Origin and Evolution of Nitrogen Fixation in Prokaryotes
Abstract The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred...
Saved in:
Published in | Molecular biology and evolution Vol. 39; no. 9 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0737-4038 1537-1719 1537-1719 |
DOI | 10.1093/molbev/msac181 |
Cover
Loading…
Abstract | Abstract
The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis. |
---|---|
AbstractList | The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis. The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis. Key words: nitrogen fixation, nitrogenase, molybdenum transporter, bacteria, archaea. The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis. Abstract The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis. |
Audience | Academic |
Author | Lin, Jinn-Jy Young, Chiu-Chung Pi, Hong-Wei Li, Wen-Hsiung Chen, Chi-An Huang, Chieh-Chen Chiang, Yin-Ru Wang, Po-Hsiang |
Author_xml | – sequence: 1 givenname: Hong-Wei orcidid: 0000-0001-5811-5802 surname: Pi fullname: Pi, Hong-Wei – sequence: 2 givenname: Jinn-Jy surname: Lin fullname: Lin, Jinn-Jy – sequence: 3 givenname: Chi-An surname: Chen fullname: Chen, Chi-An – sequence: 4 givenname: Po-Hsiang surname: Wang fullname: Wang, Po-Hsiang – sequence: 5 givenname: Yin-Ru surname: Chiang fullname: Chiang, Yin-Ru – sequence: 6 givenname: Chieh-Chen surname: Huang fullname: Huang, Chieh-Chen – sequence: 7 givenname: Chiu-Chung orcidid: 0000-0003-0828-3802 surname: Young fullname: Young, Chiu-Chung – sequence: 8 givenname: Wen-Hsiung surname: Li fullname: Li, Wen-Hsiung email: whli@uchicago.edu |
BookMark | eNqFUcFOGzEUtCqqJtBee16pFzgE7NjeZ1-QEEoAKSoc6Nnyeu3UdNdO7d2I_n0NiZBAQsgHW88z8-a9OUQHIQaL0HeCTwmW9KyPXWO3Z33WhgjyCU0JpzAjQOQBmmIob4apmKDDnB8wJozV9Rc0oVxKSgCmSNwmv_ah0qGtFtvYjYOPoYqu-umHFNc2VEv_qJ-LBXWX4h-d_sXB5q_os9Ndtt_29xH6tVzcX17PVrdXN5cXq5nhlA0zUxvTGMk5JpYXJ8a5tqlpI5q5ZKCZYBjmpC7mZSsl1HNwoDU4LtoGDCf0CJ3vdDdj09vW2DAk3alN8n1xoqL26vVP8L_VOm6VZAwEhyJwvBdI8e9o86B6n43tOh1sHLOaA-ZUSgKiQH-8gT7EMYUynirbwhILgXFBne5Qa91Z5YOLpa8pp7W9NyUe50v9AoATJp8W_UIwKeacrHtxT7B6SlHtUlT7FAuBvSEYPzyHUDr57n3ayY4Wx81HLf4Dum-zNw |
CitedBy_id | crossref_primary_10_1016_j_tim_2023_03_011 crossref_primary_10_3389_fmicb_2024_1358787 crossref_primary_10_1007_s12223_024_01227_3 crossref_primary_10_1016_j_jenvman_2024_122973 crossref_primary_10_1093_molbev_msae023 crossref_primary_10_1093_nar_gkac976 crossref_primary_10_1007_s00203_024_04191_1 crossref_primary_10_1080_00380768_2024_2361068 crossref_primary_10_3390_molecules28247959 crossref_primary_10_1186_s40168_024_01812_1 crossref_primary_10_1128_aem_00574_24 crossref_primary_10_3390_microorganisms12040791 crossref_primary_10_1038_s41598_023_47924_w crossref_primary_10_1073_pnas_2410311121 crossref_primary_10_3390_genes14020274 crossref_primary_10_1186_s12864_024_10994_9 crossref_primary_10_1016_j_micres_2024_127726 crossref_primary_10_1002_imo2_56 crossref_primary_10_1016_j_stress_2024_100632 crossref_primary_10_1126_sciadv_ado6169 crossref_primary_10_3390_plants13152106 crossref_primary_10_3389_fmars_2023_1213051 crossref_primary_10_1134_S1021443723602306 |
Cites_doi | 10.1038/nrg.2016.39 10.1038/s41586-019-1436-4 10.1111/j.1472-4669.2011.00278.x 10.1016/0076-6879(94)43025-X 10.1264/jsme2.ME21018 10.1111/gbi.12381 10.3390/biology10040329 10.3389/fmicb.2020.00817 10.1128/JB.00876-07 10.1093/molbev/msaa089 10.1038/s41396-020-0716-1 10.3390/ijms20051145 10.3389/fmicb.2011.00205 10.1128/aem.49.6.1530-1531.1985 10.1093/nar/gkz246 10.1038/s41396-021-00935-9 10.1038/nature21427 10.1038/ncomms11426 10.1186/1471-2164-9-488 10.1371/journal.pone.0119284 10.1111/mmi.14152 10.1093/gbe/evac031 10.1099/ijs.0.63815-0 10.1016/j.freeradbiomed.2019.01.050 10.1111/1462-2920.12960 10.1134/S0026261721040068 10.1126/science.abb6310 10.1128/aem.55.10.2522-2526.1989 10.1126/science.1134772 10.1264/jsme2.ME18030 10.3389/fmicb.2020.587127 10.1038/nmeth.4285 10.1371/journal.pone.0102561 10.1007/s00248-011-9824-9 10.1046/j.1462-2920.2002.00319.x 10.1099/ijsem.0.002144 10.1128/mBio.00561-19 10.1128/JB.02611-14 10.1105/tpc.19.00279 10.3389/fmicb.2018.00703 10.1038/ngeo325 10.1038/s41561-019-0371-1 10.1073/pnas.2019229118 10.1038/nmicrobiol.2016.193 10.1046/j.1365-2958.2000.02121.x 10.1126/sciadv.aax5343 10.1128/AEM.71.12.7910-7919.2005 10.1021/acs.chemrev.9b00489 10.1099/mic.0.045344-0 10.1007/978-1-4020-9212-1 10.1007/s00248-018-1239-4 10.1093/molbev/msn067 10.1111/mec.13901 10.1007/s00775-014-1225-3 10.1146/annurev-biochem-060614-034108 10.1016/j.earscirev.2020.103296 10.1186/s12864-018-5068-0 10.1038/s41564-019-0534-2 10.1073/pnas.1510409112 10.1007/s002390010061 10.3389/fmicb.2013.00201 10.1080/10635150490522304 10.1093/molbev/mst010 10.3389/fpls.2017.01947 10.1038/s41467-021-25000-z 10.3389/fmicb.2016.02026 10.3390/microorganisms9081662 10.1039/C8MT00038G 10.1093/molbev/msh047 10.1038/s41467-018-04995-y 10.1016/j.jmb.2008.03.051 10.1093/nar/gkz239 10.1093/molbev/msx281 10.1074/jbc.M601750200 10.1099/ijs.0.016105-0 10.1038/nmicrobiol.2016.116 10.1128/JB.00504-09 10.1007/s10534-011-9421-x 10.1264/jsme2.ME17134 10.1038/nbt.4229 10.1073/pnas.0907926106 10.1038/s41587-020-0501-8 10.1007/s002480000090 10.1038/nature08950 10.1073/pnas.1716667115 10.1038/s41561-020-0601-6 10.1128/JB.00757-17 10.3389/fmicb.2019.01858 10.1126/sciadv.abm2296 10.1038/nature21377 10.1038/s41564-017-0091-5 10.1093/molbev/msy096 10.1128/JB.187.2.405-414.2005 10.1093/molbev/msaa015 10.1186/1471-2164-13-162 10.1038/nature24019 10.1371/journal.pone.0072751 10.1126/science.aag2947 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2022 COPYRIGHT 2022 Oxford University Press The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2022 – notice: COPYRIGHT 2022 Oxford University Press – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. |
DBID | TOX AAYXX CITATION 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM |
DOI | 10.1093/molbev/msac181 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (UHCL Subscription) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library (Proquest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
ExternalDocumentID | PMC9447857 A775149599 10_1093_molbev_msac181 10.1093/molbev/msac181 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: ; grantid: AS-KPQ-109-ITAR-11 – fundername: ; grantid: MOST 110-2311-B-001-035 |
GroupedDBID | --- -E4 -~X .2P .GJ .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 53G 5VS 5WA 70D 7X7 88E 8AO 8FI 8FJ 8G5 AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABQTQ ABSMQ ABTAH ABUWG ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACNCT ACPRK ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADOCK ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUYN AEWNT AFFNX AFIYH AFKRA AFOFC AFPKN AFRAH AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASAOO ATDFG AXUDD AYOIW AZQEC AZVOD BAWUL BAYMD BBNVY BENPR BEYMZ BHONS BHPHI BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM C1A CAG CCPQU CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 DWQXO D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD FYUFA GAUVT GJXCC GNUQQ GROUPED_DOAJ GUQSH GX1 H13 H5~ HAR HCIFZ HH5 HMCUK HW0 HZ~ IAO IGS IHR IOX ITC J21 KOP KQ8 KSI M-Z M1P M2O M49 M7P MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOYVH NTWIH NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD O~Y P2P PAFKI PEELM PQQKQ PSQYO Q1. Q5Y RD5 RNI ROL ROZ RPM RUSNO RW1 RXO RZO TEORI TJP TJX TLC TN5 TOX TR2 UKHRP W8F WOQ X7H XJT XSW YAYTL YHZ YKOAZ YXANX ZCA ZCG ZKX ZXP ZY4 ~02 ~91 AAYXX CITATION PHGZM PHGZT PMFND 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FE 8FH 8FK C1K FR3 H94 K9. LK8 M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c534t-c6ccbc95501e5038cffdb63b8b2947a48407216c189d997627f7aa7f58db7c513 |
IEDL.DBID | 7X7 |
ISSN | 0737-4038 1537-1719 |
IngestDate | Thu Aug 21 14:14:48 EDT 2025 Fri Jul 11 08:59:26 EDT 2025 Fri Jul 25 19:28:19 EDT 2025 Tue Jun 10 21:15:46 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Tue Jul 01 03:46:00 EDT 2025 Wed Apr 02 07:05:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | bacteria nitrogen fixation molybdenum transporter nitrogenase archaea |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-c6ccbc95501e5038cffdb63b8b2947a48407216c189d997627f7aa7f58db7c513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Hong Wei Pi and Jinn Jy Lin contributed equally to this work. |
ORCID | 0000-0003-0828-3802 0000-0001-5811-5802 |
OpenAccessLink | https://dx.doi.org/10.1093/molbev/msac181 |
PMID | 35993177 |
PQID | 3170908800 |
PQPubID | 36253 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9447857 proquest_miscellaneous_2705399178 proquest_journals_3170908800 gale_infotracacademiconefile_A775149599 crossref_primary_10_1093_molbev_msac181 crossref_citationtrail_10_1093_molbev_msac181 oup_primary_10_1093_molbev_msac181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Molecular biology and evolution |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Adam (2022090617030584300_msac181-B3) 2019; 4 Zhang (2022090617030584300_msac181-B97) 2008; 379 Berkemer (2022090617030584300_msac181-B10) 2020; 37 Roy (2022090617030584300_msac181-B81) 2020; 32 Mendler (2022090617030584300_msac181-B59) 2019; 47 Mehta (2022090617030584300_msac181-B58) 2006; 314 Zheng (2022090617030584300_msac181-B99) 2018; 3 Dahl (2022090617030584300_msac181-B18) 1994; 243 Abreu (2022090617030584300_msac181-B1) 2000; 38 Koirala (2022090617030584300_msac181-B44) 2021; 9 Kalyaanamoorthy (2022090617030584300_msac181-B42) 2017; 14 Steinsbu (2022090617030584300_msac181-B88) 2010; 60 Howard (2022090617030584300_msac181-B35) 2013; 8 Angel (2022090617030584300_msac181-B8) 2018; 9 Boyd (2022090617030584300_msac181-B14) 2011; 2 Mus (2022090617030584300_msac181-B64) 2019; 140 Hedrich (2022090617030584300_msac181-B33) 2011; 157 Philippi (2022090617030584300_msac181-B75) 2021; 12 Li (2022090617030584300_msac181-B53) 2015; 5 Ge (2022090617030584300_msac181-B30) 2020; 11 Hoang (2022090617030584300_msac181-B34) 2018; 35 North (2022090617030584300_msac181-B68) 2020; 369 Staples (2022090617030584300_msac181-B87) 2007; 189 Jiao (2022090617030584300_msac181-B41) 2021; 15 Moore (2022090617030584300_msac181-B61) 2017; 543 Muraki (2022090617030584300_msac181-B62) 2010; 465 Shukla (2022090617030584300_msac181-B86) 2016; 25 Reitner (2022090617030584300_msac181-B80) 2011 Scott (2022090617030584300_msac181-B84) 2015; 10 Nishihara (2022090617030584300_msac181-B66) 2018; 33 Affourtit (2022090617030584300_msac181-B4) 2001; 41 Garcia-Pichel (2022090617030584300_msac181-B27) 2019; 10 Hulsen (2022090617030584300_msac181-B38) 2008; 9 Martin (2022090617030584300_msac181-B56) 2020; 11 Zheng (2022090617030584300_msac181-B98) 2016; 18 Demtröder (2022090617030584300_msac181-B20) 2019; 111 Wang (2022090617030584300_msac181-B92) 2021; 118 de Lajudie (2022090617030584300_msac181-B19) 2017; 67 Zheng (2022090617030584300_msac181-B100) 2016; 354 Setubal (2022090617030584300_msac181-B85) 2009; 191 Garcia (2022090617030584300_msac181-B29) 2020; 18 Tahon (2022090617030584300_msac181-B89) 2016; 7 Le (2022090617030584300_msac181-B48) 2008; 25 Fay (2022090617030584300_msac181-B26) 2015; 112 Aguilar-Barajas (2022090617030584300_msac181-B5) 2011; 24 Tashiro (2022090617030584300_msac181-B90) 2017; 549 Enkh-Amgalan (2022090617030584300_msac181-B23) 2006; 56 Zehr (2022090617030584300_msac181-B96) 1989; 55 Albalat (2022090617030584300_msac181-B6) 2016; 17 Hu (2022090617030584300_msac181-B37) 2016; 85 Peng (2022090617030584300_msac181-B74) 2018; 19 Mus (2022090617030584300_msac181-B63) 2018; 10 Hamelin (2022090617030584300_msac181-B31) 2002; 4 Lepot (2022090617030584300_msac181-B50) 2020; 209 Watanabe (2022090617030584300_msac181-B93) 2021; 10 Boyd (2022090617030584300_msac181-B15) 2013; 4 Quaiser (2022090617030584300_msac181-B78) 2014; 9 Russell (2022090617030584300_msac181-B83) 2009; 106 Poudel (2022090617030584300_msac181-B77) 2018; 200 Yang (2022090617030584300_msac181-B95) 2019; 12 Papineau (2022090617030584300_msac181-B71) 2022; 8 Ivanovsky (2022090617030584300_msac181-B39) 2021; 90 Lovley (2022090617030584300_msac181-B55) 1985; 49 Boyd (2022090617030584300_msac181-B13) 2015; 197 Fani (2022090617030584300_msac181-B25) 2000; 51 Parks (2022090617030584300_msac181-B72) 2020; 38 Minh (2022090617030584300_msac181-B60) 2020; 37 Chen (2022090617030584300_msac181-B17) 2021; 36 Pan (2022090617030584300_msac181-B70) 2022; 10 Javaux (2022090617030584300_msac181-B40) 2019; 572 Letunic (2022090617030584300_msac181-B51) 2019; 47 Katoh (2022090617030584300_msac181-B43) 2013; 30 Li (2022090617030584300_msac181-B52) 2019; 20 Ohmoto (2022090617030584300_msac181-B69) 2020; 13 Nishihara (2022090617030584300_msac181-B65) 2018; 33 Dodd (2022090617030584300_msac181-B21) 2017; 543 Raymond (2022090617030584300_msac181-B79) 2004; 21 König (2022090617030584300_msac181-B45) 2016; 2 Burén (2022090617030584300_msac181-B16) 2020; 120 Dos Santos (2022090617030584300_msac181-B22) 2012; 13 Adam (2022090617030584300_msac181-B2) 2018; 115 Erisman (2022090617030584300_msac181-B24) 2008; 1 Langlois (2022090617030584300_msac181-B47) 2005; 71 Thomazo (2022090617030584300_msac181-B91) 2018; 9 Rubio (2022090617030584300_msac181-B82) 2005; 187 Bižić (2022090617030584300_msac181-B11) 2020; 6 Kumar (2022090617030584300_msac181-B46) 2018; 35 Méheust (2022090617030584300_msac181-B57) 2020; 14 Nomata (2022090617030584300_msac181-B67) 2006; 281 Boyd (2022090617030584300_msac181-B12) 2011; 9 Parks (2022090617030584300_msac181-B73) 2018; 36 Albright (2022090617030584300_msac181-B7) 2019; 77 Hamilton (2022090617030584300_msac181-B32) 2011; 61 Lee (2022090617030584300_msac181-B49) 2019; 10 Weiss (2022090617030584300_msac181-B94) 2016; 1 Arragain (2022090617030584300_msac181-B9) 2017; 8 Posada (2022090617030584300_msac181-B76) 2004; 53 Garcia (2022090617030584300_msac181-B28) 2022; 14 Hu (2022090617030584300_msac181-B36) 2015; 20 López-Torrejón (2022090617030584300_msac181-B54) 2016; 7 |
References_xml | – volume: 17 start-page: 379 year: 2016 ident: 2022090617030584300_msac181-B6 article-title: Evolution by gene loss publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.39 – volume: 572 start-page: 451 year: 2019 ident: 2022090617030584300_msac181-B40 article-title: Challenges in evidencing the earliest traces of life publication-title: Nature doi: 10.1038/s41586-019-1436-4 – volume: 9 start-page: 221 year: 2011 ident: 2022090617030584300_msac181-B12 article-title: A late methanogen origin for molybdenum-dependent nitrogenase publication-title: Geobiology doi: 10.1111/j.1472-4669.2011.00278.x – volume: 243 start-page: 331 year: 1994 ident: 2022090617030584300_msac181-B18 article-title: Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus publication-title: Methods Enzymol doi: 10.1016/0076-6879(94)43025-X – volume: 36 year: 2021 ident: 2022090617030584300_msac181-B17 article-title: Nitrogen-fixing ability and nitrogen fixation-related genes of thermophilic fermentative bacteria in the genus Caldicellulosiruptor publication-title: Microbes Environ doi: 10.1264/jsme2.ME21018 – volume: 5 start-page: 1 year: 2015 ident: 2022090617030584300_msac181-B53 article-title: Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change publication-title: Sci Rep – volume: 18 start-page: 394 year: 2020 ident: 2022090617030584300_msac181-B29 article-title: Reconstructing the evolutionary history of nitrogenases: evidence for ancestral molybdenum-cofactor utilization publication-title: Geobiology doi: 10.1111/gbi.12381 – volume: 10 start-page: 329 year: 2021 ident: 2022090617030584300_msac181-B93 article-title: The evolution of molybdenum dependent nitrogenase in cyanobacteria publication-title: Biology doi: 10.3390/biology10040329 – volume: 11 start-page: 817 year: 2020 ident: 2022090617030584300_msac181-B56 article-title: Older than genes: the acetyl CoA pathway and origins publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00817 – volume: 189 start-page: 7392 year: 2007 ident: 2022090617030584300_msac181-B87 article-title: Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii publication-title: J Bacteriol doi: 10.1128/JB.00876-07 – volume: 37 start-page: 2332 issue: 8 year: 2020 ident: 2022090617030584300_msac181-B10 article-title: A new analysis of archaea-bacteria domain separation: variable phylogenetic distance and the tempo of early evolution publication-title: Mol Biol Evol doi: 10.1093/molbev/msaa089 – volume: 14 start-page: 2907 year: 2020 ident: 2022090617030584300_msac181-B57 article-title: Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog publication-title: ISME J doi: 10.1038/s41396-020-0716-1 – volume: 20 start-page: 1145 year: 2019 ident: 2022090617030584300_msac181-B52 article-title: Evolution and functional analysis of orf1 within nif gene cluster from Paenibacillus graminis RSA19 publication-title: Int J Mol Sci doi: 10.3390/ijms20051145 – volume: 2 start-page: 205 year: 2011 ident: 2022090617030584300_msac181-B14 article-title: An alternative path for the evolution of biological nitrogen fixation publication-title: Front Microbiol doi: 10.3389/fmicb.2011.00205 – volume: 49 start-page: 1530 year: 1985 ident: 2022090617030584300_msac181-B55 article-title: Minimum threshold for hydrogen metabolism in methanogenic bacteria publication-title: Appl Environ Microbiol doi: 10.1128/aem.49.6.1530-1531.1985 – volume: 47 start-page: 4442 year: 2019 ident: 2022090617030584300_msac181-B59 article-title: AnnoTree: visualization and exploration of a functionally annotated microbial tree of life publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz246 – volume: 15 start-page: 3005 issue: 10 year: 2021 ident: 2022090617030584300_msac181-B41 article-title: Insight into the function and evolution of the Wood–Ljungdahl pathway in actinobacteria publication-title: ISME J doi: 10.1038/s41396-021-00935-9 – volume: 543 start-page: 78 year: 2017 ident: 2022090617030584300_msac181-B61 article-title: Elucidation of the biosynthesis of the methane catalyst coenzyme F430 publication-title: Nature doi: 10.1038/nature21427 – volume: 7 start-page: 11426 year: 2016 ident: 2022090617030584300_msac181-B54 article-title: Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast publication-title: Nat Commun doi: 10.1038/ncomms11426 – volume: 9 start-page: 1 year: 2008 ident: 2022090617030584300_msac181-B38 article-title: BioVenn–a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams publication-title: BMC Genomics doi: 10.1186/1471-2164-9-488 – volume: 10 year: 2015 ident: 2022090617030584300_msac181-B84 article-title: Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems publication-title: PLoS One doi: 10.1371/journal.pone.0119284 – volume: 111 start-page: 17 year: 2019 ident: 2022090617030584300_msac181-B20 article-title: Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum publication-title: Mol Microbiol doi: 10.1111/mmi.14152 – volume: 14 year: 2022 ident: 2022090617030584300_msac181-B28 article-title: Reconstruction of nitrogenase predecessors suggests origin from maturase-like proteins publication-title: Genome Biol Evol doi: 10.1093/gbe/evac031 – volume: 56 start-page: 65 year: 2006 ident: 2022090617030584300_msac181-B23 article-title: Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.63815-0 – volume: 140 start-page: 250 year: 2019 ident: 2022090617030584300_msac181-B64 article-title: Geobiological feedbacks, oxygen, and the evolution of nitrogenase publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2019.01.050 – volume: 18 start-page: 191 year: 2016 ident: 2022090617030584300_msac181-B98 article-title: Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)–an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase publication-title: Environ Microbiol doi: 10.1111/1462-2920.12960 – volume: 90 start-page: 428 year: 2021 ident: 2022090617030584300_msac181-B39 article-title: Nitrogen metabolism of an anoxygenic filamentous phototrophic bacterium Oscillocholris trichoides strain DG-6 publication-title: Microbiology doi: 10.1134/S0026261721040068 – volume: 369 start-page: 1094 year: 2020 ident: 2022090617030584300_msac181-B68 article-title: A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis publication-title: Science doi: 10.1126/science.abb6310 – volume: 55 start-page: 2522 year: 1989 ident: 2022090617030584300_msac181-B96 article-title: Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii publication-title: Appl Environ Microbiol doi: 10.1128/aem.55.10.2522-2526.1989 – volume: 314 start-page: 1783 year: 2006 ident: 2022090617030584300_msac181-B58 article-title: Nitrogen fixation at 92 C by a hydrothermal vent archaeon publication-title: Science doi: 10.1126/science.1134772 – volume: 33 start-page: 357 issue: 4 year: 2018 ident: 2022090617030584300_msac181-B66 article-title: Phylogenetic diversity of nitrogenase reductase genes and possible nitrogen-fixing bacteria in thermophilic chemosynthetic microbial communities in Nakabusa hot springs publication-title: Microbes Environ doi: 10.1264/jsme2.ME18030 – volume: 11 start-page: 587127 year: 2020 ident: 2022090617030584300_msac181-B30 article-title: Characterization of a metal-resistant Bacillus strain with a high molybdate affinity ModA from contaminated sediments at the Oak Ridge reservation publication-title: Front Microbiol doi: 10.3389/fmicb.2020.587127 – volume: 14 start-page: 587 year: 2017 ident: 2022090617030584300_msac181-B42 article-title: ModelFinder: fast model selection for accurate phylogenetic estimates publication-title: Nat Methods doi: 10.1038/nmeth.4285 – volume: 9 year: 2014 ident: 2022090617030584300_msac181-B78 article-title: Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics publication-title: PLoS One doi: 10.1371/journal.pone.0102561 – volume: 61 start-page: 860 year: 2011 ident: 2022090617030584300_msac181-B32 article-title: Environmental constraints underpin the distribution and phylogenetic diversity of nifH in the Yellowstone geothermal complex publication-title: Microb Ecol doi: 10.1007/s00248-011-9824-9 – volume: 10 start-page: 1 year: 2022 ident: 2022090617030584300_msac181-B70 article-title: Genome-resolved evidence for functionally redundant communities and novel nitrogen fixers in the deyin-1 hydrothermal field, Mid-Atlantic Ridge publication-title: Microbiome – volume: 4 start-page: 477 year: 2002 ident: 2022090617030584300_msac181-B31 article-title: Nifh gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass publication-title: Environ Microbiol doi: 10.1046/j.1462-2920.2002.00319.x – volume: 67 start-page: 2485 year: 2017 ident: 2022090617030584300_msac181-B19 article-title: International committee on systematics of prokaryotes subcommittee for the taxonomy of rhizobium and agrobacterium minutes of the meeting, Budapest, 25 August 2016 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.002144 – volume: 10 start-page: e00561-19 issue: 3 year: 2019 ident: 2022090617030584300_msac181-B27 article-title: Timing the evolutionary advent of cyanobacteria and the later Great Oxidation Event using gene phylogenies of a sunscreen publication-title: MBio doi: 10.1128/mBio.00561-19 – volume: 197 start-page: 1690 year: 2015 ident: 2022090617030584300_msac181-B13 article-title: Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism publication-title: J Bacteriol doi: 10.1128/JB.02611-14 – volume: 32 start-page: 15 year: 2020 ident: 2022090617030584300_msac181-B81 article-title: Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation publication-title: Plant Cell doi: 10.1105/tpc.19.00279 – volume: 9 start-page: 703 year: 2018 ident: 2022090617030584300_msac181-B8 article-title: Evaluation of primers targeting the diazotroph functional gene and development of NifMAP–a bioinformatics pipeline for analyzing nifH amplicon data publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00703 – volume: 1 start-page: 636 year: 2008 ident: 2022090617030584300_msac181-B24 article-title: How a century of ammonia synthesis changed the world publication-title: Nat Geosci doi: 10.1038/ngeo325 – volume: 12 start-page: 553 year: 2019 ident: 2022090617030584300_msac181-B95 article-title: Ammonium availability in the Late Archaean nitrogen cycle publication-title: Nat Geosci doi: 10.1038/s41561-019-0371-1 – volume: 118 start-page: e2019229118 issue: 27 year: 2021 ident: 2022090617030584300_msac181-B92 article-title: Aerobic bacterial methane synthesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2019229118 – volume: 2 start-page: 1 year: 2016 ident: 2022090617030584300_msac181-B45 article-title: Nitrogen fixation in a chemoautotrophic lucinid symbiosis publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.193 – volume: 38 start-page: 322 year: 2000 ident: 2022090617030584300_msac181-B1 article-title: Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.02121.x – volume: 6 start-page: eaax5343 year: 2020 ident: 2022090617030584300_msac181-B11 article-title: Aquatic and terrestrial cyanobacteria produce methane publication-title: Sci Adv doi: 10.1126/sciadv.aax5343 – volume: 71 start-page: 7910 year: 2005 ident: 2022090617030584300_msac181-B47 article-title: Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.7910-7919.2005 – volume: 120 start-page: 4921 issue: 12 year: 2020 ident: 2022090617030584300_msac181-B16 article-title: Biosynthesis of nitrogenase cofactors publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00489 – volume: 157 start-page: 1551 year: 2011 ident: 2022090617030584300_msac181-B33 article-title: The iron-oxidizing proteobacteria publication-title: Microbiology doi: 10.1099/mic.0.045344-0 – start-page: 853 volume-title: Encyclopedia of Geobiology year: 2011 ident: 2022090617030584300_msac181-B80 doi: 10.1007/978-1-4020-9212-1 – volume: 77 start-page: 597 year: 2019 ident: 2022090617030584300_msac181-B7 article-title: Comparative genomics of nitrogen cycling pathways in bacteria and archaea publication-title: Microb Ecol doi: 10.1007/s00248-018-1239-4 – volume: 25 start-page: 1307 year: 2008 ident: 2022090617030584300_msac181-B48 article-title: An improved general amino acid replacement matrix publication-title: Mol Biol Evol doi: 10.1093/molbev/msn067 – volume: 25 start-page: 6092 year: 2016 ident: 2022090617030584300_msac181-B86 article-title: Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae publication-title: Mol Ecol doi: 10.1111/mec.13901 – volume: 20 start-page: 435 year: 2015 ident: 2022090617030584300_msac181-B36 article-title: Nitrogenase and homologs publication-title: J Biol Inorg Chem doi: 10.1007/s00775-014-1225-3 – volume: 85 start-page: 455 year: 2016 ident: 2022090617030584300_msac181-B37 article-title: Biosynthesis of the metalloclusters of nitrogenases publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-060614-034108 – volume: 209 start-page: 103296 year: 2020 ident: 2022090617030584300_msac181-B50 article-title: Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2020.103296 – volume: 19 start-page: 691 year: 2018 ident: 2022090617030584300_msac181-B74 article-title: Comparative genomics of molybdenum utilization in prokaryotes and eukaryotes publication-title: BMC Genomics doi: 10.1186/s12864-018-5068-0 – volume: 4 start-page: 2155 year: 2019 ident: 2022090617030584300_msac181-B3 article-title: An archaeal origin of the Wood–Ljungdahl H 4 MPT branch and the emergence of bacterial methylotrophy publication-title: Nat Microbiol doi: 10.1038/s41564-019-0534-2 – volume: 112 start-page: 14829 year: 2015 ident: 2022090617030584300_msac181-B26 article-title: Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1510409112 – volume: 51 start-page: 1 year: 2000 ident: 2022090617030584300_msac181-B25 article-title: Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes publication-title: J Mol Evol doi: 10.1007/s002390010061 – volume: 4 start-page: 201 year: 2013 ident: 2022090617030584300_msac181-B15 article-title: New insights into the evolutionary history of biological nitrogen fixation publication-title: Front Microbiol doi: 10.3389/fmicb.2013.00201 – volume: 53 start-page: 793 year: 2004 ident: 2022090617030584300_msac181-B76 article-title: Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests publication-title: Syst Biol doi: 10.1080/10635150490522304 – volume: 30 start-page: 772 year: 2013 ident: 2022090617030584300_msac181-B43 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – volume: 8 start-page: 1947 year: 2017 ident: 2022090617030584300_msac181-B9 article-title: Diversity and functional analysis of the FeMo-cofactor maturase NifB publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01947 – volume: 12 start-page: 1 year: 2021 ident: 2022090617030584300_msac181-B75 article-title: Purple sulfur bacteria fix N2 via molybdenum-nitrogenase in a low molybdenum Proterozoic ocean analogue publication-title: Nat Commun doi: 10.1038/s41467-021-25000-z – volume: 7 start-page: 2026 year: 2016 ident: 2022090617030584300_msac181-B89 article-title: Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica publication-title: Front Microbiol doi: 10.3389/fmicb.2016.02026 – volume: 9 start-page: 1662 year: 2021 ident: 2022090617030584300_msac181-B44 article-title: Phylogeny of nitrogenase structural and assembly components reveals new insights into the origin and distribution of nitrogen fixation across bacteria and archaea publication-title: Microorganisms doi: 10.3390/microorganisms9081662 – volume: 10 start-page: 523 year: 2018 ident: 2022090617030584300_msac181-B63 article-title: Exploring the alternatives of biological nitrogen fixation publication-title: Metallomics doi: 10.1039/C8MT00038G – volume: 21 start-page: 541 year: 2004 ident: 2022090617030584300_msac181-B79 article-title: The natural history of nitrogen fixation publication-title: Mol Biol Evol doi: 10.1093/molbev/msh047 – volume: 9 start-page: 2530 year: 2018 ident: 2022090617030584300_msac181-B91 article-title: Possible nitrogen fertilization of the early Earth Ocean by microbial continental ecosystems publication-title: Nat Commun doi: 10.1038/s41467-018-04995-y – volume: 379 start-page: 881 year: 2008 ident: 2022090617030584300_msac181-B97 article-title: Molybdoproteomes and evolution of molybdenum utilization publication-title: J Mol Biol doi: 10.1016/j.jmb.2008.03.051 – volume: 47 start-page: W256 year: 2019 ident: 2022090617030584300_msac181-B51 article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz239 – volume: 35 start-page: 518 year: 2018 ident: 2022090617030584300_msac181-B34 article-title: UFBoot2: improving the ultrafast bootstrap approximation publication-title: Mol Biol Evol doi: 10.1093/molbev/msx281 – volume: 281 start-page: 15021 year: 2006 ident: 2022090617030584300_msac181-B67 article-title: A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from rhodobacter capsulatus publication-title: J Biol Chem doi: 10.1074/jbc.M601750200 – volume: 60 start-page: 2745 year: 2010 ident: 2022090617030584300_msac181-B88 article-title: Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.016105-0 – volume: 1 start-page: 1 year: 2016 ident: 2022090617030584300_msac181-B94 article-title: The physiology and habitat of the last universal common ancestor publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.116 – volume: 191 start-page: 4534 year: 2009 ident: 2022090617030584300_msac181-B85 article-title: Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes publication-title: J Bacteriol doi: 10.1128/JB.00504-09 – volume: 24 start-page: 687 year: 2011 ident: 2022090617030584300_msac181-B5 article-title: Bacterial transport of sulfate, molybdate, and related oxyanions publication-title: Biometals doi: 10.1007/s10534-011-9421-x – volume: 33 start-page: 10 year: 2018 ident: 2022090617030584300_msac181-B65 article-title: Nitrogen fixation in thermophilic chemosynthetic microbial communities depending on hydrogen, sulfate, and carbon dioxide publication-title: Microbes Environ doi: 10.1264/jsme2.ME17134 – volume: 36 start-page: 996 issue: 10 year: 2018 ident: 2022090617030584300_msac181-B73 article-title: A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life publication-title: Nat Biotechnol doi: 10.1038/nbt.4229 – volume: 106 start-page: 21236 year: 2009 ident: 2022090617030584300_msac181-B83 article-title: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0907926106 – volume: 38 start-page: 1079 issue: 9 year: 2020 ident: 2022090617030584300_msac181-B72 article-title: A complete domain-to-species taxonomy for bacteria and archaea publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0501-8 – volume: 41 start-page: 114 year: 2001 ident: 2022090617030584300_msac181-B4 article-title: Distribution of nitrogen-fixing microorganisms along the Neuse River Estuary, North Carolina publication-title: Microb Ecol doi: 10.1007/s002480000090 – volume: 465 start-page: 110 year: 2010 ident: 2022090617030584300_msac181-B62 article-title: X-ray crystal structure of the light-independent protochlorophyllide reductase publication-title: Nature doi: 10.1038/nature08950 – volume: 115 start-page: E1166 year: 2018 ident: 2022090617030584300_msac181-B2 article-title: Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1716667115 – volume: 13 start-page: 576 year: 2020 ident: 2022090617030584300_msac181-B69 article-title: A seawater-sulfate origin for early Earth’s volcanic sulfur publication-title: Nat Geosci doi: 10.1038/s41561-020-0601-6 – volume: 200 start-page: e00757-00717 year: 2018 ident: 2022090617030584300_msac181-B77 article-title: Electron transfer to nitrogenase in different genomic and metabolic backgrounds publication-title: J Bacteriol doi: 10.1128/JB.00757-17 – volume: 10 start-page: 1858 year: 2019 ident: 2022090617030584300_msac181-B49 article-title: Characterization of a nifH-harboring bacterial community in the soil-limited Gotjawal forest publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01858 – volume: 8 year: 2022 ident: 2022090617030584300_msac181-B71 article-title: Metabolically diverse primordial microbial communities in Earth’s oldest seafloor-hydrothermal jasper publication-title: Sci Adv doi: 10.1126/sciadv.abm2296 – volume: 543 start-page: 60 year: 2017 ident: 2022090617030584300_msac181-B21 article-title: Evidence for early life in Earth’s oldest hydrothermal vent precipitates publication-title: Nature doi: 10.1038/nature21377 – volume: 3 start-page: 281 year: 2018 ident: 2022090617030584300_msac181-B99 article-title: A pathway for biological methane production using bacterial iron-only nitrogenase publication-title: Nat Microbiol doi: 10.1038/s41564-017-0091-5 – volume: 35 start-page: 1547 year: 2018 ident: 2022090617030584300_msac181-B46 article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms publication-title: Mol Biol Evol doi: 10.1093/molbev/msy096 – volume: 187 start-page: 405 year: 2005 ident: 2022090617030584300_msac181-B82 article-title: Maturation of nitrogenase: a biochemical puzzle publication-title: J Bacteriol doi: 10.1128/JB.187.2.405-414.2005 – volume: 37 start-page: 1530 year: 2020 ident: 2022090617030584300_msac181-B60 article-title: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era publication-title: Mol Biol Evol doi: 10.1093/molbev/msaa015 – volume: 13 start-page: 162 year: 2012 ident: 2022090617030584300_msac181-B22 article-title: Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes publication-title: BMC Genomics doi: 10.1186/1471-2164-13-162 – volume: 549 start-page: 516 year: 2017 ident: 2022090617030584300_msac181-B90 article-title: Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada publication-title: Nature doi: 10.1038/nature24019 – volume: 8 start-page: e72751 year: 2013 ident: 2022090617030584300_msac181-B35 article-title: Multiple amino acid sequence alignment nitrogenase component 1: insights into phylogenetics and structure-function relationships publication-title: PLoS One doi: 10.1371/journal.pone.0072751 – volume: 354 start-page: 339 year: 2016 ident: 2022090617030584300_msac181-B100 article-title: The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea publication-title: Science doi: 10.1126/science.aag2947 |
SSID | ssj0014466 |
Score | 2.5035605 |
Snippet | Abstract
The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small... The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of... |
SourceID | pubmedcentral proquest gale crossref oup |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Analysis Archaea Bacteria Developmental biology Discoveries Ecological niches Evolution Fixation Genomes Genomics Hypotheses Molybdenum Nitrogen Nitrogen fixation Nitrogenation Phylogeny Prokaryotes Proteins |
Title | Origin and Evolution of Nitrogen Fixation in Prokaryotes |
URI | https://www.proquest.com/docview/3170908800 https://www.proquest.com/docview/2705399178 https://pubmed.ncbi.nlm.nih.gov/PMC9447857 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-2lsFexroPlq0L3hjsycS2ZEt-Gt1IKIWlZbSQNyHJMgtt7S5JS_vf905WvPph64v9IKGPu5N0pzv9DuCLLQjjQ-dxaRKDBoqWsdEZizNupcMTVVgf8v9zXhye8aNFvggXbusQVrndE_1GXbWW7sgneM4lFJOTJN-u_sSUNYq8qyGFxlPYJegyCukSi97gSre-SsEEDoPJHrSRTS7bC-NuJpdrbVOZDg6lsDUP3ruR2jkMmnxwCs1ewougPkYHHb_34IlrXsGzLqHk3WuQxz7PVaSbKpreBKmK2jqaLzerFmUlmi1vPS8irHWyas_16q5FbfMNnM2mpz8O45AbIbY545vYFtYaW6J9kTpCdLF1XZmCGWmykgvNpQc-K3ByZVWiypGJWmgt6lxWRtg8ZW9hp2kb9w4izSvpeOYSrWs0lyr8MVshNQuLTdRyBPGWOMoG4HDKX3GhOgc2Ux0xVSDmCL729a86yIx_1yRaK1pL2KLV4UkAjotQqdSBEDlZcGU5gs_Ijkeb299yS4WVuFZ_5WYEn_piXEPkGNGNa6_XKhMJAfSmAucqBlzueyQU7mFJs_zt0bhLzoXMxfv_d_4Bnmf0cMJHp-3DzmZ17T6iOrMxYy-zY9j9Pp2f_Br7SwH8nh4v7gFVgvsX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xUMAgEKdok9iJ7QNCBXa1pe1SoVbqzbUdR6xok7K7Leyf4jcyzgtyAE495WBrHM-MM-PMzDcAL23qMT50EkgTGrygaBEYHdMgZlY4tKjcVin_-7N0esQ-HifHG_CzrYXxaZXtN7H6UGel9f_IR2jnQp-TE4Zvz78FvmuUj662LTRqtdh16-94ZVu-2fmA8n0Vx5Px4ftp0HQVCGxC2SqwqbXGSvTMI-exUGyeZyalRphYMq6ZqCDDUhsJmUk01jHPudY8T0RmuE0iinSvwSajuMkBbL4bzw4-d3GLNjrKKceNU9HBRNLRWXlq3OXobKmRdNQzg40x6FXYeUe3n6b5h92b3IZbjcNKtmsNuwMbrrgL1-sWlut7ID5VnbWILjIyvmz0mJQ5mc1XixK1k0zmPyrpE5x1sCi_6sW6RP_2PhxdCd8ewKAoC_cQiGaZcCx2odY5XtAyfFCbyUSkFknkYghByxxlG6hy3zHjVNUhc6pqZqqGmUN43c0_r0E6_j7T81r504sUrW6KEPC9PA6W2uY88XdGKYfwAsXxX3JbrbRUc_aX6remDuF5N4yn1odidOHKi6WKeeghgSOOe-U9KXcretzv_kgx_1Lhf0vGuEj4o38v_gxuTA_399Tezmz3MdyMfdlGlRu3BYPV4sI9QWdqZZ42Gkzg5KoPzS_c4zVS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origin+and+Evolution+of+Nitrogen+Fixation+in+Prokaryotes&rft.jtitle=Molecular+biology+and+evolution&rft.au=Pi%2C+Hong-Wei&rft.au=Lin%2C+Jinn-Jy&rft.au=Chen%2C+Chi-An&rft.au=Wang%2C+Po-Hsiang&rft.date=2022-09-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.eissn=1537-1719&rft.volume=39&rft.issue=9&rft_id=info:doi/10.1093%2Fmolbev%2Fmsac181&rft.externalDocID=10.1093%2Fmolbev%2Fmsac181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |