Fiber Bragg grating wavelength drift in long-term high temperature annealing

High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600–1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed senso...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 4; p. 1454
Main Authors Grobnic, Dan, Hnatovsky, Cyril, Dedyulin, Sergey, Walker, Robert B, Ding, Huimin, Mihailov, Stephen J
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 19.02.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600–1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900–1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them.
NRC publication: Yes
AbstractList High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600-1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900-1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them.
High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600-1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900-1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them.High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600-1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900-1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them.
Author Grobnic, Dan
Dedyulin, Sergey
Mihailov, Stephen J
Ding, Huimin
Hnatovsky, Cyril
Walker, Robert B
AuthorAffiliation National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; Kyrylo.Hnatovsky@nrc-cnrc.gc.ca (C.H.); Sergey.Dedyulin@nrc-cnrc.gc.ca (S.D.); Robert.Walker2@nrc-cnrc.gc.ca (R.B.W.); Huimin.Ding@nrc-cnrc.gc.ca (H.D.); Stephen.Mihailov@nrc-cnrc.gc.ca (S.J.M.)
AuthorAffiliation_xml – name: National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; Kyrylo.Hnatovsky@nrc-cnrc.gc.ca (C.H.); Sergey.Dedyulin@nrc-cnrc.gc.ca (S.D.); Robert.Walker2@nrc-cnrc.gc.ca (R.B.W.); Huimin.Ding@nrc-cnrc.gc.ca (H.D.); Stephen.Mihailov@nrc-cnrc.gc.ca (S.J.M.)
Author_xml – sequence: 1
  fullname: Grobnic, Dan
– sequence: 2
  fullname: Hnatovsky, Cyril
– sequence: 3
  fullname: Dedyulin, Sergey
– sequence: 4
  fullname: Walker, Robert B
– sequence: 5
  fullname: Ding, Huimin
– sequence: 6
  fullname: Mihailov, Stephen J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33669718$$D View this record in MEDLINE/PubMed
BookMark eNptkktv3CAUhVGVqnm0i_6Bystm4QYDNmZTqY2aNtJI3bRrdIGLh8iDp5hJ1H8fJk6iTFUJ8bic-x2hwyk5ilNEQt439BPnil7MrKGiEa14RU4awUTdM0aPXuyPyek831DKOOf9G3LMedcp2fQnZHUVDKbqa4JhqIYEOcShuoNbHDEOeV25FHyuQqzGKQ51xrSp1mFYVxk3WyzyXcIKYkQYS-Nb8trDOOO7x_WM_L769uvyR736-f368suqti0XubbSGNuLvuUgUTDTuZ4jWMp65nvFnJTUUuOddWWYBiS0qDyXnHacenD8jFwvXDfBjd6msIH0V08Q9ENhSoOGlIMdUSvHKFinPLNUeDS9cWA62Xja-K5VsrA-L6ztzmzQWYw5wXgAPbyJYa2H6VZLxRinbQF8fASk6c8O56w3YbY4jhBx2s2aCdUL1bF27_XhpdezyVMcRXCxCGya5jmh1zbkksm0tw6jbqjeB66fAy8d5_90PEH_p3WLNiZrIYKDg2faMOegw37RRaHtwwRLPW6hnBj3rqVUFrhrtVAMNXDBtfFUtKr8L3TA7wEk4c9o
CitedBy_id crossref_primary_10_1016_j_optcom_2024_131030
crossref_primary_10_3390_mi16030331
crossref_primary_10_1016_j_sna_2022_113872
crossref_primary_10_1063_5_0142798
crossref_primary_10_1364_OE_538476
crossref_primary_10_1364_OE_475347
crossref_primary_10_1364_AO_492971
crossref_primary_10_1002_pssa_202100023
crossref_primary_10_1088_1361_6501_ac75b1
crossref_primary_10_1364_OE_476872
crossref_primary_10_1364_AO_496351
crossref_primary_10_1109_LSENS_2022_3205249
crossref_primary_10_1016_j_measurement_2024_114132
crossref_primary_10_1364_OE_450528
crossref_primary_10_1016_j_yofte_2022_103146
crossref_primary_10_1016_j_rinp_2024_107970
crossref_primary_10_1109_JLT_2023_3241861
crossref_primary_10_3390_s25061937
crossref_primary_10_1016_j_optlastec_2023_110278
crossref_primary_10_1109_JSEN_2022_3199993
crossref_primary_10_1109_JLT_2024_3438108
crossref_primary_10_1109_JLT_2024_3450733
crossref_primary_10_1364_OL_476471
crossref_primary_10_3390_metrology1010001
crossref_primary_10_1007_s44290_024_00141_4
crossref_primary_10_1109_JSEN_2022_3181949
crossref_primary_10_1364_OE_470093
crossref_primary_10_1109_JSEN_2024_3494261
crossref_primary_10_3788_COL202321_090007
crossref_primary_10_1364_OE_446664
crossref_primary_10_1016_j_optcom_2022_128286
crossref_primary_10_1016_j_sna_2022_113987
crossref_primary_10_1002_lpor_202401086
crossref_primary_10_1016_j_ceramint_2024_03_153
Cites_doi 10.3390/s19245476
10.1063/1.5024514
10.1063/1.1638883
10.1117/12.864206
10.1364/OL.42.000399
10.1364/OE.17.019785
10.1063/1.1735231
10.1364/OL.27.001974
10.1117/12.852663
10.1364/OE.18.019844
10.1117/12.2209399
10.1109/JSEN.2018.2837164
10.3390/ijtpp5040025
10.1515/nanoph-2013-0032
10.1117/12.835875
10.5772/39545
10.1364/OE.16.021239
10.1103/PhysRevLett.91.247405
10.1117/12.722269
10.1364/OL.28.000995
10.3390/s18061791
10.3390/s17122909
10.1049/el:20057898
10.1088/0957-0233/17/5/S07
10.3390/s8106448
10.1007/s13349-019-00338-7
10.1111/j.1151-2916.1968.tb11917.x
10.1364/OL.41.003177
10.3390/s91008377
10.1109/JSEN.2019.2890847
10.1049/el:20046050
10.1088/1361-665X/aa89a9
10.1016/j.measurement.2020.108103
10.1364/OE.17.006082
10.1002/lpor.201300043
10.1109/JLT.2003.822161
10.2514/6.2011-1576
10.1109/LPT.2004.834920
10.1364/OPEX.13.005377
10.1016/j.ijheatmasstransfer.2012.02.032
10.2514/6.2005-1214
10.1109/LPT.2019.2957917
10.1364/OL.35.001443
10.3390/s20030762
10.1364/OL.29.001730
10.1016/j.jnoncrysol.2004.08.208
10.1109/JSEN.2018.2868429
10.1049/el:19880165
10.1364/OE.26.023550
10.1109/LPT.2017.2782368
10.1109/JLT.2011.2136323
10.1364/OE.24.003714
10.3390/s19040877
10.1364/OE.21.004591
10.3389/fphy.2019.00155
10.1088/0957-0233/20/11/115301
10.1016/j.optlastec.2020.106650
10.1109/JSTQE.2004.826570
10.1109/CONTROL.2012.6334704
10.1088/2515-7647/ab382f
10.1109/JLT.2017.2773501
10.2514/6.2014-3922
10.1109/JLT.2018.2878501
10.1088/0957-0233/17/5/S12
10.1016/j.measurement.2015.09.020
10.2172/1466685
10.1364/BGPPF.1997.BSuD.5
10.1117/12.2025838
ContentType Journal Article
Copyright Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr)
2021 by the authors. 2021
Copyright_xml – notice: Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr)
– notice: 2021 by the authors. 2021
DBID -LJ
GXV
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s21041454
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9d20acd9f2c04feb8bdab671f01f6597
PMC7922305
33669718
10_3390_s21041454
oai_cisti_icist_nrc_cnrc_ca_cistinparc_23fd5007_10d5_492e_a343_bf0459002eda
Genre Journal Article
Review
GroupedDBID ---
-LJ
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
GXV
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
ALIPV
CITATION
NPM
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c534t-c7bbc84853a7e42b6d83eac0282f892d770c0bfdcddcdb1a7a5e9f3730630fad3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:29 EDT 2025
Thu Aug 21 13:58:39 EDT 2025
Tue Aug 05 09:58:06 EDT 2025
Thu Apr 03 07:04:04 EDT 2025
Tue Jul 01 03:56:05 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Fri Aug 22 15:38:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords sensing
fiber Bragg gratings
FBG
wavelength drift
high temperature
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-c7bbc84853a7e42b6d83eac0282f892d770c0bfdcddcdb1a7a5e9f3730630fad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6144-0937
0000-0003-3525-2980
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21041454
PMID 33669718
PQID 2498496257
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9d20acd9f2c04feb8bdab671f01f6597
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7922305
proquest_miscellaneous_2498496257
pubmed_primary_33669718
crossref_citationtrail_10_3390_s21041454
crossref_primary_10_3390_s21041454
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_23fd5007_10d5_492e_a343_bf0459002eda
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210219
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 2
  year: 2021
  text: 20210219
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Fokine (ref_31) 2004; 349
Bao (ref_68) 2017; 26
ref_12
ref_11
Muanenda (ref_7) 2019; 7
Grobnic (ref_10) 2004; 16
ref_54
Harper (ref_71) 1988; 24
Yablon (ref_74) 2004; 84
Martinez (ref_44) 2005; 41
ref_51
Aslund (ref_22) 2012; 55
Bao (ref_67) 2016; 41
Hnatovsky (ref_55) 2018; 26
Merlone (ref_70) 2020; 164
ref_18
ref_15
Hnatovsky (ref_56) 2018; 36
Wang (ref_8) 2020; 32
Corre (ref_29) 2018; 89
Yablon (ref_46) 2004; 10
Tandon (ref_58) 2013; 2
Hnatovsky (ref_57) 2018; 30
Lindner (ref_32) 2009; 9
Wosniok (ref_6) 2019; 9
Li (ref_53) 2008; 16
ref_24
ref_23
Cavillon (ref_36) 2019; 1
Shimotsuma (ref_41) 2003; 91
ref_66
ref_21
ref_20
Busch (ref_35) 2009; 20
Schartner (ref_61) 2019; 19
ref_62
Wagstaff (ref_64) 1968; 51
Primak (ref_73) 1959; 30
ref_28
ref_26
Li (ref_59) 2009; 17
Grobnic (ref_52) 2006; 17
McCary (ref_30) 2018; 18
Grobnic (ref_33) 2006; 17
ref_72
Smelser (ref_13) 2005; 13
Canning (ref_40) 2016; 79
Elsmann (ref_34) 2013; 21
Walker (ref_25) 2010; 10654
Marshall (ref_14) 2010; 18
Polyzos (ref_65) 2017; 35
Yablon (ref_75) 2004; 22
Lindner (ref_19) 2018; 18
Jewart (ref_27) 2010; 35
Fokine (ref_37) 2002; 27
ref_47
Hnatovsky (ref_42) 2017; 42
ref_1
Jovanovic (ref_45) 2009; 17
ref_3
ref_2
Canning (ref_39) 2008; 8
Polz (ref_38) 2021; 134
Lancry (ref_43) 2013; 7
ref_49
ref_48
ref_9
Mihailov (ref_16) 2003; 28
Dutz (ref_50) 2018; 10654
Li (ref_60) 2011; 29
Nguyen (ref_63) 2016; 24
ref_5
ref_4
Martinez (ref_17) 2004; 40
Smelser (ref_69) 2004; 29
References_xml – ident: ref_24
  doi: 10.3390/s19245476
– ident: ref_5
– volume: 89
  start-page: 063508
  year: 2018
  ident: ref_29
  article-title: Integration of fiber Bragg grating temperature sensors in plasma facing components of the WEST tokamak
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5024514
– volume: 84
  start-page: 19
  year: 2004
  ident: ref_74
  article-title: Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1638883
– ident: ref_54
  doi: 10.1117/12.864206
– volume: 42
  start-page: 399
  year: 2017
  ident: ref_42
  article-title: Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000399
– volume: 17
  start-page: 19785
  year: 2009
  ident: ref_59
  article-title: Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation
  publication-title: Opt. Express
  doi: 10.1364/OE.17.019785
– volume: 30
  start-page: 779
  year: 1959
  ident: ref_73
  article-title: Photoelastic constants of vitreous silica and its elastic coefficient of refractive index
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1735231
– volume: 27
  start-page: 1974
  year: 2002
  ident: ref_37
  article-title: Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001974
– ident: ref_1
– ident: ref_62
  doi: 10.1117/12.852663
– volume: 18
  start-page: 19844
  year: 2010
  ident: ref_14
  article-title: Point-by-point written fiber-Bragg gratings and their application in complex grating designs
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019844
– ident: ref_26
  doi: 10.1117/12.2209399
– volume: 18
  start-page: 5352
  year: 2018
  ident: ref_19
  article-title: Regenerated Bragg Grating Sensor Array for Temperature Measurements during an Aluminum Casting Process
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2837164
– ident: ref_23
  doi: 10.3390/ijtpp5040025
– volume: 2
  start-page: 383
  year: 2013
  ident: ref_58
  article-title: Nano-engineered optical fibers and applications
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2013-0032
– ident: ref_9
  doi: 10.1117/12.835875
– ident: ref_11
  doi: 10.5772/39545
– volume: 16
  start-page: 21239
  year: 2008
  ident: ref_53
  article-title: Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses
  publication-title: Opt. Express
  doi: 10.1364/OE.16.021239
– volume: 91
  start-page: 247405
  year: 2003
  ident: ref_41
  article-title: Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.247405
– ident: ref_3
  doi: 10.1117/12.722269
– volume: 28
  start-page: 995
  year: 2003
  ident: ref_16
  article-title: Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation
  publication-title: Opt. Lett.
  doi: 10.1364/OL.28.000995
– ident: ref_51
  doi: 10.3390/s18061791
– ident: ref_12
  doi: 10.3390/s17122909
– volume: 41
  start-page: 176
  year: 2005
  ident: ref_44
  article-title: Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser
  publication-title: Electron. Lett.
  doi: 10.1049/el:20057898
– ident: ref_72
– volume: 17
  start-page: 980
  year: 2006
  ident: ref_33
  article-title: Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/5/S07
– volume: 8
  start-page: 6448
  year: 2008
  ident: ref_39
  article-title: Extreme silica optical fibre gratings
  publication-title: Sensors
  doi: 10.3390/s8106448
– volume: 9
  start-page: 361
  year: 2019
  ident: ref_6
  article-title: Fiber optic sensors for high-temperature measurements on composite tanks in fire
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-019-00338-7
– volume: 51
  start-page: 449
  year: 1968
  ident: ref_64
  article-title: Crystallization Kinetics of Internally Nucleated Vitreous Silica
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1968.tb11917.x
– volume: 10654
  start-page: 1
  year: 2010
  ident: ref_25
  article-title: High temperature measurement of a low emission, high pressure combustor using femtosecond laser written fiber Bragg gratings
  publication-title: Proc. SPIE
– volume: 41
  start-page: 3177
  year: 2016
  ident: ref_67
  article-title: High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.003177
– ident: ref_28
– volume: 9
  start-page: 8377
  year: 2009
  ident: ref_32
  article-title: Arrays of Regenerated Fiber Bragg Gratings in Non-Hydrogen-Loaded Photosensitive Fibers for High-Temperature Sensor Networks
  publication-title: Sensors
  doi: 10.3390/s91008377
– volume: 19
  start-page: 2978
  year: 2019
  ident: ref_61
  article-title: Stability of Grating-Based Optical Fiber Sensors at High Temperature
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2890847
– volume: 40
  start-page: 1170
  year: 2004
  ident: ref_17
  article-title: Direct writing of fibre Bragg gratings by femtosecond laser
  publication-title: Electron. Lett.
  doi: 10.1049/el:20046050
– volume: 26
  start-page: 105034
  year: 2017
  ident: ref_68
  article-title: Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa89a9
– volume: 164
  start-page: 108103
  year: 2020
  ident: ref_70
  article-title: Gas-controlled heat pipes in metrology: More than 30 years of technical and scientific progresses
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108103
– volume: 17
  start-page: 6082
  year: 2009
  ident: ref_45
  article-title: Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers
  publication-title: Opt. Express
  doi: 10.1364/OE.17.006082
– volume: 7
  start-page: 953
  year: 2013
  ident: ref_43
  article-title: Ultrafast nanoporous silica formation driven by femtosecond laser irradiation
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201300043
– volume: 22
  start-page: 16
  year: 2004
  ident: ref_75
  article-title: Frozen-in viscoelasticity for novel beam expanders and high-power connectors
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.822161
– ident: ref_48
  doi: 10.2514/6.2011-1576
– volume: 16
  start-page: 2505
  year: 2004
  ident: ref_10
  article-title: Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2004.834920
– volume: 13
  start-page: 5377
  year: 2005
  ident: ref_13
  article-title: Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.005377
– volume: 55
  start-page: 3288
  year: 2012
  ident: ref_22
  article-title: Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.02.032
– ident: ref_47
  doi: 10.2514/6.2005-1214
– volume: 32
  start-page: 89
  year: 2020
  ident: ref_8
  article-title: A High Temperature Sensor Based on Sapphire Fiber Fabry-Perot Interferome-ter
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2019.2957917
– volume: 35
  start-page: 1443
  year: 2010
  ident: ref_27
  article-title: Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.001443
– ident: ref_66
  doi: 10.3390/s20030762
– volume: 29
  start-page: 1730
  year: 2004
  ident: ref_69
  article-title: Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001730
– volume: 349
  start-page: 98
  year: 2004
  ident: ref_31
  article-title: Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.08.208
– ident: ref_18
– volume: 18
  start-page: 8755
  year: 2018
  ident: ref_30
  article-title: Response of Distributed Fiber Optic Temperature Sensors to High-Temperature Step Transients
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2868429
– volume: 24
  start-page: 245
  year: 1988
  ident: ref_71
  article-title: Tapers in single-mode optical fibre by controlled core diffusion
  publication-title: Electron. Lett.
  doi: 10.1049/el:19880165
– volume: 26
  start-page: 23550
  year: 2018
  ident: ref_55
  article-title: High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask
  publication-title: Opt. Express
  doi: 10.1364/OE.26.023550
– volume: 30
  start-page: 209
  year: 2018
  ident: ref_57
  article-title: Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2017.2782368
– volume: 10654
  start-page: 1
  year: 2018
  ident: ref_50
  article-title: Multipoint high temperature sensing with regenerated fiber Bragg gratings
  publication-title: Proc. SPIE
– volume: 29
  start-page: 1555
  year: 2011
  ident: ref_60
  article-title: Prestressed Fiber Bragg Grating with High Temperature Stability
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2011.2136323
– volume: 24
  start-page: 3714
  year: 2016
  ident: ref_63
  article-title: Temperature sensing up to 1300 °C using suspended-core microstructured optical fibers
  publication-title: Opt. Express
  doi: 10.1364/OE.24.003714
– ident: ref_21
  doi: 10.3390/s19040877
– volume: 21
  start-page: 4591
  year: 2013
  ident: ref_34
  article-title: Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation
  publication-title: Opt. Express
  doi: 10.1364/OE.21.004591
– volume: 7
  start-page: 155
  year: 2019
  ident: ref_7
  article-title: Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00155
– volume: 20
  start-page: 115301
  year: 2009
  ident: ref_35
  article-title: Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/11/115301
– volume: 134
  start-page: 106650
  year: 2021
  ident: ref_38
  article-title: Regenerated Fibre Bragg Gratings: A critical assessment of more than 20 years of investigations
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106650
– volume: 10
  start-page: 300
  year: 2004
  ident: ref_46
  article-title: Optical and Mechanical Effects of Frozen-in Stresses and Strains in Optical Fibers
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2004.826570
– ident: ref_2
  doi: 10.1109/CONTROL.2012.6334704
– volume: 1
  start-page: 042001
  year: 2019
  ident: ref_36
  article-title: Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres
  publication-title: J. Phys. Photonics
  doi: 10.1088/2515-7647/ab382f
– volume: 35
  start-page: 5317
  year: 2017
  ident: ref_65
  article-title: Effect of Dopant Diffusion on the Long-Term Stability of Fabry-Pérot Optical Fiber Sensors
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2773501
– ident: ref_20
  doi: 10.2514/6.2014-3922
– volume: 36
  start-page: 5697
  year: 2018
  ident: ref_56
  article-title: Birefringent π-Phase-Shifted Fiber Bragg Gratings for Sensing at 1000 °C Fabricated Using an Infrared Femtosecond Laser and a Phase Mask
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2878501
– volume: 17
  start-page: 1009
  year: 2006
  ident: ref_52
  article-title: Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/5/S12
– volume: 79
  start-page: 236
  year: 2016
  ident: ref_40
  article-title: Regeneration, regenerated gratings and composite glass properties: The implications for high temperature micro and nano milling and optical sensing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.09.020
– ident: ref_4
  doi: 10.2172/1466685
– ident: ref_15
  doi: 10.1364/BGPPF.1997.BSuD.5
– ident: ref_49
  doi: 10.1117/12.2025838
SSID ssj0023338
Score 2.479808
SecondaryResourceType review_article
Snippet High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
nrccanada
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1454
SubjectTerms FBG
fiber Bragg gratings
high temperature
Review
sensing
wavelength drift
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzSH0nfdNkUtPfRiYluSZR3z6DaUtKcNzaUIPZ2FoA0b5_93xvaadQn0UjA2yMIMo9HMfPb4G0I-o90o41XufOly_FUzV6E2ORehEQCIShPwPeSPn_X5Jf9-Ja52Wn1hTdhADzwo7kj5qjDOq1i5gsdgG-uNrWUZizLWkA2j94WYtwVTI9RigLwGHiEGoP7oDoANL7ngs-jTk_QfkP20cX2FlXkoy_y7WHIn-iyekidj2kiPB3GfkUchPScHO2SCL8jFAos_6MnGtC39hgubWvrLYGOJ1HbX9Gyzih1dJXqxTm2-BI9MsciDLgNkzgOzMj0Gr2vwB_WX5HLxdXl6no-9EnInGO9yJ611DYfga2Tgla19w8CnIqKKjaq8lIUrbPTOw2FLI40IKjLY3zUrovHsFdlL6xTeEMpcKQDkVbHwEL8lU9iduFYusj6jkBn5stWhdiOROPazuNEAKFDdelJ3Rj5NU28H9oyHJp3gQkwTkPC6HwAz0KMZ6H-ZQUZ-T8s4e5JDV6lXeNEwQ7v-ZIbxdAveRFcseoHUzWXhheaqCtowzrSNkO8qsKbgTUY-bk1DwwbEryomhfX9nQb82nAFMBJkeD2YyiQAY3WtIPpnRM6MaCbh_E5aXfck31JB4laIt_9DOe_I4wpLcbCPjXpP9rrNfTiEXKqzH_pt8we3bx99
  priority: 102
  providerName: Directory of Open Access Journals
Title Fiber Bragg grating wavelength drift in long-term high temperature annealing
URI https://www.ncbi.nlm.nih.gov/pubmed/33669718
https://www.proquest.com/docview/2498496257
https://pubmed.ncbi.nlm.nih.gov/PMC7922305
https://doaj.org/article/9d20acd9f2c04feb8bdab671f01f6597
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBa9PGx9KLsvuwRt7GEv3mxLtqyHMZqtaRltGSNheRlC1sUNFKVzUuj-_c6xE1OPPAyCA7ZsxNG5ffbRdwh5h3ojtZWRsYmJcKtmJF2uI565IgNAlGiH7yHPL_LTKf82y2Y7ZNNjcy3A5VZoh_2kpvXVh9vffz6DwX9CxAmQ_eMSYAtPeMZ3yT4EJIGNDM559zEhZaxpaI17uiKIh3FLMNS_tReWGvb-A3Iv1KYpvdLb0s9_qyjvhKXxA3K4zifpUasAD8mOC4_IwR2WwcfkbIxVIXRU66qiJ7jioaI_NXacCNXqkn6t535F54GeLUIVTcBVU6z-oBMHKXVLuUyPwB1r3Ln-hEzHx5Mvp9G6iUJkMsZXkRFlaQoOUVkLx9MytwUDZ4tQyxcytULEJi69NRZ-ZaKFzpz0DAw_Z7HXlj0le2ER3HNCmUkyQH-pjy0EdsEkti3OpfGsSTXEgLzfyFCZNcM4Nrq4UoA0UNyqE_eAvO2GXre0GtsGjXAhugHIhN2cWNSVWhuWkjaNtbHSpybm3pVFaXWZi8THic8BLQ3Ir24Ze08y6EPVHP8UjFCmOej2fLgGN6NS5m2GnM5JbDPFZeqUZpyp0kMiLEGznNUD8majGgosEz-36OAWN0sFwLbgEvAlzOFZqyrdBBjLcwlpwYCInhL1Zti_EuaXDfu3kJDRxdmL_5HgS3I_xRocbGAjX5G9VX3jXkMStSqHZFfMBByL8cmQ7I-OL77_GDYvJIaN8fwF1s4ewA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber+Bragg+Grating+Wavelength+Drift+in+Long-Term+High+Temperature+Annealing&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Grobnic%2C+Dan&rft.au=Hnatovsky%2C+Cyril&rft.au=Dedyulin%2C+Sergey&rft.au=Walker%2C+Robert+B.&rft.date=2021-02-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft.spage=1454&rft_id=info:doi/10.3390%2Fs21041454&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21041454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon