Origin and Evolution of Nitrogen Fixation in Prokaryotes

Abstract The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 39; no. 9
Main Authors Pi, Hong-Wei, Lin, Jinn-Jy, Chen, Chi-An, Wang, Po-Hsiang, Chiang, Yin-Ru, Huang, Chieh-Chen, Young, Chiu-Chung, Li, Wen-Hsiung
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.09.2022
Subjects
Online AccessGet full text
ISSN0737-4038
1537-1719
1537-1719
DOI10.1093/molbev/msac181

Cover

Loading…
Abstract Abstract The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.
AbstractList The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.
The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis. Key words: nitrogen fixation, nitrogenase, molybdenum transporter, bacteria, archaea.
The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.
Abstract The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.
Audience Academic
Author Lin, Jinn-Jy
Young, Chiu-Chung
Pi, Hong-Wei
Li, Wen-Hsiung
Chen, Chi-An
Huang, Chieh-Chen
Chiang, Yin-Ru
Wang, Po-Hsiang
Author_xml – sequence: 1
  givenname: Hong-Wei
  orcidid: 0000-0001-5811-5802
  surname: Pi
  fullname: Pi, Hong-Wei
– sequence: 2
  givenname: Jinn-Jy
  surname: Lin
  fullname: Lin, Jinn-Jy
– sequence: 3
  givenname: Chi-An
  surname: Chen
  fullname: Chen, Chi-An
– sequence: 4
  givenname: Po-Hsiang
  surname: Wang
  fullname: Wang, Po-Hsiang
– sequence: 5
  givenname: Yin-Ru
  surname: Chiang
  fullname: Chiang, Yin-Ru
– sequence: 6
  givenname: Chieh-Chen
  surname: Huang
  fullname: Huang, Chieh-Chen
– sequence: 7
  givenname: Chiu-Chung
  orcidid: 0000-0003-0828-3802
  surname: Young
  fullname: Young, Chiu-Chung
– sequence: 8
  givenname: Wen-Hsiung
  surname: Li
  fullname: Li, Wen-Hsiung
  email: whli@uchicago.edu
BookMark eNqFUcFOGzEUtCqqJtBee16pFzgE7NjeZ1-QEEoAKSoc6Nnyeu3UdNdO7d2I_n0NiZBAQsgHW88z8-a9OUQHIQaL0HeCTwmW9KyPXWO3Z33WhgjyCU0JpzAjQOQBmmIob4apmKDDnB8wJozV9Rc0oVxKSgCmSNwmv_ah0qGtFtvYjYOPoYqu-umHFNc2VEv_qJ-LBXWX4h-d_sXB5q_os9Ndtt_29xH6tVzcX17PVrdXN5cXq5nhlA0zUxvTGMk5JpYXJ8a5tqlpI5q5ZKCZYBjmpC7mZSsl1HNwoDU4LtoGDCf0CJ3vdDdj09vW2DAk3alN8n1xoqL26vVP8L_VOm6VZAwEhyJwvBdI8e9o86B6n43tOh1sHLOaA-ZUSgKiQH-8gT7EMYUynirbwhILgXFBne5Qa91Z5YOLpa8pp7W9NyUe50v9AoATJp8W_UIwKeacrHtxT7B6SlHtUlT7FAuBvSEYPzyHUDr57n3ayY4Wx81HLf4Dum-zNw
CitedBy_id crossref_primary_10_1016_j_tim_2023_03_011
crossref_primary_10_3389_fmicb_2024_1358787
crossref_primary_10_1007_s12223_024_01227_3
crossref_primary_10_1016_j_jenvman_2024_122973
crossref_primary_10_1093_molbev_msae023
crossref_primary_10_1093_nar_gkac976
crossref_primary_10_1007_s00203_024_04191_1
crossref_primary_10_1080_00380768_2024_2361068
crossref_primary_10_3390_molecules28247959
crossref_primary_10_1186_s40168_024_01812_1
crossref_primary_10_1128_aem_00574_24
crossref_primary_10_3390_microorganisms12040791
crossref_primary_10_1038_s41598_023_47924_w
crossref_primary_10_1073_pnas_2410311121
crossref_primary_10_3390_genes14020274
crossref_primary_10_1186_s12864_024_10994_9
crossref_primary_10_1016_j_micres_2024_127726
crossref_primary_10_1002_imo2_56
crossref_primary_10_1016_j_stress_2024_100632
crossref_primary_10_1126_sciadv_ado6169
crossref_primary_10_3390_plants13152106
crossref_primary_10_3389_fmars_2023_1213051
crossref_primary_10_1134_S1021443723602306
Cites_doi 10.1038/nrg.2016.39
10.1038/s41586-019-1436-4
10.1111/j.1472-4669.2011.00278.x
10.1016/0076-6879(94)43025-X
10.1264/jsme2.ME21018
10.1111/gbi.12381
10.3390/biology10040329
10.3389/fmicb.2020.00817
10.1128/JB.00876-07
10.1093/molbev/msaa089
10.1038/s41396-020-0716-1
10.3390/ijms20051145
10.3389/fmicb.2011.00205
10.1128/aem.49.6.1530-1531.1985
10.1093/nar/gkz246
10.1038/s41396-021-00935-9
10.1038/nature21427
10.1038/ncomms11426
10.1186/1471-2164-9-488
10.1371/journal.pone.0119284
10.1111/mmi.14152
10.1093/gbe/evac031
10.1099/ijs.0.63815-0
10.1016/j.freeradbiomed.2019.01.050
10.1111/1462-2920.12960
10.1134/S0026261721040068
10.1126/science.abb6310
10.1128/aem.55.10.2522-2526.1989
10.1126/science.1134772
10.1264/jsme2.ME18030
10.3389/fmicb.2020.587127
10.1038/nmeth.4285
10.1371/journal.pone.0102561
10.1007/s00248-011-9824-9
10.1046/j.1462-2920.2002.00319.x
10.1099/ijsem.0.002144
10.1128/mBio.00561-19
10.1128/JB.02611-14
10.1105/tpc.19.00279
10.3389/fmicb.2018.00703
10.1038/ngeo325
10.1038/s41561-019-0371-1
10.1073/pnas.2019229118
10.1038/nmicrobiol.2016.193
10.1046/j.1365-2958.2000.02121.x
10.1126/sciadv.aax5343
10.1128/AEM.71.12.7910-7919.2005
10.1021/acs.chemrev.9b00489
10.1099/mic.0.045344-0
10.1007/978-1-4020-9212-1
10.1007/s00248-018-1239-4
10.1093/molbev/msn067
10.1111/mec.13901
10.1007/s00775-014-1225-3
10.1146/annurev-biochem-060614-034108
10.1016/j.earscirev.2020.103296
10.1186/s12864-018-5068-0
10.1038/s41564-019-0534-2
10.1073/pnas.1510409112
10.1007/s002390010061
10.3389/fmicb.2013.00201
10.1080/10635150490522304
10.1093/molbev/mst010
10.3389/fpls.2017.01947
10.1038/s41467-021-25000-z
10.3389/fmicb.2016.02026
10.3390/microorganisms9081662
10.1039/C8MT00038G
10.1093/molbev/msh047
10.1038/s41467-018-04995-y
10.1016/j.jmb.2008.03.051
10.1093/nar/gkz239
10.1093/molbev/msx281
10.1074/jbc.M601750200
10.1099/ijs.0.016105-0
10.1038/nmicrobiol.2016.116
10.1128/JB.00504-09
10.1007/s10534-011-9421-x
10.1264/jsme2.ME17134
10.1038/nbt.4229
10.1073/pnas.0907926106
10.1038/s41587-020-0501-8
10.1007/s002480000090
10.1038/nature08950
10.1073/pnas.1716667115
10.1038/s41561-020-0601-6
10.1128/JB.00757-17
10.3389/fmicb.2019.01858
10.1126/sciadv.abm2296
10.1038/nature21377
10.1038/s41564-017-0091-5
10.1093/molbev/msy096
10.1128/JB.187.2.405-414.2005
10.1093/molbev/msaa015
10.1186/1471-2164-13-162
10.1038/nature24019
10.1371/journal.pone.0072751
10.1126/science.aag2947
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2022
COPYRIGHT 2022 Oxford University Press
The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2022
– notice: COPYRIGHT 2022 Oxford University Press
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
DBID TOX
AAYXX
CITATION
3V.
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOI 10.1093/molbev/msac181
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (UHCL Subscription)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library (Proquest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-1719
ExternalDocumentID PMC9447857
A775149599
10_1093_molbev_msac181
10.1093/molbev/msac181
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: ;
  grantid: AS-KPQ-109-ITAR-11
– fundername: ;
  grantid: MOST 110-2311-B-001-035
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29M
2WC
4.4
48X
53G
5VS
5WA
70D
7X7
88E
8AO
8FI
8FJ
8G5
AAFWJ
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABSMQ
ABTAH
ABUWG
ABXVV
ABZBJ
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPRK
ACUTO
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADOCK
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUYN
AEWNT
AFFNX
AFIYH
AFKRA
AFOFC
AFPKN
AFRAH
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASAOO
ATDFG
AXUDD
AYOIW
AZQEC
AZVOD
BAWUL
BAYMD
BBNVY
BENPR
BEYMZ
BHONS
BHPHI
BQDIO
BQUQU
BSWAC
BTQHN
BTRTY
BVRKM
C1A
CAG
CCPQU
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
DWQXO
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLIZI
FOTVD
FYUFA
GAUVT
GJXCC
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
H5~
HAR
HCIFZ
HH5
HMCUK
HW0
HZ~
IAO
IGS
IHR
IOX
ITC
J21
KOP
KQ8
KSI
M-Z
M1P
M2O
M49
M7P
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOYVH
NTWIH
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
O~Y
P2P
PAFKI
PEELM
PQQKQ
PSQYO
Q1.
Q5Y
RD5
RNI
ROL
ROZ
RPM
RUSNO
RW1
RXO
RZO
TEORI
TJP
TJX
TLC
TN5
TOX
TR2
UKHRP
W8F
WOQ
X7H
XJT
XSW
YAYTL
YHZ
YKOAZ
YXANX
ZCA
ZCG
ZKX
ZXP
ZY4
~02
~91
AAYXX
CITATION
PHGZM
PHGZT
PMFND
3V.
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FE
8FH
8FK
C1K
FR3
H94
K9.
LK8
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c534t-c6ccbc95501e5038cffdb63b8b2947a48407216c189d997627f7aa7f58db7c513
IEDL.DBID 7X7
ISSN 0737-4038
1537-1719
IngestDate Thu Aug 21 14:14:48 EDT 2025
Fri Jul 11 08:59:26 EDT 2025
Fri Jul 25 19:28:19 EDT 2025
Tue Jun 10 21:15:46 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Tue Jul 01 03:46:00 EDT 2025
Wed Apr 02 07:05:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords bacteria
nitrogen fixation
molybdenum transporter
nitrogenase
archaea
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-c6ccbc95501e5038cffdb63b8b2947a48407216c189d997627f7aa7f58db7c513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Hong Wei Pi and Jinn Jy Lin contributed equally to this work.
ORCID 0000-0003-0828-3802
0000-0001-5811-5802
OpenAccessLink https://dx.doi.org/10.1093/molbev/msac181
PMID 35993177
PQID 3170908800
PQPubID 36253
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9447857
proquest_miscellaneous_2705399178
proquest_journals_3170908800
gale_infotracacademiconefile_A775149599
crossref_primary_10_1093_molbev_msac181
crossref_citationtrail_10_1093_molbev_msac181
oup_primary_10_1093_molbev_msac181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Molecular biology and evolution
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Adam (2022090617030584300_msac181-B3) 2019; 4
Zhang (2022090617030584300_msac181-B97) 2008; 379
Berkemer (2022090617030584300_msac181-B10) 2020; 37
Roy (2022090617030584300_msac181-B81) 2020; 32
Mendler (2022090617030584300_msac181-B59) 2019; 47
Mehta (2022090617030584300_msac181-B58) 2006; 314
Zheng (2022090617030584300_msac181-B99) 2018; 3
Dahl (2022090617030584300_msac181-B18) 1994; 243
Abreu (2022090617030584300_msac181-B1) 2000; 38
Koirala (2022090617030584300_msac181-B44) 2021; 9
Kalyaanamoorthy (2022090617030584300_msac181-B42) 2017; 14
Steinsbu (2022090617030584300_msac181-B88) 2010; 60
Howard (2022090617030584300_msac181-B35) 2013; 8
Angel (2022090617030584300_msac181-B8) 2018; 9
Boyd (2022090617030584300_msac181-B14) 2011; 2
Mus (2022090617030584300_msac181-B64) 2019; 140
Hedrich (2022090617030584300_msac181-B33) 2011; 157
Philippi (2022090617030584300_msac181-B75) 2021; 12
Li (2022090617030584300_msac181-B53) 2015; 5
Ge (2022090617030584300_msac181-B30) 2020; 11
Hoang (2022090617030584300_msac181-B34) 2018; 35
North (2022090617030584300_msac181-B68) 2020; 369
Staples (2022090617030584300_msac181-B87) 2007; 189
Jiao (2022090617030584300_msac181-B41) 2021; 15
Moore (2022090617030584300_msac181-B61) 2017; 543
Muraki (2022090617030584300_msac181-B62) 2010; 465
Shukla (2022090617030584300_msac181-B86) 2016; 25
Reitner (2022090617030584300_msac181-B80) 2011
Scott (2022090617030584300_msac181-B84) 2015; 10
Nishihara (2022090617030584300_msac181-B66) 2018; 33
Affourtit (2022090617030584300_msac181-B4) 2001; 41
Garcia-Pichel (2022090617030584300_msac181-B27) 2019; 10
Hulsen (2022090617030584300_msac181-B38) 2008; 9
Martin (2022090617030584300_msac181-B56) 2020; 11
Zheng (2022090617030584300_msac181-B98) 2016; 18
Demtröder (2022090617030584300_msac181-B20) 2019; 111
Wang (2022090617030584300_msac181-B92) 2021; 118
de Lajudie (2022090617030584300_msac181-B19) 2017; 67
Zheng (2022090617030584300_msac181-B100) 2016; 354
Setubal (2022090617030584300_msac181-B85) 2009; 191
Garcia (2022090617030584300_msac181-B29) 2020; 18
Tahon (2022090617030584300_msac181-B89) 2016; 7
Le (2022090617030584300_msac181-B48) 2008; 25
Fay (2022090617030584300_msac181-B26) 2015; 112
Aguilar-Barajas (2022090617030584300_msac181-B5) 2011; 24
Tashiro (2022090617030584300_msac181-B90) 2017; 549
Enkh-Amgalan (2022090617030584300_msac181-B23) 2006; 56
Zehr (2022090617030584300_msac181-B96) 1989; 55
Albalat (2022090617030584300_msac181-B6) 2016; 17
Hu (2022090617030584300_msac181-B37) 2016; 85
Peng (2022090617030584300_msac181-B74) 2018; 19
Mus (2022090617030584300_msac181-B63) 2018; 10
Hamelin (2022090617030584300_msac181-B31) 2002; 4
Lepot (2022090617030584300_msac181-B50) 2020; 209
Watanabe (2022090617030584300_msac181-B93) 2021; 10
Boyd (2022090617030584300_msac181-B15) 2013; 4
Quaiser (2022090617030584300_msac181-B78) 2014; 9
Russell (2022090617030584300_msac181-B83) 2009; 106
Poudel (2022090617030584300_msac181-B77) 2018; 200
Yang (2022090617030584300_msac181-B95) 2019; 12
Papineau (2022090617030584300_msac181-B71) 2022; 8
Ivanovsky (2022090617030584300_msac181-B39) 2021; 90
Lovley (2022090617030584300_msac181-B55) 1985; 49
Boyd (2022090617030584300_msac181-B13) 2015; 197
Fani (2022090617030584300_msac181-B25) 2000; 51
Parks (2022090617030584300_msac181-B72) 2020; 38
Minh (2022090617030584300_msac181-B60) 2020; 37
Chen (2022090617030584300_msac181-B17) 2021; 36
Pan (2022090617030584300_msac181-B70) 2022; 10
Javaux (2022090617030584300_msac181-B40) 2019; 572
Letunic (2022090617030584300_msac181-B51) 2019; 47
Katoh (2022090617030584300_msac181-B43) 2013; 30
Li (2022090617030584300_msac181-B52) 2019; 20
Ohmoto (2022090617030584300_msac181-B69) 2020; 13
Nishihara (2022090617030584300_msac181-B65) 2018; 33
Dodd (2022090617030584300_msac181-B21) 2017; 543
Raymond (2022090617030584300_msac181-B79) 2004; 21
König (2022090617030584300_msac181-B45) 2016; 2
Burén (2022090617030584300_msac181-B16) 2020; 120
Dos Santos (2022090617030584300_msac181-B22) 2012; 13
Adam (2022090617030584300_msac181-B2) 2018; 115
Erisman (2022090617030584300_msac181-B24) 2008; 1
Langlois (2022090617030584300_msac181-B47) 2005; 71
Thomazo (2022090617030584300_msac181-B91) 2018; 9
Rubio (2022090617030584300_msac181-B82) 2005; 187
Bižić (2022090617030584300_msac181-B11) 2020; 6
Kumar (2022090617030584300_msac181-B46) 2018; 35
Méheust (2022090617030584300_msac181-B57) 2020; 14
Nomata (2022090617030584300_msac181-B67) 2006; 281
Boyd (2022090617030584300_msac181-B12) 2011; 9
Parks (2022090617030584300_msac181-B73) 2018; 36
Albright (2022090617030584300_msac181-B7) 2019; 77
Hamilton (2022090617030584300_msac181-B32) 2011; 61
Lee (2022090617030584300_msac181-B49) 2019; 10
Weiss (2022090617030584300_msac181-B94) 2016; 1
Arragain (2022090617030584300_msac181-B9) 2017; 8
Posada (2022090617030584300_msac181-B76) 2004; 53
Garcia (2022090617030584300_msac181-B28) 2022; 14
Hu (2022090617030584300_msac181-B36) 2015; 20
López-Torrejón (2022090617030584300_msac181-B54) 2016; 7
References_xml – volume: 17
  start-page: 379
  year: 2016
  ident: 2022090617030584300_msac181-B6
  article-title: Evolution by gene loss
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.39
– volume: 572
  start-page: 451
  year: 2019
  ident: 2022090617030584300_msac181-B40
  article-title: Challenges in evidencing the earliest traces of life
  publication-title: Nature
  doi: 10.1038/s41586-019-1436-4
– volume: 9
  start-page: 221
  year: 2011
  ident: 2022090617030584300_msac181-B12
  article-title: A late methanogen origin for molybdenum-dependent nitrogenase
  publication-title: Geobiology
  doi: 10.1111/j.1472-4669.2011.00278.x
– volume: 243
  start-page: 331
  year: 1994
  ident: 2022090617030584300_msac181-B18
  article-title: Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(94)43025-X
– volume: 36
  year: 2021
  ident: 2022090617030584300_msac181-B17
  article-title: Nitrogen-fixing ability and nitrogen fixation-related genes of thermophilic fermentative bacteria in the genus Caldicellulosiruptor
  publication-title: Microbes Environ
  doi: 10.1264/jsme2.ME21018
– volume: 5
  start-page: 1
  year: 2015
  ident: 2022090617030584300_msac181-B53
  article-title: Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change
  publication-title: Sci Rep
– volume: 18
  start-page: 394
  year: 2020
  ident: 2022090617030584300_msac181-B29
  article-title: Reconstructing the evolutionary history of nitrogenases: evidence for ancestral molybdenum-cofactor utilization
  publication-title: Geobiology
  doi: 10.1111/gbi.12381
– volume: 10
  start-page: 329
  year: 2021
  ident: 2022090617030584300_msac181-B93
  article-title: The evolution of molybdenum dependent nitrogenase in cyanobacteria
  publication-title: Biology
  doi: 10.3390/biology10040329
– volume: 11
  start-page: 817
  year: 2020
  ident: 2022090617030584300_msac181-B56
  article-title: Older than genes: the acetyl CoA pathway and origins
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00817
– volume: 189
  start-page: 7392
  year: 2007
  ident: 2022090617030584300_msac181-B87
  article-title: Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii
  publication-title: J Bacteriol
  doi: 10.1128/JB.00876-07
– volume: 37
  start-page: 2332
  issue: 8
  year: 2020
  ident: 2022090617030584300_msac181-B10
  article-title: A new analysis of archaea-bacteria domain separation: variable phylogenetic distance and the tempo of early evolution
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msaa089
– volume: 14
  start-page: 2907
  year: 2020
  ident: 2022090617030584300_msac181-B57
  article-title: Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog
  publication-title: ISME J
  doi: 10.1038/s41396-020-0716-1
– volume: 20
  start-page: 1145
  year: 2019
  ident: 2022090617030584300_msac181-B52
  article-title: Evolution and functional analysis of orf1 within nif gene cluster from Paenibacillus graminis RSA19
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20051145
– volume: 2
  start-page: 205
  year: 2011
  ident: 2022090617030584300_msac181-B14
  article-title: An alternative path for the evolution of biological nitrogen fixation
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2011.00205
– volume: 49
  start-page: 1530
  year: 1985
  ident: 2022090617030584300_msac181-B55
  article-title: Minimum threshold for hydrogen metabolism in methanogenic bacteria
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.49.6.1530-1531.1985
– volume: 47
  start-page: 4442
  year: 2019
  ident: 2022090617030584300_msac181-B59
  article-title: AnnoTree: visualization and exploration of a functionally annotated microbial tree of life
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz246
– volume: 15
  start-page: 3005
  issue: 10
  year: 2021
  ident: 2022090617030584300_msac181-B41
  article-title: Insight into the function and evolution of the Wood–Ljungdahl pathway in actinobacteria
  publication-title: ISME J
  doi: 10.1038/s41396-021-00935-9
– volume: 543
  start-page: 78
  year: 2017
  ident: 2022090617030584300_msac181-B61
  article-title: Elucidation of the biosynthesis of the methane catalyst coenzyme F430
  publication-title: Nature
  doi: 10.1038/nature21427
– volume: 7
  start-page: 11426
  year: 2016
  ident: 2022090617030584300_msac181-B54
  article-title: Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast
  publication-title: Nat Commun
  doi: 10.1038/ncomms11426
– volume: 9
  start-page: 1
  year: 2008
  ident: 2022090617030584300_msac181-B38
  article-title: BioVenn–a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-488
– volume: 10
  year: 2015
  ident: 2022090617030584300_msac181-B84
  article-title: Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119284
– volume: 111
  start-page: 17
  year: 2019
  ident: 2022090617030584300_msac181-B20
  article-title: Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14152
– volume: 14
  year: 2022
  ident: 2022090617030584300_msac181-B28
  article-title: Reconstruction of nitrogenase predecessors suggests origin from maturase-like proteins
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evac031
– volume: 56
  start-page: 65
  year: 2006
  ident: 2022090617030584300_msac181-B23
  article-title: Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.63815-0
– volume: 140
  start-page: 250
  year: 2019
  ident: 2022090617030584300_msac181-B64
  article-title: Geobiological feedbacks, oxygen, and the evolution of nitrogenase
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2019.01.050
– volume: 18
  start-page: 191
  year: 2016
  ident: 2022090617030584300_msac181-B98
  article-title: Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)–an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12960
– volume: 90
  start-page: 428
  year: 2021
  ident: 2022090617030584300_msac181-B39
  article-title: Nitrogen metabolism of an anoxygenic filamentous phototrophic bacterium Oscillocholris trichoides strain DG-6
  publication-title: Microbiology
  doi: 10.1134/S0026261721040068
– volume: 369
  start-page: 1094
  year: 2020
  ident: 2022090617030584300_msac181-B68
  article-title: A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis
  publication-title: Science
  doi: 10.1126/science.abb6310
– volume: 55
  start-page: 2522
  year: 1989
  ident: 2022090617030584300_msac181-B96
  article-title: Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.55.10.2522-2526.1989
– volume: 314
  start-page: 1783
  year: 2006
  ident: 2022090617030584300_msac181-B58
  article-title: Nitrogen fixation at 92 C by a hydrothermal vent archaeon
  publication-title: Science
  doi: 10.1126/science.1134772
– volume: 33
  start-page: 357
  issue: 4
  year: 2018
  ident: 2022090617030584300_msac181-B66
  article-title: Phylogenetic diversity of nitrogenase reductase genes and possible nitrogen-fixing bacteria in thermophilic chemosynthetic microbial communities in Nakabusa hot springs
  publication-title: Microbes Environ
  doi: 10.1264/jsme2.ME18030
– volume: 11
  start-page: 587127
  year: 2020
  ident: 2022090617030584300_msac181-B30
  article-title: Characterization of a metal-resistant Bacillus strain with a high molybdate affinity ModA from contaminated sediments at the Oak Ridge reservation
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.587127
– volume: 14
  start-page: 587
  year: 2017
  ident: 2022090617030584300_msac181-B42
  article-title: ModelFinder: fast model selection for accurate phylogenetic estimates
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4285
– volume: 9
  year: 2014
  ident: 2022090617030584300_msac181-B78
  article-title: Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0102561
– volume: 61
  start-page: 860
  year: 2011
  ident: 2022090617030584300_msac181-B32
  article-title: Environmental constraints underpin the distribution and phylogenetic diversity of nifH in the Yellowstone geothermal complex
  publication-title: Microb Ecol
  doi: 10.1007/s00248-011-9824-9
– volume: 10
  start-page: 1
  year: 2022
  ident: 2022090617030584300_msac181-B70
  article-title: Genome-resolved evidence for functionally redundant communities and novel nitrogen fixers in the deyin-1 hydrothermal field, Mid-Atlantic Ridge
  publication-title: Microbiome
– volume: 4
  start-page: 477
  year: 2002
  ident: 2022090617030584300_msac181-B31
  article-title: Nifh gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass
  publication-title: Environ Microbiol
  doi: 10.1046/j.1462-2920.2002.00319.x
– volume: 67
  start-page: 2485
  year: 2017
  ident: 2022090617030584300_msac181-B19
  article-title: International committee on systematics of prokaryotes subcommittee for the taxonomy of rhizobium and agrobacterium minutes of the meeting, Budapest, 25 August 2016
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.002144
– volume: 10
  start-page: e00561-19
  issue: 3
  year: 2019
  ident: 2022090617030584300_msac181-B27
  article-title: Timing the evolutionary advent of cyanobacteria and the later Great Oxidation Event using gene phylogenies of a sunscreen
  publication-title: MBio
  doi: 10.1128/mBio.00561-19
– volume: 197
  start-page: 1690
  year: 2015
  ident: 2022090617030584300_msac181-B13
  article-title: Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism
  publication-title: J Bacteriol
  doi: 10.1128/JB.02611-14
– volume: 32
  start-page: 15
  year: 2020
  ident: 2022090617030584300_msac181-B81
  article-title: Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00279
– volume: 9
  start-page: 703
  year: 2018
  ident: 2022090617030584300_msac181-B8
  article-title: Evaluation of primers targeting the diazotroph functional gene and development of NifMAP–a bioinformatics pipeline for analyzing nifH amplicon data
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00703
– volume: 1
  start-page: 636
  year: 2008
  ident: 2022090617030584300_msac181-B24
  article-title: How a century of ammonia synthesis changed the world
  publication-title: Nat Geosci
  doi: 10.1038/ngeo325
– volume: 12
  start-page: 553
  year: 2019
  ident: 2022090617030584300_msac181-B95
  article-title: Ammonium availability in the Late Archaean nitrogen cycle
  publication-title: Nat Geosci
  doi: 10.1038/s41561-019-0371-1
– volume: 118
  start-page: e2019229118
  issue: 27
  year: 2021
  ident: 2022090617030584300_msac181-B92
  article-title: Aerobic bacterial methane synthesis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2019229118
– volume: 2
  start-page: 1
  year: 2016
  ident: 2022090617030584300_msac181-B45
  article-title: Nitrogen fixation in a chemoautotrophic lucinid symbiosis
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.193
– volume: 38
  start-page: 322
  year: 2000
  ident: 2022090617030584300_msac181-B1
  article-title: Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.02121.x
– volume: 6
  start-page: eaax5343
  year: 2020
  ident: 2022090617030584300_msac181-B11
  article-title: Aquatic and terrestrial cyanobacteria produce methane
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax5343
– volume: 71
  start-page: 7910
  year: 2005
  ident: 2022090617030584300_msac181-B47
  article-title: Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.7910-7919.2005
– volume: 120
  start-page: 4921
  issue: 12
  year: 2020
  ident: 2022090617030584300_msac181-B16
  article-title: Biosynthesis of nitrogenase cofactors
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00489
– volume: 157
  start-page: 1551
  year: 2011
  ident: 2022090617030584300_msac181-B33
  article-title: The iron-oxidizing proteobacteria
  publication-title: Microbiology
  doi: 10.1099/mic.0.045344-0
– start-page: 853
  volume-title: Encyclopedia of Geobiology
  year: 2011
  ident: 2022090617030584300_msac181-B80
  doi: 10.1007/978-1-4020-9212-1
– volume: 77
  start-page: 597
  year: 2019
  ident: 2022090617030584300_msac181-B7
  article-title: Comparative genomics of nitrogen cycling pathways in bacteria and archaea
  publication-title: Microb Ecol
  doi: 10.1007/s00248-018-1239-4
– volume: 25
  start-page: 1307
  year: 2008
  ident: 2022090617030584300_msac181-B48
  article-title: An improved general amino acid replacement matrix
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn067
– volume: 25
  start-page: 6092
  year: 2016
  ident: 2022090617030584300_msac181-B86
  article-title: Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae
  publication-title: Mol Ecol
  doi: 10.1111/mec.13901
– volume: 20
  start-page: 435
  year: 2015
  ident: 2022090617030584300_msac181-B36
  article-title: Nitrogenase and homologs
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-014-1225-3
– volume: 85
  start-page: 455
  year: 2016
  ident: 2022090617030584300_msac181-B37
  article-title: Biosynthesis of the metalloclusters of nitrogenases
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-060614-034108
– volume: 209
  start-page: 103296
  year: 2020
  ident: 2022090617030584300_msac181-B50
  article-title: Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2020.103296
– volume: 19
  start-page: 691
  year: 2018
  ident: 2022090617030584300_msac181-B74
  article-title: Comparative genomics of molybdenum utilization in prokaryotes and eukaryotes
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5068-0
– volume: 4
  start-page: 2155
  year: 2019
  ident: 2022090617030584300_msac181-B3
  article-title: An archaeal origin of the Wood–Ljungdahl H 4 MPT branch and the emergence of bacterial methylotrophy
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0534-2
– volume: 112
  start-page: 14829
  year: 2015
  ident: 2022090617030584300_msac181-B26
  article-title: Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1510409112
– volume: 51
  start-page: 1
  year: 2000
  ident: 2022090617030584300_msac181-B25
  article-title: Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes
  publication-title: J Mol Evol
  doi: 10.1007/s002390010061
– volume: 4
  start-page: 201
  year: 2013
  ident: 2022090617030584300_msac181-B15
  article-title: New insights into the evolutionary history of biological nitrogen fixation
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2013.00201
– volume: 53
  start-page: 793
  year: 2004
  ident: 2022090617030584300_msac181-B76
  article-title: Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests
  publication-title: Syst Biol
  doi: 10.1080/10635150490522304
– volume: 30
  start-page: 772
  year: 2013
  ident: 2022090617030584300_msac181-B43
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– volume: 8
  start-page: 1947
  year: 2017
  ident: 2022090617030584300_msac181-B9
  article-title: Diversity and functional analysis of the FeMo-cofactor maturase NifB
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01947
– volume: 12
  start-page: 1
  year: 2021
  ident: 2022090617030584300_msac181-B75
  article-title: Purple sulfur bacteria fix N2 via molybdenum-nitrogenase in a low molybdenum Proterozoic ocean analogue
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25000-z
– volume: 7
  start-page: 2026
  year: 2016
  ident: 2022090617030584300_msac181-B89
  article-title: Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.02026
– volume: 9
  start-page: 1662
  year: 2021
  ident: 2022090617030584300_msac181-B44
  article-title: Phylogeny of nitrogenase structural and assembly components reveals new insights into the origin and distribution of nitrogen fixation across bacteria and archaea
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9081662
– volume: 10
  start-page: 523
  year: 2018
  ident: 2022090617030584300_msac181-B63
  article-title: Exploring the alternatives of biological nitrogen fixation
  publication-title: Metallomics
  doi: 10.1039/C8MT00038G
– volume: 21
  start-page: 541
  year: 2004
  ident: 2022090617030584300_msac181-B79
  article-title: The natural history of nitrogen fixation
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msh047
– volume: 9
  start-page: 2530
  year: 2018
  ident: 2022090617030584300_msac181-B91
  article-title: Possible nitrogen fertilization of the early Earth Ocean by microbial continental ecosystems
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04995-y
– volume: 379
  start-page: 881
  year: 2008
  ident: 2022090617030584300_msac181-B97
  article-title: Molybdoproteomes and evolution of molybdenum utilization
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.03.051
– volume: 47
  start-page: W256
  year: 2019
  ident: 2022090617030584300_msac181-B51
  article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz239
– volume: 35
  start-page: 518
  year: 2018
  ident: 2022090617030584300_msac181-B34
  article-title: UFBoot2: improving the ultrafast bootstrap approximation
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx281
– volume: 281
  start-page: 15021
  year: 2006
  ident: 2022090617030584300_msac181-B67
  article-title: A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from rhodobacter capsulatus
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601750200
– volume: 60
  start-page: 2745
  year: 2010
  ident: 2022090617030584300_msac181-B88
  article-title: Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.016105-0
– volume: 1
  start-page: 1
  year: 2016
  ident: 2022090617030584300_msac181-B94
  article-title: The physiology and habitat of the last universal common ancestor
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.116
– volume: 191
  start-page: 4534
  year: 2009
  ident: 2022090617030584300_msac181-B85
  article-title: Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes
  publication-title: J Bacteriol
  doi: 10.1128/JB.00504-09
– volume: 24
  start-page: 687
  year: 2011
  ident: 2022090617030584300_msac181-B5
  article-title: Bacterial transport of sulfate, molybdate, and related oxyanions
  publication-title: Biometals
  doi: 10.1007/s10534-011-9421-x
– volume: 33
  start-page: 10
  year: 2018
  ident: 2022090617030584300_msac181-B65
  article-title: Nitrogen fixation in thermophilic chemosynthetic microbial communities depending on hydrogen, sulfate, and carbon dioxide
  publication-title: Microbes Environ
  doi: 10.1264/jsme2.ME17134
– volume: 36
  start-page: 996
  issue: 10
  year: 2018
  ident: 2022090617030584300_msac181-B73
  article-title: A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4229
– volume: 106
  start-page: 21236
  year: 2009
  ident: 2022090617030584300_msac181-B83
  article-title: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0907926106
– volume: 38
  start-page: 1079
  issue: 9
  year: 2020
  ident: 2022090617030584300_msac181-B72
  article-title: A complete domain-to-species taxonomy for bacteria and archaea
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0501-8
– volume: 41
  start-page: 114
  year: 2001
  ident: 2022090617030584300_msac181-B4
  article-title: Distribution of nitrogen-fixing microorganisms along the Neuse River Estuary, North Carolina
  publication-title: Microb Ecol
  doi: 10.1007/s002480000090
– volume: 465
  start-page: 110
  year: 2010
  ident: 2022090617030584300_msac181-B62
  article-title: X-ray crystal structure of the light-independent protochlorophyllide reductase
  publication-title: Nature
  doi: 10.1038/nature08950
– volume: 115
  start-page: E1166
  year: 2018
  ident: 2022090617030584300_msac181-B2
  article-title: Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1716667115
– volume: 13
  start-page: 576
  year: 2020
  ident: 2022090617030584300_msac181-B69
  article-title: A seawater-sulfate origin for early Earth’s volcanic sulfur
  publication-title: Nat Geosci
  doi: 10.1038/s41561-020-0601-6
– volume: 200
  start-page: e00757-00717
  year: 2018
  ident: 2022090617030584300_msac181-B77
  article-title: Electron transfer to nitrogenase in different genomic and metabolic backgrounds
  publication-title: J Bacteriol
  doi: 10.1128/JB.00757-17
– volume: 10
  start-page: 1858
  year: 2019
  ident: 2022090617030584300_msac181-B49
  article-title: Characterization of a nifH-harboring bacterial community in the soil-limited Gotjawal forest
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01858
– volume: 8
  year: 2022
  ident: 2022090617030584300_msac181-B71
  article-title: Metabolically diverse primordial microbial communities in Earth’s oldest seafloor-hydrothermal jasper
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abm2296
– volume: 543
  start-page: 60
  year: 2017
  ident: 2022090617030584300_msac181-B21
  article-title: Evidence for early life in Earth’s oldest hydrothermal vent precipitates
  publication-title: Nature
  doi: 10.1038/nature21377
– volume: 3
  start-page: 281
  year: 2018
  ident: 2022090617030584300_msac181-B99
  article-title: A pathway for biological methane production using bacterial iron-only nitrogenase
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-017-0091-5
– volume: 35
  start-page: 1547
  year: 2018
  ident: 2022090617030584300_msac181-B46
  article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy096
– volume: 187
  start-page: 405
  year: 2005
  ident: 2022090617030584300_msac181-B82
  article-title: Maturation of nitrogenase: a biochemical puzzle
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.2.405-414.2005
– volume: 37
  start-page: 1530
  year: 2020
  ident: 2022090617030584300_msac181-B60
  article-title: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msaa015
– volume: 13
  start-page: 162
  year: 2012
  ident: 2022090617030584300_msac181-B22
  article-title: Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-162
– volume: 549
  start-page: 516
  year: 2017
  ident: 2022090617030584300_msac181-B90
  article-title: Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada
  publication-title: Nature
  doi: 10.1038/nature24019
– volume: 8
  start-page: e72751
  year: 2013
  ident: 2022090617030584300_msac181-B35
  article-title: Multiple amino acid sequence alignment nitrogenase component 1: insights into phylogenetics and structure-function relationships
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072751
– volume: 354
  start-page: 339
  year: 2016
  ident: 2022090617030584300_msac181-B100
  article-title: The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea
  publication-title: Science
  doi: 10.1126/science.aag2947
SSID ssj0014466
Score 2.5035605
Snippet Abstract The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small...
The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of...
SourceID pubmedcentral
proquest
gale
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Archaea
Bacteria
Developmental biology
Discoveries
Ecological niches
Evolution
Fixation
Genomes
Genomics
Hypotheses
Molybdenum
Nitrogen
Nitrogen fixation
Nitrogenation
Phylogeny
Prokaryotes
Proteins
Title Origin and Evolution of Nitrogen Fixation in Prokaryotes
URI https://www.proquest.com/docview/3170908800
https://www.proquest.com/docview/2705399178
https://pubmed.ncbi.nlm.nih.gov/PMC9447857
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-2lsFexroPlq0L3hjsycS2ZEt-Gt1IKIWlZbSQNyHJMgtt7S5JS_vf905WvPph64v9IKGPu5N0pzv9DuCLLQjjQ-dxaRKDBoqWsdEZizNupcMTVVgf8v9zXhye8aNFvggXbusQVrndE_1GXbWW7sgneM4lFJOTJN-u_sSUNYq8qyGFxlPYJegyCukSi97gSre-SsEEDoPJHrSRTS7bC-NuJpdrbVOZDg6lsDUP3ruR2jkMmnxwCs1ewougPkYHHb_34IlrXsGzLqHk3WuQxz7PVaSbKpreBKmK2jqaLzerFmUlmi1vPS8irHWyas_16q5FbfMNnM2mpz8O45AbIbY545vYFtYaW6J9kTpCdLF1XZmCGWmykgvNpQc-K3ByZVWiypGJWmgt6lxWRtg8ZW9hp2kb9w4izSvpeOYSrWs0lyr8MVshNQuLTdRyBPGWOMoG4HDKX3GhOgc2Ux0xVSDmCL729a86yIx_1yRaK1pL2KLV4UkAjotQqdSBEDlZcGU5gs_Ijkeb299yS4WVuFZ_5WYEn_piXEPkGNGNa6_XKhMJAfSmAucqBlzueyQU7mFJs_zt0bhLzoXMxfv_d_4Bnmf0cMJHp-3DzmZ17T6iOrMxYy-zY9j9Pp2f_Br7SwH8nh4v7gFVgvsX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xUMAgEKdok9iJ7QNCBXa1pe1SoVbqzbUdR6xok7K7Leyf4jcyzgtyAE495WBrHM-MM-PMzDcAL23qMT50EkgTGrygaBEYHdMgZlY4tKjcVin_-7N0esQ-HifHG_CzrYXxaZXtN7H6UGel9f_IR2jnQp-TE4Zvz78FvmuUj662LTRqtdh16-94ZVu-2fmA8n0Vx5Px4ftp0HQVCGxC2SqwqbXGSvTMI-exUGyeZyalRphYMq6ZqCDDUhsJmUk01jHPudY8T0RmuE0iinSvwSajuMkBbL4bzw4-d3GLNjrKKceNU9HBRNLRWXlq3OXobKmRdNQzg40x6FXYeUe3n6b5h92b3IZbjcNKtmsNuwMbrrgL1-sWlut7ID5VnbWILjIyvmz0mJQ5mc1XixK1k0zmPyrpE5x1sCi_6sW6RP_2PhxdCd8ewKAoC_cQiGaZcCx2odY5XtAyfFCbyUSkFknkYghByxxlG6hy3zHjVNUhc6pqZqqGmUN43c0_r0E6_j7T81r504sUrW6KEPC9PA6W2uY88XdGKYfwAsXxX3JbrbRUc_aX6remDuF5N4yn1odidOHKi6WKeeghgSOOe-U9KXcretzv_kgx_1Lhf0vGuEj4o38v_gxuTA_399Tezmz3MdyMfdlGlRu3BYPV4sI9QWdqZZ42Gkzg5KoPzS_c4zVS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origin+and+Evolution+of+Nitrogen+Fixation+in+Prokaryotes&rft.jtitle=Molecular+biology+and+evolution&rft.au=Pi%2C+Hong-Wei&rft.au=Lin%2C+Jinn-Jy&rft.au=Chen%2C+Chi-An&rft.au=Wang%2C+Po-Hsiang&rft.date=2022-09-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.eissn=1537-1719&rft.volume=39&rft.issue=9&rft_id=info:doi/10.1093%2Fmolbev%2Fmsac181&rft.externalDocID=10.1093%2Fmolbev%2Fmsac181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon