Dually fibronectin/CD44-mediated nanoparticles targeted disrupt the Golgi apparatus and inhibit the hedgehog signaling in activated hepatic stellate cells to alleviate liver fibrosis

Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a prom...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 301; p. 122232
Main Authors Li, Yanping, Zhang, Ting, Zhang, Jinhang, Liu, Qinhui, Jia, Qingyi, Chen, Wenfei, Tang, Qin, Xiong, Yimin, Xia, Yan, Xu, Ying, Mo, Li, Huang, Yuan, He, Jinhan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2023
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA–CS–RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.
AbstractList Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA–CS–RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.
Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl -induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl -induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.
Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.
ArticleNumber 122232
Author Zhang, Ting
Mo, Li
Li, Yanping
Liu, Qinhui
Xiong, Yimin
Tang, Qin
Jia, Qingyi
He, Jinhan
Xia, Yan
Zhang, Jinhang
Chen, Wenfei
Xu, Ying
Huang, Yuan
Author_xml – sequence: 1
  givenname: Yanping
  surname: Li
  fullname: Li, Yanping
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 2
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 3
  givenname: Jinhang
  surname: Zhang
  fullname: Zhang, Jinhang
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 4
  givenname: Qinhui
  surname: Liu
  fullname: Liu, Qinhui
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 5
  givenname: Qingyi
  surname: Jia
  fullname: Jia, Qingyi
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 6
  givenname: Wenfei
  surname: Chen
  fullname: Chen, Wenfei
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 7
  givenname: Qin
  surname: Tang
  fullname: Tang, Qin
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 8
  givenname: Yimin
  surname: Xiong
  fullname: Xiong, Yimin
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 9
  givenname: Yan
  surname: Xia
  fullname: Xia, Yan
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 10
  givenname: Ying
  surname: Xu
  fullname: Xu, Ying
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 11
  givenname: Li
  surname: Mo
  fullname: Mo, Li
  organization: Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 12
  givenname: Yuan
  orcidid: 0000-0003-3410-8602
  surname: Huang
  fullname: Huang, Yuan
  organization: Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan Province, China
– sequence: 13
  givenname: Jinhan
  orcidid: 0000-0001-6487-4696
  surname: He
  fullname: He, Jinhan
  email: jinhanhe@scu.edu.cn
  organization: Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
BackLink https://cir.nii.ac.jp/crid/1870020692545983744$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/37418856$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFu1DAUjFAR3RZ-AVmIA5dsHcfJJpyAXShIlbjA2XLsl-xbsk6wnZX2x_g-XkgroZ56iRV7PDNvxlfJhRscJMmbjK8znpU3h3WDw1FH8Kj7sBZc5OtMCJGLZ8kqqzZVWtS8uEhWPJMirctMXCZXIRw4_XMpXiSX-UZmVVWUq-TPbtJ9f2YtNp5UTER3s91JmR7BIklY5rQbRu0jmh4Ci9p3MG9bDH4aI4t7YLdD3yHTI8F0nALTzjJ0e2xwOd-D7WA_dCxg53SPrqNjpkns9E9iD6MmfhYi9D3tMEMraQ2MvMFp9sF6PIFfbAYML5PnLc0Or-7X6-Tnl88_tl_Tu--337Yf71JT5DKm1koDVraFrQotoJEcKMEqq-rMGMuzvOVtCbIBLjaFbdum4G1TltpuSl4YSvQ6ebfwjn74PUGI6ohhdqcdDFNQosoLsZG5qAn6-h46NRSeGj0etT-rh6wJ8GEBGBoheGiVwUhzDy56jb3KuJrrVQf1f71qrlct9RLF-0cUDypPuvx2uewQSXr-0mPhXPCyFoUs6oqsSoLtFhhQricEr4JBcJQjenofyg74NLVPj2gMFY9G97_g_FSSv_aj7i0
CitedBy_id crossref_primary_10_1002_adfm_202404658
crossref_primary_10_1021_acs_chemmater_3c02474
crossref_primary_10_1016_j_jconrel_2024_10_012
crossref_primary_10_1002_advs_202410416
crossref_primary_10_1016_j_jconrel_2024_02_022
crossref_primary_10_1021_acs_nanolett_4c04820
crossref_primary_10_1002_mnfr_202400649
crossref_primary_10_1016_j_actbio_2025_01_019
crossref_primary_10_1002_advs_202411720
crossref_primary_10_1002_pdi3_95
crossref_primary_10_1021_acsami_4c14169
crossref_primary_10_1002_adhm_202403068
crossref_primary_10_1016_j_addr_2024_115386
crossref_primary_10_1016_j_engreg_2024_06_001
crossref_primary_10_1021_acsnano_4c02380
crossref_primary_10_1021_acsami_3c17670
crossref_primary_10_3389_fmolb_2025_1513993
crossref_primary_10_1002_advs_202415133
Cites_doi 10.1111/tra.12493
10.1038/ncomms8984
10.1038/s41563-019-0462-9
10.33549/physiolres.934755
10.1038/nri3623
10.1053/j.gastro.2019.11.311
10.1007/s12272-022-01408-z
10.1056/NEJMoa2029349
10.15252/embj.2020107238
10.1053/j.gastro.2017.12.022
10.1084/jem.20201203
10.1021/acsnano.2c06584
10.1016/j.bbadis.2006.08.009
10.1016/j.addr.2021.113888
10.1016/j.matbio.2018.04.006
10.1021/acsnano.2c07796
10.1007/s10620-017-4684-x
10.1016/j.jbc.2021.101530
10.1073/pnas.1201840109
10.1038/nrgastro.2017.38
10.1021/acsnano.9b04166
10.1021/acsnano.8b06924
10.1016/j.jconrel.2019.04.022
10.1016/j.carbpol.2020.116887
10.1111/j.1478-3231.2008.01745.x
10.1016/j.carbpol.2021.117964
10.1016/j.jconrel.2018.05.032
10.1016/j.phrs.2020.104720
10.1038/s41575-020-00372-7
10.1016/j.jhep.2014.06.010
10.1016/j.biomaterials.2015.11.061
10.1002/hep.31418
10.3390/biom11020205
10.1016/j.biomaterials.2015.08.035
10.1083/jcb.202106115
10.1016/j.bpg.2017.04.005
10.1038/nprot.2015.017
10.1002/hep.28948
10.1016/j.addr.2021.113869
10.1016/j.jhep.2015.02.039
10.1016/j.apsb.2019.07.003
10.1016/j.jconrel.2020.01.017
10.7150/thno.38913
10.1016/j.actbio.2022.05.014
10.1053/j.gastro.2019.07.036
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Ltd.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Ltd.
DBID RYH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.biomaterials.2023.122232
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 37418856
10_1016_j_biomaterials_2023_122232
S0142961223002405
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AGRNS
BNPGV
RYH
SSH
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c534t-dd4ced4f5d85a2eb40e10181891ccd013f0f6e4be0275dffb50fb66ad7605c223
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 02:29:06 EDT 2025
Thu Apr 03 07:01:42 EDT 2025
Tue Jul 01 01:19:51 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Thu Jun 26 22:03:14 EDT 2025
Fri Feb 23 02:37:06 EST 2024
Tue Aug 26 17:20:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hepatic stellate cells
Hedgehog signaling pathway
Liver fibrosis
Fibronectin
CD44
Golgi apparatus
Language English
License Copyright © 2023. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-dd4ced4f5d85a2eb40e10181891ccd013f0f6e4be0275dffb50fb66ad7605c223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6487-4696
0000-0003-3410-8602
PMID 37418856
PQID 2835274329
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2835274329
pubmed_primary_37418856
crossref_citationtrail_10_1016_j_biomaterials_2023_122232
crossref_primary_10_1016_j_biomaterials_2023_122232
nii_cinii_1870020692545983744
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2023_122232
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2023_122232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Choi, Kang, Kim (bib9) 2022; 45
Liang, Su, Liu, Wang, Qi (bib28) 2015; 71
Zhang, Wang, Shen, She, Shi, Chen, Zhang, Hu, Pang, Jiang (bib21) 2016; 79
Schwabe, Tabas, Pajvani (bib35) 2020; 158
Kumar, Xin, Ma, Tan, Osna, Mahato (bib42) 2021; 176
Cai, Wang, Wang, Zhou, Yang, He, Weng (bib6) 2020; 155
Qiao, Fan, Xing, Cui, He, Zhu, Wang, Pang, Oh, Zhang, Jiang (bib36) 2018; 283
Kisseleva, Cong, Paik, Scholten, Jiang, Benner, Iwaisako, Moore-Morris, Scott, Tsukamoto, Evans, Dillmann, Glass, Brenner (bib4) 2012; 109
Luo, Zhang, Zeng, Dong, Ma (bib23) 2021; 263
Hisamori, Tabata, Kadokawa, Okoshi, Tabata, Mori, Nagayama, Watanabe, Kubo, Sakai (bib14) 2008; 28
Kumar, Duan, Wu, Harris, Su (bib41) 2021; 176
Hao, Song, Tan, Ren, Guo, Zhou, Li, Wen, Meng, Lin, Zhang, Huang, Wang, Zheng (bib37) 2022; 16
Welch, Peak-Chew, Begum, Stevens, Munro (bib31) 2021; 220
Altrock, Sens, Wuerfel, Vasel, Kawelke, Dooley, Sottile, Nakchbandi (bib19) 2015; 62
Cholankeril, Wong, Hu, Perumpail, Yoo, Puri, Younossi, Harrison, Ahmed (bib34) 2017; 62
Li, Zhang, Luo, Hu, Huang, Zhang, Fu, Gong (bib16) 2019; 13
Luo, Li, Wei, Lu, Dong (bib40) 2021; 70
Yang, Yao, Yan, Liu, Wen, Chen, Lu (bib10) 2021; 11
Kisseleva (bib7) 2017; 65
Ignashkova, Gendarme, Peschk, Eggenweiler, Lindemann, Reiling (bib11) 2017; 18
Luo, Gong, Ma (bib13) 2020; 249
Moretti, Stalfort, Barker, Abebayehu (bib38) 2022; 298
Li, Pu, Liu, Li, Zhang, Wu, Chen, Li, Yang, Zou, Xiao, Xie, He (bib25) 2019; 303
Li, Deng, Tan, Dong, Zhao, Wang, Yang, Luo, Gao, Huang, Zhang, Gong (bib18) 2022; 146
Tsuchida, Friedman (bib8) 2017; 14
Wang, Potter, Rennie-Tankersley, Novitskiy, Sipes, Mezey (bib15) 2007; 1772
Rizzo, Russo, Kurokawa, Sahu, Lombardi, Supino, Zhukovsky, Vocat, Pothukuchi, Kunnathully, Capolupo, Boncompain, Vitagliano, Zito Marino, Aquino, Montariello, Henklein, Mandrich, Botti, Clausen, Mandel, Yamaji, Hanada, Budillon, Perez, Parashuraman, Hannun, Nakano, Corda, D'Angelo, Luini (bib32) 2021; 40
Wu, Liu, Li, Li, Chen, Yang, Tang, Pu, Kuang, Li, Huang, Zhang, Zhang, Zhou, Huang, Zhang, Zhao, Zou, Jiang, Mo, He (bib30) 2021; 218
Sanyal, Van Natta, Clark, Neuschwander-Tetri, Diehl, Dasarathy, Loomba, Chalasani, Kowdley, Hameed, Wilson, Yates, Belt, Lazo, Kleiner, Behling, Tonascia (bib3) 2021; 385
Zhou, Qutaish, Han, Schur, Liu, Wilson, Lu (bib20) 2015; 6
Pellicoro, Ramachandran, Iredale, Fallowfield (bib2) 2014; 14
Li, Li, Zhang, Liu, Wu, Zhou, Huang, Tang, Huang, Huang, Zhang, Zhang, Zhao, Ma, Feng, Mo, Han, He (bib22) 2020; 320
Du, Hyun, Premont, Choi, Michelotti, Swiderska-Syn, Dalton, Thelen, Rizi, Jung, Diehl (bib44) 2018; 154
Trautwein, Friedman, Schuppan, Pinzani (bib43) 2015; 62
Lee, Sugihara, Gillilland, Jon, Kamada, Moon (bib27) 2020; 19
Fan, Liu, Chen, Hammad, Longerich, Hausser, Fu, Li, He, Liu, Zhang, Lian, Zhao, Yan, Li, Yi, Ling, Ma, Zhao, Xu, Wang, Cong, You, Liu, Wang, Chen, Li, Hui, Dooley, Hou, Jia, Sun (bib39) 2019; 157
Zoubek, Trautwein, Strnad (bib5) 2017; 31
Li, Zhou, Fu, Chen, Liu, Zhang, Gong (bib24) 2020; 10
Kisseleva, Brenner (bib1) 2021; 18
Mederacke, Dapito, Affò, Uchinami, Schwabe (bib26) 2015; 10
Deng, Zhao, Chen, Ai, Zhang, Gong, Zeng, Lei (bib12) 2022; 16
Luo, Zhang, Zhao, Jia, Yin, Li, Zhang, Fu, Gong (bib17) 2019; 13
Schuppan, Ashfaq-Khan, Yang, Kim (bib33) 2018; 68–69
Kumar, Dong, Kumar, Almawash, Mahato (bib45) 2019; 9
Zhang, Li, Liu, Huang, Li, Wu, Zhang, Zhou, Huang, Tang, Huang, Zhao, Zhang, Jiang, Mo, Zhang, Xie, He (bib29) 2021; 73
Luo (10.1016/j.biomaterials.2023.122232_bib13) 2020; 249
Yang (10.1016/j.biomaterials.2023.122232_bib10) 2021; 11
Choi (10.1016/j.biomaterials.2023.122232_bib9) 2022; 45
Kumar (10.1016/j.biomaterials.2023.122232_bib42) 2021; 176
Lee (10.1016/j.biomaterials.2023.122232_bib27) 2020; 19
Wu (10.1016/j.biomaterials.2023.122232_bib30) 2021; 218
Tsuchida (10.1016/j.biomaterials.2023.122232_bib8) 2017; 14
Li (10.1016/j.biomaterials.2023.122232_bib22) 2020; 320
Qiao (10.1016/j.biomaterials.2023.122232_bib36) 2018; 283
Zhou (10.1016/j.biomaterials.2023.122232_bib20) 2015; 6
Cai (10.1016/j.biomaterials.2023.122232_bib6) 2020; 155
Kisseleva (10.1016/j.biomaterials.2023.122232_bib7) 2017; 65
Hisamori (10.1016/j.biomaterials.2023.122232_bib14) 2008; 28
Ignashkova (10.1016/j.biomaterials.2023.122232_bib11) 2017; 18
Sanyal (10.1016/j.biomaterials.2023.122232_bib3) 2021; 385
Zhang (10.1016/j.biomaterials.2023.122232_bib21) 2016; 79
Kumar (10.1016/j.biomaterials.2023.122232_bib41) 2021; 176
Zoubek (10.1016/j.biomaterials.2023.122232_bib5) 2017; 31
Luo (10.1016/j.biomaterials.2023.122232_bib23) 2021; 263
Li (10.1016/j.biomaterials.2023.122232_bib18) 2022; 146
Kisseleva (10.1016/j.biomaterials.2023.122232_bib1) 2021; 18
Pellicoro (10.1016/j.biomaterials.2023.122232_bib2) 2014; 14
Altrock (10.1016/j.biomaterials.2023.122232_bib19) 2015; 62
Li (10.1016/j.biomaterials.2023.122232_bib25) 2019; 303
Rizzo (10.1016/j.biomaterials.2023.122232_bib32) 2021; 40
Li (10.1016/j.biomaterials.2023.122232_bib24) 2020; 10
Hao (10.1016/j.biomaterials.2023.122232_bib37) 2022; 16
Zhang (10.1016/j.biomaterials.2023.122232_bib29) 2021; 73
Schwabe (10.1016/j.biomaterials.2023.122232_bib35) 2020; 158
Welch (10.1016/j.biomaterials.2023.122232_bib31) 2021; 220
Wang (10.1016/j.biomaterials.2023.122232_bib15) 2007; 1772
Luo (10.1016/j.biomaterials.2023.122232_bib17) 2019; 13
Fan (10.1016/j.biomaterials.2023.122232_bib39) 2019; 157
Cholankeril (10.1016/j.biomaterials.2023.122232_bib34) 2017; 62
Kisseleva (10.1016/j.biomaterials.2023.122232_bib4) 2012; 109
Moretti (10.1016/j.biomaterials.2023.122232_bib38) 2022; 298
Deng (10.1016/j.biomaterials.2023.122232_bib12) 2022; 16
Li (10.1016/j.biomaterials.2023.122232_bib16) 2019; 13
Mederacke (10.1016/j.biomaterials.2023.122232_bib26) 2015; 10
Kumar (10.1016/j.biomaterials.2023.122232_bib45) 2019; 9
Schuppan (10.1016/j.biomaterials.2023.122232_bib33) 2018; 68–69
Du (10.1016/j.biomaterials.2023.122232_bib44) 2018; 154
Liang (10.1016/j.biomaterials.2023.122232_bib28) 2015; 71
Luo (10.1016/j.biomaterials.2023.122232_bib40) 2021; 70
Trautwein (10.1016/j.biomaterials.2023.122232_bib43) 2015; 62
References_xml – volume: 31
  start-page: 129
  year: 2017
  end-page: 141
  ident: bib5
  article-title: Reversal of liver fibrosis: from fiction to reality
  publication-title: Best Pract. Res. Clin. Gastroenterol.
– volume: 14
  start-page: 181
  year: 2014
  end-page: 194
  ident: bib2
  article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ
  publication-title: Nat. Rev. Immunol.
– volume: 146
  start-page: 357
  year: 2022
  end-page: 369
  ident: bib18
  article-title: Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting
  publication-title: Acta Biomater.
– volume: 79
  start-page: 46
  year: 2016
  end-page: 55
  ident: bib21
  article-title: Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor
  publication-title: Biomaterials
– volume: 298
  year: 2022
  ident: bib38
  article-title: The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation
  publication-title: J. Biol. Chem.
– volume: 263
  year: 2021
  ident: bib23
  article-title: Co-encapsulation of collagenase type I and silibinin in chondroitin sulfate coated multilayered nanoparticles for targeted treatment of liver fibrosis
  publication-title: Carbohydr. Polym.
– volume: 303
  start-page: 77
  year: 2019
  end-page: 90
  ident: bib25
  article-title: An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis
  publication-title: J. Contr. Release
– volume: 6
  start-page: 7984
  year: 2015
  ident: bib20
  article-title: MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent
  publication-title: Nat. Commun.
– volume: 45
  start-page: 671
  year: 2022
  end-page: 692
  ident: bib9
  article-title: New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases
  publication-title: Arch Pharm. Res. (Seoul)
– volume: 220
  year: 2021
  ident: bib31
  article-title: GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles
  publication-title: J. Cell Biol.
– volume: 283
  start-page: 113
  year: 2018
  end-page: 125
  ident: bib36
  article-title: Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis
  publication-title: J. Contr. Release
– volume: 218
  year: 2021
  ident: bib30
  article-title: Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway
  publication-title: J. Exp. Med.
– volume: 109
  start-page: 9448
  year: 2012
  end-page: 9453
  ident: bib4
  article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 249
  year: 2020
  ident: bib13
  article-title: Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management
  publication-title: Carbohydr. Polym.
– volume: 320
  start-page: 32
  year: 2020
  end-page: 44
  ident: bib22
  article-title: Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity
  publication-title: J. Contr. Release
– volume: 71
  start-page: 11
  year: 2015
  end-page: 23
  ident: bib28
  article-title: Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers
  publication-title: Biomaterials
– volume: 154
  start-page: 1465
  year: 2018
  end-page: 1479
  ident: bib44
  article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells
  publication-title: Gastroenterology
– volume: 385
  start-page: 1559
  year: 2021
  end-page: 1569
  ident: bib3
  article-title: Prospective study of outcomes in adults with nonalcoholic fatty liver disease
  publication-title: N. Engl. J. Med.
– volume: 62
  start-page: 625
  year: 2015
  end-page: 633
  ident: bib19
  article-title: Inhibition of fibronectin deposition improves experimental liver fibrosis
  publication-title: J. Hepatol.
– volume: 9
  start-page: 7537
  year: 2019
  end-page: 7555
  ident: bib45
  article-title: The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis
  publication-title: Theranostics
– volume: 16
  start-page: 20739
  year: 2022
  end-page: 20757
  ident: bib37
  article-title: Reactive oxygen species-responsive polypeptide drug delivery system targeted activated hepatic stellate cells to ameliorate liver fibrosis
  publication-title: ACS Nano
– volume: 70
  start-page: 821
  year: 2021
  end-page: 829
  ident: bib40
  article-title: Hepatic stellate cell: a double-edged sword in the liver
  publication-title: Physiol. Res.
– volume: 176
  year: 2021
  ident: bib42
  article-title: Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis
  publication-title: Adv. Drug Deliv. Rev.
– volume: 73
  start-page: 1140
  year: 2021
  end-page: 1157
  ident: bib29
  article-title: Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells
  publication-title: Hepatology
– volume: 13
  start-page: 3910
  year: 2019
  end-page: 3923
  ident: bib17
  article-title: Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis
  publication-title: ACS Nano
– volume: 10
  start-page: 693
  year: 2020
  end-page: 710
  ident: bib24
  article-title: Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats
  publication-title: Acta Pharm. Sin. B
– volume: 28
  start-page: 1217
  year: 2008
  end-page: 1225
  ident: bib14
  article-title: All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production
  publication-title: Liver Int.
– volume: 10
  start-page: 305
  year: 2015
  end-page: 315
  ident: bib26
  article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers
  publication-title: Nat. Protoc.
– volume: 62
  start-page: 2915
  year: 2017
  end-page: 2922
  ident: bib34
  article-title: Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes
  publication-title: Dig. Dis. Sci.
– volume: 11
  year: 2021
  ident: bib10
  article-title: Deoxycholic acid upregulates serum Golgi protein 73 through activating NF-κB pathway and destroying Golgi structure in liver disease
  publication-title: Biomolecules
– volume: 19
  start-page: 118
  year: 2020
  end-page: 126
  ident: bib27
  article-title: Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis
  publication-title: Nat. Mater.
– volume: 158
  start-page: 1913
  year: 2020
  end-page: 1928
  ident: bib35
  article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis
  publication-title: Gastroenterology
– volume: 62
  start-page: S15
  year: 2015
  end-page: S24
  ident: bib43
  article-title: Hepatic fibrosis: concept to treatment
  publication-title: J. Hepatol.
– volume: 65
  start-page: 1039
  year: 2017
  end-page: 1043
  ident: bib7
  article-title: The origin of fibrogenic myofibroblasts in fibrotic liver
  publication-title: Hepatology
– volume: 157
  start-page: 1352
  year: 2019
  end-page: 1367
  ident: bib39
  article-title: ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice
  publication-title: Gastroenterology
– volume: 18
  start-page: 530
  year: 2017
  end-page: 544
  ident: bib11
  article-title: Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents
  publication-title: Traffic
– volume: 16
  start-page: 18430
  year: 2022
  end-page: 18447
  ident: bib12
  article-title: Engineered platelet microparticle-membrane camouflaged nanoparticles for targeting the Golgi apparatus of synovial fibroblasts to attenuate rheumatoid arthritis
  publication-title: ACS Nano
– volume: 13
  start-page: 9386
  year: 2019
  end-page: 9396
  ident: bib16
  article-title: Chondroitin sulfate-linked prodrug nanoparticles target the Golgi apparatus for cancer metastasis treatment
  publication-title: ACS Nano
– volume: 40
  year: 2021
  ident: bib32
  article-title: Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3
  publication-title: EMBO J.
– volume: 1772
  start-page: 66
  year: 2007
  end-page: 71
  ident: bib15
  article-title: Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice
  publication-title: Biochim. Biophys. Acta
– volume: 68–69
  start-page: 435
  year: 2018
  end-page: 451
  ident: bib33
  article-title: Liver fibrosis: direct antifibrotic agents and targeted therapies
  publication-title: Matrix Biol.
– volume: 155
  year: 2020
  ident: bib6
  article-title: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: new insights into therapy
  publication-title: Pharmacol. Res.
– volume: 14
  start-page: 397
  year: 2017
  end-page: 411
  ident: bib8
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 18
  start-page: 151
  year: 2021
  end-page: 166
  ident: bib1
  article-title: Molecular and cellular mechanisms of liver fibrosis and its regression
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 176
  year: 2021
  ident: bib41
  article-title: Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis
  publication-title: Adv. Drug Deliv. Rev.
– volume: 18
  start-page: 530
  issue: 8
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122232_bib11
  article-title: Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents
  publication-title: Traffic
  doi: 10.1111/tra.12493
– volume: 6
  start-page: 7984
  year: 2015
  ident: 10.1016/j.biomaterials.2023.122232_bib20
  article-title: MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8984
– volume: 19
  start-page: 118
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122232_bib27
  article-title: Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0462-9
– volume: 70
  start-page: 821
  issue: 6
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib40
  article-title: Hepatic stellate cell: a double-edged sword in the liver
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.934755
– volume: 14
  start-page: 181
  issue: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2023.122232_bib2
  article-title: Liver fibrosis and repair: immune regulation of wound healing in a solid organ
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3623
– volume: 158
  start-page: 1913
  issue: 7
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122232_bib35
  article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.11.311
– volume: 45
  start-page: 671
  issue: 10
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122232_bib9
  article-title: New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases
  publication-title: Arch Pharm. Res. (Seoul)
  doi: 10.1007/s12272-022-01408-z
– volume: 385
  start-page: 1559
  issue: 17
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib3
  article-title: Prospective study of outcomes in adults with nonalcoholic fatty liver disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2029349
– volume: 40
  issue: 8
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib32
  article-title: Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3
  publication-title: EMBO J.
  doi: 10.15252/embj.2020107238
– volume: 154
  start-page: 1465
  issue: 5
  year: 2018
  ident: 10.1016/j.biomaterials.2023.122232_bib44
  article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.12.022
– volume: 218
  issue: 6
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib30
  article-title: Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201203
– volume: 16
  start-page: 18430
  issue: 11
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122232_bib12
  article-title: Engineered platelet microparticle-membrane camouflaged nanoparticles for targeting the Golgi apparatus of synovial fibroblasts to attenuate rheumatoid arthritis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c06584
– volume: 1772
  start-page: 66
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2023.122232_bib15
  article-title: Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2006.08.009
– volume: 176
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib42
  article-title: Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.113888
– volume: 68–69
  start-page: 435
  year: 2018
  ident: 10.1016/j.biomaterials.2023.122232_bib33
  article-title: Liver fibrosis: direct antifibrotic agents and targeted therapies
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2018.04.006
– volume: 16
  start-page: 20739
  issue: 12
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122232_bib37
  article-title: Reactive oxygen species-responsive polypeptide drug delivery system targeted activated hepatic stellate cells to ameliorate liver fibrosis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07796
– volume: 62
  start-page: 2915
  issue: 10
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122232_bib34
  article-title: Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-017-4684-x
– volume: 298
  issue: 2
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122232_bib38
  article-title: The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.101530
– volume: 109
  start-page: 9448
  issue: 24
  year: 2012
  ident: 10.1016/j.biomaterials.2023.122232_bib4
  article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1201840109
– volume: 14
  start-page: 397
  issue: 7
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122232_bib8
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.38
– volume: 13
  start-page: 9386
  issue: 8
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122232_bib16
  article-title: Chondroitin sulfate-linked prodrug nanoparticles target the Golgi apparatus for cancer metastasis treatment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04166
– volume: 13
  start-page: 3910
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122232_bib17
  article-title: Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06924
– volume: 303
  start-page: 77
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122232_bib25
  article-title: An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2019.04.022
– volume: 249
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122232_bib13
  article-title: Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116887
– volume: 28
  start-page: 1217
  issue: 9
  year: 2008
  ident: 10.1016/j.biomaterials.2023.122232_bib14
  article-title: All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production
  publication-title: Liver Int.
  doi: 10.1111/j.1478-3231.2008.01745.x
– volume: 263
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib23
  article-title: Co-encapsulation of collagenase type I and silibinin in chondroitin sulfate coated multilayered nanoparticles for targeted treatment of liver fibrosis
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.117964
– volume: 283
  start-page: 113
  year: 2018
  ident: 10.1016/j.biomaterials.2023.122232_bib36
  article-title: Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2018.05.032
– volume: 155
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122232_bib6
  article-title: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: new insights into therapy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.104720
– volume: 18
  start-page: 151
  issue: 3
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib1
  article-title: Molecular and cellular mechanisms of liver fibrosis and its regression
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-00372-7
– volume: 62
  start-page: 625
  issue: 3
  year: 2015
  ident: 10.1016/j.biomaterials.2023.122232_bib19
  article-title: Inhibition of fibronectin deposition improves experimental liver fibrosis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2014.06.010
– volume: 79
  start-page: 46
  year: 2016
  ident: 10.1016/j.biomaterials.2023.122232_bib21
  article-title: Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.11.061
– volume: 73
  start-page: 1140
  issue: 3
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib29
  article-title: Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells
  publication-title: Hepatology
  doi: 10.1002/hep.31418
– volume: 11
  issue: 2
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib10
  article-title: Deoxycholic acid upregulates serum Golgi protein 73 through activating NF-κB pathway and destroying Golgi structure in liver disease
  publication-title: Biomolecules
  doi: 10.3390/biom11020205
– volume: 71
  start-page: 11
  year: 2015
  ident: 10.1016/j.biomaterials.2023.122232_bib28
  article-title: Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.08.035
– volume: 220
  issue: 10
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib31
  article-title: GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202106115
– volume: 31
  start-page: 129
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122232_bib5
  article-title: Reversal of liver fibrosis: from fiction to reality
  publication-title: Best Pract. Res. Clin. Gastroenterol.
  doi: 10.1016/j.bpg.2017.04.005
– volume: 10
  start-page: 305
  issue: 2
  year: 2015
  ident: 10.1016/j.biomaterials.2023.122232_bib26
  article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.017
– volume: 65
  start-page: 1039
  issue: 3
  year: 2017
  ident: 10.1016/j.biomaterials.2023.122232_bib7
  article-title: The origin of fibrogenic myofibroblasts in fibrotic liver
  publication-title: Hepatology
  doi: 10.1002/hep.28948
– volume: 176
  year: 2021
  ident: 10.1016/j.biomaterials.2023.122232_bib41
  article-title: Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.113869
– volume: 62
  start-page: S15
  issue: 1 Suppl
  year: 2015
  ident: 10.1016/j.biomaterials.2023.122232_bib43
  article-title: Hepatic fibrosis: concept to treatment
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2015.02.039
– volume: 10
  start-page: 693
  issue: 4
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122232_bib24
  article-title: Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2019.07.003
– volume: 320
  start-page: 32
  year: 2020
  ident: 10.1016/j.biomaterials.2023.122232_bib22
  article-title: Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2020.01.017
– volume: 9
  start-page: 7537
  issue: 25
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122232_bib45
  article-title: The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis
  publication-title: Theranostics
  doi: 10.7150/thno.38913
– volume: 146
  start-page: 357
  year: 2022
  ident: 10.1016/j.biomaterials.2023.122232_bib18
  article-title: Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.05.014
– volume: 157
  start-page: 1352
  issue: 5
  year: 2019
  ident: 10.1016/j.biomaterials.2023.122232_bib39
  article-title: ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.07.036
SSID ssj0014042
ssib006543501
ssib006543502
Score 2.5349853
Snippet Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122232
SubjectTerms Animals
CD44
Fibronectin
Fibronectins
Golgi Apparatus
Hedgehog Proteins
Hedgehog signaling pathway
Hepatic Stellate Cells
Ligands
Liver
Liver Cirrhosis
Liver fibrosis
Mice
Nanoparticles
Title Dually fibronectin/CD44-mediated nanoparticles targeted disrupt the Golgi apparatus and inhibit the hedgehog signaling in activated hepatic stellate cells to alleviate liver fibrosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961223002405
https://dx.doi.org/10.1016/j.biomaterials.2023.122232
https://cir.nii.ac.jp/crid/1870020692545983744
https://www.ncbi.nlm.nih.gov/pubmed/37418856
https://www.proquest.com/docview/2835274329
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbGkBAcEIxfBTYZiWva1HHSWIjD1DEKaDsxabfIv7J6ipxqSSZx4c_i7-O9OKnGYVIlLpXq1I3j9_re5_p7nwn5qOYW00IZ5QJFtU1eRjIReaQBnQuVK_Bp3NE9O89WF_z7ZXq5R5ZjLQzSKofYH2J6H62Hltkwm7ONczOkJTEBCRpANAp1YaE55wv08unvLc0D1WNYoDGyCD89Co_2HC8scZdtMPUUDxKfzjFfsvuS1APv3P1QtE9Jp8_I0wFL0uMw3Odkz_oD8uSOwuABeXQ27J2_IH9OOllVv2gJC-TaY5zzs-UJ51FfPALAk3rpYQk9MOVo4IhDs3HNTbdpKUBF-rWurhyVm14xvGuo9IY6v3bKhetr_HtuXV9R5IVILHWHyxSLJ277W6wtMrg1bbB4BVoobhzAvWqKZ7rc4jhohVSRMMzGNS_JxemXn8tVNJzaEOk04W1kDAfb8TI1eSqZVTy2vSpYLuZaG0CcZVxmliuLG6amLFUalyrLpFnAykrD7L8i-x6m4Q2hAA2zxAjGdKK5tLGMmcqENLFaMK2FnBAxmqnQg6Q5nqxRFSN37bq4a-ICTVwEE09Isu27CcIeO_X6NHpDMZauQrAtIP_s1Pvztvc_Tr5z_0NwQHhUfJ1DpAWsnwlY4qciTxacT8iH0TULiBJoQelt3cGXINAGsMjEhLwOPrt96gQFjPI0e_ufo3tHHuO7wHR8T_bbm84eAmJr1VH_kzwiD4-__Vid_wX8rUML
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEJRHFygYCY7ZzTpONhbqAXUpW9rtqZV6C36lGxQlqyYp6oU_hcTvYyZOVuVQaSXUyx5szdrxTGY-x9-MCfmgxhbDQurFAotqmzj1ZCBiTwM6FypWYNN4ojs_iWZn_Nt5eL5Bfve5MEir7Hy_8-mtt-5aRt1qjpZZNkJaEhMQoAFEY6Gunll5ZK9_wr6t2jucgpI_Mnbw5XR_5nVXC3g6DHjtGcNhAJ6GJg4ls4r7ti1dFYux1gZgUeqnkeXK4qmeSVMV-qmKImkmAP81w2oH4Pfvc3AXeG3C8NeKV4LlapjjTTIPp9dXOm1JZZhTL2tnW0O8uXw4xgDNbouK94osux37tjHw4Al53IFX-tmtz1OyYYttsnWjpOE2eTDvDuufkT_TRub5NU1hR14W6FiL0f6Uc6_NVgGkSwtZwJ69o-ZRR0qHZpNVl82ypoBN6dcyv8ioXLYlypuKysLQrFhkKnP9C_weuCgvKBJRJObWQzfFbI2rdoiFRcq4phVmy0ALxZMKGKukeInMFc6D5shNcdOssuo5ObsTXb4gmwUsww6hgEWjwAjGdKC5tL70mYqENL6aMK2FHBDRqynRXQ11vMojT3qy3I_kpooTVHHiVDwgwUp26SqJrCX1qbeGpM-VBe-eQMBbS3pvJf3PW7W2_C4YIDwq_o7BtcPmIhIMULeIgwnnA_K-N80E3BJqUBa2bOBPENkDOmViQF46m109dYAVk-IwevWfs3tHHs5O58fJ8eHJ0WvyCHsczfIN2awvG7sLcLFWb9vXk5Lvd-0P_gJrvX_F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dually+fibronectin%2FCD44-mediated+nanoparticles+targeted+disrupt+the+Golgi+apparatus+and+inhibit+the+hedgehog+signaling+in+activated+hepatic+stellate+cells+to+alleviate+liver+fibrosis&rft.jtitle=Biomaterials&rft.au=Li%2C+Yanping&rft.au=Zhang%2C+Ting&rft.au=Zhang%2C+Jinhang&rft.au=Liu%2C+Qinhui&rft.date=2023-10-01&rft.eissn=1878-5905&rft.volume=301&rft.spage=122232&rft_id=info:doi/10.1016%2Fj.biomaterials.2023.122232&rft_id=info%3Apmid%2F37418856&rft.externalDocID=37418856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon