Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA
The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA a...
Saved in:
Published in | Cell cycle (Georgetown, Tex.) Vol. 15; no. 3; pp. 331 - 336 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1538-4101 1551-4005 1551-4005 |
DOI | 10.1080/15384101.2015.1128594 |
Cover
Loading…
Abstract | The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5′OH end and a 2′-3′ cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process. |
---|---|
AbstractList | The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5'OH end and a 2'-3' cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process.The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5'OH end and a 2'-3' cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process. The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5'OH end and a 2'-3' cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process. |
Author | Epshtein, Anastasiya Klein, Hannah L. Potenski, Catherine J. Niu, Hengyao Sung, Patrick |
Author_xml | – sequence: 1 givenname: Hengyao surname: Niu fullname: Niu, Hengyao organization: Department of Molecular and Cellular Biochemistry, Indiana University – sequence: 2 givenname: Catherine J. surname: Potenski fullname: Potenski, Catherine J. organization: Nature Publishing Group – sequence: 3 givenname: Anastasiya surname: Epshtein fullname: Epshtein, Anastasiya organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine – sequence: 4 givenname: Patrick surname: Sung fullname: Sung, Patrick organization: Molecular Biophysics and Biochemistry, Yale University School of Medicine – sequence: 5 givenname: Hannah L. surname: Klein fullname: Klein, Hannah L. email: hannah.klein@nyumc.org organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26716562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1vFCEUhompsR_6EzRcejMrh6-ZjYmxqa2aNJqYek0YYLoYFlaY2br_vkx226gXegU5533fc-A5RUcxRYfQSyALIB15A4J1HAgsKAGxAKCdWPIn6ASEgIYTIo7mO-uaWXSMTkv5QQjt2iU8Q8dUtiCFpCdo9y0FV3Aa8Icv53jlgje61IKOFl_-SoB9xOPKYb1N3upo3CxdT6MefYqldu1knMX9Dt-kDTRrZ70ea8EEp7f6thpHnH2f4lQrafTWzaZ52HP0dNChuBeH8wx9v7q8ufjUXH_9-Pni_LoxgvGxMdxSTnvHpBYSGJeM0KG-qwXRS9p2TA50AA1uyU0_tL21jvetNYZL4MR07Ay92-dupr6uZ1wcsw5qk_1a551K2qs_O9Gv1G3aKr7krCWiBrw-BOT0c3JlVGtfjAtBR5emoqCVoiKpm1Tpq99nPQ55-O8qEHuByamU7IZHCRA1c1UPXNXMVR24Vt_bv3zG7xnUlX34r_v93u3jkPJa36UcrBr1LqQ85ErVF8X-HXEPGqG7ig |
CitedBy_id | crossref_primary_10_1038_s41598_017_12924_0 crossref_primary_10_1016_j_dnarep_2017_02_016 crossref_primary_10_1016_j_jmb_2016_08_005 crossref_primary_10_1038_s41594_019_0186_1 crossref_primary_10_1038_s41467_024_45947_z |
Cites_doi | 10.1093/emboj/21.11.2833 10.1074/jbc.272.19.12801 10.1016/j.molcel.2012.12.021 10.15252/embj.201490868 10.1126/science.286.5439.552 10.1016/j.cell.2014.04.053 10.1038/nature13292 10.1016/j.dnarep.2012.11.006 10.1016/S1097-2765(00)80010-6 10.1126/science.1205016 10.1074/jbc.M115.660191 10.1073/pnas.262591699 10.1016/j.tibs.2014.10.012 10.1007/BF00280418 10.1128/MCB.00960-13 10.1074/jbc.M115.653345 10.1038/nature09318 10.1038/nature07470 10.1016/j.molcel.2014.09.013 10.1016/j.dnarep.2012.12.004 |
ContentType | Journal Article |
Copyright | 2016 Taylor & Francis 2016 2016 Taylor & Francis 2016 Taylor & Francis |
Copyright_xml | – notice: 2016 Taylor & Francis 2016 – notice: 2016 Taylor & Francis 2016 Taylor & Francis |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/15384101.2015.1128594 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | H. Niu ET AL |
EISSN | 1551-4005 |
EndPage | 336 |
ExternalDocumentID | PMC4943705 26716562 10_1080_15384101_2015_1128594 1128594 |
Genre | Extra View Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01GM57814 – fundername: NCI NIH HHS grantid: R01 CA146940 – fundername: NIGMS NIH HHS grantid: R01GM053738 – fundername: NIEHS NIH HHS grantid: R00ES021441 – fundername: NIGMS NIH HHS grantid: R01 GM057814 – fundername: NCI NIH HHS grantid: P30 CA016087 – fundername: NIEHS NIH HHS grantid: R00 ES021441 |
GroupedDBID | --- 0BK 0R~ 29B 30N 4.4 53G 5GY AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEXWM AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE IPNFZ KRBQP KWAYT KYCEM M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SJN SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF LJTGL NPM PCLFJ 7X8 TASJS 5PM |
ID | FETCH-LOGICAL-c534t-c4d242be36a561346302f538715b627836f2f1a1e94cbf7bdde4b7dcc46140c83 |
ISSN | 1538-4101 1551-4005 |
IngestDate | Thu Aug 21 18:32:58 EDT 2025 Tue Aug 05 09:49:14 EDT 2025 Thu Apr 03 07:02:56 EDT 2025 Tue Jul 01 02:01:10 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Wed Dec 25 09:09:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | DNA helicase RNaseH2 Sgs1 ribonucleotides rNMPs |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-c4d242be36a561346302f538715b627836f2f1a1e94cbf7bdde4b7dcc46140c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Supplemental data for this article can be accessed on the publisher's website. |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15384101.2015.1128594?needAccess=true |
PMID | 26716562 |
PQID | 1765108836 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15384101_2015_1128594 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4943705 pubmed_primary_26716562 crossref_primary_10_1080_15384101_2015_1128594 crossref_citationtrail_10_1080_15384101_2015_1128594 proquest_miscellaneous_1765108836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell cycle (Georgetown, Tex.) |
PublicationTitleAlternate | Cell Cycle |
PublicationYear | 2016 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0001 cit0012 cit0020 cit0010 cit0021 Spell RM (cit0018) 2004; 262 cit0008 cit0019 cit0009 cit0006 cit0017 cit0007 cit0004 cit0015 cit0005 cit0016 cit0002 cit0013 cit0003 cit0014 20811460 - Nature. 2010 Sep 2;467(7311):108-11 12032096 - EMBO J. 2002 Jun 3;21(11):2833-41 24896181 - Nature. 2014 Jul 10;511(7508):251-4 14769952 - Methods Mol Biol. 2004;262:3-12 24998930 - Cell. 2014 Jul 17;158(2):327-38 24550002 - Mol Cell Biol. 2014 Apr;34(8):1521-34 25496645 - Trends Biochem Sci. 2015 Feb;40(2):67-71 23305949 - DNA Repair (Amst). 2013 Mar 1;12(3):205-11 10521354 - Science. 1999 Oct 15;286(5439):552-5 25887397 - J Biol Chem. 2015 May 29;290(22):14068-76 9139740 - J Biol Chem. 1997 May 9;272(19):12801-8 9659906 - Mol Cell. 1997 Dec;1(1):89-97 21700875 - Science. 2011 Jun 24;332(6037):1561-4 25777529 - EMBO J. 2015 May 5;34(9):1259-69 25439736 - Mol Cell. 2014 Nov 6;56(3):436-45 12475934 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16654-9 23375499 - Mol Cell. 2013 Mar 7;49(5):1010-5 23245697 - DNA Repair (Amst). 2013 Feb 1;12(2):121-7 8107676 - Mol Gen Genet. 1994 Feb;242(3):289-96 19020614 - Nature. 2008 Nov 20;456(7220):357-61 26067273 - J Biol Chem. 2015 Jul 24;290(30):18806-16 |
References_xml | – ident: cit0006 doi: 10.1093/emboj/21.11.2833 – ident: cit0008 doi: 10.1074/jbc.272.19.12801 – ident: cit0011 doi: 10.1016/j.molcel.2012.12.021 – ident: cit0013 doi: 10.15252/embj.201490868 – volume: 262 start-page: 3 year: 2004 ident: cit0018 publication-title: Methods Mol Biol – ident: cit0014 doi: 10.1126/science.286.5439.552 – ident: cit0016 doi: 10.1016/j.cell.2014.04.053 – ident: cit0001 doi: 10.1038/nature13292 – ident: cit0005 doi: 10.1016/j.dnarep.2012.11.006 – ident: cit0009 doi: 10.1016/S1097-2765(00)80010-6 – ident: cit0002 doi: 10.1126/science.1205016 – ident: cit0019 doi: 10.1074/jbc.M115.660191 – ident: cit0004 doi: 10.1073/pnas.262591699 – ident: cit0017 doi: 10.1016/j.tibs.2014.10.012 – ident: cit0003 doi: 10.1007/BF00280418 – ident: cit0015 doi: 10.1128/MCB.00960-13 – ident: cit0012 doi: 10.1074/jbc.M115.653345 – ident: cit0020 doi: 10.1038/nature09318 – ident: cit0007 doi: 10.1038/nature07470 – ident: cit0021 doi: 10.1016/j.molcel.2014.09.013 – ident: cit0010 doi: 10.1016/j.dnarep.2012.12.004 – reference: 26067273 - J Biol Chem. 2015 Jul 24;290(30):18806-16 – reference: 21700875 - Science. 2011 Jun 24;332(6037):1561-4 – reference: 14769952 - Methods Mol Biol. 2004;262:3-12 – reference: 24998930 - Cell. 2014 Jul 17;158(2):327-38 – reference: 9139740 - J Biol Chem. 1997 May 9;272(19):12801-8 – reference: 12475934 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16654-9 – reference: 20811460 - Nature. 2010 Sep 2;467(7311):108-11 – reference: 19020614 - Nature. 2008 Nov 20;456(7220):357-61 – reference: 23375499 - Mol Cell. 2013 Mar 7;49(5):1010-5 – reference: 25439736 - Mol Cell. 2014 Nov 6;56(3):436-45 – reference: 10521354 - Science. 1999 Oct 15;286(5439):552-5 – reference: 23305949 - DNA Repair (Amst). 2013 Mar 1;12(3):205-11 – reference: 9659906 - Mol Cell. 1997 Dec;1(1):89-97 – reference: 23245697 - DNA Repair (Amst). 2013 Feb 1;12(2):121-7 – reference: 24550002 - Mol Cell Biol. 2014 Apr;34(8):1521-34 – reference: 12032096 - EMBO J. 2002 Jun 3;21(11):2833-41 – reference: 25777529 - EMBO J. 2015 May 5;34(9):1259-69 – reference: 25887397 - J Biol Chem. 2015 May 29;290(22):14068-76 – reference: 24896181 - Nature. 2014 Jul 10;511(7508):251-4 – reference: 8107676 - Mol Gen Genet. 1994 Feb;242(3):289-96 – reference: 25496645 - Trends Biochem Sci. 2015 Feb;40(2):67-71 |
SSID | ssj0028791 |
Score | 2.1871762 |
Snippet | The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 331 |
SubjectTerms | Adenylyl Cyclases - genetics Adenylyl Cyclases - metabolism DNA - metabolism DNA helicase DNA Helicases - genetics DNA Helicases - metabolism DNA Repair DNA Repair Enzymes - genetics DNA Repair Enzymes - metabolism DNA Topoisomerases, Type I - genetics DNA Topoisomerases, Type I - metabolism Exodeoxyribonucleases - genetics Exodeoxyribonucleases - metabolism Extra View Humans Mutagenesis ribonucleotides Ribonucleotides - metabolism RNaseH2 rNMPs Sgs1 |
Title | Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA |
URI | https://www.tandfonline.com/doi/abs/10.1080/15384101.2015.1128594 https://www.ncbi.nlm.nih.gov/pubmed/26716562 https://www.proquest.com/docview/1765108836 https://pubmed.ncbi.nlm.nih.gov/PMC4943705 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKJiReEHfKTUbibUrJxXHSx2obqiaxB-jExEsUOw6LQEm1JtPCL-PncU7smKRUGpeXqHXs2PL5ci7OuRDyRvEg88WcO34kQofJVDgghiInkznPIpW5UmCA8_tTvjxjJ-fh-WTyY-C11NRiJr_vjCv5F6pCG9AVo2T_grL2odAAv4G-cAUKw_WPaPwBszGhund0ugCVD8_fNkonXT6-rrzehzG9qoqsCw3Aj-lNbf3Hs0ZqBXRVrT2nCyJBBRRmSa_QlyetDy4LUZWY87iqi6xz3sLJhirtIZ7-yRa6dEcO-ozd2PYrdT0bnDWcFo0WdeWXNq0sV67Qi16Xz7YBiQcnM6vsrzcXfU3ORZmCOrspWitNPhpupWsNfB2eYnjW8dngbvVbQZEtnsw801uZthBNXzccMfJwANhgwJX7oDBl_vGdskM7W-JsOBl6_YUYYBWHugrzVlpuc-cW2ffBQAGRsL9YHn3-ZI39OJqbXL168X30WOy-3TnFSC8aZc3dZftsu_AOdKLVPXLXGDN0oZF5n0xU-YDc1uVN24ek7fBJq5wCZKjFJwV8UsQnLUoK5KYWn9jV4pMafFLR0hE-aY9PmtZ0C5_4SJjsETl7d7w6XDqm1Icjw4DVjmQZ6IpCBTxFi5bxwPVz2KbICwXHYjA893Mv9dScAfOIBAhlJqJMSgbqpSvj4DHZK6tSPSXUU2Ee8CzIopyxWASx4CJQvgJDKJe5F08J6zc6kSYPPpZj-ZZ4Jl1uT58E6ZMY-kzJzA5b60QwNw2YD6mY1B3Ec43uJLhh7Oue5Amwe_yGl5aqajaJF3GQojFsyJQ80RCwy_F5hLm0_CmJRuCwHTCV_PhOWVx0KeXZnAWRGz77jzU_J3d-vdgvyF592aiXoLDX4pV5N34CiCrlCg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BEaIXyruhFBaJ6wbb-7KPFbQK0OaAUqk3y_tSrYJdNU5F-PXM-BElFVUPvWY9We_mm91vNzPfEPLJK-4SkymWaCOZsIVhsA1p5mxQTnsXWYMJzidTNTkV38_k2VouDIZV4hk6dEIR7VqNzo2X0UNI3Gf0UgFYwsgsiUkwqczEQ_JIZkqjc_Joujp0pTrrNVNThjZDFs9tX7OxP22ol_6Pg94MpVzbm452iB1G1YWkXIwXjRnbvzcEH-837GfkaU9d6UGHtefkga9ekMddMcvlS7L8idpQtA706_SAnnu8DZzDB9AfPfxTx7SsKLBNWlzXpUOs4aO_F10owBxaHaDMUbOks_oyZm1KC9BhCn0V17Dq0aKhV6WpK1RgrpvSeTTCzl6R06PD2ZcJ6ws7MCu5aJgVDpiB8VwVeH4RikdJgMHpWBqFpT9USEJcxD4TABVtYAkWRjtrBZCJyKb8Ndmq6srvEhp7Gbhy3OkAB03DU6MM94kH2htsiNMREcPPmdte9RyLb_zK414cdZjVHGc172d1RMYrs8tO9uMug2wdK3nT3reErjhKzu-w_TgAKwfnxn9sisrXi3keawVrZgoTMiJvOqCtXicBrAMZT0ZEb0Bw9QAKh2-2VOV5KyAuMsF1JN_e450_kCeT2clxfvxt-mOPbENTH8v-jmw1Vwu_D1StMe9bX_wHwbUv7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagCNQXbspyGolXL3Hs2MljRbsq1wqhVuLNii81ApJVN1ux_Hpmcqy6FagPfY0z8ZHP9ow98w0hb4MSPrWFYqm2GZOutAy2Ic28i8rr4BNnMcD5y1wdnciP37PRm3A5uFWiDR17oohurcbJvfBx9Ih7h5NUApTQMSvDGJg8K-RNckvhJR9GcSTzjc2V62KgTM0ZyoxBPP_7zNb2tEVe-i8V9LIn5YWtaXaP2LFTvUfKj-mqtVP35xLf47V6fZ_cHRRXut8j7QG5EeqH5HafynL9iKy_ITMUbSI9mO_T04BngUt4ANXRw98Np1VNQdek5XlTeUQavvpr1TsCLKHUA8Y8tWt63Cw46wJaQBmmUFd5DmseLVt6VtmmRv7lpq18QCGs7DE5mR0evz9iQ1oH5jIhW-akB73ABqFKtF6kEkkaoXOaZ1Zh4g8V08hLHgoJQNEWFmBptXdOgiqRuFw8ITt1U4enhPKQRaG88DqCmWlFbpUVIQ2g9EYXeT4hcvybxg2c55h646fhAzXqOKoGR9UMozoh043Yoif9uEqguAgV03anLbFPjWLEFbJvRlwZmNp4X1PWoVktDdcKVswcBmRC9nqcbZqTKo28SemE6C0Ebl5A2vDtkro67ejDZSGFTrJn12jza3Ln68HMfP4w__Sc7ELJ4Mj-guy0Z6vwEvS01r7qZuJf1F4ukQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roles+of+DNA+helicases+and+Exo1+in+the+avoidance+of+mutations+induced+by+Top1-mediated+cleavage+at+ribonucleotides+in+DNA&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Niu%2C+Hengyao&rft.au=Potenski%2C+Catherine+J.&rft.au=Epshtein%2C+Anastasiya&rft.au=Sung%2C+Patrick&rft.date=2016-02-01&rft.pub=Taylor+%26+Francis&rft.issn=1538-4101&rft.eissn=1551-4005&rft.volume=15&rft.issue=3&rft.spage=331&rft.epage=336&rft_id=info:doi/10.1080%2F15384101.2015.1128594&rft.externalDocID=1128594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon |