019 crossref_primary_10_1002_advs_202411720 crossref_primary_10_1002_pdi3_95 crossref_primary_10_1021_acsami_4c14169 crossref_primary_10_1002_adhm_202403068 crossref_primary_10_1016_j_addr_2024_115386 crossref_primary_10_1016_j_engreg_2024_06_001 crossref_primary_10_1021_acsnano_4c02380 crossref_primary_10_1021_acsami_3c17670 crossref_primary_10_3389_fmolb_2025_1513993 crossref_primary_10_1002_advs_202415133 |
Cites_doi | 10.1111/tra.12493 10.1038/ncomms8984 10.1038/s41563-019-0462-9 10.33549/physiolres.934755 10.1038/nri3623 10.1053/j.gastro.2019.11.311 10.1007/s12272-022-01408-z 10.1056/NEJMoa2029349 10.15252/embj.2020107238 10.1053/j.gastro.2017.12.022 10.1084/jem.20201203 10.1021/acsnano.2c06584 10.1016/j.bbadis.2006.08.009 10.1016/j.addr.2021.113888 10.1016/j.matbio.2018.04.006 10.1021/acsnano.2c07796 10.1007/s10620-017-4684-x 10.1016/j.jbc.2021.101530 10.1073/pnas.1201840109 10.1038/nrgastro.2017.38 10.1021/acsnano.9b04166 10.1021/acsnano.8b06924 10.1016/j.jconrel.2019.04.022 10.1016/j.carbpol.2020.116887 10.1111/j.1478-3231.2008.01745.x 10.1016/j.carbpol.2021.117964 10.1016/j.jconrel.2018.05.032 10.1016/j.phrs.2020.104720 10.1038/s41575-020-00372-7 10.1016/j.jhep.2014.06.010 10.1016/j.biomaterials.2015.11.061 10.1002/hep.31418 10.3390/biom11020205 10.1016/j.biomaterials.2015.08.035 10.1083/jcb.202106115 10.1016/j.bpg.2017.04.005 10.1038/nprot.2015.017 10.1002/hep.28948 10.1016/j.addr.2021.113869 10.1016/j.jhep.2015.02.039 10.1016/j.apsb.2019.07.003 10.1016/j.jconrel.2020.01.017 10.7150/thno.38913 10.1016/j.actbio.2022.05.014 10.1053/j.gastro.2019.07.036 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Ltd. |
DBID | RYH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.biomaterials.2023.122232 |
DatabaseName | CiNii Complete CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
ExternalDocumentID | 37418856 10_1016_j_biomaterials_2023_122232 S0142961223002405 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AGRNS BNPGV RYH SSH AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c534t-dd4ced4f5d85a2eb40e10181891ccd013f0f6e4be0275dffb50fb66ad7605c223 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 02:29:06 EDT 2025 Thu Apr 03 07:01:42 EDT 2025 Tue Jul 01 01:19:51 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Thu Jun 26 22:03:14 EDT 2025 Fri Feb 23 02:37:06 EST 2024 Tue Aug 26 17:20:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hepatic stellate cells Hedgehog signaling pathway Liver fibrosis Fibronectin CD44 Golgi apparatus |
Language | English |
License | Copyright © 2023. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-dd4ced4f5d85a2eb40e10181891ccd013f0f6e4be0275dffb50fb66ad7605c223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6487-4696 0000-0003-3410-8602 |
PMID | 37418856 |
PQID | 2835274329 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2835274329 pubmed_primary_37418856 crossref_citationtrail_10_1016_j_biomaterials_2023_122232 crossref_primary_10_1016_j_biomaterials_2023_122232 nii_cinii_1870020692545983744 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2023_122232 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2023_122232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Choi, Kang, Kim (bib9) 2022; 45 Liang, Su, Liu, Wang, Qi (bib28) 2015; 71 Zhang, Wang, Shen, She, Shi, Chen, Zhang, Hu, Pang, Jiang (bib21) 2016; 79 Schwabe, Tabas, Pajvani (bib35) 2020; 158 Kumar, Xin, Ma, Tan, Osna, Mahato (bib42) 2021; 176 Cai, Wang, Wang, Zhou, Yang, He, Weng (bib6) 2020; 155 Qiao, Fan, Xing, Cui, He, Zhu, Wang, Pang, Oh, Zhang, Jiang (bib36) 2018; 283 Kisseleva, Cong, Paik, Scholten, Jiang, Benner, Iwaisako, Moore-Morris, Scott, Tsukamoto, Evans, Dillmann, Glass, Brenner (bib4) 2012; 109 Luo, Zhang, Zeng, Dong, Ma (bib23) 2021; 263 Hisamori, Tabata, Kadokawa, Okoshi, Tabata, Mori, Nagayama, Watanabe, Kubo, Sakai (bib14) 2008; 28 Kumar, Duan, Wu, Harris, Su (bib41) 2021; 176 Hao, Song, Tan, Ren, Guo, Zhou, Li, Wen, Meng, Lin, Zhang, Huang, Wang, Zheng (bib37) 2022; 16 Welch, Peak-Chew, Begum, Stevens, Munro (bib31) 2021; 220 Altrock, Sens, Wuerfel, Vasel, Kawelke, Dooley, Sottile, Nakchbandi (bib19) 2015; 62 Cholankeril, Wong, Hu, Perumpail, Yoo, Puri, Younossi, Harrison, Ahmed (bib34) 2017; 62 Li, Zhang, Luo, Hu, Huang, Zhang, Fu, Gong (bib16) 2019; 13 Luo, Li, Wei, Lu, Dong (bib40) 2021; 70 Yang, Yao, Yan, Liu, Wen, Chen, Lu (bib10) 2021; 11 Kisseleva (bib7) 2017; 65 Ignashkova, Gendarme, Peschk, Eggenweiler, Lindemann, Reiling (bib11) 2017; 18 Luo, Gong, Ma (bib13) 2020; 249 Moretti, Stalfort, Barker, Abebayehu (bib38) 2022; 298 Li, Pu, Liu, Li, Zhang, Wu, Chen, Li, Yang, Zou, Xiao, Xie, He (bib25) 2019; 303 Li, Deng, Tan, Dong, Zhao, Wang, Yang, Luo, Gao, Huang, Zhang, Gong (bib18) 2022; 146 Tsuchida, Friedman (bib8) 2017; 14 Wang, Potter, Rennie-Tankersley, Novitskiy, Sipes, Mezey (bib15) 2007; 1772 Rizzo, Russo, Kurokawa, Sahu, Lombardi, Supino, Zhukovsky, Vocat, Pothukuchi, Kunnathully, Capolupo, Boncompain, Vitagliano, Zito Marino, Aquino, Montariello, Henklein, Mandrich, Botti, Clausen, Mandel, Yamaji, Hanada, Budillon, Perez, Parashuraman, Hannun, Nakano, Corda, D'Angelo, Luini (bib32) 2021; 40 Wu, Liu, Li, Li, Chen, Yang, Tang, Pu, Kuang, Li, Huang, Zhang, Zhang, Zhou, Huang, Zhang, Zhao, Zou, Jiang, Mo, He (bib30) 2021; 218 Sanyal, Van Natta, Clark, Neuschwander-Tetri, Diehl, Dasarathy, Loomba, Chalasani, Kowdley, Hameed, Wilson, Yates, Belt, Lazo, Kleiner, Behling, Tonascia (bib3) 2021; 385 Zhou, Qutaish, Han, Schur, Liu, Wilson, Lu (bib20) 2015; 6 Pellicoro, Ramachandran, Iredale, Fallowfield (bib2) 2014; 14 Li, Li, Zhang, Liu, Wu, Zhou, Huang, Tang, Huang, Huang, Zhang, Zhang, Zhao, Ma, Feng, Mo, Han, He (bib22) 2020; 320 Du, Hyun, Premont, Choi, Michelotti, Swiderska-Syn, Dalton, Thelen, Rizi, Jung, Diehl (bib44) 2018; 154 Trautwein, Friedman, Schuppan, Pinzani (bib43) 2015; 62 Lee, Sugihara, Gillilland, Jon, Kamada, Moon (bib27) 2020; 19 Fan, Liu, Chen, Hammad, Longerich, Hausser, Fu, Li, He, Liu, Zhang, Lian, Zhao, Yan, Li, Yi, Ling, Ma, Zhao, Xu, Wang, Cong, You, Liu, Wang, Chen, Li, Hui, Dooley, Hou, Jia, Sun (bib39) 2019; 157 Zoubek, Trautwein, Strnad (bib5) 2017; 31 Li, Zhou, Fu, Chen, Liu, Zhang, Gong (bib24) 2020; 10 Kisseleva, Brenner (bib1) 2021; 18 Mederacke, Dapito, Affò, Uchinami, Schwabe (bib26) 2015; 10 Deng, Zhao, Chen, Ai, Zhang, Gong, Zeng, Lei (bib12) 2022; 16 Luo, Zhang, Zhao, Jia, Yin, Li, Zhang, Fu, Gong (bib17) 2019; 13 Schuppan, Ashfaq-Khan, Yang, Kim (bib33) 2018; 68–69 Kumar, Dong, Kumar, Almawash, Mahato (bib45) 2019; 9 Zhang, Li, Liu, Huang, Li, Wu, Zhang, Zhou, Huang, Tang, Huang, Zhao, Zhang, Jiang, Mo, Zhang, Xie, He (bib29) 2021; 73 Luo (10.1016/j.biomaterials.2023.122232_bib13) 2020; 249 Yang (10.1016/j.biomaterials.2023.122232_bib10) 2021; 11 Choi (10.1016/j.biomaterials.2023.122232_bib9) 2022; 45 Kumar (10.1016/j.biomaterials.2023.122232_bib42) 2021; 176 Lee (10.1016/j.biomaterials.2023.122232_bib27) 2020; 19 Wu (10.1016/j.biomaterials.2023.122232_bib30) 2021; 218 Tsuchida (10.1016/j.biomaterials.2023.122232_bib8) 2017; 14 Li (10.1016/j.biomaterials.2023.122232_bib22) 2020; 320 Qiao (10.1016/j.biomaterials.2023.122232_bib36) 2018; 283 Zhou (10.1016/j.biomaterials.2023.122232_bib20) 2015; 6 Cai (10.1016/j.biomaterials.2023.122232_bib6) 2020; 155 Kisseleva (10.1016/j.biomaterials.2023.122232_bib7) 2017; 65 Hisamori (10.1016/j.biomaterials.2023.122232_bib14) 2008; 28 Ignashkova (10.1016/j.biomaterials.2023.122232_bib11) 2017; 18 Sanyal (10.1016/j.biomaterials.2023.122232_bib3) 2021; 385 Zhang (10.1016/j.biomaterials.2023.122232_bib21) 2016; 79 Kumar (10.1016/j.biomaterials.2023.122232_bib41) 2021; 176 Zoubek (10.1016/j.biomaterials.2023.122232_bib5) 2017; 31 Luo (10.1016/j.biomaterials.2023.122232_bib23) 2021; 263 Li (10.1016/j.biomaterials.2023.122232_bib18) 2022; 146 Kisseleva (10.1016/j.biomaterials.2023.122232_bib1) 2021; 18 Pellicoro (10.1016/j.biomaterials.2023.122232_bib2) 2014; 14 Altrock (10.1016/j.biomaterials.2023.122232_bib19) 2015; 62 Li (10.1016/j.biomaterials.2023.122232_bib25) 2019; 303 Rizzo (10.1016/j.biomaterials.2023.122232_bib32) 2021; 40 Li (10.1016/j.biomaterials.2023.122232_bib24) 2020; 10 Hao (10.1016/j.biomaterials.2023.122232_bib37) 2022; 16 Zhang (10.1016/j.biomaterials.2023.122232_bib29) 2021; 73 Schwabe (10.1016/j.biomaterials.2023.122232_bib35) 2020; 158 Welch (10.1016/j.biomaterials.2023.122232_bib31) 2021; 220 Wang (10.1016/j.biomaterials.2023.122232_bib15) 2007; 1772 Luo (10.1016/j.biomaterials.2023.122232_bib17) 2019; 13 Fan (10.1016/j.biomaterials.2023.122232_bib39) 2019; 157 Cholankeril (10.1016/j.biomaterials.2023.122232_bib34) 2017; 62 Kisseleva (10.1016/j.biomaterials.2023.122232_bib4) 2012; 109 Moretti (10.1016/j.biomaterials.2023.122232_bib38) 2022; 298 Deng (10.1016/j.biomaterials.2023.122232_bib12) 2022; 16 Li (10.1016/j.biomaterials.2023.122232_bib16) 2019; 13 Mederacke (10.1016/j.biomaterials.2023.122232_bib26) 2015; 10 Kumar (10.1016/j.biomaterials.2023.122232_bib45) 2019; 9 Schuppan (10.1016/j.biomaterials.2023.122232_bib33) 2018; 68–69 Du (10.1016/j.biomaterials.2023.122232_bib44) 2018; 154 Liang (10.1016/j.biomaterials.2023.122232_bib28) 2015; 71 Luo (10.1016/j.biomaterials.2023.122232_bib40) 2021; 70 Trautwein (10.1016/j.biomaterials.2023.122232_bib43) 2015; 62 |
References_xml | – volume: 31 start-page: 129 year: 2017 end-page: 141 ident: bib5 article-title: Reversal of liver fibrosis: from fiction to reality publication-title: Best Pract. Res. Clin. Gastroenterol. – volume: 14 start-page: 181 year: 2014 end-page: 194 ident: bib2 article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ publication-title: Nat. Rev. Immunol. – volume: 146 start-page: 357 year: 2022 end-page: 369 ident: bib18 article-title: Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting publication-title: Acta Biomater. – volume: 79 start-page: 46 year: 2016 end-page: 55 ident: bib21 article-title: Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor publication-title: Biomaterials – volume: 298 year: 2022 ident: bib38 article-title: The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation publication-title: J. Biol. Chem. – volume: 263 year: 2021 ident: bib23 article-title: Co-encapsulation of collagenase type I and silibinin in chondroitin sulfate coated multilayered nanoparticles for targeted treatment of liver fibrosis publication-title: Carbohydr. Polym. – volume: 303 start-page: 77 year: 2019 end-page: 90 ident: bib25 article-title: An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis publication-title: J. Contr. Release – volume: 6 start-page: 7984 year: 2015 ident: bib20 article-title: MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent publication-title: Nat. Commun. – volume: 45 start-page: 671 year: 2022 end-page: 692 ident: bib9 article-title: New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases publication-title: Arch Pharm. Res. (Seoul) – volume: 220 year: 2021 ident: bib31 article-title: GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles publication-title: J. Cell Biol. – volume: 283 start-page: 113 year: 2018 end-page: 125 ident: bib36 article-title: Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis publication-title: J. Contr. Release – volume: 218 year: 2021 ident: bib30 article-title: Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway publication-title: J. Exp. Med. – volume: 109 start-page: 9448 year: 2012 end-page: 9453 ident: bib4 article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 249 year: 2020 ident: bib13 article-title: Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management publication-title: Carbohydr. Polym. – volume: 320 start-page: 32 year: 2020 end-page: 44 ident: bib22 article-title: Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity publication-title: J. Contr. Release – volume: 71 start-page: 11 year: 2015 end-page: 23 ident: bib28 article-title: Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers publication-title: Biomaterials – volume: 154 start-page: 1465 year: 2018 end-page: 1479 ident: bib44 article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells publication-title: Gastroenterology – volume: 385 start-page: 1559 year: 2021 end-page: 1569 ident: bib3 article-title: Prospective study of outcomes in adults with nonalcoholic fatty liver disease publication-title: N. Engl. J. Med. – volume: 62 start-page: 625 year: 2015 end-page: 633 ident: bib19 article-title: Inhibition of fibronectin deposition improves experimental liver fibrosis publication-title: J. Hepatol. – volume: 9 start-page: 7537 year: 2019 end-page: 7555 ident: bib45 article-title: The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis publication-title: Theranostics – volume: 16 start-page: 20739 year: 2022 end-page: 20757 ident: bib37 article-title: Reactive oxygen species-responsive polypeptide drug delivery system targeted activated hepatic stellate cells to ameliorate liver fibrosis publication-title: ACS Nano – volume: 70 start-page: 821 year: 2021 end-page: 829 ident: bib40 article-title: Hepatic stellate cell: a double-edged sword in the liver publication-title: Physiol. Res. – volume: 176 year: 2021 ident: bib42 article-title: Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis publication-title: Adv. Drug Deliv. Rev. – volume: 73 start-page: 1140 year: 2021 end-page: 1157 ident: bib29 article-title: Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells publication-title: Hepatology – volume: 13 start-page: 3910 year: 2019 end-page: 3923 ident: bib17 article-title: Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis publication-title: ACS Nano – volume: 10 start-page: 693 year: 2020 end-page: 710 ident: bib24 article-title: Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats publication-title: Acta Pharm. Sin. B – volume: 28 start-page: 1217 year: 2008 end-page: 1225 ident: bib14 article-title: All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production publication-title: Liver Int. – volume: 10 start-page: 305 year: 2015 end-page: 315 ident: bib26 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat. Protoc. – volume: 62 start-page: 2915 year: 2017 end-page: 2922 ident: bib34 article-title: Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes publication-title: Dig. Dis. Sci. – volume: 11 year: 2021 ident: bib10 article-title: Deoxycholic acid upregulates serum Golgi protein 73 through activating NF-κB pathway and destroying Golgi structure in liver disease publication-title: Biomolecules – volume: 19 start-page: 118 year: 2020 end-page: 126 ident: bib27 article-title: Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis publication-title: Nat. Mater. – volume: 158 start-page: 1913 year: 2020 end-page: 1928 ident: bib35 article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis publication-title: Gastroenterology – volume: 62 start-page: S15 year: 2015 end-page: S24 ident: bib43 article-title: Hepatic fibrosis: concept to treatment publication-title: J. Hepatol. – volume: 65 start-page: 1039 year: 2017 end-page: 1043 ident: bib7 article-title: The origin of fibrogenic myofibroblasts in fibrotic liver publication-title: Hepatology – volume: 157 start-page: 1352 year: 2019 end-page: 1367 ident: bib39 article-title: ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice publication-title: Gastroenterology – volume: 18 start-page: 530 year: 2017 end-page: 544 ident: bib11 article-title: Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents publication-title: Traffic – volume: 16 start-page: 18430 year: 2022 end-page: 18447 ident: bib12 article-title: Engineered platelet microparticle-membrane camouflaged nanoparticles for targeting the Golgi apparatus of synovial fibroblasts to attenuate rheumatoid arthritis publication-title: ACS Nano – volume: 13 start-page: 9386 year: 2019 end-page: 9396 ident: bib16 article-title: Chondroitin sulfate-linked prodrug nanoparticles target the Golgi apparatus for cancer metastasis treatment publication-title: ACS Nano – volume: 40 year: 2021 ident: bib32 article-title: Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3 publication-title: EMBO J. – volume: 1772 start-page: 66 year: 2007 end-page: 71 ident: bib15 article-title: Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice publication-title: Biochim. Biophys. Acta – volume: 68–69 start-page: 435 year: 2018 end-page: 451 ident: bib33 article-title: Liver fibrosis: direct antifibrotic agents and targeted therapies publication-title: Matrix Biol. – volume: 155 year: 2020 ident: bib6 article-title: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: new insights into therapy publication-title: Pharmacol. Res. – volume: 14 start-page: 397 year: 2017 end-page: 411 ident: bib8 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 18 start-page: 151 year: 2021 end-page: 166 ident: bib1 article-title: Molecular and cellular mechanisms of liver fibrosis and its regression publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 176 year: 2021 ident: bib41 article-title: Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis publication-title: Adv. Drug Deliv. Rev. – volume: 18 start-page: 530 issue: 8 year: 2017 ident: 10.1016/j.biomaterials.2023.122232_bib11 article-title: Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents publication-title: Traffic doi: 10.1111/tra.12493 – volume: 6 start-page: 7984 year: 2015 ident: 10.1016/j.biomaterials.2023.122232_bib20 article-title: MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent publication-title: Nat. Commun. doi: 10.1038/ncomms8984 – volume: 19 start-page: 118 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2023.122232_bib27 article-title: Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis publication-title: Nat. Mater. doi: 10.1038/s41563-019-0462-9 – volume: 70 start-page: 821 issue: 6 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib40 article-title: Hepatic stellate cell: a double-edged sword in the liver publication-title: Physiol. Res. doi: 10.33549/physiolres.934755 – volume: 14 start-page: 181 issue: 3 year: 2014 ident: 10.1016/j.biomaterials.2023.122232_bib2 article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3623 – volume: 158 start-page: 1913 issue: 7 year: 2020 ident: 10.1016/j.biomaterials.2023.122232_bib35 article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.11.311 – volume: 45 start-page: 671 issue: 10 year: 2022 ident: 10.1016/j.biomaterials.2023.122232_bib9 article-title: New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases publication-title: Arch Pharm. Res. (Seoul) doi: 10.1007/s12272-022-01408-z – volume: 385 start-page: 1559 issue: 17 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib3 article-title: Prospective study of outcomes in adults with nonalcoholic fatty liver disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2029349 – volume: 40 issue: 8 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib32 article-title: Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3 publication-title: EMBO J. doi: 10.15252/embj.2020107238 – volume: 154 start-page: 1465 issue: 5 year: 2018 ident: 10.1016/j.biomaterials.2023.122232_bib44 article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.12.022 – volume: 218 issue: 6 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib30 article-title: Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway publication-title: J. Exp. Med. doi: 10.1084/jem.20201203 – volume: 16 start-page: 18430 issue: 11 year: 2022 ident: 10.1016/j.biomaterials.2023.122232_bib12 article-title: Engineered platelet microparticle-membrane camouflaged nanoparticles for targeting the Golgi apparatus of synovial fibroblasts to attenuate rheumatoid arthritis publication-title: ACS Nano doi: 10.1021/acsnano.2c06584 – volume: 1772 start-page: 66 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2023.122232_bib15 article-title: Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2006.08.009 – volume: 176 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib42 article-title: Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113888 – volume: 68–69 start-page: 435 year: 2018 ident: 10.1016/j.biomaterials.2023.122232_bib33 article-title: Liver fibrosis: direct antifibrotic agents and targeted therapies publication-title: Matrix Biol. doi: 10.1016/j.matbio.2018.04.006 – volume: 16 start-page: 20739 issue: 12 year: 2022 ident: 10.1016/j.biomaterials.2023.122232_bib37 article-title: Reactive oxygen species-responsive polypeptide drug delivery system targeted activated hepatic stellate cells to ameliorate liver fibrosis publication-title: ACS Nano doi: 10.1021/acsnano.2c07796 – volume: 62 start-page: 2915 issue: 10 year: 2017 ident: 10.1016/j.biomaterials.2023.122232_bib34 article-title: Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-017-4684-x – volume: 298 issue: 2 year: 2022 ident: 10.1016/j.biomaterials.2023.122232_bib38 article-title: The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.101530 – volume: 109 start-page: 9448 issue: 24 year: 2012 ident: 10.1016/j.biomaterials.2023.122232_bib4 article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1201840109 – volume: 14 start-page: 397 issue: 7 year: 2017 ident: 10.1016/j.biomaterials.2023.122232_bib8 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.38 – volume: 13 start-page: 9386 issue: 8 year: 2019 ident: 10.1016/j.biomaterials.2023.122232_bib16 article-title: Chondroitin sulfate-linked prodrug nanoparticles target the Golgi apparatus for cancer metastasis treatment publication-title: ACS Nano doi: 10.1021/acsnano.9b04166 – volume: 13 start-page: 3910 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2023.122232_bib17 article-title: Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis publication-title: ACS Nano doi: 10.1021/acsnano.8b06924 – volume: 303 start-page: 77 year: 2019 ident: 10.1016/j.biomaterials.2023.122232_bib25 article-title: An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2019.04.022 – volume: 249 year: 2020 ident: 10.1016/j.biomaterials.2023.122232_bib13 article-title: Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116887 – volume: 28 start-page: 1217 issue: 9 year: 2008 ident: 10.1016/j.biomaterials.2023.122232_bib14 article-title: All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production publication-title: Liver Int. doi: 10.1111/j.1478-3231.2008.01745.x – volume: 263 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib23 article-title: Co-encapsulation of collagenase type I and silibinin in chondroitin sulfate coated multilayered nanoparticles for targeted treatment of liver fibrosis publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.117964 – volume: 283 start-page: 113 year: 2018 ident: 10.1016/j.biomaterials.2023.122232_bib36 article-title: Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2018.05.032 – volume: 155 year: 2020 ident: 10.1016/j.biomaterials.2023.122232_bib6 article-title: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: new insights into therapy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.104720 – volume: 18 start-page: 151 issue: 3 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib1 article-title: Molecular and cellular mechanisms of liver fibrosis and its regression publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-00372-7 – volume: 62 start-page: 625 issue: 3 year: 2015 ident: 10.1016/j.biomaterials.2023.122232_bib19 article-title: Inhibition of fibronectin deposition improves experimental liver fibrosis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2014.06.010 – volume: 79 start-page: 46 year: 2016 ident: 10.1016/j.biomaterials.2023.122232_bib21 article-title: Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.11.061 – volume: 73 start-page: 1140 issue: 3 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib29 article-title: Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells publication-title: Hepatology doi: 10.1002/hep.31418 – volume: 11 issue: 2 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib10 article-title: Deoxycholic acid upregulates serum Golgi protein 73 through activating NF-κB pathway and destroying Golgi structure in liver disease publication-title: Biomolecules doi: 10.3390/biom11020205 – volume: 71 start-page: 11 year: 2015 ident: 10.1016/j.biomaterials.2023.122232_bib28 article-title: Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.08.035 – volume: 220 issue: 10 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib31 article-title: GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles publication-title: J. Cell Biol. doi: 10.1083/jcb.202106115 – volume: 31 start-page: 129 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2023.122232_bib5 article-title: Reversal of liver fibrosis: from fiction to reality publication-title: Best Pract. Res. Clin. Gastroenterol. doi: 10.1016/j.bpg.2017.04.005 – volume: 10 start-page: 305 issue: 2 year: 2015 ident: 10.1016/j.biomaterials.2023.122232_bib26 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.017 – volume: 65 start-page: 1039 issue: 3 year: 2017 ident: 10.1016/j.biomaterials.2023.122232_bib7 article-title: The origin of fibrogenic myofibroblasts in fibrotic liver publication-title: Hepatology doi: 10.1002/hep.28948 – volume: 176 year: 2021 ident: 10.1016/j.biomaterials.2023.122232_bib41 article-title: Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113869 – volume: 62 start-page: S15 issue: 1 Suppl year: 2015 ident: 10.1016/j.biomaterials.2023.122232_bib43 article-title: Hepatic fibrosis: concept to treatment publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.02.039 – volume: 10 start-page: 693 issue: 4 year: 2020 ident: 10.1016/j.biomaterials.2023.122232_bib24 article-title: Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2019.07.003 – volume: 320 start-page: 32 year: 2020 ident: 10.1016/j.biomaterials.2023.122232_bib22 article-title: Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.01.017 – volume: 9 start-page: 7537 issue: 25 year: 2019 ident: 10.1016/j.biomaterials.2023.122232_bib45 article-title: The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis publication-title: Theranostics doi: 10.7150/thno.38913 – volume: 146 start-page: 357 year: 2022 ident: 10.1016/j.biomaterials.2023.122232_bib18 article-title: Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.05.014 – volume: 157 start-page: 1352 issue: 5 year: 2019 ident: 10.1016/j.biomaterials.2023.122232_bib39 article-title: ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.07.036 |
SSID | ssj0014042 ssib006543501 ssib006543502 |
Score | 2.5349853 |
Snippet | Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs... |
SourceID | proquest pubmed crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122232 |
SubjectTerms | Animals CD44 Fibronectin Fibronectins Golgi Apparatus Hedgehog Proteins Hedgehog signaling pathway Hepatic Stellate Cells Ligands Liver Liver Cirrhosis Liver fibrosis Mice Nanoparticles |
Title | Dually fibronectin/CD44-mediated nanoparticles targeted disrupt the Golgi apparatus and inhibit the hedgehog signaling in activated hepatic stellate cells to alleviate liver fibrosis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961223002405 https://dx.doi.org/10.1016/j.biomaterials.2023.122232 https://cir.nii.ac.jp/crid/1870020692545983744 https://www.ncbi.nlm.nih.gov/pubmed/37418856 https://www.proquest.com/docview/2835274329 |
Volume | 301 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbGkBAcEIxfBTYZiWva1HHSWIjD1DEKaDsxabfIv7J6ipxqSSZx4c_i7-O9OKnGYVIlLpXq1I3j9_re5_p7nwn5qOYW00IZ5QJFtU1eRjIReaQBnQuVK_Bp3NE9O89WF_z7ZXq5R5ZjLQzSKofYH2J6H62Hltkwm7ONczOkJTEBCRpANAp1YaE55wv08unvLc0D1WNYoDGyCD89Co_2HC8scZdtMPUUDxKfzjFfsvuS1APv3P1QtE9Jp8_I0wFL0uMw3Odkz_oD8uSOwuABeXQ27J2_IH9OOllVv2gJC-TaY5zzs-UJ51FfPALAk3rpYQk9MOVo4IhDs3HNTbdpKUBF-rWurhyVm14xvGuo9IY6v3bKhetr_HtuXV9R5IVILHWHyxSLJ277W6wtMrg1bbB4BVoobhzAvWqKZ7rc4jhohVSRMMzGNS_JxemXn8tVNJzaEOk04W1kDAfb8TI1eSqZVTy2vSpYLuZaG0CcZVxmliuLG6amLFUalyrLpFnAykrD7L8i-x6m4Q2hAA2zxAjGdKK5tLGMmcqENLFaMK2FnBAxmqnQg6Q5nqxRFSN37bq4a-ICTVwEE09Isu27CcIeO_X6NHpDMZauQrAtIP_s1Pvztvc_Tr5z_0NwQHhUfJ1DpAWsnwlY4qciTxacT8iH0TULiBJoQelt3cGXINAGsMjEhLwOPrt96gQFjPI0e_ufo3tHHuO7wHR8T_bbm84eAmJr1VH_kzwiD4-__Vid_wX8rUML |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEJRHFygYCY7ZzTpONhbqAXUpW9rtqZV6C36lGxQlqyYp6oU_hcTvYyZOVuVQaSXUyx5szdrxTGY-x9-MCfmgxhbDQurFAotqmzj1ZCBiTwM6FypWYNN4ojs_iWZn_Nt5eL5Bfve5MEir7Hy_8-mtt-5aRt1qjpZZNkJaEhMQoAFEY6Gunll5ZK9_wr6t2jucgpI_Mnbw5XR_5nVXC3g6DHjtGcNhAJ6GJg4ls4r7ti1dFYux1gZgUeqnkeXK4qmeSVMV-qmKImkmAP81w2oH4Pfvc3AXeG3C8NeKV4LlapjjTTIPp9dXOm1JZZhTL2tnW0O8uXw4xgDNbouK94osux37tjHw4Al53IFX-tmtz1OyYYttsnWjpOE2eTDvDuufkT_TRub5NU1hR14W6FiL0f6Uc6_NVgGkSwtZwJ69o-ZRR0qHZpNVl82ypoBN6dcyv8ioXLYlypuKysLQrFhkKnP9C_weuCgvKBJRJObWQzfFbI2rdoiFRcq4phVmy0ALxZMKGKukeInMFc6D5shNcdOssuo5ObsTXb4gmwUsww6hgEWjwAjGdKC5tL70mYqENL6aMK2FHBDRqynRXQ11vMojT3qy3I_kpooTVHHiVDwgwUp26SqJrCX1qbeGpM-VBe-eQMBbS3pvJf3PW7W2_C4YIDwq_o7BtcPmIhIMULeIgwnnA_K-N80E3BJqUBa2bOBPENkDOmViQF46m109dYAVk-IwevWfs3tHHs5O58fJ8eHJ0WvyCHsczfIN2awvG7sLcLFWb9vXk5Lvd-0P_gJrvX_F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dually+fibronectin%2FCD44-mediated+nanoparticles+targeted+disrupt+the+Golgi+apparatus+and+inhibit+the+hedgehog+signaling+in+activated+hepatic+stellate+cells+to+alleviate+liver+fibrosis&rft.jtitle=Biomaterials&rft.au=Li%2C+Yanping&rft.au=Zhang%2C+Ting&rft.au=Zhang%2C+Jinhang&rft.au=Liu%2C+Qinhui&rft.date=2023-10-01&rft.eissn=1878-5905&rft.volume=301&rft.spage=122232&rft_id=info:doi/10.1016%2Fj.biomaterials.2023.122232&rft_id=info%3Apmid%2F37418856&rft.externalDocID=37418856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |