Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer
Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One o...
Saved in:
Published in | Cell cycle (Georgetown, Tex.) Vol. 16; no. 8; pp. 737 - 745 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
18.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. |
---|---|
AbstractList | Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. |
Author | Xu, Liang Vlashi, Erina Zhang, Fengchun Zhang, Le |
Author_xml | – sequence: 1 givenname: Le orcidid: 0000-0002-4449-0385 surname: Zhang fullname: Zhang, Le organization: David Geffen School of Medicine at UCLA – sequence: 2 givenname: Liang surname: Xu fullname: Xu, Liang organization: Third Hospital of Nanchang – sequence: 3 givenname: Fengchun surname: Zhang fullname: Zhang, Fengchun email: doctorzhang863@gmail.com organization: Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 4 givenname: Erina surname: Vlashi fullname: Vlashi, Erina email: evlashi@mednet.ucla.edu organization: Jonsson Comprehensive Cancer Center at UCLA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27753527$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUGL1TAUhYOMODNPf4LSpZs-k7RpGgRRxhkVBtzoOtymtzaSJjXJU_vvbXlvBnWhZJFAzvnu5ZxLcuaDR0KeMrpntKUvmKjamlG255Q1e8Zrprh6QC6YEKysKRVn27tqy010Ti5T-kopb6Vij8g5l1JUgssLMr0NPxezGGc9FtaPtrM5FXnEwoA3GIuUcSoMOlfMI_qQlxkL8H2Bs11VzoIrcygnTOjNuEzgihzBJ5tt8Cuw6CJCyifaY_JwAJfwyenekc8315-u3pe3H999uHpzWxpR1bnsgfFWKUkV75WRyPrGCNEZ2sDQgDTAGw51PRjTGQWqQzXIBkGqBlYbrasdeXXkzoduwt6gX5dyeo52grjoAFb_-ePtqL-E71rUVEiuVsDzEyCGbwdMWU82bSmAx3BImrWVqEXF1rMjz36fdT_kLuNVII4CE0NKEYd7CaN661Lfdam3LvWpy9X38i-fsRm2XNeVrfuv-_XRbf0Q4gQ_QnS9zrC4EIe1IWOTrv6N-AVvKbqn |
CitedBy_id | crossref_primary_10_1016_j_biopha_2018_05_142 crossref_primary_10_1089_ars_2017_7223 crossref_primary_10_1155_2022_2760744 crossref_primary_10_1021_acsptsci_4c00545 crossref_primary_10_1002_cbdv_202101001 crossref_primary_10_1016_j_semcancer_2019_09_007 crossref_primary_10_1155_2021_8874360 crossref_primary_10_1155_2021_9944214 crossref_primary_10_1186_s11658_018_0088_y crossref_primary_10_2147_IJN_S293427 crossref_primary_10_1016_j_pscia_2022_100002 crossref_primary_10_3390_cells10112826 crossref_primary_10_3389_fonc_2022_1008027 crossref_primary_10_1016_j_scitotenv_2022_156379 crossref_primary_10_3390_cancers15071936 crossref_primary_10_3390_cells9071693 crossref_primary_10_1021_acschemneuro_4c00169 crossref_primary_10_3390_molecules24061148 crossref_primary_10_2147_IJN_S298297 crossref_primary_10_3389_fonc_2020_01528 crossref_primary_10_5604_01_3001_0016_1866 crossref_primary_10_1016_j_semcancer_2017_11_008 crossref_primary_10_1002_ijc_32522 crossref_primary_10_3390_ijms20071699 crossref_primary_10_1016_j_tiv_2020_104790 crossref_primary_10_1016_j_ejphar_2023_175949 crossref_primary_10_1038_s41598_020_61381_9 crossref_primary_10_1016_j_biopha_2023_114496 crossref_primary_10_3390_cancers13133193 crossref_primary_10_1007_s00210_022_02263_x crossref_primary_10_1021_acs_nanolett_7b04976 crossref_primary_10_3390_ijms24010395 crossref_primary_10_3390_ijms23020831 crossref_primary_10_1016_j_ijpharm_2024_124358 crossref_primary_10_1021_acsomega_4c00617 crossref_primary_10_1007_s11030_022_10445_1 crossref_primary_10_1089_scd_2018_0209 crossref_primary_10_2174_1871520622666220317140557 crossref_primary_10_3390_ijms23095058 crossref_primary_10_51753_flsrt_1384064 crossref_primary_10_3390_medicina58091289 crossref_primary_10_1016_j_lfs_2023_122065 crossref_primary_10_1038_s41419_020_2654_2 crossref_primary_10_1016_j_bbcan_2021_188565 crossref_primary_10_3390_cells12081156 crossref_primary_10_3892_ijmm_2024_5444 crossref_primary_10_1016_j_ijcard_2020_07_016 crossref_primary_10_3389_fphar_2022_905082 crossref_primary_10_3389_fcell_2022_829788 crossref_primary_10_3390_ijms21228684 crossref_primary_10_1084_jem_20210571 crossref_primary_10_2174_1574888X14666190628104721 crossref_primary_10_2174_0929867326666190628163633 crossref_primary_10_2147_IJN_S449185 crossref_primary_10_3390_ijms19051504 crossref_primary_10_1016_j_gendis_2022_12_013 crossref_primary_10_3389_fimmu_2020_01280 crossref_primary_10_3390_cancers17010059 crossref_primary_10_3390_cancers17010132 crossref_primary_10_21307_PM_2018_57_4_301 crossref_primary_10_1002_mc_23436 crossref_primary_10_1016_j_cpt_2025_02_005 crossref_primary_10_1016_j_bmcl_2019_04_045 crossref_primary_10_1016_j_stem_2018_12_009 crossref_primary_10_1242_bio_061790 crossref_primary_10_32604_or_2024_048778 crossref_primary_10_3389_fendo_2024_1355387 crossref_primary_10_1007_s12015_019_09945_9 crossref_primary_10_3390_cancers15030571 crossref_primary_10_4251_wjgo_v15_i3_443 crossref_primary_10_1007_s00210_024_03542_5 crossref_primary_10_3390_ijms20143577 crossref_primary_10_1016_j_bbadis_2023_166897 crossref_primary_10_1002_jcb_26196 crossref_primary_10_3389_fonc_2018_00452 crossref_primary_10_1186_s43094_024_00637_x crossref_primary_10_3390_antibiotics14010009 crossref_primary_10_3390_pharmaceutics16081024 crossref_primary_10_1016_j_ejphar_2021_174593 crossref_primary_10_1038_s41389_022_00433_3 crossref_primary_10_3390_cancers12102780 crossref_primary_10_1080_10799893_2020_1837871 crossref_primary_10_3390_cancers16050911 crossref_primary_10_1177_03000605211044368 crossref_primary_10_1007_s00520_021_06134_8 |
Cites_doi | 10.1158/1078-0432.CCR-11-1282 10.18632/oncotarget.6038 10.1038/nature06639 10.1002/jcb.22275 10.4048/jbc.2015.18.4.303 10.4161/auto.24132 10.1002/stem.1058 10.18632/oncotarget.2789 10.1038/nrc1670 10.1155/2011/591427 10.4161/auto.21996 10.1016/j.phrs.2010.10.004 10.1016/j.vph.2012.01.007 10.1007/s10549-014-3051-2 10.3322/caac.20107 10.18632/oncotarget.6094 10.3322/caac.21332 10.1111/bph.12139 10.1097/00001813-200311000-00001 10.1158/0008-5472.CAN-05-0626 10.1073/pnas.1106704108 10.1016/j.phrs.2011.06.013 10.1007/s10549-013-2688-6 10.18632/oncotarget.3174 10.18632/oncotarget.4193 10.1158/0008-5472.CAN-05-0592 10.18632/oncotarget.4159 10.1016/j.ccr.2006.06.001 10.4161/cc.10.22.17976 10.18632/oncotarget.2506 10.1016/j.stemcr.2013.11.009 10.18632/oncotarget.5842 10.1038/cddis.2014.285 10.1016/S0304-419X(03)00004-0 10.14348/molcells.2014.0232 10.1186/bcr2479 10.1158/1535-7163.MCT-13-1060 10.1073/pnas.0530291100 10.1038/onc.2012.252 10.1158/1541-7786.MCR-14-0487 10.1002/stem.791 10.1056/NEJMra061808 10.18632/oncotarget.2298 10.1158/1078-0432.CCR-13-1617 10.1093/jnci/djj495 10.1002/stem.1662 10.1016/j.cell.2004.11.046 10.2217/nnm.12.22 |
ContentType | Journal Article |
Copyright | 2017 Taylor & Francis 2017 2017 Taylor & Francis 2017 Taylor & Francis |
Copyright_xml | – notice: 2017 Taylor & Francis 2017 – notice: 2017 Taylor & Francis 2017 Taylor & Francis |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/15384101.2016.1241929 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | L. ZHANG ET AL |
EISSN | 1551-4005 |
EndPage | 745 |
ExternalDocumentID | PMC5405729 27753527 10_1080_15384101_2016_1241929 1241929 |
Genre | Article Commentary Journal Article |
GroupedDBID | --- 0BK 0R~ 29B 30N 4.4 53G 5GY AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEXWM AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE IPNFZ KRBQP KWAYT KYCEM M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SJN SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM TASJS |
ID | FETCH-LOGICAL-c534t-da128997092d9c7e1d6c55bc06af6a7ca262a44fccbc9a9be9f76ea796a899043 |
ISSN | 1538-4101 1551-4005 |
IngestDate | Thu Aug 21 13:31:49 EDT 2025 Fri Jul 11 12:07:09 EDT 2025 Thu Apr 03 07:02:26 EDT 2025 Thu Apr 24 22:58:15 EDT 2025 Tue Jul 01 02:01:12 EDT 2025 Wed Dec 25 09:06:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | breast cancer autophagy cancer stem cells doxycycline mitochondria epithelial-to-mesenchymal transition |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-da128997092d9c7e1d6c55bc06af6a7ca262a44fccbc9a9be9f76ea796a899043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors equally contributed to this work. Color versions of one or more of the figures in this article can be found online at www.tandfonline.com/kccy. |
ORCID | 0000-0002-4449-0385 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15384101.2016.1241929?needAccess=true |
PMID | 27753527 |
PQID | 1835453131 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5405729 proquest_miscellaneous_1835453131 crossref_citationtrail_10_1080_15384101_2016_1241929 pubmed_primary_27753527 informaworld_taylorfrancis_310_1080_15384101_2016_1241929 crossref_primary_10_1080_15384101_2016_1241929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-18 |
PublicationDateYYYYMMDD | 2017-04-18 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell cycle (Georgetown, Tex.) |
PublicationTitleAlternate | Cell Cycle |
PublicationYear | 2017 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0034 cit0031 cit0032 Ogier-Denis E (cit0030) 2003; 1603 cit0039 Hayashida T (cit0027) 2011; 2011 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 Meng J (cit0028) 2014; 3 cit0029 Sarrio D (cit0013) 2012; 30 cit0026 cit0024 Yang MC (cit0033) 2015; 14 cit0011 cit0012 Vlashi E (cit0037) 2013; 141 cit0051 cit0050 Shaw LM (cit0025) 2005 cit0019 Vlashi E (cit0040) 2011; 108 cit0017 cit0018 cit0015 cit0016 cit0014 cit0044 cit0001 cit0045 cit0042 Vlashi E (cit0008) 2009; 108 cit0043 cit0041 Lagadec C (cit0010) 2010; 12 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 14597870 - Anticancer Drugs. 2003 Nov;14(10):773-8 26458814 - Mol Cancer. 2015 Oct 12;14:179 24141623 - Clin Cancer Res. 2013 Dec 15;19(24):6853-62 25573951 - Mol Cancer Res. 2015 Apr;13(4):651-8 26459390 - Oncotarget. 2015 Nov 3;6(34):35157-72 21843641 - Pharmacol Res. 2011 Dec;64(6):614-23 15680329 - Cell. 2005 Jan 28;120(2):237-48 25256221 - Mol Cells. 2014 Oct 31;37(10):759-65 22471722 - Nanomedicine (Lond). 2012 Apr;7(4):597-615 25032859 - Cell Death Dis. 2014 Jul 17;5:e1336 12618311 - Biochim Biophys Acta. 2003 Mar 17;1603(2):113-28 23486312 - Autophagy. 2013 Jun 1;9(6):830-49 21253528 - J Oncol. 2011;2011:591427 22102611 - Stem Cells. 2012 Feb;30(2):292-303 16990388 - N Engl J Med. 2006 Sep 21;355(12):1253-61 26142707 - Oncotarget. 2015 Jun 20;6(17):14796-813 19623582 - J Cell Biochem. 2009 Oct 1;108(2):339-42 25245189 - Oncotarget. 2014 Sep 30;5(18):8393-401 22127234 - Cell Cycle. 2011 Nov 15;10(22):3871-85 25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84 12629218 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37 22326338 - Vascul Pharmacol. 2012 May-Jun;56(5-6):232-44 26087309 - Oncotarget. 2015 Jun 10;6(16):14005-25 22080440 - Clin Cancer Res. 2012 Jan 15;18(2):370-9 22733132 - Oncogene. 2013 May 2;32(18):2261-72, 2272e.1-11 25007966 - Breast Cancer Res Treat. 2014 Aug;146(3):525-34 16024622 - Cancer Res. 2005 Jul 15;65(14 ):6207-19 24511467 - Stem Cell Reports. 2013 Dec 27;2(1):78-91 23441623 - Br J Pharmacol. 2013 May;169(2):337-52 20951211 - Pharmacol Res. 2011 Feb;63(2):102-7 21296855 - CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 26770236 - J Breast Cancer. 2015 Dec;18(4):303-12 16056258 - Nat Rev Cancer. 2005 Aug;5(8):591-602 15576908 - Methods Mol Biol. 2005;294:97-105 16843265 - Cancer Cell. 2006 Jul;10 (1):51-64 22960473 - Autophagy. 2012 Dec;8(12):1853-5 21900605 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16062-7 26474458 - Oncotarget. 2015 Oct 20;6(32):32317-38 24013708 - Breast Cancer Res Treat. 2013 Sep;141(2):197-203 24497069 - Stem Cells. 2014 Jul;32(7):1734-45 15994920 - Cancer Res. 2005 Jul 1;65(13):5506-11 26742998 - CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 25301732 - Oncotarget. 2014 Nov 15;5(21):10803-15 18305538 - Nature. 2008 Feb 28;451(7182):1069-75 26512779 - Oncotarget. 2015 Dec 1;6(38):40667-79 25277383 - Mol Cancer Ther. 2014 Dec;13(12):3107-22 17179479 - J Natl Cancer Inst. 2006 Dec 20;98 (24):1777-85 20158881 - Breast Cancer Res. 2010;12(1):R13 22489015 - Stem Cells. 2012 May;30(5):833-44 |
References_xml | – ident: cit0032 doi: 10.1158/1078-0432.CCR-11-1282 – ident: cit0042 doi: 10.18632/oncotarget.6038 – ident: cit0034 doi: 10.1038/nature06639 – volume: 108 start-page: 339 issue: 2 year: 2009 ident: cit0008 publication-title: J Cell Biochem doi: 10.1002/jcb.22275 – ident: cit0024 doi: 10.4048/jbc.2015.18.4.303 – ident: cit0048 doi: 10.4161/auto.24132 – ident: cit0011 doi: 10.1002/stem.1058 – ident: cit0021 doi: 10.18632/oncotarget.2789 – ident: cit0003 doi: 10.1038/nrc1670 – volume: 2011 start-page: 591427 year: 2011 ident: cit0027 publication-title: J Oncol doi: 10.1155/2011/591427 – ident: cit0049 doi: 10.4161/auto.21996 – ident: cit0016 doi: 10.1016/j.phrs.2010.10.004 – ident: cit0019 doi: 10.1016/j.vph.2012.01.007 – ident: cit0020 doi: 10.1007/s10549-014-3051-2 – ident: cit0004 doi: 10.3322/caac.20107 – ident: cit0012 doi: 10.18632/oncotarget.6094 – ident: cit0002 doi: 10.3322/caac.21332 – ident: cit0017 doi: 10.1111/bph.12139 – ident: cit0018 doi: 10.1097/00001813-200311000-00001 – ident: cit0036 doi: 10.1158/0008-5472.CAN-05-0626 – volume: 108 start-page: 16062 issue: 38 year: 2011 ident: cit0040 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1106704108 – ident: cit0015 doi: 10.1016/j.phrs.2011.06.013 – start-page: 97 year: 2005 ident: cit0025 publication-title: Cell Migration: Dev Methods Protocols – volume: 141 start-page: 197 issue: 2 year: 2013 ident: cit0037 publication-title: Breast Cancer Res Treatment doi: 10.1007/s10549-013-2688-6 – ident: cit0007 doi: 10.18632/oncotarget.3174 – ident: cit0051 doi: 10.18632/oncotarget.4193 – volume: 14 start-page: 1 issue: 1 year: 2015 ident: cit0033 publication-title: Mol Cancer – ident: cit0035 doi: 10.1158/0008-5472.CAN-05-0592 – ident: cit0050 doi: 10.18632/oncotarget.4159 – ident: cit0043 doi: 10.1016/j.ccr.2006.06.001 – ident: cit0045 doi: 10.4161/cc.10.22.17976 – ident: cit0001 doi: 10.18632/oncotarget.2506 – ident: cit0014 doi: 10.1016/j.stemcr.2013.11.009 – ident: cit0041 doi: 10.18632/oncotarget.5842 – ident: cit0038 doi: 10.1038/cddis.2014.285 – ident: cit0023 doi: 10.1158/0008-5472.CAN-05-0626 – volume: 1603 start-page: 113 issue: 2 year: 2003 ident: cit0030 publication-title: Biochimica et Biophysica Acta (BBA)-Reviews on Cancer doi: 10.1016/S0304-419X(03)00004-0 – ident: cit0026 doi: 10.14348/molcells.2014.0232 – volume: 12 start-page: 1 issue: 1 year: 2010 ident: cit0010 publication-title: Breast Cancer Res doi: 10.1186/bcr2479 – volume: 3 start-page: 3107 issue: 12 year: 2014 ident: cit0028 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-13-1060 – ident: cit0006 doi: 10.1073/pnas.0530291100 – ident: cit0047 doi: 10.1038/onc.2012.252 – ident: cit0046 doi: 10.1158/1541-7786.MCR-14-0487 – volume: 30 start-page: 292 issue: 2 year: 2012 ident: cit0013 publication-title: Stem Cells doi: 10.1002/stem.791 – ident: cit0005 doi: 10.1056/NEJMra061808 – ident: cit0029 doi: 10.18632/oncotarget.2298 – ident: cit0031 doi: 10.1158/1078-0432.CCR-13-1617 – ident: cit0009 doi: 10.1093/jnci/djj495 – ident: cit0039 doi: 10.1002/stem.1662 – ident: cit0044 doi: 10.1016/j.cell.2004.11.046 – ident: cit0022 doi: 10.2217/nnm.12.22 – reference: 24497069 - Stem Cells. 2014 Jul;32(7):1734-45 – reference: 26512779 - Oncotarget. 2015 Dec 1;6(38):40667-79 – reference: 26459390 - Oncotarget. 2015 Nov 3;6(34):35157-72 – reference: 16024622 - Cancer Res. 2005 Jul 15;65(14 ):6207-19 – reference: 17179479 - J Natl Cancer Inst. 2006 Dec 20;98 (24):1777-85 – reference: 25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84 – reference: 19623582 - J Cell Biochem. 2009 Oct 1;108(2):339-42 – reference: 20951211 - Pharmacol Res. 2011 Feb;63(2):102-7 – reference: 26770236 - J Breast Cancer. 2015 Dec;18(4):303-12 – reference: 25301732 - Oncotarget. 2014 Nov 15;5(21):10803-15 – reference: 22080440 - Clin Cancer Res. 2012 Jan 15;18(2):370-9 – reference: 25007966 - Breast Cancer Res Treat. 2014 Aug;146(3):525-34 – reference: 22326338 - Vascul Pharmacol. 2012 May-Jun;56(5-6):232-44 – reference: 24511467 - Stem Cell Reports. 2013 Dec 27;2(1):78-91 – reference: 15680329 - Cell. 2005 Jan 28;120(2):237-48 – reference: 14597870 - Anticancer Drugs. 2003 Nov;14(10):773-8 – reference: 25277383 - Mol Cancer Ther. 2014 Dec;13(12):3107-22 – reference: 12629218 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 – reference: 21296855 - CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 – reference: 21253528 - J Oncol. 2011;2011:591427 – reference: 26142707 - Oncotarget. 2015 Jun 20;6(17):14796-813 – reference: 23486312 - Autophagy. 2013 Jun 1;9(6):830-49 – reference: 26474458 - Oncotarget. 2015 Oct 20;6(32):32317-38 – reference: 25032859 - Cell Death Dis. 2014 Jul 17;5:e1336 – reference: 21900605 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16062-7 – reference: 22102611 - Stem Cells. 2012 Feb;30(2):292-303 – reference: 22127234 - Cell Cycle. 2011 Nov 15;10(22):3871-85 – reference: 24013708 - Breast Cancer Res Treat. 2013 Sep;141(2):197-203 – reference: 16990388 - N Engl J Med. 2006 Sep 21;355(12):1253-61 – reference: 12618311 - Biochim Biophys Acta. 2003 Mar 17;1603(2):113-28 – reference: 23441623 - Br J Pharmacol. 2013 May;169(2):337-52 – reference: 15994920 - Cancer Res. 2005 Jul 1;65(13):5506-11 – reference: 25256221 - Mol Cells. 2014 Oct 31;37(10):759-65 – reference: 21843641 - Pharmacol Res. 2011 Dec;64(6):614-23 – reference: 26742998 - CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 – reference: 16843265 - Cancer Cell. 2006 Jul;10 (1):51-64 – reference: 26087309 - Oncotarget. 2015 Jun 10;6(16):14005-25 – reference: 22489015 - Stem Cells. 2012 May;30(5):833-44 – reference: 20158881 - Breast Cancer Res. 2010;12(1):R13 – reference: 16056258 - Nat Rev Cancer. 2005 Aug;5(8):591-602 – reference: 18305538 - Nature. 2008 Feb 28;451(7182):1069-75 – reference: 25245189 - Oncotarget. 2014 Sep 30;5(18):8393-401 – reference: 25573951 - Mol Cancer Res. 2015 Apr;13(4):651-8 – reference: 22733132 - Oncogene. 2013 May 2;32(18):2261-72, 2272e.1-11 – reference: 22960473 - Autophagy. 2012 Dec;8(12):1853-5 – reference: 26458814 - Mol Cancer. 2015 Oct 12;14:179 – reference: 25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37 – reference: 15576908 - Methods Mol Biol. 2005;294:97-105 – reference: 22471722 - Nanomedicine (Lond). 2012 Apr;7(4):597-615 – reference: 24141623 - Clin Cancer Res. 2013 Dec 15;19(24):6853-62 |
SSID | ssj0028791 |
Score | 2.4901698 |
Snippet | Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 737 |
SubjectTerms | autophagy Autophagy - drug effects Biomarkers, Tumor - metabolism breast cancer Breast Neoplasms - pathology cancer stem cells Cell Movement - drug effects Cell Self Renewal - drug effects Cell Survival - drug effects doxycycline Doxycycline - pharmacology Epithelial-Mesenchymal Transition - drug effects epithelial-to-mesenchymal transition Extra View Female Humans Inhibitory Concentration 50 MCF-7 Cells mitochondria Neoplasm Invasiveness Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Phenotype Spheroids, Cellular - drug effects Spheroids, Cellular - pathology |
Title | Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer |
URI | https://www.tandfonline.com/doi/abs/10.1080/15384101.2016.1241929 https://www.ncbi.nlm.nih.gov/pubmed/27753527 https://www.proquest.com/docview/1835453131 https://pubmed.ncbi.nlm.nih.gov/PMC5405729 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWrpC4IN5bXjIStyqledn1cbULqhBw6kLFJXKmNq3UptWSStv99czETppCVwtcoiixJ5G_L-OZyXjM2FsQYC06OIENrQmShGpAajENcgAbqzTNlaXQwOcvYnSRfJykk6Oj6_bqkjLvw_XBdSX_gypeQ1xplew_INsIxQt4jvjiERHG419hfL662sIWKktxXszmOf0FIEsSCMvLHhVp7lFovkeZXKsq3EqBcrOmlRgLfMGgXAVLWoAEs-2yyjvHqWteJ0DmlLFeemltM_aMZNKTKwvVx9W9Pz82V_1WfKGJSH9qKDTZuGiA9rNmuxWO7w-YbRrKfl3Qbk9eY7udvusgBU58VA3R6VXjFWtKvuog3dO8osWwYUuNSlcI5g_17vIhSUknqEooMU_00UBBK1W12yNK62WFeSQl1a-Ru9muyUGsb91hx3gaRR12fDo6__6tcdeHUoX1mq_h4N3Bp1ItaS9nz7DZK3t7yHn5PQe3ZdSMH7D73hvhp45aD9mRKR6xu25_0u1jtmwRjNcE40gd7ijBiWCcCMYbgnEkGL-RYHxHMBTIHcG8tCfs4sP78dko8PtzBJDGSRlMdUjuuhyoaKpAmnAqAL9uGAhthZagIxHpJLEAOSitcqOsFEZLJTR2GyTxU9YpVoU5YdzmxsJwqocRyARt-FzHgI4xuiOhUCaddllSD24Gvng97aGyyEJf47aGJyN4Mg9Pl_WbbmtXveW2DqqNXFZWYTPr9rjJ4lv6vqlhzlBH0-Drwqw2P7OQoqs42cVhlz1zsDevU9Ony-QeIZoGVP99_04xn1V14CtnK1LPb5T5gt3bfYwvWae83JhXaEOX-WtP9l9EicVp |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa2DsN26d5bunbTgF2dxbYsWcdhW5FtbU4t0Jsg0RIStHGKVjmkv76iH0FSbOihZ5uSLJPWR5r8CPAVBXofHZzEp94lnBMHpBFVYhF9rorCKk-hgeOJGJ_yP2fF2UYtDKVVkg_tW6KI5ltNxk3B6D4l7htZKY-6RJlZYhhPqAhT1GN4UighqYtBPpqsna5Sqo4ztUxIpq_i-d8wW-fTFnvpvzDo3VTKjbPp8AVg_1RtSsr5cBnsEG_uED4-7LFfwm4HXdn3VtdewSNXv4anbTPL1RuY_4yz44pKLR2b1dOZnYVrFvElQ9KsK0aU0Yx-FDDKK1tQ8JfFxTB3SXUhF9EQkrBI5lQOhdPVPE4V6CBtcsrigMxS_nzoRnsLp4e_Tn6Mk66ZQ4JFzkNSmZR8OzlSWaVQurQSGFUBR8J4YSSaTGSGc49oURllnfJSOCOVMFFsxPN3sFMvavcBmLfOY1mZMkPJI-CzJsfoRUXsmgrlimoAvH-FGjumc2q4caHTjhC130lNO6m7nRzAcC122VJ93CegNvVDhybG4tuGKDq_R_ZLr0w6GjRtvqndYnmtUwrFxS9jng7gfatc6-VkUhIdjxyA3FK79Q1EFr59pZ5NG9LwBplnau8Ba_4Mz8Ynx0f66Pfk70d4nhHAIdbLch92wtXSHUR4Fuynxv5uAQw6LuU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYhLKe8tFIzENcsmcez4iCir8lpxoBI3y57Y2lW72VXXe9j--nryWHUrUA89J2M7zkz8jfPNZ4CPKND7mOAkPvUu4Zw0II2oEovoc1UUVnnaGvg1ESen_PvfomcTrjpaJeXQvhWKaL7VFNzLyveMuE8UpDy6EhGzxDAuUBGlqPvwQJB4OFVxjCbbnKuUqpNMLROy6Yt4_tfMzvK0I176Lwh6k0l5bWkaPwHbP1TLSDkbroMd4uUNvcc7PfUB7HfAlX1uPe0p3HP1M3jYHmW5eQ7z49g5bqjQ0rFZPZ3ZWVixiC4Zkl9dMBKMZvSbgBGrbEFbvyyOhbklVYWcxzBIwiKZUzEUTjfz2FWgZbRhlMUGmSX2fOhaewGn469_vpwk3VEOCRY5D0llUsrs5EhllULp0kpgdAQcCeOFkWgykRnOPaJFZZR1ykvhjFTCRLMRz1_CXr2o3Wtg3jqPZWXKDCWPcM-aHGMOFZFrKpQrqgHw_g1q7HTO6biNc512cqj9TGqaSd3N5ACGW7NlK_Rxm4G67h46NDssvj0ORee32H7ofUnHcKbJN7VbrFc6pY24-F3M0wG8an1rO5xMShLjkQOQO163vYGkwnev1LNpIxne4PJMHd5hzO_h0e_jsf75bfLjDTzOCN2Q5GX5FvbCxdodRWwW7Lsm-q4ALCstiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doxycycline+inhibits+the+cancer+stem+cell+phenotype+and+epithelial-to-mesenchymal+transition+in+breast+cancer&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Zhang%2C+Le&rft.au=Xu%2C+Liang&rft.au=Zhang%2C+Fengchun&rft.au=Vlashi%2C+Erina&rft.date=2017-04-18&rft.eissn=1551-4005&rft.volume=16&rft.issue=8&rft.spage=737&rft_id=info:doi/10.1080%2F15384101.2016.1241929&rft_id=info%3Apmid%2F27753527&rft.externalDocID=27753527 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon |