Fiber Bragg grating wavelength drift in long-term high temperature annealing
High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600–1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed senso...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 4; p. 1454 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
19.02.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600–1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900–1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them. NRC publication: Yes |
---|---|
AbstractList | High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600-1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900-1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them. High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600-1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900-1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them.High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600-1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature. A number of physical processes have been proposed as the cause of the high temperature wavelength drift but there is yet no credible description of this process. In this paper we review the literature related to the long-term wavelength drift of FBGs at high temperature and provide our recent results of more than 4000 h of high temperature testing in the 900-1000 °C range. We identify the major components of the high temperature wavelength drift and we propose mechanisms that could be causing them. |
Author | Grobnic, Dan Dedyulin, Sergey Mihailov, Stephen J Ding, Huimin Hnatovsky, Cyril Walker, Robert B |
AuthorAffiliation | National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; Kyrylo.Hnatovsky@nrc-cnrc.gc.ca (C.H.); Sergey.Dedyulin@nrc-cnrc.gc.ca (S.D.); Robert.Walker2@nrc-cnrc.gc.ca (R.B.W.); Huimin.Ding@nrc-cnrc.gc.ca (H.D.); Stephen.Mihailov@nrc-cnrc.gc.ca (S.J.M.) |
AuthorAffiliation_xml | – name: National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; Kyrylo.Hnatovsky@nrc-cnrc.gc.ca (C.H.); Sergey.Dedyulin@nrc-cnrc.gc.ca (S.D.); Robert.Walker2@nrc-cnrc.gc.ca (R.B.W.); Huimin.Ding@nrc-cnrc.gc.ca (H.D.); Stephen.Mihailov@nrc-cnrc.gc.ca (S.J.M.) |
Author_xml | – sequence: 1 fullname: Grobnic, Dan – sequence: 2 fullname: Hnatovsky, Cyril – sequence: 3 fullname: Dedyulin, Sergey – sequence: 4 fullname: Walker, Robert B – sequence: 5 fullname: Ding, Huimin – sequence: 6 fullname: Mihailov, Stephen J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33669718$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv3CAUhVGVqnm0i_6Bystm4QYDNmZTqY2aNtJI3bRrdIGLh8iDp5hJ1H8fJk6iTFUJ8bic-x2hwyk5ilNEQt439BPnil7MrKGiEa14RU4awUTdM0aPXuyPyek831DKOOf9G3LMedcp2fQnZHUVDKbqa4JhqIYEOcShuoNbHDEOeV25FHyuQqzGKQ51xrSp1mFYVxk3WyzyXcIKYkQYS-Nb8trDOOO7x_WM_L769uvyR736-f368suqti0XubbSGNuLvuUgUTDTuZ4jWMp65nvFnJTUUuOddWWYBiS0qDyXnHacenD8jFwvXDfBjd6msIH0V08Q9ENhSoOGlIMdUSvHKFinPLNUeDS9cWA62Xja-K5VsrA-L6ztzmzQWYw5wXgAPbyJYa2H6VZLxRinbQF8fASk6c8O56w3YbY4jhBx2s2aCdUL1bF27_XhpdezyVMcRXCxCGya5jmh1zbkksm0tw6jbqjeB66fAy8d5_90PEH_p3WLNiZrIYKDg2faMOegw37RRaHtwwRLPW6hnBj3rqVUFrhrtVAMNXDBtfFUtKr8L3TA7wEk4c9o |
CitedBy_id | crossref_primary_10_1016_j_optcom_2024_131030 crossref_primary_10_3390_mi16030331 crossref_primary_10_1016_j_sna_2022_113872 crossref_primary_10_1063_5_0142798 crossref_primary_10_1364_OE_538476 crossref_primary_10_1364_OE_475347 crossref_primary_10_1364_AO_492971 crossref_primary_10_1002_pssa_202100023 crossref_primary_10_1088_1361_6501_ac75b1 crossref_primary_10_1364_OE_476872 crossref_primary_10_1364_AO_496351 crossref_primary_10_1109_LSENS_2022_3205249 crossref_primary_10_1016_j_measurement_2024_114132 crossref_primary_10_1364_OE_450528 crossref_primary_10_1016_j_yofte_2022_103146 crossref_primary_10_1016_j_rinp_2024_107970 crossref_primary_10_1109_JLT_2023_3241861 crossref_primary_10_3390_s25061937 crossref_primary_10_1016_j_optlastec_2023_110278 crossref_primary_10_1109_JSEN_2022_3199993 crossref_primary_10_1109_JLT_2024_3438108 crossref_primary_10_1109_JLT_2024_3450733 crossref_primary_10_1364_OL_476471 crossref_primary_10_3390_metrology1010001 crossref_primary_10_1007_s44290_024_00141_4 crossref_primary_10_1109_JSEN_2022_3181949 crossref_primary_10_1364_OE_470093 crossref_primary_10_1109_JSEN_2024_3494261 crossref_primary_10_3788_COL202321_090007 crossref_primary_10_1364_OE_446664 crossref_primary_10_1016_j_optcom_2022_128286 crossref_primary_10_1016_j_sna_2022_113987 crossref_primary_10_1002_lpor_202401086 crossref_primary_10_1016_j_ceramint_2024_03_153 |
Cites_doi | 10.3390/s19245476 10.1063/1.5024514 10.1063/1.1638883 10.1117/12.864206 10.1364/OL.42.000399 10.1364/OE.17.019785 10.1063/1.1735231 10.1364/OL.27.001974 10.1117/12.852663 10.1364/OE.18.019844 10.1117/12.2209399 10.1109/JSEN.2018.2837164 10.3390/ijtpp5040025 10.1515/nanoph-2013-0032 10.1117/12.835875 10.5772/39545 10.1364/OE.16.021239 10.1103/PhysRevLett.91.247405 10.1117/12.722269 10.1364/OL.28.000995 10.3390/s18061791 10.3390/s17122909 10.1049/el:20057898 10.1088/0957-0233/17/5/S07 10.3390/s8106448 10.1007/s13349-019-00338-7 10.1111/j.1151-2916.1968.tb11917.x 10.1364/OL.41.003177 10.3390/s91008377 10.1109/JSEN.2019.2890847 10.1049/el:20046050 10.1088/1361-665X/aa89a9 10.1016/j.measurement.2020.108103 10.1364/OE.17.006082 10.1002/lpor.201300043 10.1109/JLT.2003.822161 10.2514/6.2011-1576 10.1109/LPT.2004.834920 10.1364/OPEX.13.005377 10.1016/j.ijheatmasstransfer.2012.02.032 10.2514/6.2005-1214 10.1109/LPT.2019.2957917 10.1364/OL.35.001443 10.3390/s20030762 10.1364/OL.29.001730 10.1016/j.jnoncrysol.2004.08.208 10.1109/JSEN.2018.2868429 10.1049/el:19880165 10.1364/OE.26.023550 10.1109/LPT.2017.2782368 10.1109/JLT.2011.2136323 10.1364/OE.24.003714 10.3390/s19040877 10.1364/OE.21.004591 10.3389/fphy.2019.00155 10.1088/0957-0233/20/11/115301 10.1016/j.optlastec.2020.106650 10.1109/JSTQE.2004.826570 10.1109/CONTROL.2012.6334704 10.1088/2515-7647/ab382f 10.1109/JLT.2017.2773501 10.2514/6.2014-3922 10.1109/JLT.2018.2878501 10.1088/0957-0233/17/5/S12 10.1016/j.measurement.2015.09.020 10.2172/1466685 10.1364/BGPPF.1997.BSuD.5 10.1117/12.2025838 |
ContentType | Journal Article |
Copyright | Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr) 2021 by the authors. 2021 |
Copyright_xml | – notice: Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr) – notice: 2021 by the authors. 2021 |
DBID | -LJ GXV AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s21041454 |
DatabaseName | National Research Council Canada Archive CISTI Source CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_9d20acd9f2c04feb8bdab671f01f6597 PMC7922305 33669718 10_3390_s21041454 oai_cisti_icist_nrc_cnrc_ca_cistinparc_23fd5007_10d5_492e_a343_bf0459002eda |
Genre | Journal Article Review |
GroupedDBID | --- -LJ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 GXV HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M AAYXX ALIPV CITATION NPM 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c534t-c7bbc84853a7e42b6d83eac0282f892d770c0bfdcddcdb1a7a5e9f3730630fad3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:29 EDT 2025 Thu Aug 21 13:58:39 EDT 2025 Tue Aug 05 09:58:06 EDT 2025 Thu Apr 03 07:04:04 EDT 2025 Tue Jul 01 03:56:05 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Fri Aug 22 15:38:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | sensing fiber Bragg gratings FBG wavelength drift high temperature |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-c7bbc84853a7e42b6d83eac0282f892d770c0bfdcddcdb1a7a5e9f3730630fad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6144-0937 0000-0003-3525-2980 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21041454 |
PMID | 33669718 |
PQID | 2498496257 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9d20acd9f2c04feb8bdab671f01f6597 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7922305 proquest_miscellaneous_2498496257 pubmed_primary_33669718 crossref_citationtrail_10_3390_s21041454 crossref_primary_10_3390_s21041454 nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_23fd5007_10d5_492e_a343_bf0459002eda |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210219 |
PublicationDateYYYYMMDD | 2021-02-19 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210219 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Fokine (ref_31) 2004; 349 Bao (ref_68) 2017; 26 ref_12 ref_11 Muanenda (ref_7) 2019; 7 Grobnic (ref_10) 2004; 16 ref_54 Harper (ref_71) 1988; 24 Yablon (ref_74) 2004; 84 Martinez (ref_44) 2005; 41 ref_51 Aslund (ref_22) 2012; 55 Bao (ref_67) 2016; 41 Hnatovsky (ref_55) 2018; 26 Merlone (ref_70) 2020; 164 ref_18 ref_15 Hnatovsky (ref_56) 2018; 36 Wang (ref_8) 2020; 32 Corre (ref_29) 2018; 89 Yablon (ref_46) 2004; 10 Tandon (ref_58) 2013; 2 Hnatovsky (ref_57) 2018; 30 Lindner (ref_32) 2009; 9 Wosniok (ref_6) 2019; 9 Li (ref_53) 2008; 16 ref_24 ref_23 Cavillon (ref_36) 2019; 1 Shimotsuma (ref_41) 2003; 91 ref_66 ref_21 ref_20 Busch (ref_35) 2009; 20 Schartner (ref_61) 2019; 19 ref_62 Wagstaff (ref_64) 1968; 51 Primak (ref_73) 1959; 30 ref_28 ref_26 Li (ref_59) 2009; 17 Grobnic (ref_52) 2006; 17 McCary (ref_30) 2018; 18 Grobnic (ref_33) 2006; 17 ref_72 Smelser (ref_13) 2005; 13 Canning (ref_40) 2016; 79 Elsmann (ref_34) 2013; 21 Walker (ref_25) 2010; 10654 Marshall (ref_14) 2010; 18 Polyzos (ref_65) 2017; 35 Yablon (ref_75) 2004; 22 Lindner (ref_19) 2018; 18 Jewart (ref_27) 2010; 35 Fokine (ref_37) 2002; 27 ref_47 Hnatovsky (ref_42) 2017; 42 ref_1 Jovanovic (ref_45) 2009; 17 ref_3 ref_2 Canning (ref_39) 2008; 8 Polz (ref_38) 2021; 134 Lancry (ref_43) 2013; 7 ref_49 ref_48 ref_9 Mihailov (ref_16) 2003; 28 Dutz (ref_50) 2018; 10654 Li (ref_60) 2011; 29 Nguyen (ref_63) 2016; 24 ref_5 ref_4 Martinez (ref_17) 2004; 40 Smelser (ref_69) 2004; 29 |
References_xml | – ident: ref_24 doi: 10.3390/s19245476 – ident: ref_5 – volume: 89 start-page: 063508 year: 2018 ident: ref_29 article-title: Integration of fiber Bragg grating temperature sensors in plasma facing components of the WEST tokamak publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5024514 – volume: 84 start-page: 19 year: 2004 ident: ref_74 article-title: Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity publication-title: Appl. Phys. Lett. doi: 10.1063/1.1638883 – ident: ref_54 doi: 10.1117/12.864206 – volume: 42 start-page: 399 year: 2017 ident: ref_42 article-title: Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings publication-title: Opt. Lett. doi: 10.1364/OL.42.000399 – volume: 17 start-page: 19785 year: 2009 ident: ref_59 article-title: Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation publication-title: Opt. Express doi: 10.1364/OE.17.019785 – volume: 30 start-page: 779 year: 1959 ident: ref_73 article-title: Photoelastic constants of vitreous silica and its elastic coefficient of refractive index publication-title: J. Appl. Phys. doi: 10.1063/1.1735231 – volume: 27 start-page: 1974 year: 2002 ident: ref_37 article-title: Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers publication-title: Opt. Lett. doi: 10.1364/OL.27.001974 – ident: ref_1 – ident: ref_62 doi: 10.1117/12.852663 – volume: 18 start-page: 19844 year: 2010 ident: ref_14 article-title: Point-by-point written fiber-Bragg gratings and their application in complex grating designs publication-title: Opt. Express doi: 10.1364/OE.18.019844 – ident: ref_26 doi: 10.1117/12.2209399 – volume: 18 start-page: 5352 year: 2018 ident: ref_19 article-title: Regenerated Bragg Grating Sensor Array for Temperature Measurements during an Aluminum Casting Process publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2837164 – ident: ref_23 doi: 10.3390/ijtpp5040025 – volume: 2 start-page: 383 year: 2013 ident: ref_58 article-title: Nano-engineered optical fibers and applications publication-title: Nanophotonics doi: 10.1515/nanoph-2013-0032 – ident: ref_9 doi: 10.1117/12.835875 – ident: ref_11 doi: 10.5772/39545 – volume: 16 start-page: 21239 year: 2008 ident: ref_53 article-title: Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses publication-title: Opt. Express doi: 10.1364/OE.16.021239 – volume: 91 start-page: 247405 year: 2003 ident: ref_41 article-title: Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.247405 – ident: ref_3 doi: 10.1117/12.722269 – volume: 28 start-page: 995 year: 2003 ident: ref_16 article-title: Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation publication-title: Opt. Lett. doi: 10.1364/OL.28.000995 – ident: ref_51 doi: 10.3390/s18061791 – ident: ref_12 doi: 10.3390/s17122909 – volume: 41 start-page: 176 year: 2005 ident: ref_44 article-title: Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser publication-title: Electron. Lett. doi: 10.1049/el:20057898 – ident: ref_72 – volume: 17 start-page: 980 year: 2006 ident: ref_33 article-title: Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/5/S07 – volume: 8 start-page: 6448 year: 2008 ident: ref_39 article-title: Extreme silica optical fibre gratings publication-title: Sensors doi: 10.3390/s8106448 – volume: 9 start-page: 361 year: 2019 ident: ref_6 article-title: Fiber optic sensors for high-temperature measurements on composite tanks in fire publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-019-00338-7 – volume: 51 start-page: 449 year: 1968 ident: ref_64 article-title: Crystallization Kinetics of Internally Nucleated Vitreous Silica publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1968.tb11917.x – volume: 10654 start-page: 1 year: 2010 ident: ref_25 article-title: High temperature measurement of a low emission, high pressure combustor using femtosecond laser written fiber Bragg gratings publication-title: Proc. SPIE – volume: 41 start-page: 3177 year: 2016 ident: ref_67 article-title: High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber publication-title: Opt. Lett. doi: 10.1364/OL.41.003177 – ident: ref_28 – volume: 9 start-page: 8377 year: 2009 ident: ref_32 article-title: Arrays of Regenerated Fiber Bragg Gratings in Non-Hydrogen-Loaded Photosensitive Fibers for High-Temperature Sensor Networks publication-title: Sensors doi: 10.3390/s91008377 – volume: 19 start-page: 2978 year: 2019 ident: ref_61 article-title: Stability of Grating-Based Optical Fiber Sensors at High Temperature publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2890847 – volume: 40 start-page: 1170 year: 2004 ident: ref_17 article-title: Direct writing of fibre Bragg gratings by femtosecond laser publication-title: Electron. Lett. doi: 10.1049/el:20046050 – volume: 26 start-page: 105034 year: 2017 ident: ref_68 article-title: Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa89a9 – volume: 164 start-page: 108103 year: 2020 ident: ref_70 article-title: Gas-controlled heat pipes in metrology: More than 30 years of technical and scientific progresses publication-title: Measurement doi: 10.1016/j.measurement.2020.108103 – volume: 17 start-page: 6082 year: 2009 ident: ref_45 article-title: Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers publication-title: Opt. Express doi: 10.1364/OE.17.006082 – volume: 7 start-page: 953 year: 2013 ident: ref_43 article-title: Ultrafast nanoporous silica formation driven by femtosecond laser irradiation publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201300043 – volume: 22 start-page: 16 year: 2004 ident: ref_75 article-title: Frozen-in viscoelasticity for novel beam expanders and high-power connectors publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.822161 – ident: ref_48 doi: 10.2514/6.2011-1576 – volume: 16 start-page: 2505 year: 2004 ident: ref_10 article-title: Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2004.834920 – volume: 13 start-page: 5377 year: 2005 ident: ref_13 article-title: Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask publication-title: Opt. Express doi: 10.1364/OPEX.13.005377 – volume: 55 start-page: 3288 year: 2012 ident: ref_22 article-title: Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.02.032 – ident: ref_47 doi: 10.2514/6.2005-1214 – volume: 32 start-page: 89 year: 2020 ident: ref_8 article-title: A High Temperature Sensor Based on Sapphire Fiber Fabry-Perot Interferome-ter publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2019.2957917 – volume: 35 start-page: 1443 year: 2010 ident: ref_27 article-title: Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing publication-title: Opt. Lett. doi: 10.1364/OL.35.001443 – ident: ref_66 doi: 10.3390/s20030762 – volume: 29 start-page: 1730 year: 2004 ident: ref_69 article-title: Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask publication-title: Opt. Lett. doi: 10.1364/OL.29.001730 – volume: 349 start-page: 98 year: 2004 ident: ref_31 article-title: Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2004.08.208 – ident: ref_18 – volume: 18 start-page: 8755 year: 2018 ident: ref_30 article-title: Response of Distributed Fiber Optic Temperature Sensors to High-Temperature Step Transients publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2868429 – volume: 24 start-page: 245 year: 1988 ident: ref_71 article-title: Tapers in single-mode optical fibre by controlled core diffusion publication-title: Electron. Lett. doi: 10.1049/el:19880165 – volume: 26 start-page: 23550 year: 2018 ident: ref_55 article-title: High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask publication-title: Opt. Express doi: 10.1364/OE.26.023550 – volume: 30 start-page: 209 year: 2018 ident: ref_57 article-title: Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2017.2782368 – volume: 10654 start-page: 1 year: 2018 ident: ref_50 article-title: Multipoint high temperature sensing with regenerated fiber Bragg gratings publication-title: Proc. SPIE – volume: 29 start-page: 1555 year: 2011 ident: ref_60 article-title: Prestressed Fiber Bragg Grating with High Temperature Stability publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2011.2136323 – volume: 24 start-page: 3714 year: 2016 ident: ref_63 article-title: Temperature sensing up to 1300 °C using suspended-core microstructured optical fibers publication-title: Opt. Express doi: 10.1364/OE.24.003714 – ident: ref_21 doi: 10.3390/s19040877 – volume: 21 start-page: 4591 year: 2013 ident: ref_34 article-title: Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation publication-title: Opt. Express doi: 10.1364/OE.21.004591 – volume: 7 start-page: 155 year: 2019 ident: ref_7 article-title: Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing publication-title: Front. Phys. doi: 10.3389/fphy.2019.00155 – volume: 20 start-page: 115301 year: 2009 ident: ref_35 article-title: Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/11/115301 – volume: 134 start-page: 106650 year: 2021 ident: ref_38 article-title: Regenerated Fibre Bragg Gratings: A critical assessment of more than 20 years of investigations publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106650 – volume: 10 start-page: 300 year: 2004 ident: ref_46 article-title: Optical and Mechanical Effects of Frozen-in Stresses and Strains in Optical Fibers publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2004.826570 – ident: ref_2 doi: 10.1109/CONTROL.2012.6334704 – volume: 1 start-page: 042001 year: 2019 ident: ref_36 article-title: Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres publication-title: J. Phys. Photonics doi: 10.1088/2515-7647/ab382f – volume: 35 start-page: 5317 year: 2017 ident: ref_65 article-title: Effect of Dopant Diffusion on the Long-Term Stability of Fabry-Pérot Optical Fiber Sensors publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2773501 – ident: ref_20 doi: 10.2514/6.2014-3922 – volume: 36 start-page: 5697 year: 2018 ident: ref_56 article-title: Birefringent π-Phase-Shifted Fiber Bragg Gratings for Sensing at 1000 °C Fabricated Using an Infrared Femtosecond Laser and a Phase Mask publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2878501 – volume: 17 start-page: 1009 year: 2006 ident: ref_52 article-title: Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/5/S12 – volume: 79 start-page: 236 year: 2016 ident: ref_40 article-title: Regeneration, regenerated gratings and composite glass properties: The implications for high temperature micro and nano milling and optical sensing publication-title: Measurement doi: 10.1016/j.measurement.2015.09.020 – ident: ref_4 doi: 10.2172/1466685 – ident: ref_15 doi: 10.1364/BGPPF.1997.BSuD.5 – ident: ref_49 doi: 10.1117/12.2025838 |
SSID | ssj0023338 |
Score | 2.479808 |
SecondaryResourceType | review_article |
Snippet | High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments... |
SourceID | doaj pubmedcentral proquest pubmed crossref nrccanada |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1454 |
SubjectTerms | FBG fiber Bragg gratings high temperature Review sensing wavelength drift |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzSH0nfdNkUtPfRiYluSZR3z6DaUtKcNzaUIPZ2FoA0b5_93xvaadQn0UjA2yMIMo9HMfPb4G0I-o90o41XufOly_FUzV6E2ORehEQCIShPwPeSPn_X5Jf9-Ja52Wn1hTdhADzwo7kj5qjDOq1i5gsdgG-uNrWUZizLWkA2j94WYtwVTI9RigLwGHiEGoP7oDoANL7ngs-jTk_QfkP20cX2FlXkoy_y7WHIn-iyekidj2kiPB3GfkUchPScHO2SCL8jFAos_6MnGtC39hgubWvrLYGOJ1HbX9Gyzih1dJXqxTm2-BI9MsciDLgNkzgOzMj0Gr2vwB_WX5HLxdXl6no-9EnInGO9yJ611DYfga2Tgla19w8CnIqKKjaq8lIUrbPTOw2FLI40IKjLY3zUrovHsFdlL6xTeEMpcKQDkVbHwEL8lU9iduFYusj6jkBn5stWhdiOROPazuNEAKFDdelJ3Rj5NU28H9oyHJp3gQkwTkPC6HwAz0KMZ6H-ZQUZ-T8s4e5JDV6lXeNEwQ7v-ZIbxdAveRFcseoHUzWXhheaqCtowzrSNkO8qsKbgTUY-bk1DwwbEryomhfX9nQb82nAFMBJkeD2YyiQAY3WtIPpnRM6MaCbh_E5aXfck31JB4laIt_9DOe_I4wpLcbCPjXpP9rrNfTiEXKqzH_pt8we3bx99 priority: 102 providerName: Directory of Open Access Journals |
Title | Fiber Bragg grating wavelength drift in long-term high temperature annealing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33669718 https://www.proquest.com/docview/2498496257 https://pubmed.ncbi.nlm.nih.gov/PMC7922305 https://doaj.org/article/9d20acd9f2c04feb8bdab671f01f6597 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBa9PGx9KLsvuwRt7GEv3mxLtqyHMZqtaRltGSNheRlC1sUNFKVzUuj-_c6xE1OPPAyCA7ZsxNG5ffbRdwh5h3ojtZWRsYmJcKtmJF2uI565IgNAlGiH7yHPL_LTKf82y2Y7ZNNjcy3A5VZoh_2kpvXVh9vffz6DwX9CxAmQ_eMSYAtPeMZ3yT4EJIGNDM559zEhZaxpaI17uiKIh3FLMNS_tReWGvb-A3Iv1KYpvdLb0s9_qyjvhKXxA3K4zifpUasAD8mOC4_IwR2WwcfkbIxVIXRU66qiJ7jioaI_NXacCNXqkn6t535F54GeLUIVTcBVU6z-oBMHKXVLuUyPwB1r3Ln-hEzHx5Mvp9G6iUJkMsZXkRFlaQoOUVkLx9MytwUDZ4tQyxcytULEJi69NRZ-ZaKFzpz0DAw_Z7HXlj0le2ER3HNCmUkyQH-pjy0EdsEkti3OpfGsSTXEgLzfyFCZNcM4Nrq4UoA0UNyqE_eAvO2GXre0GtsGjXAhugHIhN2cWNSVWhuWkjaNtbHSpybm3pVFaXWZi8THic8BLQ3Ir24Ze08y6EPVHP8UjFCmOej2fLgGN6NS5m2GnM5JbDPFZeqUZpyp0kMiLEGznNUD8majGgosEz-36OAWN0sFwLbgEvAlzOFZqyrdBBjLcwlpwYCInhL1Zti_EuaXDfu3kJDRxdmL_5HgS3I_xRocbGAjX5G9VX3jXkMStSqHZFfMBByL8cmQ7I-OL77_GDYvJIaN8fwF1s4ewA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber+Bragg+Grating+Wavelength+Drift+in+Long-Term+High+Temperature+Annealing&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Grobnic%2C+Dan&rft.au=Hnatovsky%2C+Cyril&rft.au=Dedyulin%2C+Sergey&rft.au=Walker%2C+Robert+B.&rft.date=2021-02-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft.spage=1454&rft_id=info:doi/10.3390%2Fs21041454&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21041454 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |